# ON A PROBLEM OF KLEE 

BY<br>N. M. STAVRAKAS AND R. E. JAMISON

Let $E$ be a Hausdorff topological vector space. A subset $A$ of $E$ is a polytope iff $A$ is the convex hull of a finite number of points. In this note a necessary condition for every maximal convex subset of a subset $B$ of $E$ to be a polytope is given. This is related to a problem first posed by Klee [1] for compact three-cells in Euclidean 3 space.

If $A$ is a convex subset of $E$, then a point $x$ in $A$ is an extreme point of $A$ iff $A \sim\{x\}$ is convex. Let $B$ be any subset of $E$. A point $x$ in $B$ is a local extreme point of $B$ iff there exists an open neighborhood $V$ of $x$ such that $(V \cap B) \sim\{x\}$ is convex. The local extreme points of a set $B$ are denoted by $1 \times B$.

Lemma. Let $A$ be a convex subset of a set $B$ contained in $E$. If $x \in 1 \times B$ and $x \in A$, then $x$ is an extreme point of $A$.

Proof. Let $V$ be an open neighborhood of $x$ such that $(V \cap B) \sim\{x\}$ is convex. Then $(A \cap V) \sim\{x\}=A \cap((V \cap B) \sim\{x\})$ is convex. If $x$ is not an extreme point of $A$, then there are points $a$ and $b$ of $A \sim\{x\}$ with $x \in[a, b]$, the closed line segment from $a$ to $b$. Since $V$ is open and contains $x, V \cap[a, b]$ contains two distinct points $a^{\prime}$ and $b^{\prime}$ with $x=\frac{1}{2}\left(a^{\prime}+b^{\prime}\right)$. (For a proof of this see [2].) But $a^{\prime}$ and $b^{\prime}$ belong to $A \cap V$ and are distinct from $x$, so $(A \cap V) \sim\{x\}$ cannot be convex. This contradiction forces $x$ to be an extreme point of $A$.

In particular, the lemma implies that the local extreme points of a convex set coincide with the extreme points.

Theorem. Let $B$ be a subset of $E$. If every maximal convex subset of $B$ is a polytope, then no point of $1 \times B$ is a limit point of $1 \times B$.

Proof. Suppose that there exists an $x$ in $1 \times B$ such that $x$ is a limit point of $1 \times B$. Select an open neighborhood $V$ of $x$ such that $(V \cap B) \sim\{x\}$ is convex. Since $E$ is Hausdorff and $x$ is a limit point of $1 \times B, V \cap 1 \times B$ is infinite. Since $(V \cap B) \sim\{x\}$ is convex, a standard Zorn's lemma argument proves that there is a maximal convex subset $M$ of $B$ containing $(V \cap B) \sim\{x\}$. Thus $M \cap 1 \times B$ is also infinite, so the lemma implies that $M$ has infinitely many extreme points. Since a polytope has only a finite number of extreme points, $M$ is not a polytope, a contradiction.

Corollary. Suppose E is strongly Lindelöf (i.e. every open subspace has the Lindelöf property). If $B$ is a subset of $E$ and every maximal convex subset of $B$ is a polytope, then $1 \times B$ is at most countable.

Proof. By the theorem, no point of $1 \times B$ is a limit point of $1 \times B$. Thus for each
$x$ in $1 \times B$, there is an open set $V_{x}$ such that $V_{x} \cap 1 \times B=\{x\}$. Since every open subset of $E$ is Lindelöf, there is a countable subfamily $\left\{V_{i}\right\}_{i=1}^{\infty}$ of $\left\{V_{x} \mid x \in 1 \times B\right\}$ such that $\bigcup_{i=1}^{\infty} V_{i}=\bigcup\left\{V_{x} \mid x \in 1 \times B\right\} \supseteq 1 \times B$. Thus since each $V_{i}$ contains exactly one point of $1 \times B, 1 \times B$ is countable.

An example may be constructed in the plane to show that the converse of the corollary is false.

## References

1. V. L. Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79-107.
2. F. A. Valentine, Convex sets, McGraw-Hill, New York (1964), 6-7.

Clemson University, Clemson, South Carolina

