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Abstract

We show that a branching random walk that is supercritical on Z
d is also supercritical, in

a rather strong sense, when restricted to a large enough finite ball of Z
d . This implies that

the critical value of branching random walks on finite balls converges to the critical value
of branching random walks on Z

d as the radius increases to infinity. Our main result also
implies coexistence of an arbitrary finite number of species for an ecological model.
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1. Introduction and results

Consider a branching random walk (ξt , t ≥ 0) on {Z+}Zd = {0, 1, 2, . . . }Zd
. An un-

bounded number of individuals is permitted at each site. More precisely, for x ∈ Z
d and

ξ ∈ {0, 1, 2, . . . }Zd
, ξ(x) = 0 will represent a vacant site x for configuration ξ and ξ(x) =

n > 0 will represent the presence of n individuals at site x.
Individuals die at rate 1 and, at each site, new individuals are born according to the number

of individuals that are present at neighboring sites. The system is a spin system in that, at any
time t , at most one site can change; this change must consist of a change in value (up or down)
of precisely 1. For ξ(x) = n, n > 0, the up-rate is

c+(x, ξ) = lim
t→0

Pξ (ξt (x) = n + 1)

t
= λ1

∑
{y∈Zd : x∼y}

ξ(y)

2d
,

where x ∼ y means that y is one of the 2d nearest neighbors of x. The down-rate is

c−(x, ξ) = lim
t→0

Pξ (ξt (x) = n − 1)

t
= n = ξ(x).

The process ξt can be constructed using Harris’s graphical construction – see, for example,
Pemantle and Stacey (2001, Section 3).

Remark 1. Since we are dealing with unbounded spins (i.e. an unbounded number of individ-
uals is possible at each site), the process will not be defined for all ξ0. However, following
the methods of Kesten and van den Berg (2000), for example, we can show the existence of a
nonexplosive process satisfying the above conditions for ξ0(x) bounded over x.
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Let |ξt | = ∑
y∈Zd ξt (y) be the number of particles of ξt at time t for an initial configuration

ξ0 with |ξ0| < ∞. Note that if |ξt | = n, then

|ξt | → n + 1 at rate nλ1,

|ξt | → n − 1 at rate n.

That is, the process |ξt | is a continuous-time (nonspatial) branching process. Clearly, its critical
value is 1: starting with one individual, there is a positive probability that the process does not
become extinct if and only if λ1 > 1.

In this paper, we are concerned with branching random walks restricted to a finite set; births
from outside the finite set into the set are not permitted. Let | · | denote the Euclidean norm on
Z

d and let
Bn = {x ∈ Z

d : ‖x‖ ≤ n}.
A branching random walk restricted to the set Bn is the Markov chain on {0, 1, 2, . . . }Bn with
transition rates

c̄+(x, ξ) = λ1

∑
{y∈Bn : x∼y}

ξ(y)

2d
,

c̄−(x, ξ) = c−(x, ξ),

for x ∈ Bn.

Theorem 1. If λ1 > 1 then there exists an integer n such that the branching random walk
restricted to Bn survives in the following (strong) sense. There exists a function fn on Bn such
that, for any α > 0, there exists an N ≡ N(α, n) with the property that if

ξ0(x) > Nfn(x) for all x ∈ Bn,

then, with probability at least 1 − α, we have, for any δ ∈ (0, 1),

ξt (x) > N(1 − δ)fn(x)e(λ1−1)t/2 for all x ∈ Bn and all t > 0.

Theorem 1 is concerned with the behavior of a branching random walk restricted to a finite
set when the unrestricted walk is supercritical. A dual point of view is to examine the local
behavior of unrestricted branching random walks. This has been done for continuous-space
branching random walks; see, for instance, Engländer and Kyprianou (2004) or Engländer and
Pinsky (1999), and the references therein.

We now turn to two applications of Theorem 1.
It is easy to see, by the attractiveness of the systems (see, for example, Liggett (1985)), that

the branching random walk restricted to Bn has a critical value λn
c such that, starting with a single

particle, this process becomes extinct with probability 1 for λ1 < λn
c and becomes extinct with

probability strictly less than 1 for λ1 > λn
c . It is also not difficult to show that λn

c > 1 (the critical
value of the unrestricted branching random walk) and is finite, but an exact computation seems
out of the question. This is because the birth rate of a particle depends on where the particle
is: near the boundary or inside Bn. For this process (unlike for the unrestricted process) the
critical value depends on the geometry of the space to which the process is restricted. However,
as a direct consequence of Theorem 1, we obtain the following result.

Corollary 1. The critical value λn
c of the branching random walk on Bn converges to the critical

value of the branching random walk on Z
d as n → ∞.
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Proof. According to Theorem 1, for any λ1 > 1 there exists an n0 such that there is a positive
probability for the branching random walk restricted to Bn0 to survive. (Using the Markov
property of the process, it is easy to see that if the process can survive starting from a particular
finite distribution, then it can also survive starting from any nonempty finite distribution). Thus,
for any λ1 > 1, there exists an n0 such that λ

n0
c ≤ λ1. Also, since the sequence (λn

c )n≥1 is
decreasing and is bounded below by 1, we find that it converges to 1 as n goes to infinity. This
completes the proof.

Note that Liggett (1999) computed asymptotics for λn
c (as n goes to infinity) for branching

random walks on finite trees, but even in that case an exact computation of λn
c seems impossible.

Now, consider a model in which ν varieties of species compete for space. Each species gives
birth and dies according to a branching random walk. Species i has birth rate λi and death rate
1 (although we could take different death rates as well). There is no bound on the number of
individuals per site, but we have at most one species per site. That is, birth attempts on sites
that are already colonized by another species are suppressed. This process can be viewed as
the process (ξt = (ξ1

t , ξ2
t , . . . , ξ ν

t ), t ≥ 0), where ξ i
t (x) is the number of individuals of type

i present at position x at time t . The prohibition of multiple species at the same site implies
that ξ i

t (x)ξ
j
t (x) = 0 for each t ≥ 0, x ∈ Z

d , and distinct i, j ∈ {1, 2, . . . , ν}. As before, the
process is a spin system and if ξ i(x) = n ≥ 0 and

∑
j 
=i ξ j (x) = 0, we find that

c+(x, ξ, i) = lim
t→0

Pξ (ξ i
t (x) = n + 1)

t
= λ1

∑
{y∈Zd : x∼y}

ξ i(y)

2d
.

The down-rate (for ξ i(x) = n > 0) is

c−(x, ξ, i) = lim
t→0

Pξ (ξ i
t (x) = n − 1)

t
= n = ξ i(x).

If the initial configuration has individuals of all ν species, it is easy to see that at time 1, say,
there is a positive probability that ν balls of a given radius in Z

d are each occupied by a single
species. Moreover, there is a positive probability that each species will occupy a ball with a
radius and a number of individuals per site large enough that Theorem 1 is applicable. Since
there is a positive probability that every site of each colonized ball will be occupied forever
by the same species, there is a positive probability that all ν species will coexist forever. This
proves the following corollary

Corollary 2. Consider an ecological model with ν species, in which each species gives birth
and dies according to a branching random walk. Let the birth rates be λi > 1, 1 ≤ i ≤ ν, and
let the (common) death rate be 1. Each site can be occupied by at most one species. For any
initial configuration containing all ν species, there is a positive probability that all species will
coexist.

Note that coexistence occurs even if some birth rates are much larger than others. This is in
sharp contrast to models in which there is a limit of one individual per site. For such a model, it
has been shown that two species may coexist if and only if λ1 = λ2 and d ≥ 3 – see Neuhauser
(1992).

2. Proof of Theorem 1

To prove Theorem 1, we will use coupling arguments as well as some simple quasi-stationary
properties of random walks. Our starting point is the existence of a quasi-stationary distribution
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(defined as an eigenvector corresponding to the largest eigenvalue of the transition matrix) for the
simple random walk on a finite, connected subset of Z

d with Dirichlet boundary conditions (i.e.
the random walk is killed on exiting the set). The largest eigenvalue for the quasi-stationary
distribution tends to 1 as the finite set tends pointwise to Z

d . In particular, we obtain the
following lemma.

Lemma 1. For all a > 0, there exists an integer N0 such that the largest eigenvalue of the
subprobability matrix for the simple random walk on BN0 with Dirichlet boundary conditions
is greater than 1 − a.

Proof. We refer to Aldous and Fill (2003, Chapter 3, Section 6.5) for details of quasi-
stationary distributions. We consider the sub-Markov chain obtained by killing the simple
random walk, starting in Bn, when it leaves Bn. For this Markov chain the subprobability
matrix P n is simply given (entrywise) by

P n
ij =

{
1/2d if i and j are neighbors in Bn,

0 otherwise.

There is a quasi-stationary distribution f n
i , i ∈ Bn, which (collectively) is an eigenvector of

P n corresponding to µ(n), the largest eigenvalue of this matrix. That is, for each i ∈ Bn,

f n
i = µ(n)

∑
j

P n
jif

n
j = µ(n)

2d

∑
j

f n
j ,

where, in both cases, the summation is over those j in Bn that are neighbors of site i.
The eigenvalue µ(n) is endowed with the following probabilistic meaning:

Pi (τn ≥ N) ∼ (µ(n))N for all i ∈ Bn. (1)

Here, τn is the death time of the sub-Markov chain (or, equivalently, the quitting time of Bn for
the unrestricted simple random walk) and ‘∼’ means that the ratio of the two quantities tends
to a finite, strictly positive constant as N tends to infinity.

We will now use Donsker’s invariance principle. Consider a Brownian motion (Wt , t ≥ 0)

of speed 1/d that starts at an x0 of magnitude 1
2 , and let σa = inf{t > 0 : |Wt | = a}. Then

there exists a cd ∈ (0, ∞) such that, independently of the particular x0 chosen,

P(σ1/3 < σ1) = cd

– see, for example, Itô and McKean (1965). For instance, if d ≥ 3 then cd = (2d−2 − 1)/

(3d−2 − 1). Thus, by path continuity and the isotropy of Brownian motion, there exists an
hd > 0 such that, for all x0 of magnitude 1

2 ,

Px0(σ1/3 < σ1 ∧ hd) > 1
2cd .

By Donsker’s invariance principle and a simple compactness argument, we have that, for n

sufficiently large, and uniformly over all initial positions x0 on δ(Bn/2) (the boundary of Bn/2),
the probability that a simple random walk starting from x0 hits Bn/3 before leaving Bn and
before time hdn2 is at least 1

2cd .
Thus, by repeatedly using the strong Markov property, we find that, for n sufficiently large,

the simple random walk starting at x0 on δ(Bn/2) will exit Bn after time n2hdN with a probability
of at least ( 1

2cd)N .
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This fact and (1) imply that

µ(n) ≥ ( 1
2cd)1/n2hd > 1 − a

for n sufficiently large. This completes the proof of Lemma 1.

We now fix ε = λ1 − 1 > 0 and consider a simple branching process in which particles die
at rate 1 and split in two at rate 1 + 1

2ε. Alternatively, (Xt , t ≥ 0) is a birth–death process with
0 an absorbing state, i.e.

qn,n+1 = n(1 + 1
2ε),

qn,n−1 = n.

It is well known that if X0 = 1, then (Xte−tε/2, t ≥ 0) is an L2-bounded martingale. Let this
bound be denoted by K .

Lemma 2. For all δ > 0, we have

P

(
sup
t>0

∣∣∣∣ Xt

X0
e−εt/2 − 1

∣∣∣∣ > δ

)
<

2

δ

K√
X0

.

Proof. Note that

Mt = Xt

X0
e−εt/2 − 1

is a martingale with M0 = 0. Thus, for any T > 0,

P
(

inf
t≤T

Mt ≤ −δ
)

≤ E(M+
T )

δ

– see, for example, Ethier and Kurtz (1986, Equation 2.47). Similarly, we have

P
(

sup
t≤T

Mt ≥ δ
)

≤ E(M+
T )

δ

and, therefore,

P
(

sup
t≤T

|Mt | ≥ δ
)

≤ 2
E(M2

T )1/2

δ
.

We now compute

E(M2
T ) = 1

X2
0

‖XT e−εT /2 − X0‖2
2,

where ‖ · ‖2 denotes the L2-norm. We write Xt as a sum of X0 independent and identically
distributed processes Y

(i)
t , 1 ≤ i ≤ X0, which have the same rates as Xt and initial state 1.

Thus,

E(M2
T ) = 1

X2
0

∥∥∥∥
X0∑
i=1

(Y
(i)
T e−εT /2 − 1)

∥∥∥∥
2

2
.

By using the independence of Y
(i)
T , 1 ≤ i ≤ X0, we find that

E(M2
T ) = 1

X2
0

X0||Y (1)
T e−εT /2 − 1||22 ≤ K2

X0
.

This completes the proof of Lemma 2.
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Now, pick an a > 0 such that

(1 + ε)(1 − a)

1 + 1
2ε

> 1.

We choose N0 satisfying Lemma 1 for this a. We now go back to the eigenfunction f ≡ fN0

corresponding to the largest eigenvalue µ(n) of the subprobability matrix for the simple random
walk, with Dirichlet boundary conditions, on B ≡ BN0 . By the Perron–Frobenius theorem, f

is strictly positive on B and, thus, has a minimum value m > 0 and, for all x in B and N1,
satisfies

f (x)N1 + 1

f (x)N1
≤ mN1 + 1

mN1
.

Pick a δ > 0 small enough that

(1 + ε)(1 − a)

1 + 1
2ε

1 − δ

1 + δ
> 1.

Then there exists an integer N1 large enough that

(1 + ε)(1 − a)

1 + 1
2ε

1 − δ

1 + δ
>

mN1 + 1

mN1
.

Lemma 3. There exists a system (Xx
t , t ≥ 0)x∈B of identically distributed birth–death pro-

cesses, with rates qi,j , such that if Xx
0 = ξ0(x) = f (x)N1� for all x in B, then the following

coupling holds:
Xx

t ≤ ξt (x) for all t ≤ τ and all x ∈ B,

where

τ = inf

{
s : there exists an x ∈ B such that

Xx
s

Xx
0

e−εs/2 
∈ (1 − δ, 1 + δ)

}
.

Proof. We will explicitly construct (Xx
t , t ≥ 0)x∈B from the process (ξt (x), t ≥ 0)x∈B , thus

providing a coupling of the two processes.
Let (Y x

t (n), t ≥ 0)x∈B,n≥1 be mutually independent Poisson processes, independent of
(ξt (x) : t ≥ 0)x∈B and such that Yx

t (n) has rate n. If there is a death at time t for ξt (x) and if
Xx

t ≤ ξt (x), then there is a death at t for Xx
t with probability Xx

t /ξt (x). If Xx
t = n > ξt (x)

and there is a birth at t for the Poisson process Yx
t (n), then there is a death at t for Xx

t .
For births, we use a similar method. Let (Zx

t (n), t ≥ 0)x∈B,n≥1 be mutually independent
Poisson processes, independent of (ξt (x), t ≥ 0)x∈B and such that Zx

t (n) has rate n(1 + 1
2ε).

If there is a birth at x at time t for ξt (x) and if (1 + 1
2ε)Xx

t− ≤ λ1
∑

y∼x ξt (y)/(2d), there is a
birth at the same time for Xx

t with probability

2d(1 + 1
2ε)Xx

t−
λ1

∑
y∼x ξt (y)

.

If (1 + 1
2ε)Xx

t− = n > λ1
∑

y∼x ξt (y)/(2d) and there is a birth at time t for the process Zx
t (n),

then there is a birth at the same time for Xx
t .

The condition that ξt (x) ≥ Xx
t for all x ∈ B can evidently never be violated by a death

(recall that Xx
0 = ξ0(x) for all x ∈ B), so it remains to check that, for t < τ , the domination

relation holds for births as well.
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Assume that t < τ and x ∈ B, and that the upwards flip rate for Xx
t is (1 + 1

2ε)Xx
t− while

that for ξx
t at time t is

(1 + ε)
∑
y∼x

ξt−(y)

2d
.

By hypothesis, ξt−(y) ≥ X
y
t− for each relevant y, so this flip rate exceeds

(1 + ε)
∑
y∼x

X
y
t−

2d
. (2)

By the fact that t < τ , the rate (2) is greater than

(1 + ε)
∑
y∼x

f (y)N1�eεt/2 1 − δ

2d
≥ (1 + ε)

⌈∑
y∼x

f (y)N1

⌉
eεt/2 1 − δ

2d
(3)

and, by Lemma 1, the right-hand side of (3) is greater than

(1 + ε)(1 − a)2df (x)N1�etε/2 1 − δ

2d
≥ (1 + ε)(1 − a)2df (x)N1etε/2 1 − δ

2d
.

Recall that N1 has been chosen so that

(1 + ε)(1 − a)

1 + 1
2ε

1 − δ

1 + δ
>

mN1 + 1

mN1
≥ f (x)N1 + 1

f (x)N1
.

Thus, for all x in B,

(1 + ε)(1 − a)f (x)N1etε/2(1 − δ) ≥ (1 + 1
2ε)(1 + f (x)N1)e

tε/2(1 + δ). (4)

In turn, the right-hand side of (4) is greater than

(1 + 1
2ε)f (x)N1�etε/2(1 + δ) ≥ (1 + 1

2ε)Xx
t−,

where the last inequality again comes from the fact that t ≤ τ. This shows that the domination
conditions cannot be violated for t < τ , and concludes the proof of Lemma 3.

We now conclude the proof of Theorem 1. Assume that ξ0(x) = f (x)N1� for every x ∈ B

and let A be the event

A = {there exist t > 0 and x ∈ B such that ξt (x) < (1 − δ)f (x)N1�eεt/2}.
Note, by Lemma 3, that the intersection of the events {τ = ∞} and A is empty. Thus,

P(A) ≤ P(τ < ∞) ≤
∑
x∈B

2

δ

K√f (x)N1� ,

where the second inequality comes from Lemma 2. Since f is strictly positive on B, we may
pick N1 large enough that

min
x∈B

f (x)N1� ≥ 4
K2

δ2α2 |B|2

and, so,
P(A) ≤ α.

This concludes the proof of Theorem 1 for small δ. The theorem for all δ ∈ (0, 1) follows
naturally.
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