ON NUMBERS ANALOGOUS TO THE CARMICHAEL NUMBERS

BY

H. C. WILLIAMS

1. Introduction. A base a pseudoprime is an integer n such that

(1)
$$a^{n-1} \equiv 1 \pmod{n}.$$

A Carmichael number is a composite integer *n* such that (1) is true for all *a* such that (a, n) = 1. It was shown by Carmichael [1] that, if *n* is a Carmichael number, then *n* is the product of k (>2) distinct primes $p_1, p_2, p_3, \ldots, p_k$ and $p_i - 1 | n - 1$ ($i = 1, 2, 3, \ldots, k$). The smallest such number is $561 = 3 \cdot 11 \cdot 17$.

The Lucas functions $V_n(P, Q)$, $U_n(P, Q)$ are defined as

$$V_n(P, Q) = \alpha^n + \beta^n,$$

$$U_n(P, Q) = (\alpha^n - \beta^n)/(\alpha - \beta),$$

where α , β are the zeros of $x^2 - Px + Q$, and P, Q are coprime integers. We also define Δ to be the discriminant $P^2 - 4Q$ of the above quadratic function. The following theorem concerning Lucas functions is well known.

THEOREM 1. If p is an odd prime and $p \neq Q$, then

 $U_{\delta(p)}(P, Q) \equiv 0 \pmod{p},$

where $\delta(p) = p - \epsilon(p)$, $\epsilon(p) = (\Delta | p)$, and $(\Delta | p)$ is the Legendre symbol.

Rotkiewicz [4] considered a composite integer n such that

 $U_{n-\epsilon(n)}(P, Q) \equiv 0 \pmod{n}$

to be a type of pseudoprime with respect to the Lucas functions. Here $\epsilon(n)$ is defined to be the value of the Jacobi symbol $(\Delta \mid n)$. We shall concern ourselves here with those odd composite integers n which possess, for a given value of Δ , the property (A) below.

(A)

$$\begin{cases}
\text{For all integers } P, Q \text{ such that} \\
(P, Q) = 1, P^2 - 4Q = \Delta, \quad (n, Q\Delta) = 1, \\
\text{we have} \\
U_{n-\epsilon(n)}(P, Q) \equiv 0 \pmod{n}.
\end{cases}$$

In view of the preceding remarks, we see that such integers are analogous to

Received by the editors, in revised form, January 13, 1977

Carmichael numbers; in fact, it can be shown that if $\Delta = 1$ and *n* satisfies (A), then *n* is a Carmichael number. In this paper we shall characterize and develop some properties of those integers which satisfy (A) for any given Δ .

2. **Preliminary results.** In order to establish some properties of the numbers we are seeking, it is necessary to first make some preliminary observations.

We first note that

(2)
$$2^{n-1}V_{k}(P,Q) = \sum_{r=0}^{[k/2]} {\binom{k}{2r}} P^{k-2r} (P^{2}-4Q)^{r}$$
$$2^{n-1}U_{k}(P,Q) = \sum_{r=0}^{[k/2]} {\binom{k}{2r+1}} P^{k-2r-1} (P^{2}-4Q)^{r}.$$

If, for a fixed Δ , we define the polynomials $T_k(x)$ and $S_k(x)$ by the formulas

$$T_{k}(x) = \sum_{r=0}^{\lfloor k/2 \rfloor} {k \choose 2r+1} x^{k-2r-1} \Delta^{r},$$

$$S_{k}(x) = \sum_{r=0}^{\lfloor k/2 \rfloor} {k \choose 2r} x^{k-2r} \Delta^{r},$$

then we have

(3)
$$2^{n-1}U_k(P, Q) = T_k(P),$$
$$2^{n-1}V_k(P, Q) = S_k(P),$$

when $P^2 - 4Q = \Delta$. We also have the result

$$T_{k+m}(x) = 2S_m(x)T_k(x) - (x^2 - \Delta)^m T_{k-m}(x)$$

and from this it follows easily by induction that if $m \mid k$,

$$T_k(x) = T_m(x)Q_{k,m}(x),$$

where $Q_{k,m}(x)$ is a polynomial in x with integer coefficients.

Before proceeding any further we require the following simple lemma.

LEMMA 1. If P, Q are any two integers such that $P^2 - 4Q = \Delta$, then for any odd integer m, where $(m, \Delta) = 1$, there exist integers P', Q' such that $P' \equiv P$, $Q' \equiv Q \pmod{m}$, $P'^2 - 4Q' = \Delta$, and (P', Q') = 1.

Proof. Select some integer d such that $(d, \Delta) = 2^i (0 \le i \le 2)$, where the value of *i* is determined by

$$d \equiv P + 2Q - 2 \pmod{4}.$$

Solve

$$(4) \qquad \qquad 2mK \equiv d - P \pmod{\Delta}$$

for K. If 2 | P, then $4 | \Delta$ and $K \equiv (d - P)/2 \equiv (Q + 1) \pmod{2}$. Put $P^1 = P + 2Km$,

Q' = Q + Km(P + mK). We see that $P'^2 - 4Q' = \Delta$ and it suffices to show that (P', Q') = 1. If q is a prime and $q \mid (P', Q')$, then q must be odd; for, if q = 2, then $2 \mid \Delta$, $2 \mid P$, and $Q' \equiv 2Q + 1 \pmod{2}$. If q is odd, then $q \mid \Delta$, and by (4) $q \mid d$, which, by selection of d, is impossible.

Finally, it should be noted that if X is any integer, then

$$T_{\delta(p)}(X) \equiv 0 \pmod{p}$$

where p is any odd prime such that $(p, (X^2 - \Delta)) = 1$. This result follows easily from Theorem 1, (3), and Lemma 1.

3. Some results concerning the Lucas functions. The rank of apparition modulo *m* of the Lucas sequence $\{U_k(P, Q)\}$ is defined to be the least positive value of *k* such that $m \mid U_k(P, Q)$. We denote this value of *k* by $\omega(m; P, Q)$. If $m \mid U_r(P, Q)$, then $\omega(m; P, Q) \mid r$; hence, $\omega(p; P, Q) \mid \delta(p)$ when *p* is a prime.

For a fixed discriminant Δ and a fixed odd prime p, let the function $\psi(d)$, where $d \mid \delta(p)$, be the number of distinct values of P modulo p such that $\omega(p; P, Q) = d$. In the following theorem we evaluate $\psi(d)$.

THEOREM 2. If d > 1, $\psi(d) = \phi(d)$, where $\phi(x)$ is Euler's totient function.

Proof. If $\epsilon(p) = 0$, the theorem follows easily. Suppose $\epsilon(p) \neq 0$ and put $\delta = \delta(p)$. If $d < \delta$, let the polynomial congruence

(5)
$$T_d(x) \equiv 0 \pmod{p}$$

have j solutions. Referring to the remarks at the beginning of this section and Lemma 1, we see that

$$\sum_{h\mid d}\psi(h)=j$$

Since $T_d(x)$ is a polynomial of degree d-1 with leading coefficient d we have $j \le d-1$. Also

(6)
$$T_{\delta}(x) \equiv 0 \pmod{p}$$

has exactly $\delta - 1$ solutions (mod p). For, if $\epsilon(p) = 1$, (6) is satisfied by any x except the two values of x which satisfy $x^2 \equiv \Delta \pmod{p}$; if $\epsilon(p) = -1$, (6) is satisfied by any value of x since there is no x such that $x^2 \equiv \Delta \pmod{p}$.

Now

$$T_{\delta}(x) = T_{d}(x)Q_{\delta,d}(x);$$

Thus, if (5) has *j* solutions, then

(7)
$$Q_{\delta,d}(x) \equiv 0 \pmod{p}$$

has $\delta - 1 - j$ solutions. Since the degree of $Q_{\delta,d}(x)$ is $\delta - d$ and its leading coefficient is prime to p, (7) can have no more than $\delta - d$ solutions. If j < d - 1, then $\delta - 1 - j > \delta - d$; consequently, j = d - 1.

H. C. WILLIAMS

Putting

$$\chi(h) = \psi(h) \ (h \neq 1), \qquad \chi(1) = 1,$$

we get

$$\sum_{h\mid d}\chi(h)=d;$$

by Möbius inversion $\chi(d) = \phi(d)$.

COROLLARY. If Δ is any fixed discriminant, p is any odd prime, and d(>1) is any divisor of $\delta(p)$, there exist integers P, Q such that (P, Q) = 1, $P^2 - 4Q = \Delta$, and $\psi(p; P, Q) = d$.

Define

$$C_k(P, Q) = \frac{\partial}{\partial P} U_k(P, Q)$$
$$D_k(P, Q) = \frac{\partial}{\partial Q} U_k(P, Q).$$

Since $U_k(P, Q)$ is a polynomial in P and Q with integer coefficients, so are $C_k(P, Q)$ and $D_k(P, Q)$.

We will assume here that P, Q are fixed and write U_k for $U_k(P, Q)$, C_k for $C_k(P, Q)$ etc.

Since

$$U_{k+1} = PU_k - QU_{k-1},$$

we get differentiation

(8)
$$C_{k+1} = PC_k + U_k - QC_{k-1}$$
$$D_{k+1} = PD_k - QD_{k-1} - U_{k-1}.$$

By induction we can show that

(9)
$$D_k = -C_{k-1}.$$

Also, by differentiating the second formula of (2) with respect to P and Q and putting k = p (an odd prime, $(p, \Delta Q) = 1$), we get

$$\Delta C_p \equiv -P\epsilon(p) \pmod{p}$$
$$\Delta D_p \equiv 2\epsilon(p) \pmod{p}.$$

Using (8) and (9) together with the fact that

$$U_p \equiv \epsilon(p) \pmod{p},$$

we have

$$\Delta C_{p+1} \equiv -2Q\epsilon(p) \pmod{p}$$

[March

and if $\epsilon(p) = 1$,

1977]

 $Q\Delta C_{p-1} \equiv -P \pmod{p}$.

It follows that

$$PC_{\delta} + 2QD_{\delta} \equiv 0 \pmod{p}$$

and $p \neq C_{\delta}$, where $\delta = \delta(p)$.

By using Taylor's Expansion, we see that

 $U_{\delta}(P+2Kp, Q+Mp) \equiv U_{\delta}(P, Q) + p[2KC_{\delta}(D, Q) + MD_{\delta}(P, Q)] \pmod{p^2}.$

If $p^2 | U_{\delta}(P, Q)$, select a value for K such that $p \neq K$ and put $M = KP + pK^2$. Then if P' = P + 2Kp, Q' = Q + Mp, we have $P'^2 - 4Q' = \Delta$. Now if

 $4Qu \equiv P \pmod{p}$,

then since $p \neq \Delta$,

 $1 - uP \neq 0 \pmod{p},$ $K(1 - uP) \neq 0 \pmod{p}$

and

$$K \not\equiv 2uM \pmod{p};$$

hence, $p^2 \neq U_{\delta}(P', Q')$. By using Lemma 1, we can show that for any Δ there exists a pair of integers P'', Q'' such that (P'', Q'') = 1, $P''^2 - 4Q'' = \Delta$, (p, Q'') = 1, and $p^2 \neq U_{\delta}(P'', Q'')$.

Since $\omega(p; P'', Q'') = \omega(p; P, Q)$ when $P'' \equiv P$, $Q'' \equiv Q \pmod{p}$ and $\omega(p; P, Q) | \delta(p)$, we deduce from Theorem 2 the fact that, for any given Δ , any odd prime $p((p, \Delta) = 1)$, and d any divisor of $\delta(p) (d > 1)$, there exist integers P'', Q'' such that $p \neq Q''$, (P'', Q'') = 1, $P'' - 4Q'' = \Delta$, $\omega(p; P'', Q'') = d$, $\omega(p^2; P'', Q'') > d$.

By using the Law of Repetition of Lucas Functions, we have

THEOREM 3. For any given Δ , any odd prime $p((p, \Delta) = 1)$, and d any divisor of $\delta(p)$ (d > 1), there exist integers P'', Q'' such that $p \neq Q''$, (P'', Q'') = 1, $P''^2 - 4Q'' = \Delta$, and $\omega(p^k, P'', Q'') = p^{k-1}d$.

4. Characterization of integers with property (A). In this section we will find the forms of those integers which possess the property (A) for a given fixed Δ . In order to do this we first require two lemmas. We give these lemmas here in a form somewhat stronger than we need to obtain the results of this section; however, we will need the stronger results in section 5.

LEMMA 2. If r, Δ , η are three given integers such that r is odd, $(r, \Delta) = 1$, $|\eta| = 1$ (we restrict η to be 1 when r is a perfect square and if $\Delta \equiv 1 \pmod{3}$, we restrict η

10

to be -1 when $r = 3t^2$), then there exists a pair of integers y, γ such that

$$y^2 \equiv 4\gamma + \Delta \pmod{r}$$

and $(\gamma \mid r) = \eta$, where $(\gamma \mid r)$ is the Jacobi symbol.

Proof. Let

$$r=\prod_{i=0}^{k}q_{i}^{\beta_{i}}$$

where q_i ($i = 1, 2, 3, \dots, k$) are distinct odd primes and q_1 is the least of these k primes. Select $\eta_1, \eta_2, \eta_3, \dots, \eta_k$ such that $|\eta_i| = 1$ for $i = 1, 2, 3, \dots, k$ (restrict η_1 to be -1 if $q_1 = 3$ and $\Delta \equiv 1 \pmod{3}$) and

$$\prod_{i=1}^{k} \eta_i^{\beta_i} = \eta.$$

It is well known that if q is a prime and $q \neq \Delta$, then there are q-1 solutions (x, y) of

(10)
$$y^2 - x^2 \equiv \Delta \pmod{q}$$

and at least q-3 of these have $x \neq 0 \pmod{q}$. Thus, if q > 3, there exist y and λ such that

(11)
$$y^2 \equiv 4\lambda + \Delta \pmod{q}$$

and $(\lambda \mid q) = +1$. If q = 3 and $\Delta \equiv -1 \pmod{3}$ we see that $y \equiv 0$, $\lambda \equiv 1 \pmod{3}$ is a solution of (11) with $(\lambda \mid q) = +1$.

If for each y (mod q) there were a value of x (mod q) such that (10) held, there would be at least 2q-2 solutions of (10) with $x \neq 0 \pmod{q}$. Since 2q-2 > q-1, there must be values of y and λ such that (11) is satisfied and $(\lambda \mid q) = -1$.

It follows that for each q_i which divides r there must exist a pair of integers (y_i, λ_i) such that

$$y_i^2 \equiv 4\lambda_i + \Delta \pmod{q_i}$$

and $(\lambda_i | q_i) = \eta_i$. We can then find integers Y_i and γ_i such that

$$Y_i^2 \equiv 4\gamma_i + \Delta \pmod{q_i^{\beta_i}}$$

and $\gamma_i \equiv \lambda_i \pmod{q_i}$. By the Chinese Remainder Theorem, there exist integers γ and y such that $y \equiv Y_i$; $\gamma \equiv \gamma_i \pmod{q_i^{\beta_i}}$ (i = 1, 2, 3, ..., k). Thus we have

$$y^2 \equiv 4\gamma + \Delta \pmod{r}$$

and $(\gamma \mid r) = \eta$.

LEMMA 3. Let r, m, Δ, η be given integers such that r is odd, $(r, m\Delta) = 1$, $|\eta| = 1$ $(\eta = 1$ when r is a perfect square; $\eta = -1$ when $\Delta = 1 \pmod{3}$ and $r = 3t^2$). If $P^2 - 4Q = \Delta$, there exists a pair of integers P', Q' such that $P'^2 - 4Q' = \Delta$, $P' \equiv P$. $Q' \equiv Q \pmod{m}$ and $(Q' | r) = \eta$.

Proof. Let γ and y be selected such that $(\gamma \mid r) = \eta$

$$y^2 \equiv 4\gamma + \Delta \pmod{r}$$

Select K such that

 $2mK + P \equiv y \pmod{r}.$

If we put

$$P' = P + 2mK,$$

$$O' = O + Km(P + mK).$$

we have $P'^2 - 4Q' = \Delta$, $P' \equiv P$, $Q' \equiv Q \pmod{m}$ and $Q' \equiv \gamma \pmod{r}$.

COROLLARY. Let r, Δ , m be three integers such that r is odd and $(r, m\Delta) = 1$. If $P^2 - 4Q = \Delta$, there exists a pair of integers P', Q' such that $P'^2 - 4Q' = \Delta$, $P' \equiv P$, $Q' \equiv Q \pmod{m}$ and (Q', r) = 1.

We are now able to prove our main theorem.

THEOREM 4. If for a fixed Δ , n possesses property (A), then n is the product of k distinct primes $p_1, p_2, p_3, \ldots, p_k$ and

$$p_i - \epsilon(p_i) \mid n - \epsilon(n)$$
 $(i = 1, 2, 3, \dots, k).$

Proof. Let p be any odd prime divisor of n and let $n = p^{\alpha}r$, where (r, p) = 1. Find P, Q such that (P, Q) = 1, $P^2 - 4Q = \Delta$, $\omega(p^{\alpha}; P, Q) = p^{\alpha^{-1}}\delta(p)$. By the Corollary of Lemma 3, there exist P', Q', such that $P'^2 - 4Q' = \Delta$, P' = P, $Q' \equiv Q \pmod{p^{\alpha}}$ and (Q', r) = 1; also, by Lemma 1, we can find P'', Q'' such that $P''^2 - 4Q'' = \Delta$, $P'' \equiv P'$, $Q'' \equiv Q' \pmod{n}$ and (P'', Q'') = 1. Since $(n, Q''\Delta) = 1$ and $P'' \equiv P$, $Q'' \equiv Q \pmod{p^{\alpha}}$, we have

$$U_{n-\epsilon(n)}(P'',Q'') \equiv 0 \pmod{n}$$

and

$$\omega(p^{\alpha}; P'', Q'') = p^{\alpha-1}\delta(p);$$

hence,

$$p^{\alpha-1}\delta(p) \mid p^{\alpha}r - \epsilon$$

where $|\epsilon| = 1$. We see that $\alpha = 1$ and the theorem follows.

If $n = p_1 p_2$, we must have $\epsilon(n) = \epsilon(p_1) \epsilon(p_2)$ and if $\epsilon_i = \epsilon(p_i)$,

$$p_1 - \epsilon_1 \mid p_1 p_2 - \epsilon_1 \epsilon_2, \qquad p_2 - \epsilon_2 \mid p_1 p_2 - \epsilon_1 \epsilon_2.$$

.

March

That is $p_1 - \epsilon_1 | p_2 - \epsilon_2$ and $p_2 - \epsilon_2 | p_1 - \epsilon_1$; hence, $p_1 - \epsilon_1 = p_2 - \epsilon_2$. If we assume $p_1 < p_2$, we have $\epsilon_1 - \epsilon_2 = -2$, i.e. $\epsilon_1 = -1$, $\epsilon_2 = 1$ and $p_1 = p_2 - 2$.

Thus, *n* can be the product of two primes and satisfy property (A) for a fixed Δ if and only if

$$n=p_1p_2,$$

where

$$p_1 = p_2 - 2;$$
 $(\Delta \mid p_1) = -1$ and $(\Delta \mid p_2) = +1.$

For example, if $\Delta = 5$, $p_1 = 17$, $p_2 = 19$, then $n = 17 \cdot 19$ satisfies (A).

Integers with property (A) and k > 2 can frequently be found by using a modification of the method of Chernick [2]. For example, let k = 3 and prescribe values for ϵ_1 , ϵ_2 , ϵ_3 . If d satisfies the congruence

(10)
$$d(\epsilon_1 r_2 r_3 + \epsilon_2 r_1 r_3 + \epsilon_3 r_1 r_2) + \epsilon_1 \epsilon_2 r_3 + \epsilon_1 \epsilon_3 r_2 + \epsilon_2 \epsilon_3 r_1 \equiv 0 \pmod{r_1 r_2 r_3}$$

for values of r_1 , r_2 , r_3 such that $(\Delta \mid dr_i - \epsilon_i) = \epsilon_i$ (i = 1, 2, 3) and $dr_1 + \epsilon_1$, $dr_2 + \epsilon_2$, $dr_3 + \epsilon_3$ are distinct primes, then

$$n = (dr_1 + \epsilon_1)(dr_2 + \epsilon_2)(dr_3 + \epsilon_3)$$

has property (A).

If we have $\Delta = 8$ and put $\epsilon_1 = -1$, $\epsilon_2 = \epsilon_3 = 1$, we must have $p_1 = dr_1 - 1$, $p_2 = dr_2 + 1$, $p_3 = dr_3 + 1$ and $(2 | p_i) = \epsilon_i$. Let $p_1 \equiv 3$, $p_2 \equiv p_3 \equiv 7 \pmod{8}$. We get d = 2d'' and

$$d''r_1 \equiv 2, \qquad d''r_2 \equiv d''r_3 \equiv 3 \pmod{4};$$

hence, putting $r_1 = 2$, $r_2 = 3$, $r_3 = 7$, we have $d'' \equiv 1 \pmod{4}$ and by (10), $d'' \equiv -4 \pmod{21}$. When d'' = 17, we get $p_1 = 67$, $p_2 = 103$, $p_3 = 239$ and $n = p_1 p_2 p_3$ has property (A) for $\Delta = 8$. In fact, this number has property (A) for $\Delta = 8m^2$ for any *m* such that (m, n) = 1.

5. Some further remarks. Recently Lehmer [3] has considered the problem of the existence of strong Carmichael mumbers. These are integers which satisfy the following congruence

$$a^{(n-1)/2} \equiv (a \mid n) \pmod{n}$$

for all a such that (a, n) = 1. In [3] it is shown that there are no strong Carmichael numbers. In this section we will find a result analogous to that of Lehmer.

The result in the theory of Lucas functions which is analogous to

$$a^{(p-1)/2} \equiv (a \mid p) \pmod{p},$$

where p is an odd prime and (a, p) = 1, is given in the following theorem.

140

THEOREM 5. If $\epsilon = (\Delta \mid p)$, then

$$U_{(p-\epsilon)/2}(P, Q) \equiv 0 \pmod{p} \quad when \quad (Q \mid p) = 1$$

and

$$V_{(p-\epsilon)/2}(P, Q) \equiv 0 \pmod{p}$$
 when $(Q \mid p) = -1$.

We say that an odd integer n satisfies property (B) for a given Δ if

(B) For all P, Q such that $P^2 - 4Q = \Delta$, (P, Q) = 1 and $(n, \Delta Q) = 1$ we have

$$U_{(n-\epsilon(n))/2}(P,Q) \equiv 0 \pmod{n}$$

whenever $(Q \mid n) = +1$ and

$$V_{(n-\epsilon(n))/2}(P, Q) \equiv 0 \pmod{n}$$

whenever $(Q \mid n) = -1$.

We will show that there are no odd composite integers satisfying (B) and we will do this by first characterizing all those odd composite integers n which satisfy property (C) below.

(C) for all P, Q such that $P^2 - 4Q = \Delta$, (P, Q) = 1, $(n, \Delta Q) = 1$, and $(Q \mid n) = -1$, we have

$$V_{(n-\epsilon(n))/2}(P, Q) \equiv 0 \pmod{n}.$$

THEOREM 6. If n (odd, composite) is not a perfect square or if $n \neq 15$ whenever $\Delta \equiv 4 \pmod{15}$, then n can not satisfy (C).

Proof. Suppose that some odd *n* satisfies (C) and that *n* is not a perfect square. Let *p* be any prime divisor of *n* and let $n = p^{\alpha}r$ where (r, p) = 1.

Put $\theta = \theta(p) = 1$ if $r = 3t^2$ and $\Delta \equiv 1 \pmod{3}$; otherwise, put $\theta = 0$. Find P, Q such that (P, Q) = 1, $P^2 - 4Q = \Delta$, $\omega(p^{\alpha}; P, Q) = \kappa\delta(p)p^{\alpha-1}$, where $\kappa = 1 - \theta/2$; then $(Q \mid p) = (-1)^{\theta-1}$. We now find P', Q' such that $P'^2 - 4Q' = \Delta$ and $P' \equiv P, Q' \equiv Q \pmod{p^{\alpha}}, (Q' \mid r) = (-1)^{\alpha(\theta-1)+1}$. From these we can determine P'', Q'' such that (P'', Q'') = 1, (n, Q'') = 1, $P''^2 - 4Q'' = \Delta$, $\omega(p^{\alpha}; P'', Q'') = \kappa p^{\alpha-1}\delta(p)$, $(Q' \mid n) = (Q \mid p)^{\alpha}(Q' \mid r) = (-1)^{2\alpha(\theta-1)+1} = -1$.

Now since $p^{\alpha} \mid n$,

$$V_{(n-\epsilon(n))/2}(P'',Q'') \equiv 0 \pmod{p^{\alpha}};$$

hence

$$U_{n-\epsilon(n)}(P'',Q'') \equiv 0 \pmod{p^{\alpha}}$$

and $\kappa\delta(p)p^{\alpha-1} | n - \epsilon(n)$. We conclude that $\alpha = 1$ and by repeating the above argument on all primes which divide *n*, we see that *n* must be a product of distinct primes. It follows that, if $\theta = 1$ for some prime *p* which divides *n*, then n/p = 3. Also $(\Delta | 3) = 1$ and $(p - \epsilon(p))/2 | 3p - \epsilon(p)$; hence, we must have p = 5 and $\epsilon(5) = +1$. Since $(\Delta | 5) = (\Delta | 3) = 1$, (Q | 3) = -1, and (Q | 5) = +1, we also must have $\Delta \equiv 4 \pmod{15}$. Thus, if $n \neq 15$ whenever $\Delta \equiv 4 \pmod{15}$, we see

1977]

that $\theta(p)$ must be zero for each prime p which divides n and consequently $\delta(p) | n - \epsilon(n)$.

Let n = pr, where p is a prime and $p \neq 3$ and select P, Q such that (P, Q) = 1, $P^2 - 4Q = \Delta$, $\omega(p; P, Q) = \delta(p)/2$. We can then find P'', Q'' such that (P'', Q'') = 1, (n, Q'') = 1, $P''^2 - 4Q = \Delta$, $\omega(p; P'', Q'') = \delta(p)/2$, $(Q'' \mid n) = -1$.

Since

$$V_{(n-\epsilon(n))/2}(P'',Q'') \equiv 0 \pmod{p}$$

and $p \not\prec (V_m(P'', Q''), U_m(P'', Q''))$ for any *m*, we see that $\omega(p; P'', Q'') \not\prec (n - \epsilon(n)/2)$. However, $\omega(p; P'', Q'') = \delta(p)/2$ and $\delta(p) \mid n - \epsilon(n)$; hence, $\delta(p)/2 \mid (n - \epsilon(n))/2$, which is a contradiction.

In the following theorem we obtain our result.

THEOREM 7. There are no odd composite integers which satisfy (B) for any Δ .

Proof. If *n* satisfies (B) for some Δ , it must satisfy (A) for that same Δ . Hence *n* is the product of distinct primes and not a perfect square. Since *n* must also satisfy (C) we see that *n* can only be 15 when $\Delta \equiv 4 \pmod{15}$; however, in this case, we do not have $\delta(5) \mid 15 - \epsilon(15)$.

Another problem of some interest is that of whether there exists a Carmichael number *n* which possesses property (A) for some Δ such that $(\Delta \mid n) = -1$. It is not difficult to show that if such numbers Δ and *n* exist, *n* must be the product of an odd number of distinct primes $p_1, p_2, p_3, \ldots, p_k$, $\epsilon(p_i) = -1$ $(i = 1, 2, 3, \ldots, k)$, and $p_i + 1 \mid n+1$, $p_i - 1 \mid n-1$ for $i = 1, 2, 3, \ldots, k$. For suppose $p \mid n$ and $\epsilon(p) = +1$, then $p-1 \mid n+1$ and $p-1 \mid n-1$, which means that p = 3. If *q* is any other prime divisor of *n*, then $\epsilon(q) = -1$, $q+1 \mid n+1$ and $q-1 \mid n-1$. If $3 \mid n$, this is impossible; hence, $\epsilon(p) = -1$ for any $p \mid n$. Since $\epsilon(n) = -1 = \epsilon_n(p_1) \epsilon(p_2) \cdots \epsilon(p_n) = (-1)^k$, *k* must be odd.

It is not known to the author whether any such numbers exist. It can be shown, however, that if n is such a number, $k \ge 5$. To show this it suffices to show that $k \ne 3$. Suppose k = 3 and $n = p_1 p_2 p_3$ with $p_1 < p_2 < p_3$. We have

$$p_1p_2 - 1 \equiv 0 \pmod{p_3 - 1}$$

 $-p_1p_2 + 1 \equiv 0 \pmod{p_3 + 1};$

hence, $(p_3^2-1)/2$ is a divisor of p_1p_2-1 . Since $p_3 > p_2$, p_1 , we have $p_3^2+1=2p_1p_2$. It is also true that p_2p_3-1 is divisible by $(p_1^2-1)/2$ and p_1p_3-1 is divisible by $(p_2^2-1)/2$. Thus,

$$\frac{p_2p_3-1}{(p_1^2-1)/2} > \frac{p_1p_3-1}{(p_2^2-1)/2} > \frac{p_1p_2-1}{(p_3^2-1)/2}$$

and each of these three numbers is an integer. Since

$$p_1p_3 \neq p_2^2, p_1p_2 - 1 \ge 3(p_2^2 - 1)/2, p_2p_3 - 1 \ge 4(p_1^2 - 1)/2$$

https://doi.org/10.4153/CMB-1977-025-9 Published online by Cambridge University Press

142

1977]

CARMICHAEL NUMBERS

and

$$p_1p_2 + p_2p_3 + p_3p_1 - 3 \ge (p_3^2 - 1)/2 + 3(p_2^2 - 1)/2 + 4(p_1^2 - 1)/2.$$

Since

$$p_1p_2 + p_2p_3 + p_3p_1 \le p_1^2 + p_2^2 + p_3^2$$

we have

$$2(p_1^2+p_2^2+p_3^2) \ge p_3^2+3p_1^2+4p_1^2-2;$$

hence,

$$p_3^2 + 1 \ge p_2^2 + 2p_1^2 - 1 > p_2^2 + p_1^2 \ge 2p_1p_2,$$

which is impossible.

References

1. R. D. Carmichael. A new number theory function, Bull. Amer. Math. Soc., 19 (1910), pp. 232-238.

2. Jack Chernick, On Fermat's simple theorem, Bull. Amer. Math. Soc., 45 (1939), pp. 269-274.

3. D. H. Lehmer, Strong Carmichael numbers, J. Aust. Math. Soc., Ser. A, 21 (1976) pp. 508-510.

4. A Rotkiewicz, On the pseudoprimes with respect to the Lucas sequences, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21 (1973), pp. 793-797.

University of Manitoba. Winnipeg, Man. R3T 2N2