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INTEGERS OF BIQUADRATIC FIELDS 

BY 

KENNETH S. WILLIAMSC1) 

Let Q denote the field of rational numbers. If m, n are distinct squarefree integers 
the field formed by adjoining Vm and Vn to Q is denoted by Q(Vm9 Vn). Since 
Q(Vm, Vri)=Q(Vm + Vri) and Vm + Vn has for its unique minimal polynomial 
x4 —2(rn + ri)x2 + (m—n)2, Q(Vm,Vn) is a biquadratic field over Q. The 
elements of Q(Vm9 Vn) are of the form aQ + a1Vm + a2Vn+azVmn9 where 
tfo* tfi> #2> #3 e Q- Any element of Q(Vm, Vn) which satisfies a monic equation of 
degree > 1 with rational integral coefficients is called an integer of Q(Vm, Vn). 
The set of all these integers is an integral domain. In this paper we determine the 
explicit form of the integers of Q(Vm9 Vn) (Theorem 1), an integral basis for 
Q(Vm9 Vn) (Theorem 2), and the discriminant of Q(Vm, Vn) (Theorem 3). (With 
Q(Vm, Vn) considered as a relative quadratic field, that is, as a quadratic field 
over Q(Vm)9 an integral basis for Q(Vm, Vn) has been given in [1].) 

The form of the integers of a quadratic field are well known [3]. If A: is a square-
free integer then the integers of Q(Vk) are given by Uxo+XxVk), where x0, xx 

are integers such that x0=*i (mod 2), if k= 1 (mod 4); and by XQ+XXVIC, where 
x0, xx are integers, if k=2 or 3 (mod 4). Thus we know the integers of the subfields 
Q(Vm), Q(Vn), Q(Vmn) of Q(Vm, Vn). 

We begin by making some simplifying assumptions about m and n. We let 
/= (m, n) and write m = lml9 n = lnx so that (ml9 n1) = l. Since m, n are squarefree we 
have the following possibilities for the residues of m, n, m^ modulo 4. 
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Thus as 

Q(Vm, Vn) = Q(Vm, VmJh) = Q(Vn, VmJh) = Q(Vn, Vm) 

we may suppose without loss of generality that 

(1) (m, n) 5 (1, 1), (1,2), (2, 3) or (3, 3) (mod 4). 

We now determine the form of the integers of Q(Vm, Vn), where (here and 
throughout) m, n satisfy (1). 

THEOREM 1. Letting x0,x±,x2,x3 denote rational integers, the integers of 

Q(Vm, Vn) are given as follows: 

(i) if(m, «) = (ml9 «i) = (l, 1) (mod 4), the integers are 

%(xQ + xxVm + x2Vn + x3Vmxn^), 

where x0 ~ x± = x2=x3 (mod 2), x0 — xx + x2—x3=0 (mod 4) ; 

(ii) if(m, w) = (l, 1), (ml9 fli) = (3, 3) (mod 4), the integers are 

l(x0 + xx Vm + x2 Vn + XaVm^i), 

where x0 = x1 = x2 = x3 (mod 2), x0 — xx — x2 — x3 = 0 (mod 4); 

(iii) ifim, ri) = (l, 2) (mod 4), the integers are 

%(x0 + xxVm + x2 Vn + x3 Vm^x), 

where x0 = xl9 x2 = x3 (mod 2); 

(iv) if(m, ri) = (2, 3) (mod 4), the integers are 

%(x0 + X-L Vm + x2 Vn + x3 Vm^), 

where x0 = x2 = 0, xx == x3 (mod 2) ; 

(v) if(m, n) = (3, 3) (mod 4), the integers are 

i(x0 + x±Vm + x2Vn + *3 V m ^ ) , 

where x0==x3, xx = x2 (mod 2). 

Proof. Let 6 be an integer of Q(Vm, Vn), where m, n satisfy (1). Then 6 can be 
written 

(2) 9 = aQ + a-iV m + a2V n + a3V m-ji-L, 

where a0, al9 a2, a3 e Q. As 6 is an integer of Q(Vm, Vn) so are its conjugates 
over Q, namely, 

' = flo + û i ^ - ^ ^ - ^ V m ^ i , 

(3) ^ 0" = aQ — a±V m + a2V n — a3V m^, 

" = aQ — axVm — a2Vn-\-a3Vm1nx, 
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The three quantities 

{0 + 0' = 2a0 + 2a1Vme Q(Vrn)9 

0+0" = 2aQ + 2a2Vn e Q(Vn), 

0+0'" = 2aQ + 2a3VmJ^e Q(VmJ^)9 

are therefore all integers of Q(Vm, Vn). Hence they must be integers of Q(Vrri), 

Q(Vn)9 QiVmxnx) respectively. 
We consider the cases (m, w) = (l, 2), (2, 3), (3, 3) (mod 4) first so that at least 

two of m, n9 miji! are not congruent to 1 (mod 4), and so at least two of (4) have 
integral coefficients. Since 2aQ is common to all three of (4), the third one must also 
have integral coefficients. Hence 2aQ9 2al9 2a2, 2a3 are all integers and we can write 
(2) as 

(5) 0 = K * o + * i V W i 2 V ^ + * 3 v W * i X 

where bQi bl9 b29 b3 are all integers. Let us define 

(6) c = h*—nixUxbl, d = b%—mb\—nb\+m-Ln-Jj39 

e = 2(b0b3 — b1b2l)9 

so that 0 satisfies 

(7) fl4-2M" + (c+D ̂ ( - ^ f M e+{d2-m^) = Q 

If 0 e Q(Vm)9 Q(Vri) or Ç&^m-ji-ù the theorem is easily verified so we suppose 

that 0 $ Q(Vm)9 Q(Vn)9 Q(VmJh). Thus the coefficients of (7) must all be in­

tegers, that is, we must have 

(8) d2-m1n1e
2 = 0 (mod 16), 

since as e is even this implies that d must be even too. 
If (m, «)=(1, 2) (mod 4), so that /= 1 (mod 2), w1«1 = 2 (mod 4), (8) is equiva­

lent to d=e = 0 (mod 4), or 

(9a) b% - b\ - 2*|+2b\ s 0 (mod 4), 

(9b) bQb3-bxb2 = 0 (mod 2). 

If bo^bx (mod 2) then b2 —b2 = l (mod 2) and (9a) is insoluble. Thus we must 
have b0 = bx (mod 2), so b%-b\ = 0 (mod 4) and (9a) implies 2(&!-è§) = 0 (mod 4), 
that is b2 = b3 (mod 2). Clearly (9b) is then satisfied and this proves case (iii) of the 
theorem. 

If (m, «) = (2, 3) (mod 4), so that7= 1 (mod 2), ^ « 1 = 2 (mod 4), (8) is equivalent 
to rf=e = 0 (mod 4), or 

(10a) bl-2b\+b\ + 2b\ = 0 (mod 4), 

(10b) M 3 - W 2 = 0 (mod 2). 
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If either b0 or b2 is odd (10a) implies that the other is odd too. Then (10b) implies 
b±=b3 (mod 2) and (10a) becomes 1 — 2b\ +1 + 2b\=0 (mod 4), which is impossible. 
Thus b0=b2 = 0 (mod 2) and so bx = b3 (mod 2). This proves case (iv) of the theorem. 

If (ra, «) = (3, 3) (mod 4), so that /= 1 (mod 2), m^^ 1 (mod 4), (8) is equivalent 
to d=e (mod 4), or 

bt + bf+bl + H = 2(è0&3-6A) (mod 4), 

or 

(60-"è3)2 + (61 + è2)2 s 0 (mod 4). 

Thus we have b0^b3, b1 = b2 (mod 2), which proves case (v) of the theorem. 
We now consider the case (ra, ri) = (l, 1) (mod 4), which has been excluded up 

to this point. We have m^^l (mod 4) so that 2a0, 2al9 2a2, 2a3 are either all 
integers or all halves of odd integers. 

If 2a0, 2al9 2a2, 2a3 are all integers then as in the case (ra, w) = (3, 3) (mod 4) we 
have d=e (mod 4), that is, 

i ? - A ï - i ! + i§ s 2(00*3-*i*2> (mod 4), 

or 

( è 0 - * 3 ) 2 - ( è 1 - è 2 ) 2 ^ 0 ( m o d 4 ) , 

which implies 

b0-b3 = bx — b2 (mod 2) 

or 

bs-b± + b2-b3 = 0 (mod 2). 

This gives 0 in the form ifco + c1Vm + c2Vn + CgV/w^O, with c0, Ci, c2, c3 integers 
such that 

c0 = c± = c2 = c3 ES 0 (mod 2), c0 — Cx±c2 — c3 = 0 (mod 4). 

If 2a0, 2al9 2a2, 2a3 are all halves of odd integers we can write (2) as 

(11) 0 = i(c0 + cxVm + c2Vn + c3 V r a ^ ) , 

where c0, cl9 c2, c3 are integers such that c0 = c1 = c2 = c3 = \ (mod 2). We have 

cl-m-ji-Lcl , cl—mcl—ncl + mTjiiCl 
c = -: 9 a = -. > 

4 4 
(12) 

£ Q £ 3 CjC2' 

2 ' 
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These are all integers as c0 = cx = c2 = c3 = / = 1 (mod 2) and m s n s w ^ ! s 1 (mod 4). 
Moreover 

Co—mci—nci+mxnxCQ = \—m—n-\-m1n1 (mod 8) 
= l—m—n + Pmxrix (mod 8) 
= l—m—n+mn 
= ( l -m)( l -«) 
= 0 (mod 8), 

so that d is even. Now 9 satisfies 

(13) p-c0P + (c+fyp + (e*^ = 0. 

Clearly 0 $ Q(Vm)9 Q(Vn), QiVmJh) so that the coefficients of (13) must all be 
integers, that is, we must have 

(14) d2-m1n1e
2 = 0 (mod 16), 

since (14) implies, as d=0 (mod 2), m^n^X (mod 4), that d=e (mod 4) and so 

ctfninxe—Cod = c3e—c0d = d(c3 — c0) = 0 (mod 4). 

Clearly as d=0 (mod 2), (14) is equivalent to d=e (mod 4). 
Writing ^ = 2 ^ + 1 ( i=0, l , 2, 3) we have 

d = (d$ - mrff - ndl+m-ji^dl) + (d0 - /wdi. - « r f 2 + m ^ d ^ + - ^ — 

and 

e = (2d0d3-2ld1d2) + (dQ-ld1-ld2 + d3)+~ 

Thus if / = 1 (mod 4), so that (m^ «i) = (l, 1) (mod 4), we have 

d=(d2-d?-di + d$) + (d0-d1-d2 + d3)+^ (mod 4), 

e = (2d0d3-2d1dJ + (dQ-d1-d2 + d3)+-^- (mod 4), 

and so rf=e (mod 4) gives 

(do-d3)^(d1-d2)
2 s 0 (mod 4), 

that is 
</0-J3 = dx-d2 (mod 2), 

or 
^0-^1 + ^2-^3 = 0 (mod 4), 

which completes the proof of case (i) of the theorem. 
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If 1=3 (mod 4), so that (ml9 «i) = (3, 3) (mod 4), we have 

d=(dS-d^di + di) + (d0-d1-d2 + d3)+^ (mod 4)9 

e = (2d0d3 + 2d1d2) + (d0 + d1 + d2 + d3)+-^- (mod 4), 

and so d=e (mod 4) gives 

(do-dsY-fa + daP-lfa + dJ-l = 0(mod4), 

that is, 

d0-d3 = dx + d2 + l (mod 2), 

or 

Co — Ci — c2 — c3 = 0 (mod 4), 

which completes the proof of case (ii) of the theorem. 
We give three simple examples of Theorem 1. 

EXAMPLE 1. 0=i(5 + 3V3+ VÎ3 + 3V65) is an integer of Q(V~5, VÏ3). 6 satis­
fies 04 - 503 - 7162 +1200 +1044 = 0. 

EXAMPLE 2. 0=i(l + V2Ï + V 3 3 - Vfj) is an integer of Q(V2Ï9 V33). 0 satis­
fies 04_03-1602 + 370-17 = O. 

EXAMPLE 3. The integers of Q(V2, V^T) are of the form a0 + «iV2+a2 \ /^T 
+ a3V—2, where a0, a2 are both integers and al9 a3 are both integers or both halves 
of odd integers (see [2] for example). 

As a consequence of Theorem 1 we have 

THEOREM 2. An integral basis for Q(Vm, Vn) is given by 

n Ii 1 + v /^ l + Vw î + Vw+Vw+V/wi/ii'i i/ (/w, ») = (l, l), 
W V * 2 ' 2 ' 4 / ' (wi,Hi) = (l,l)(mod4), 

f ï Jl 1 + v ^ 1 + Vw 1 - V m + V ^ + V W i O i/ (TW, n) = (1, 1), 
W \ ' 2 ' 2 ' 4 Y (/fh, #10^(3,3) (mod 4), 

(m) j i , —^—' Vn> — 2 — r ^ m ' ^ s ^ ' ) (m o d 4^ 

(iv) j l , Vm, Vn, V m +
2

V m i W l } ? iy(m, n) = (2, 3) mod 4), 

(v) | 1 , Vm9 ^ ' 2 J ^ m ' ^ s ^ ' ^ ( m o d 4^ 
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Proof. We just give the proof of (i) since the other four cases are very similar. 

By Theorem 1 the general integer of Q(Vm9 Vn) can be written Kxo+XxVnl 

+x2Vn+x3Vm1n1)9 where x09 xl9 x2, x3 are integers such that 

x0 = x± = x2 = x3 (mod 2), x0-x1+x2-Xz = 0 (mod 4). 

Write z3 = x3. As x0 = xx == x2 = z3 (mod 2) there are integers y9 zl9 z2, such that 

x0 = z3 + 2y, xx = z3 + 2zl9 x2 = z3 + 2z2. 

But as x0—xx+x2—z3 = 0 (mod 4) we have y=Zx+z2 (mod 2), so there is an integer 
z0 such that<y=2z0+z1 + z2. Hence 

J(AT0 + *i Vm + x2 Vn + x3 Vmxn^) 

, /l + VwA , /1 + V/Â /1 + Vm + Vn + Vm^A 
= z0 + Zl (—2-)+Z2 (—2-)+z3 ( 5 y 

which proves the result as 

t 1 + Vm 1 + V/ï 1 + Vrâ + V« + V/Wifii 
l j - 2 ~ ' "~2~"' 4 ' 

are integers of Q(Vm9 Vn). 
We illustrate Theorem 2 with a simple example. 

EXAMPLE 4. An integral basis for Q(VI, Vl3) is 

f , r, 1 + V5 1 + VÎ3 i + V5+VB+V6yi 
{a0, ax, a2, a3) = 1 1, — - ' ^ ' 4 J 

and the integer i ( 5 + 3A/5 +Vl3 + 3V65) is given in terms of this integral basis 
as a0 — a2 + 3a3. 

Finally as the discriminant of an algebraic number field is just the discriminant 
of an integral basis of the field, we have 

THEOREM 3. The discriminant of Q(Vm, Vn) is given by 

(i) Pmfnl if (m, n) = (1, 1) (mod 4), 
(ii) I6l2mlnl if(m9 /i) = (l, 2) or (3, 3) (mod 4), 

(iii) 64l2mînî, if (m, n) = (2, 3) (mod 4). 

Thus, for example, we have 

EXAMPLE 5. The discriminant of Q(Vï, V^T) is 256. 
8—C.M.B. 
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CORRECTIONS 

On the Hahn-Banach Extension Property, by TING-ON TO. Canad. Math. Bull. 
(1) 13 (1970), 9-13. 

A minor error in the proof of the theorem on page 12 is corrected upon replacing 
the penultimate sentence by "Let V± be a subspace of V complementary to V0. 
Then V&V/VQ and V=V1® V0, the algebraic direct sum of the subspaces V± 

and V0." 

A Note on Endomorphism Semigroups, by CRAIG PLATT. Canad. Math. Bull. 
(1) 13 (1970), 47-48. 

On page 48, the fourth sentence of paragraph 2 should read "If ^ e End (33), 
then because of fia9 /?d, and fic, we have i/j(a) = a, \jj{d) = d, and I/J(C) = C." 
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