Canad. Math. Bull. Vol. 20 (1), 1977

# ON NUMBERS ANALOGOUS TO THE CARMICHAEL NUMBERS 

BY<br>H. C. WILLIAMS

1. Introduction. A base $a$ pseudoprime is an integer $n$ such that

$$
\begin{equation*}
a^{n-1} \equiv 1 \quad(\bmod n) \tag{1}
\end{equation*}
$$

A Carmichael number is a composite integer $n$ such that (1) is true for all $a$ such that $(a, n)=1$. It was shown by Carmichael [1] that, if $n$ is a Carmichael number, then $n$ is the product of $k(>2)$ distinct primes $p_{1}, p_{2}, p_{3}, \ldots p_{k}$ and $p_{i}-1 \mid n-1(i=1,2,3, \ldots, k)$. The smallest such number is $561=3 \cdot 11 \cdot 17$.

The Lucas functions $V_{n}(P, Q), U_{n}(P, Q)$ are defined as

$$
\begin{aligned}
& V_{n}(P, Q)=\alpha^{n}+\beta^{n} \\
& U_{n}(P, Q)=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta),
\end{aligned}
$$

where $\alpha, \beta$ are the zeros of $x^{2}-P x+Q$, and $P, Q$ are coprime integers. We also define $\Delta$ to be the discriminant $P^{2}-4 Q$ of the above quadratic function. The following theorem concerning Lucas functions is well known.

Theorem 1. If $p$ is an odd prime and $p \nmid Q$, then

$$
U_{\delta(p)}(P, Q) \equiv 0 \quad(\bmod p)
$$

where $\delta(p)=p-\epsilon(p), \epsilon(p)=(\Delta \mid p)$, and $(\Delta \mid p)$ is the Legendre symbol.
Rotkiewicz [4] considered a composite integer $n$ such that

$$
U_{n-\epsilon(n)}(P, Q) \equiv 0 \quad(\bmod n)
$$

to be a type of pseudoprime with respect to the Lucas functions. Here $\epsilon(n)$ is defined to be the value of the Jacobi symbol $(\Delta \mid n)$. We shall concern ourselves here with those odd composite integers $n$ which possess, for a given value of $\Delta$, the property ( A ) below.
(A)

$$
\left\{\begin{array}{l}
\text { For all integers } P, Q \text { such that } \\
(P, Q)=1, P^{2}-4 Q=\Delta, \quad(n, Q \Delta)=1, \\
\text { we have } \\
U_{n-\epsilon(n)}(P, Q) \equiv 0 \quad(\bmod n) .
\end{array}\right.
$$

In view of the preceding remarks, we see that such integers are analogous to

Carmichael numbers; in fact, it can be shown that if $\Delta=1$ and $n$ satisfies (A), then $n$ is a Carmichael number. In this paper we shall characterize and develop some properties of those integers which satisfy (A) for any given $\Delta$.
2. Preliminary results. In order to establish some properties of the numbers we are seeking, it is necessary to first make some preliminary observations.

We first note that

$$
\begin{gather*}
2^{n-1} V_{k}(P, Q)=\sum_{r=0}^{[k / 2]}\binom{k}{2 r} P^{k-2 r}\left(P^{2}-4 Q\right)^{r} \\
2^{n-1} U_{k}(P, Q)=\sum_{r=0}^{[k / 2]}\binom{k}{2 r+1} P^{k-2 r-1}\left(P^{2}-4 Q\right)^{r} . \tag{2}
\end{gather*}
$$

If, for a fixed $\Delta$, we define the polynomials $T_{k}(x)$ and $S_{k}(x)$ by the formulas

$$
\begin{aligned}
& T_{k}(x)=\sum_{r=0}^{[k / 2]}\binom{k}{2 r+1} x^{k-2 r-1} \Delta^{r}, \\
& S_{k}(x)=\sum_{r=0}^{[k / 2]}\binom{k}{2 r} x^{k-2 r} \Delta^{r},
\end{aligned}
$$

then we have

$$
\begin{align*}
& 2^{n-1} U_{k}(P, Q)=T_{k}(P),  \tag{3}\\
& 2^{n-1} V_{k}(P, Q)=S_{k}(P)
\end{align*}
$$

when $P^{2}-4 Q=\Delta$. We also have the result

$$
T_{k+m}(x)=2 S_{m}(x) T_{k}(x)-\left(x^{2}-\Delta\right)^{m} T_{k-m}(x)
$$

and from this it follows easily by induction that if $m \mid k$,

$$
T_{k}(x)=T_{m}(x) Q_{k, m}(x)
$$

where $Q_{k, m}(x)$ is a polynomial in $x$ with integer coefficients.
Before proceeding any further we require the following simple lemma.
Lemma 1. If $P, Q$ are any two integers such that $P^{2}-4 Q=\Delta$, then for any odd integer $m$, where $(m, \Delta)=1$, there exist integers $P^{\prime}, Q^{\prime}$ such that $P^{\prime} \equiv P, Q^{\prime} \equiv Q$ $(\bmod m), P^{\prime 2}-4 Q^{\prime}=\Delta$, and $\left(P^{\prime}, Q^{\prime}\right)=1$.

Proof. Select some integer $d$ such that $(d, \Delta)=2^{i}(0 \leq i \leq 2)$, where the value of $i$ is determined by

$$
d \equiv P+2 Q-2 \quad(\bmod 4)
$$

Solve

$$
\begin{equation*}
2 m K \equiv d-P \quad(\bmod \Delta) \tag{4}
\end{equation*}
$$

for $K$. If $2 \mid P$, then $4 \mid \Delta$ and $K \equiv(d-P) / 2 \equiv(Q+1)(\bmod 2)$. Put $P^{1}=P+2 K m$,
$Q^{\prime}=Q+K m(P+m K)$. We see that $P^{\prime 2}-4 Q^{\prime}=\Delta$ and it suffices to show that $\left(P^{\prime}, Q^{\prime}\right)=1$. If $q$ is a prime and $q \mid\left(P^{\prime}, Q^{\prime}\right)$, then $q$ must be odd; for, if $q=2$, then $2|\Delta, 2| P$, and $Q^{\prime} \equiv 2 Q+1(\bmod 2)$. If $q$ is odd, then $q \mid \Delta$, and by (4) $q \mid d$, which, by selection of $d$, is impossible.

Finally, it should be noted that if $X$ is any integer, then

$$
T_{\delta(p)}(X) \equiv 0 \quad(\bmod p)
$$

where $p$ is any odd prime such that $\left(p,\left(X^{2}-\Delta\right)\right)=1$. This result follows easily from Theorem 1, (3), and Lemma 1.
3. Some results concerning the Lucas functions. The rank of apparition modulo $m$ of the Lucas sequence $\left\{U_{k}(P, Q)\right\}$ is defined to be the least positive value of $k$ such that $m \mid U_{k}(P, Q)$. We denote this value of $k$ by $\omega(m ; P, Q)$. If $m \mid U_{r}(P, Q)$, then $\omega(m ; P, Q) \mid r$; hence, $\omega(p ; P, Q) \mid \delta(p)$ when $p$ is a prime.

For a fixed discriminant $\Delta$ and a fixed odd prime $p$, let the function $\psi(d)$, where $d \mid \delta(p)$, be the number of distinct values of $P$ modulo $p$ such that $\omega(p ; P, Q)=d$. In the following theorem we evaluate $\psi(d)$.

Theorem 2. If $d>1, \psi(d)=\phi(d)$, where $\phi(x)$ is Euler's totient function.
Proof. If $\epsilon(p)=0$, the theorem follows easily. Suppose $\epsilon(p) \neq 0$ and put $\delta=\delta(p)$. If $d<\delta$, let the polynomial congruence

$$
\begin{equation*}
T_{d}(x) \equiv 0 \quad(\bmod p) \tag{5}
\end{equation*}
$$

have $j$ solutions. Referring to the remarks at the beginning of this section and Lemma 1, we see that

$$
\sum_{h \mid d} \psi(h)=j .
$$

Since $T_{d}(x)$ is a polynomial of degree $d-1$ with leading coefficient $d$ we have $j \leq d-1$. Also

$$
\begin{equation*}
T_{\delta}(x) \equiv 0 \quad(\bmod p) \tag{6}
\end{equation*}
$$

has exactly $\delta-1$ solutions $(\bmod p)$. For, if $\epsilon(p)=1$, (6) is satisfied by any $x$ except the two values of $x$ which satisfy $x^{2} \equiv \Delta(\bmod p) ;$ if $\epsilon(p)=-1,(6)$ is satisfied by any value of $x$ since there is no $x$ such that $x^{2} \equiv \Delta(\bmod p)$.

Now

$$
T_{\delta}(x)=T_{d}(x) Q_{\delta, d}(x)
$$

Thus, if (5) has $j$ solutions, then

$$
\begin{equation*}
Q_{\delta, d}(x) \equiv 0 \quad(\bmod p) \tag{7}
\end{equation*}
$$

has $\delta-1-j$ solutions. Since the degree of $Q_{\delta, d}(x)$ is $\delta-d$ and its leading coefficient is prime to $p$, (7) can have no more than $\delta-d$ solutions. If $j<d-1$, then $\delta-1-j>\delta-d$; consequently, $j=d-1$.

Putting

$$
\chi(h)=\psi(h)(h \neq 1), \quad \chi(1)=1,
$$

we get

$$
\sum_{h \mid d} \chi(h)=d
$$

by Möbius inversion $\chi(d)=\phi(d)$.
Corollary. If $\Delta$ is any fixed discriminant, $p$ is any odd prime, and $d(>1)$ is any divisor of $\delta(p)$, there exist integers $P, Q$ such that $(P, Q)=1, P^{2}-4 Q=\Delta$, and $\psi(p ; P, Q)=d$.

Define

$$
\begin{aligned}
& C_{k}(P, Q)=\frac{\partial}{\partial P} U_{k}(P, Q) \\
& D_{k}(P, Q)=\frac{\partial}{\partial Q} U_{k}(P, Q)
\end{aligned}
$$

Since $U_{k}(P, Q)$ is a polynomial in $P$ and $Q$ with integer coefficients, so are $C_{k}(P, Q)$ and $D_{k}(P, Q)$.

We will assume here that $P, Q$ are fixed and write $U_{k}$ for $U_{k}(P, Q), C_{k}$ for $C_{k}(P, Q)$ etc.
Since

$$
U_{k+1}=P U_{k}-Q U_{k-1},
$$

we get differentiation

$$
\begin{align*}
C_{k+1} & =P C_{k}+U_{k}-Q C_{k-1} \\
D_{k+1} & =P D_{k}-Q D_{k-1}-U_{k-1} \tag{8}
\end{align*}
$$

By induction we can show that

$$
\begin{equation*}
D_{k}=-C_{k-1} \tag{9}
\end{equation*}
$$

Also, by differentiating the second formula of (2) with respect to $P$ and $Q$ and putting $k=p$ (an odd prime, $(p, \Delta Q)=1)$, we get

$$
\begin{aligned}
\Delta C_{p} & \equiv-P \epsilon(p) \quad(\bmod p) \\
\Delta D_{p} & \equiv 2 \epsilon(p) \quad(\bmod p) .
\end{aligned}
$$

Using (8) and (9) together with the fact that

$$
U_{p} \equiv \epsilon(p) \quad(\bmod p)
$$

we have

$$
\Delta C_{p+1} \equiv-2 Q \epsilon(p) \quad(\bmod p)
$$

and if $\epsilon(p)=1$,

$$
Q \Delta C_{p-1} \equiv-P \quad(\bmod p)
$$

It follows that

$$
P C_{\delta}+2 Q D_{\delta} \equiv 0 \quad(\bmod p)
$$

and $p+C_{\delta}$, where $\delta=\delta(p)$.
By using Taylor's Expansion, we see that

$$
U_{\delta}(P+2 K p, Q+M p) \equiv U_{\delta}(P, Q)+p\left[2 K C_{\delta}(D, Q)+M D_{\delta}(P, Q)\right] \quad\left(\bmod p^{2}\right)
$$

If $p^{2} \mid U_{\delta}(P, Q)$, select a value for $K$ such that $p \nmid K$ and put $M=K P+p K^{2}$.
Then if $P^{\prime}=P+2 K p, Q^{\prime}=Q+M p$, we have $P^{\prime 2}-4 Q^{\prime}=\Delta$.
Now if

$$
4 Q u \equiv P \quad(\bmod p)
$$

then since $p \nmid \Delta$,

$$
\begin{gathered}
1-u P \not \equiv 0 \quad(\bmod p), \\
K(1-u P) \not \equiv 0 \quad(\bmod p)
\end{gathered}
$$

and

$$
K \not \equiv 2 u M \quad(\bmod p) ;
$$

hence, $p^{2} \nmid U_{\delta}\left(P^{\prime}, Q^{\prime}\right)$. By using Lemma 1 , we can show that for any $\Delta$ there exists a pair of integers $P^{\prime \prime}, Q^{\prime \prime}$ such that $\left(P^{\prime \prime}, Q^{\prime \prime}\right)=1, P^{\prime \prime 2}-4 Q^{\prime \prime}=\Delta,\left(p, Q^{\prime \prime}\right)=1$, and $p^{2} \nmid U_{\delta}\left(P^{\prime \prime}, Q^{\prime \prime}\right)$.

Since $\omega\left(p ; P^{\prime \prime}, Q^{\prime \prime}\right)=\omega(p ; P, Q) \quad$ when $\quad P^{\prime \prime} \equiv P, \quad Q^{\prime \prime} \equiv Q \quad(\bmod p) \quad$ and $\omega(p ; P, Q) \mid \delta(p)$, we deduce from Theorem 2 the fact that, for any given $\Delta$, any odd prime $p((p, \Delta)=1)$, and $d$ any divisor of $\delta(p)(d>1)$, there exist integers $P^{\prime \prime}$, $Q^{\prime \prime} \quad$ such that $p \nmid Q^{\prime \prime}, \quad\left(P^{\prime \prime}, Q^{\prime \prime}\right)=1, \quad P^{\prime \prime}-4 Q^{\prime \prime}=\Delta, \quad \omega\left(p ; P^{\prime \prime}, Q^{\prime \prime}\right)=d$, $\omega\left(p^{2} ; P^{\prime \prime}, Q^{\prime \prime}\right)>d$.

By using the Law of Repetition of Lucas Functions, we have
Theorem 3. For any given $\Delta$, any odd prime $p((p, \Delta)=1)$, and $d$ any divisor of $\delta(p)(d>1)$, there exist integers $P^{\prime \prime}, Q^{\prime \prime}$ such that $p \nmid Q^{\prime \prime},\left(P^{\prime \prime}, Q^{\prime \prime}\right)=1$, $P^{\prime \prime 2}-4 Q^{\prime \prime}=\Delta$, and $\omega\left(p^{k}, P^{\prime \prime}, Q^{\prime \prime}\right)=p^{k-1} d$.
4. Characterization of integers with property (A). In this section we will find the forms of those integers which possess the property (A) for a given fixed $\Delta$. In order to do this we first require two lemmas. We give these lemmas here in a form somewhat stronger than we need to obtain the results of this section; however, we will need the stronger results in section 5 .

Lemma 2. If $r, \Delta, \eta$ are three given integers such that $r$ is odd, $(r, \Delta)=1,|\eta|=1$ (we restrict $\eta$ to be 1 when $r$ is a perfect square and if $\Delta \equiv 1(\bmod 3)$, we restrict $\eta$
to be -1 when $r=3 t^{2}$ ), then there exists a pair of integers $y, \gamma$ such that

$$
y^{2} \equiv 4 \gamma+\Delta \quad(\bmod r)
$$

and $(\gamma \mid r)=\eta$, where $(\gamma \mid r)$ is the Jacobi symbol.
Proof. Let

$$
r=\prod_{i=0}^{k} q_{i}^{\beta_{i}}
$$

where $q_{i}(i=1,2,3, \cdots, k)$ are distinct odd primes and $q_{1}$ is the least of these $k$ primes. Select $\eta_{1}, \eta_{2}, \eta_{3}, \cdots, \eta_{k}$ such that $\left|\eta_{i}\right|=1$ for $i=1,2,3, \cdots, k$ (restrict $\eta_{1}$ to be -1 if. $q_{1}=3$ and $\left.\Delta \equiv 1(\bmod 3)\right)$ and

$$
\prod_{i=1}^{k} \eta_{i}^{\beta_{i}}=\eta
$$

It is well known that if $q$ is a prime and $q+\Delta$, then there are $q-1$ solutions $(x, y)$ of

$$
\begin{equation*}
y^{2}-x^{2} \equiv \Delta \quad(\bmod q) \tag{10}
\end{equation*}
$$

and at least $q-3$ of these have $x \not \equiv 0(\bmod q)$. Thus, if $q>3$, there exist $y$ and $\lambda$ such that

$$
\begin{equation*}
y^{2} \equiv 4 \lambda+\Delta \quad(\bmod q) \tag{11}
\end{equation*}
$$

and $(\lambda \mid q)=+1$. If $q=3$ and $\Delta \equiv-1(\bmod 3)$ we see that $y \equiv 0, \lambda \equiv 1(\bmod 3)$ is a solution of $(11)$ with $(\lambda \mid q)=+1$.

If for each $y(\bmod q)$ there were a value of $x(\bmod q)$ such that $(10)$ held, there would be at least $2 q-2$ solutions of (10) with $x \neq 0(\bmod q)$. Since $2 q-2>q-1$, there must be values of $y$ and $\lambda$ such that (11) is satisfied and $(\lambda \mid q)=-1$.

It follows that for each $q_{i}$ which divides $r$ there must exist a pair of integers $\left(y_{i}, \lambda_{i}\right)$ such that

$$
y_{i}^{2} \equiv 4 \lambda_{i}+\Delta \quad\left(\bmod q_{i}\right)
$$

and $\left(\lambda_{i} \mid q_{i}\right)=\eta_{i}$. We can then find integers $Y_{i}$ and $\gamma_{i}$ such that

$$
Y_{i}^{2} \equiv 4 \gamma_{i}+\Delta \quad\left(\bmod q_{i}^{\beta_{i}}\right)
$$

and $\gamma_{i} \equiv \lambda_{i}\left(\bmod q_{i}\right)$. By the Chinese Remainder Theorem, there exist integers $\gamma$ and $y$ such that $y \equiv Y_{i} ; \gamma \equiv \gamma_{i}\left(\bmod q_{i}^{\beta_{i}}\right)(i=1,2,3, \ldots, k)$. Thus we have

$$
y^{2} \equiv 4 \gamma+\Delta \quad(\bmod r)
$$

and $(\gamma \mid r)=\eta$.

Lemma 3. Let $r, m, \Delta, \eta$ be given integers such that $r$ is odd, $(r, m \Delta)=1$, $|\eta|=1(\eta=1$ when $r$ is a perfect square; $\eta=-1$ when $\Delta=1(\bmod 3)$ and $r=3 t^{2}$ ). If $P^{2}-4 Q=\Delta$, there exists a pair of integers $P^{\prime}, Q^{\prime}$ such that $P^{\prime 2}-4 Q^{\prime}=$ $\Delta, P^{\prime} \equiv P . Q^{\prime} \equiv Q(\bmod m)$ and $\left(Q^{\prime} \mid r\right)=\eta$.

Proof. Let $\gamma$ and $y$ be selected such that $(\gamma \mid r)=\eta$

$$
y^{2} \equiv 4 \gamma+\Delta \quad(\bmod r)
$$

Select $K$ such that

$$
2 m K+P \equiv y \quad(\bmod r)
$$

If we put

$$
\begin{aligned}
P^{\prime} & =P+2 m K, \\
Q^{\prime} & =Q+K m(P+m K),
\end{aligned}
$$

we have $P^{\prime 2}-4 Q^{\prime}=\Delta, P^{\prime} \equiv P, Q^{\prime} \equiv Q(\bmod m)$ and $Q^{\prime} \equiv \gamma(\bmod r)$.
Corollary. Let $r, \Delta, m$ be three integers such that $r$ is odd and $(r, m \Delta)=1$. If $P^{2}-4 Q=\Delta$, there exists a pair of integers $P^{\prime}, Q^{\prime}$ such that $P^{\prime 2}-4 Q^{\prime}=\Delta, P^{\prime} \equiv P$, $Q^{\prime} \equiv Q(\bmod m)$ and $\left(Q^{\prime}, r\right)=1$.

We are now able to prove our main theorem.
Theorem 4. If for a fixed $\Delta$, $n$ possesses property ( $A$ ), then $n$ is the product of $k$ distinct primes $p_{1}, p_{2}, p_{3}, \ldots, p_{k}$ and

$$
p_{i}-\epsilon\left(p_{i}\right) \mid n-\epsilon(n) \quad(i=1,2,3, \ldots, k)
$$

Proof. Let $p$ be any odd prime divisor of $n$ and let $n=p^{\alpha} r$, where $(r, p)=1$. Find $P, Q$ such that $(P, Q)=1, P^{2}-4 Q=\Delta, \omega\left(p^{\alpha} ; P, Q\right)=p^{\alpha-1} \delta(p)$. By the Corollary of Lemma 3, there exist $P^{\prime}, Q^{\prime}$, such that $P^{\prime 2}-4 Q^{\prime}=\Delta$, $P^{\prime} \equiv P, Q^{\prime} \equiv Q\left(\bmod p^{\alpha}\right)$ and $\left(Q^{\prime}, r\right)=1$; also, by Lemma 1, we can find $P^{\prime \prime}, Q^{\prime \prime}$ such that $P^{\prime \prime 2}-4 Q^{\prime \prime}=\Delta, P^{\prime \prime} \equiv P^{\prime}, Q^{\prime \prime} \equiv Q^{\prime}(\bmod n)$ and $\left(P^{\prime \prime}, Q^{\prime \prime}\right)=1$. Since $(n$, $\left.Q^{\prime \prime} \Delta\right)=1$ and $P^{\prime \prime} \equiv P, Q^{\prime \prime} \equiv Q\left(\bmod p^{\alpha}\right)$, we have

$$
U_{n-\epsilon(n)}\left(P^{\prime \prime}, Q^{\prime \prime}\right) \equiv 0 \quad(\bmod n)
$$

and

$$
\omega\left(p^{\alpha} ; P^{\prime \prime}, Q^{\prime \prime}\right)=p^{\alpha-1} \delta(p) ;
$$

hence,

$$
p^{\alpha-1} \delta(p) \mid p^{\alpha} r-\epsilon
$$

where $|\epsilon|=1$. We see that $\alpha=1$ and the theorem follows.
If $n=p_{1} p_{2}$, we must have $\boldsymbol{\epsilon}(n)=\boldsymbol{\epsilon}\left(p_{1}\right) \boldsymbol{\epsilon}\left(p_{2}\right)$ and if $\epsilon_{i}=\boldsymbol{\epsilon}\left(p_{i}\right)$,

$$
p_{1}-\epsilon_{1}\left|p_{1} p_{2}-\epsilon_{1} \epsilon_{2}, \quad p_{2}-\epsilon_{2}\right| p_{1} p_{2}-\epsilon_{1} \epsilon_{2}
$$

That is $p_{1}-\epsilon_{1} \mid p_{2}-\epsilon_{2}$ and $p_{2}-\epsilon_{2} \mid p_{1}-\epsilon_{1}$; hence, $p_{1}-\epsilon_{1}=p_{2}-\epsilon_{2}$. If we assume $p_{1}<p_{2}$, we have $\epsilon_{1}-\epsilon_{2}=-2$, i.e. $\epsilon_{1}=-1, \epsilon_{2}=1$ and $p_{1}=p_{2}-2$.

Thus, $n$ can be the product of two primes and satisfy property (A) for a fixed $\Delta$ if and only if

$$
n=p_{1} p_{2},
$$

where

$$
p_{1}=p_{2}-2 ; \quad\left(\Delta \mid p_{1}\right)=-1 \quad \text { and } \quad\left(\Delta \mid p_{2}\right)=+1
$$

For example, if $\Delta=5, p_{1}=17, p_{2}=19$, then $n=17 \cdot 19$ satisfies (A).
Integers with property (A) and $k>2$ can frequently be found by using a modification of the method of Chernick [2]. For example, let $k=3$ and prescribe values for $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$. If $d$ satisfies the congruence

$$
\begin{equation*}
d\left(\epsilon_{1} r_{2} r_{3}+\epsilon_{2} r_{1} r_{3}+\epsilon_{3} r_{1} r_{2}\right)+\epsilon_{1} \epsilon_{2} r_{3}+\epsilon_{1} \epsilon_{3} r_{2}+\epsilon_{2} \epsilon_{3} r_{1} \equiv 0 \quad\left(\bmod r_{1} r_{2} r_{3}\right) \tag{10}
\end{equation*}
$$

for values of $r_{1}, r_{2}, r_{3}$ such that $\left(\Delta \mid d r_{i}-\epsilon_{i}\right)=\epsilon_{i}(i=1,2,3)$ and $d r_{1}+\epsilon_{1}, d r_{2}+\epsilon_{2}$, $d r_{3}+\epsilon_{3}$ are distinct primes, then

$$
n=\left(d r_{1}+\epsilon_{1}\right)\left(d r_{2}+\epsilon_{2}\right)\left(d r_{3}+\epsilon_{3}\right)
$$

has property (A).
If we have $\Delta=8$ and put $\epsilon_{1}=-1, \epsilon_{2}=\epsilon_{3}=1$, we must have $p_{1}=d r_{1}-1$, $p_{2}=d r_{2}+1, p_{3}=d r_{3}+1$ and $\left(2 \mid p_{i}\right)=\epsilon_{i}$. Let $p_{1} \equiv 3, p_{2} \equiv p_{3} \equiv 7(\bmod 8)$. We get $d=2 d^{\prime \prime}$ and

$$
d^{\prime \prime} r_{1} \equiv 2, \quad d^{\prime \prime} r_{2} \equiv d^{\prime \prime} r_{3} \equiv 3 \quad(\bmod 4) ;
$$

hence, putting $r_{1}=2, r_{2}=3, r_{3}=7$, we have $d^{\prime \prime} \equiv 1(\bmod 4)$ and by (10), $d^{\prime \prime} \equiv-4(\bmod 21)$. When $d^{\prime \prime}=17$, we get $p_{1}=67, p_{2}=103, p_{3}=239$ and $n=p_{1} p_{2} p_{3}$ has property (A) for $\Delta=8$. In fact, this number has property (A) for $\Delta=8 m^{2}$ for any $m$ such that $(m, n)=1$.
5. Some further remarks. Recently Lehmer [3] has considered the problem of the existence of strong Carmichael mumbers. These are integers which satisfy the following congruence

$$
a^{(n-1) / 2} \equiv(a \mid n) \quad(\bmod n)
$$

for all $a$ such that $(a, n)=1$. In [3] it is shown that there are no strong Carmichael numbers. In this section we will find a result analogous to that of Lehmer.

The result in the theory of Lucas functions which is analogous to

$$
a^{(p-1) / 2} \equiv(a \mid p) \quad(\bmod p)
$$

where $p$ is an odd prime and $(a, p)=1$, is given in the following theorem.

Theorem 5. If $\epsilon=(\Delta \mid p)$, then

$$
U_{(p-\epsilon) / 2}(P, Q) \equiv 0 \quad(\bmod p) \quad \text { when } \quad(Q \mid p)=1
$$

and

$$
V_{(p-\epsilon) / 2}(P, Q) \equiv 0 \quad(\bmod p) \quad \text { when } \quad(Q \mid p)=-1
$$

We say that an odd integer $n$ satisfies property (B) for a given $\Delta$ if
(B) For all $P, Q$ such that $P^{2}-4 Q=\Delta,(P, Q)=1$ and $(n, \Delta Q)=1$ we have

$$
U_{(n-\epsilon(n)) / 2}(P, Q) \equiv 0 \quad(\bmod n)
$$

whenever $(Q \mid n)=+1$ and

$$
V_{(n-\epsilon(n)) / 2}(P, Q) \equiv 0 \quad(\bmod n)
$$

whenever $(Q \mid n)=-1$.
We will show that there are no odd composite integers satisfying (B) and we will do this by first characterizing all those odd composite integers $n$ which satisfy property (C) below.
(C) for all $P, Q$ such that $P^{2}-4 Q=\Delta,(P, Q)=1,(n, \Delta Q)=1$, and $(Q \mid n)=$ -1 , we have

$$
V_{(n-\epsilon(n)) / 2}(P, Q) \equiv 0 \quad(\bmod n) .
$$

Theorem 6. If $n$ (odd, composite) is not a perfect square or if $n \neq 15$ whenever $\Delta \equiv 4(\bmod 15)$, then $n$ can not satisfy $(\mathrm{C})$.

Proof. Suppose that some odd $n$ satisfies (C) and that $n$ is not a perfect square. Let $p$ be any prime divisor of $n$ and let $n=p^{\alpha} r$ where $(r, p)=1$.

Put $\theta=\theta(p)=1$ if $r=3 t^{2}$ and $\Delta \equiv 1(\bmod 3)$; otherwise, put $\theta=0$. Find $P, Q$ such that $(P, Q)=1, P^{2}-4 Q=\Delta, \omega\left(p^{\alpha} ; P, Q\right)=\kappa \delta(p) p^{\alpha-1}$, where $\kappa=1-\theta / 2$; then $(Q \mid p)=(-1)^{\theta-1}$. We now find $P^{\prime}, Q^{\prime}$ such that $P^{\prime 2}-4 Q^{\prime}=\Delta$ and $P^{\prime} \equiv$ $P, Q^{\prime} \equiv Q\left(\bmod p^{\alpha}\right),\left(Q^{\prime} \mid r\right)=(-1)^{\alpha(\theta-1)+1}$. From these we can determine $P^{\prime \prime}$, $Q^{\prime \prime}$ such that $\left(P^{\prime \prime}, Q^{\prime \prime}\right)=1,\left(n, Q^{\prime \prime}\right)=1, P^{\prime \prime 2}-4 Q^{\prime \prime}=\Delta, \omega\left(p^{\alpha} ; P^{\prime \prime}, Q^{\prime \prime}\right)=\kappa p^{\alpha-1} \delta(p)$, $\left(Q^{\prime \prime} \mid n\right)=(Q \mid p)^{\alpha}\left(Q^{\prime} \mid r\right)=(-1)^{2 \alpha(\theta-1)+1}=-1$.

Now since $p^{\alpha} \mid n$,

$$
V_{(n-\epsilon(n)) / 2}\left(P^{\prime \prime}, Q^{\prime \prime}\right) \equiv 0 \quad\left(\bmod p^{\alpha}\right)
$$

hence

$$
U_{n-\epsilon(n)}\left(P^{\prime \prime}, Q^{\prime \prime}\right) \equiv 0 \quad\left(\bmod p^{\alpha}\right)
$$

and $\kappa \delta(p) p^{\alpha-1} \mid n-\epsilon(n)$. We conclude that $\alpha=1$ and by repeating the above argument on all primes which divide $n$, we see that $n$ must be a product of distinct primes. It follows that, if $\theta=1$ for some prime $p$ which divides $n$, then $n / p=3$. Also $(\Delta \mid 3)=1$ and $(p-\epsilon(p)) / 2 \mid 3 p-\epsilon(p)$; hence, we must have $p=5$ and $\epsilon(5)=+1$. Since $(\Delta \mid 5)=(\Delta \mid 3)=1,(Q \mid 3)=-1$, and $(Q \mid 5)=+1$, we also must have $\Delta \equiv 4(\bmod 15)$. Thus, if $n \neq 15$ whenever $\Delta \equiv 4(\bmod 15)$, we see
that $\theta(p)$ must be zero for each prime $p$ which divides $n$ and consequently $\delta(p) \mid n-\epsilon(n)$.

Let $n=p r$, where $p$ is a prime and $p \neq 3$ and select $P, Q$ such that $(P, Q)=1$, $P^{2}-4 Q=\Delta, \omega(p ; P, Q)=\delta(p) / 2$. We can then find $P^{\prime \prime}, Q^{\prime \prime}$ such that $\left(P^{\prime \prime}, Q^{\prime \prime}\right)=$ $1,\left(n, Q^{\prime \prime}\right)=1, P^{\prime \prime 2}-4 Q=\Delta, \omega\left(p ; P^{\prime \prime}, Q^{\prime \prime}\right)=\delta(p) / 2,\left(Q^{\prime \prime} \mid n\right)=-1$.

Since

$$
V_{(n-\epsilon(n)) / 2}\left(P^{\prime \prime}, Q^{\prime \prime}\right) \equiv 0 \quad(\bmod p)
$$

and $p \nmid\left(V_{m}\left(P^{\prime \prime}, Q^{\prime \prime}\right), U_{m}\left(P^{\prime \prime}, Q^{\prime \prime}\right)\right)$ for any $m$, we see that $\omega\left(p ; P^{\prime \prime}, Q^{\prime \prime}\right) \nsucc$ $(n-\epsilon(n) / 2)$. However, $\omega\left(p ; P^{\prime \prime}, Q^{\prime \prime}\right)=\delta(p) / 2$ and $\delta(p) \mid n-\epsilon(n)$; hence, $\delta(p) / 2 \mid(n-\epsilon(n)) / 2$, which is a contradiction.

In the following theorem we obtain our result.
Theorem 7. There are no odd composite integers which satisfy (B) for any $\Delta$.

Proof. If $n$ satisfies (B) for some $\Delta$, it must satisfy (A) for that same $\Delta$. Hence $n$ is the product of distinct primes and not a perfect square. Since $n$ must also satisfy (C) we see that $n$ can only be 15 when $\Delta \equiv 4(\bmod 15)$; however, in this case, we do not have $\delta(5) \mid 15-\epsilon(15)$.

Another problem of some interest is that of whether there exists a Carmichael number $n$ which possesses property (A) for some $\Delta$ such that $(\Delta \mid n)=$ -1 . It is not difficult to show that if such numbers $\Delta$ and $n$ exist, $n$ must be the product of an odd number of distinct primes $p_{1}, p_{2}, p_{3}, \ldots, p_{k}, \epsilon\left(p_{i}\right)=-1$ $(i=1,2,3, \ldots, k)$, and $p_{i}+1\left|n+1, p_{i}-1\right| n-1$ for $i=1,2,3, \ldots, k$. For suppose $p \mid n$ and $\epsilon(p)=+1$, then $p-1 \mid n+1$ and $p-1 \mid n-1$, which means that $p=3$. If $q$ is any other prime divisor of $n$, then $\epsilon(q)=-1, q+1 \mid n+1$ and $q-1 \mid n-1$. If $3 \mid n$, this is impossible; hence, $\epsilon(p)=-1$ for any $p \mid n$. Since $\epsilon(n)=-1=\epsilon_{n}\left(p_{1}\right) \epsilon\left(p_{2}\right) \cdots \epsilon\left(p_{n}\right)=(-1)^{k}, k$ must be odd.

It is not known to the author whether any such numbers exist. It can be shown, however, that if $n$ is such a number, $k \geq 5$. To show this it suffices to show that $k \neq 3$. Suppose $k=3$ and $n=p_{1} p_{2} p_{3}$ with $p_{1}<p_{2}<p_{3}$. We have

$$
\begin{aligned}
& p_{1} p_{2}-1 \equiv 0 \\
&-p_{1} p_{2}+1\left(\bmod p_{3}-1\right) \\
&\left(\bmod p_{3}+1\right)
\end{aligned}
$$

hence, $\left(p_{3}^{2}-1\right) / 2$ is a divisor of $p_{1} p_{2}-1$. Since $p_{3}>p_{2}, p_{1}$, we have $p_{3}^{2}+1=$ $2 p_{1} p_{2}$. It is also true that $p_{2} p_{3}-1$ is divisible by $\left(p_{1}^{2}-1\right) / 2$ and $p_{1} p_{3}-1$ is divisible by $\left(p_{2}^{2}-1\right) / 2$. Thus,

$$
\frac{p_{2} p_{3}-1}{\left(p_{1}^{2}-1\right) / 2}>\frac{p_{1} p_{3}-1}{\left(p_{2}^{2}-1\right) / 2}>\frac{p_{1} p_{2}-1}{\left(p_{3}^{2}-1\right) / 2}
$$

and each of these three numbers is an integer. Since

$$
p_{1} p_{3} \neq p_{2}^{2}, p_{1} p_{2}-1 \geq 3\left(p_{2}^{2}-1\right) / 2, p_{2} p_{3}-1 \geq 4\left(p_{1}^{2}-1\right) / 2
$$

and

$$
p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}-3 \geq\left(p_{3}^{2}-1\right) / 2+3\left(p_{2}^{2}-1\right) / 2+4\left(p_{1}^{2}-1\right) / 2
$$

## Since

$$
p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1} \leq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}
$$

we have

$$
2\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right) \geq p_{3}^{2}+3 p_{1}^{2}+4 p_{1}^{2}-2
$$

hence,

$$
p_{3}^{2}+1 \geq p_{2}^{2}+2 p_{1}^{2}-1>p_{2}^{2}+p_{1}^{2} \geq 2 p_{1} p_{2}
$$

which is impossible.

## References

1. R. D. Carmichael. A new number theory function, Bull. Amer. Math. Soc., 19 (1910), pp. 232-238.
2. Jack Chernick, On Fermat's simple theorem, Bull. Amer. Math. Soc., 45 (1939), pp. 269-274.
3. D. H. Lehmer, Strong Carmichael numbers, J. Aust. Math. Soc., Ser. A, 21 (1976) pp. 508-510.
4. A Rotkiewicz, On the pseudoprimes with respect to the Lucas sequences, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21 (1973), pp. 793-797.

University of Manitoba.
Winnipeg, Man. R3T 2N2

