BULL. AUSTRAL. MATH. Soc. Vol. 41 (1990) [237-244]

ALMOST NILPOTENT GAMMA RINGS

G.L. BOOTH AND N.J. GROENEWALD

In this paper we introduce the concept of almost nilpotence for Γ -rings, similar to the corresponding concept for rings, as defined by Van Leeuwen and Heyman. An almost nilpotent radical property \mathcal{A}_0 is introduced for Γ -rings, and shown to be supernilpotent. If M is a Γ -ring with left and right operator rings L and R respectively, then $\mathcal{A}(L)^+ = \mathcal{A}_0(M) = \mathcal{A}(R)^*$, where $\mathcal{A}(.)$ denotes the almost nilpotent radical of a ring. If M is a Γ -ring and m, n are positive integers, then $\mathcal{A}_0(M_{m,n})$ is the almost nilpotent radical of the $\Gamma_{n,m}$ -ring $M_{m,n}$.

1. BASIC CONCEPTS

Let M and Γ be additive abelian groups. If we have a map from $M \times \Gamma \times M$ to M such that for all $x, y, z \in M$, $\gamma, \mu \in \Gamma$

- (i) $x\gamma(y\mu z) = (x\gamma y)\mu z;$
- (ii) $x\gamma(y+z) = x\gamma y + x\gamma z; x(\gamma + \mu)y = x\gamma y + x\mu y;$ $(x+y)\gamma z = x\gamma z + y\gamma z$

then M is called a Γ -ring. If $U \subseteq M$, $V \subseteq M$ and $\varphi \subseteq \Gamma$ then we define:

$$U \varphi V = \{ u \gamma v \colon u \in U, \gamma \in \varphi, v \in V \}.$$

If A is a subgroup of M, and $A\Gamma M \subseteq A$, $M\Gamma A \subseteq A$, then A is an *ideal* of M, denoted by $A \subseteq M$. Similar notation will be used for ideals of rings. If $Q \subseteq M$, then Q is called a *semiprime ideal* of M if $A \subseteq M$, $A\Gamma A \subseteq Q \Longrightarrow A \subseteq Q$. The next result is proved along the same lines as the corresponding result for rings:

PROPOSITION 1.1. Let M be a Γ -ring and let $Q \leq M$. Then the following are equivalent:

- (a) Q is a semiprime ideal of M;
- (b) $\forall x \in M, x \Gamma M \Gamma x \subseteq Q \Longrightarrow x \in Q.$

If $A \leq M$, the factor Γ -ring M/A is defined in the natural way.

Let M, M' be Γ -rings and let $f: M \to M'$ be a mapping. If for all $x, y \in M$, $\gamma \in \Gamma$, f(x+y) = f(x) + f(y) and $f(x\gamma y) = f(x)\gamma f(y)$, then f is called a Γ -ring

Received 11 April 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

If $A \leq M$, and $0 \neq I \leq M$ implies $I \cap A \neq 0$, then A is called an essential ideal of M, denoted A by $\triangleleft \cdot M$.

Let $x \in M$, $\gamma \in \Gamma$. Define $[x, \gamma]: M \to M$ by $[x, \gamma]y = x\gamma y$ for all $y \in M$. The subring L of End(M) consisting of all sums $\sum [x_i, \gamma_i], x_i \in M, \gamma_i \in \Gamma$, is called the left operator ring of M. A right operator ring R of M is defined similarly, and consists of all sums of the form $\sum_{i} [\gamma_i, x_i], \gamma_i \in \Gamma, x_i \in M$.

$$\begin{array}{ll} \mathrm{If}\; A\subseteq L, A^* &= \{x\in M \mid \forall \gamma\in \Gamma; [x,\gamma]\in A\}.\\ \mathrm{If}\; B\subseteq R, B^* &= \{x\in M \mid \forall \gamma\in \Gamma; [\gamma,x]\in B\}.\\ \mathrm{If}\; C\subseteq L, C^{+'} &= \{\ell\in L \mid \ell M\subseteq C\} \text{ and}\\ &\quad C^{*'} &= \{r\in R \mid Mr\subseteq C\}. \end{array}$$

It is easily seen that all of these mappings take ideals to ideals, and preserve intersections.

If $A \subseteq M$, then $[\Gamma, A] = \{\sum [\gamma_i, x_i] \mid \gamma_i \in \Gamma \& x_i \in M\}$. It is easily shown that, if $A \leq M$, then $[\Gamma, A] \leq R$ and that $[\Gamma, A] \subseteq A^{*'}$. If $B \subseteq R$, then $MB = \{\sum x_i b_i \mid i \leq k\}$ $x_i \in M, b_i \in B$. If $B \leq R$, then $MB \leq M$, and $MB \subseteq B^*$.

All classes of rings considered will be for some fixed Γ , and abstract, that is closed under isomorphisms. A radical property \mathcal{R} for Γ -rings is defined as for the corresponding concept for rings (see [7, p.3]). If \mathcal{U} is a class of rings, the lower radical determined by \mathcal{U} is constructed as for rings [7, p.13]). A class \mathcal{C} of Γ -rings is called weakly special, if:

- (a) C consists of semiprime Γ -rings;
- (b) if $m \in \mathcal{C}$ and $A \leq M$, then $A \in \mathcal{C}$;
- (c) if M is a Γ -ring and $A \leq M$, then $A \in C$ implies $M \in C$.

A weakly special class of rings is defined in the same way.

PROPOSITION 1.2. ([5, Theorem 2.5]). Let C be a weakly special class of rings. Let \overline{C} be the class of all Γ -rings M such that the right operator ring \mathcal{R} of M is in C, and $M\Gamma x = 0$ implies x = 0, for all $x \in M$. Then \overline{C} is a weakly special class of gamma rings.

If C is a weakly special class of Γ -rings, the upper radical R determined by C is

 $\mathcal{R} = \mathcal{UC} = \{M \mid M \text{ has no nonzero homomorphic image in } C\}.$

A radical property $\mathcal R$ for Γ -rings is called *supernilpotent* if $\mathcal R$ includes all Γ -rings M such that $M \Gamma M = 0$, and if $M \in \mathcal{R}$, then $A \leq M$ implies $A \in \mathcal{R}$. As for rings we have:

239

PROPOSITION 1.3. A radical property \mathcal{R} for Γ -rings is supernilpotent if and only if $\mathcal{R} = \mathcal{UC}$ for some weakly special class \mathcal{C} of Γ -rings M, $\mathcal{R}(M) = \cap \{Q \leq M \mid M/Q \in \mathcal{C}\}$.

2. Almost nilpotent rings

Almost nilpotent rings were introduced by Van Leeuwen and Heyman [12]. A ring R is called *almost nilpotent (anp)* if $(\forall 0 \neq A \trianglelefteq R)(\exists n \in N)(R^n \subset A)$. This definition, which first appeared in [8], is slightly stronger than the one given in [12]. Nevertheless, all the results concerning anp rings which are discussed in this paper remain valid for this definition. The lower radical property A determined by the class of all anp rings is supernilpotent, and coincides with the upper radical property determined by the class C of rings which contain no nonzero anp ideals (see [12, Theorems 2 and 4]). A is called the *almost nilpotent radical property* in the variety of rings.

A Γ -ring M is called anp if $(\forall 0 \neq A \leq M)(\exists n \in N)(M\Gamma)^n M = M\Gamma M\Gamma \dots \Gamma M \subset A$. Let \mathcal{A}_0 be the lower radical property determined by the class of anp Γ -rings. Since the class of anp Γ -rings contains all Γ -rings M such that $M\Gamma M = 0$, the construction of \mathcal{A}_0 terminates at the second step ([10, Lemma 2.4]), that is \mathcal{A}_0 is the set of all M such that every nonzero homomorphic image of M has a non-zero ideal which is anp.

 \mathcal{A}_0 is called almost nilpotent radical property for Γ -rings. Let \mathcal{C}_0 denote the class of all Γ -rings which contain no nonzero and ideals. Throughout this section, let M denote a Γ -ring with left and right operator rings L and R, respectively.

PROPOSITION 2.1. Suppose that A is an anp ideal of M. Then $[\Gamma, A]$ is an anp ideal of R.

PROOF: Let $0 \neq B \leq [\Gamma, A]$. We claim that $MB \leq A$. For if $x \in M$, $b \in B$, then $b = \sum_{i} [\alpha_{i}, a_{i}]$ for some $\alpha_{i} \in \Gamma$, $a_{i} \in A$. Hence $xb = \sum_{i} x\alpha_{i}a_{i} \in A$ since $A \leq M$. Thus $MB \subseteq A$. Since $B \neq 0$, $MB \neq 0$. Now suppose $x \in M$, $b \in B$, $a \in A$ and $\gamma \in \Gamma$. Then $a\gamma(xb) = (a\gamma x)b \in MB$, and $(xb)\gamma a = x(b[\gamma, a]) \in MB$ since $B \leq [\Gamma, A]$. Thus $0 \neq MB \leq A$. Since A is an anp ideal of M, $(A\Gamma)^{n}A \subset MB$ for some $n \in \mathbb{N}$. Hence, $A[\Gamma, A]^{n} \subset MB$, whence $[\Gamma, A]^{n+1} \subseteq [\Gamma, MB] = RB$. It follows that $[\Gamma, A]^{n+2} \subseteq [\Gamma, A]RB \subseteq [\Gamma, A]B \subseteq B$ since $B \leq [\Gamma, A]$.

Since $(A\Gamma)^n A \subset MB$, there exist $x \in M$, $b \in B$ such that $xb \notin (A\Gamma)^n A$. Suppose that $b \in [\Gamma, A]^{n+2}$. Then there exist $a_{ij} \in A$, $\gamma_{ij} \in \Gamma$, $1 \leq i \leq n+2$, $1 \leq j \leq m$ such that

$$b = \sum_{j=1}^{m} [\gamma_{1j}, a_{1j}] \dots [\gamma_{n+2j}, a_{n+2j}].$$

Hence

$$xb = \sum_{j=1}^{m} (x\gamma_{1j}a_{1j})\gamma_{2j}a_{2j} \ldots \gamma_{n+2j}a_{n+2j} \in (A\Gamma)^{n}A,$$

which contradicts our choice of x and b. Hence $b \notin [\Gamma, A]^{n+2}$, so $[\Gamma, A]^{n+2} \subset B$, as required.

PROPOSITION 2.2. Suppose that M has the property that $(\forall x \in M)(M\Gamma x = 0 \Longrightarrow x = 0)$. Let A be an anp ideal of R. Then A^* is an anp ideal of M.

PROOF: It is easily verified that $[\Gamma, A^*] \subseteq A$. Since $[\Gamma, A^*] \lhd R$, $[\Gamma, A^*] \lhd A$. But the class anp rings is hereditary (see [12]), the Lemma before Theorem 2). Hence, $[\Gamma, A^*]$ is an anp ideal of R. Suppose $0 \neq B \lhd A^*$. If $[\Gamma, B] = 0$, then $M\Gamma B = 0$, whence B = 0, contradicting our choice of B. Thus $0 \neq [\Gamma, B] \lhd [\Gamma, A^*]$. Hence there exists $n \in \mathbb{N}$ such that $[\Gamma, A^*]^n \subset [\Gamma, B]$. It follows that $(A^*\Gamma)^n A^* \subseteq A^*\Gamma B \subseteq B$ since $B \lhd A^*$. Since $[\Gamma, A^*]^n \subset [\Gamma, B]$, there exist $\gamma \in \Gamma$, $b \in B$ such that $[\gamma, b] \notin [\Gamma, A^*]^n$. Then $b \notin (A^*\Gamma)^n A^*$, otherwise $[\gamma, b] \in [\gamma, A^*]^{n+1} \subseteq [\Gamma, A^*]^n$, contradicting our choice of γ and b. Hence $(A^*\Gamma)^n A^* \subset B$, as required.

THEOREM 2.3. The following are equivalent:

- (a) M contains no nonzero anp ideals;
- (b) R contains no nonzero anp ideals, and $(\forall x \in M)(M\Gamma x = 0 \Longrightarrow x = 0);$
- (c) L contains no nonzero and ideals, and $(\forall x \in M)(x \Gamma M = 0 \Longrightarrow x = 0)$.

Proof:

(a) \implies (b): Suppose M contains no nonzero and ideals. Clearly, M is a semiprime Γ -ring. Suppose $x \in M$ and $M\Gamma x = 0$. Then $x\Gamma M\Gamma x = 0$, whence x = 0. Suppose that A is an and ideal of R. Then A^* is an and ideal of M, by Proposition 2.2. Hence, $A^* = 0$. Now $A \subseteq (A^*)^{*'} = 0^{*'} = \{r \in R : Mr = 0\} = 0$, as required.

(b) \implies (a): Suppose that R contains no nonzero and ideals, and that $(\forall x \in M)(M\Gamma x = 0) \Rightarrow x = 0$. Let A be an and ideal of M. Then $[\Gamma, A]$ is an and ideal of R, by Proposition 2.1. Hence $[\Gamma, A] = 0$, whence $M\Gamma A = 0$. It follows that A = 0.

(a) \implies (c) follows by symmetry.

Let C_0 denote the class of all Γ -rings without any ideals. As an immediate consequence of Proposition 1.2 and Theorem 3.3, we have

COROLLARY 2.4. C_0 is a weakly special class of Γ -rings.

PROPOSITION 2.5. $A_0 = \mathcal{UC}_0$.

The proof is identical to that of the corresponding result for rings ([12, Theorem 4]). \Box

۵

From Corollary 2.4 and Proposition 2.5, we have

THEOREM 2.6. \mathcal{A}_0 is a supernilpotent radical property in the variety of Γ -ring. It follows that $\mathcal{A}_0(M) = \cap \{Q \leq M \mid M/Q \in C_0\}$.

LEMMA 2.7. ([3, Corollary 2.2]). Let $A \triangleleft M$, and let R' denote the right operator ring of the factor Γ -ring M/A. Then

$$R'\cong R/A^{*'}.$$

LEMMA 2.8. The mapping $Q \to Q^*$ defines a one-to-one correspondence between ideals Q of R such that $Q/R \in C$ and ideals S of M such that $M/S \in C_0$.

PROOF: Let $Q \leq R$ be such that $R/Q \in C$. Then Q is a semiprime ideal of R. Hence $Q = (Q^*)^{*'}$ (see [9, Theorem 1]). The right operator ring R' of the factor Γ -ring M/Q^* is isomorphic to $R/(Q^*)^{*'} = R/Q$, by Lemma 2.7. Suppose $x \in M$ is such that $(M/Q^*)\Gamma(x+Q^*) = 0$. It follows that $M\Gamma x \subseteq Q^*$. Since Q is a semiprime ideal of R, Q^* is a semiprime ideal of M ([9, Lemma 1]). Now $x\Gamma M\Gamma x \subseteq Q^*$, whence $x \in Q^*$, that is $x + Q^* = 0$. By Theorem 2.3, M/Q^* contains no nonzero anp ideals, whence $M/Q \in C_0$.

Conversely, suppose $S \triangleleft M$ is such that $M/S \in C_0$. Since S is a semiprime ideal of $M, S = (S^{*'})^{*}$. Since the right operator ring of the factor Γ -ring M/S is isomorphic to $R/S^{*'}$, by Lemma 2.7, it follows from Theorem 2.3 that $R/Q^{*'} \in C$, as required.

Theorem 2.9. $A(R)^* = A_0(M) = A_0(L)^+$.

PROOF: $\mathcal{A}(R) = \mathcal{A}_0(M)$ follows easily from Lemma 2.8. It follows by symmetry that $\mathcal{A}(L)^+ = \mathcal{A}_0(M)$.

3. MATRIX Γ-RINGS

Let M be a Γ -ring, and let m, n be positive integers. Denote by $M_{m,n}$ and $\Gamma_{n,m}$, the sets of $m \times n$ matrices with entries from R, and $n \times m$ matrices with entries from Γ , respectively. Then $M_{m,n}$ is a $\Gamma_{n,m}$ -ring with the matrix addition, and multiplication defined by

where
$$(a_{ij})(\gamma_{ij})(b_{ij}) = (c_{ij}), c_{ij} = \sum_p \sum_q a_{ip} \gamma_{pq} b_{qj}.$$

LEMMA 3.1. ([9, Lemma 3]). Let m be a Γ -ring, and let M, n be_ integers. Denote by R' the right operator ring of the matrix $\Gamma_{n,m}$ -ring $M_{m,n}$. Then $R' \cong R_n$, the ring of $n \times n$ matrices with entries from R. Moreover, if $A \subseteq M$, then $(A_n)^* = (A^*)_{m,n}$.

LEMMA 3.2. ([8, Theorem 3]). Let R be a ring, and let n be a positive integer. Then

$$\mathcal{A}(R_n) = (\mathcal{A}(R))_n.$$

THEOREM 3.3. Let M be a Γ -ring, and let m, n be positive integers. Then

$$\mathcal{A}_0(M_{m,n}) = (\mathcal{A}_0(M))_{m,n}$$

Proof:

$$\mathcal{A}_0(M_{m,n}) = (\mathcal{A}(R_n))^* \qquad \text{(by Theorem 2.9)}$$
$$= ((\mathcal{A}(R))_n)^* \qquad \text{(by Lemma 3.2)}$$
$$= (\mathcal{A}(R)^*)_{m,n} \qquad \text{(by Lemma 3.1)}$$
$$= (\mathcal{A}_0(M))_{m,n} \qquad \text{(by Theorem 2.9)}.$$

Every ring R is a Γ -ring with $\Gamma = R$ and the usual addition and multiplication operations on R. Let R' denote the right operator ring of R considered as a Γ -ring with $\Gamma = R$. Define $f: R^2 \to R'$ by

$$f\left(\sum_{i} x_{i} y_{i}\right) = \sum_{i} [x_{i}, y_{i}].$$

It is easily shown that f is well-defined, and maps the ring R^2 homomorphically onto R'. Moreover, the kernel K of f is equal to $R^2 \cap r(R)$, where r(R) denotes the right annihilator of R. Hence,

$$R'\cong rac{R^2}{K}=rac{R^2}{R^2\cap r(R)}.$$

LEMMA 3.4. Let \mathcal{R} be any supernilpotent radical property. Then

$$\mathcal{R}(R') = rac{R^2 \cap \mathcal{R}(R)}{R^2 \cap r(R)} = rac{R^2 \cap \mathcal{R}(R)}{K}.$$

PROOF: Note firstly that K is a zero ring. Since \mathcal{R} is a supernilpotent radical property, $K \in \mathcal{R}$ and hence $K \subseteq \mathcal{R}(R^2) = R^2 \cap \mathcal{R}(R)$. Let $\mathcal{R}(R') = A/K$ where $K \subseteq A \leq R^2$. Let f be the natural homomorphism of R^2 onto the factor ring R^2/K . Then $f(\mathcal{R}(R^2)) \subseteq \mathcal{R}(R')$, whence $R^2 \cap \mathcal{R}(R) \subseteq A$. But $K \in \mathcal{R}$ and $A/K = \mathcal{R}(R') \in \mathcal{R}$, whence by the extension property, $A \in \mathcal{R}$. It follows that $A \subseteq \mathcal{R}(R^2)$. Hence $A = R^2 \cap \mathcal{R}(R)$, and the result follows.

THEOREM 3.5. Let R be a ring. Then $\mathcal{A}(R) = \mathcal{A}_0(R)$, where A and \mathcal{A}_0 denote, respectively, the and radical of the ring R and the and radical of R considered as a Γ -ring with $\Gamma = R$.

PROOF: Let $R' = R^2/K$ be the right operator ring of R considered as a Γ ring with $\Gamma = R$, where $K = R^2 \cap r(R)$. Then by Theorem 2.9, $\mathcal{A}_0(R) = \mathcal{A}(R')^*$. We will show that $\mathcal{A}(R')^* = \mathcal{A}(R)$. Let $x \in \mathcal{A}(R)$. Then, for all $r \in R$, $rx \in R^2 \cap \mathcal{A}(R)$, whence $rx+K \in R^2 \cap \mathcal{A}(R)/K = \mathcal{A}(R')$, by Lemma 3.4. Hence $x \in \mathcal{A}(R')^*$. Conversely, suppose that $y \in \mathcal{A}(R')^*$. Then $ry + K \in \mathcal{A}(R') = R^2 \cap \mathcal{A}(R)/K$, for all $r \in R$. It follows that $Ry \subseteq \mathcal{A}(R)$, whence $yRy \subseteq \mathcal{A}(R)$. Since $\mathcal{A}(R)$ is a semiprime ideal of R, this implies that $y \in \mathcal{A}(R)$. Thus $\mathcal{A}(R')^* = \mathcal{A}(R)$.

Let R be a ring, and let m, n be positive integers. Let $R_{m,n}$ denote the set of $m \times n$ matrices with entries from R. Then clearly $R_{m,n}$ is an $R_{n,m}$ -ring with the usual operations of matrix addition and multiplication.

THEOREM 3.6. Let R be a ring, and let m, n be positive integers. Then

$$\mathcal{A}_0(R_{m,n}) = (\mathcal{A}(R))_{m,n}$$

where $\mathcal{A}_0(R_{m,n})$ denotes the and radical of the $R_{n,m}$ -ring $R_{m,n}$.

The proof is an easy consequence of Theorems 3.3 and 3.5, and will be omitted.

4. POSITION OF THE ANP RADICAL

The prime, Jacobson and antisimple radicals β , \mathcal{J} and β_{ϕ} were defined for Γ -rings in [6] and [4], respectively. We will use the same notation for the corresponding radical properties of rings.

PROPOSITION 4.1. Let \mathcal{R} denote the prime, Jacobson or antisimple radical property for a ring, and let \mathcal{R}_0 denote the corresponding radical property for a Γ -ring. Let M be an arbitrary Γ -ring with right operator ring R. Then $\mathcal{R}(R)^* = \mathcal{R}_0(M)$.

For the proof, we refer to [6, Theorems 4.1 and 8.2], and [4, Corollary 2.10].

It is known [12, Theorem 5] that for a ring R, $\beta(R) \subseteq \mathcal{A}(R) \subseteq \beta_{\phi}(R)$. As an easy consequence of this result, Theorem 2.9 and Proposition 4.1, we have

PROPOSITION 4.2. Let M be a Γ -ring. Then $\beta(M) \subseteq A_0(M) \subseteq \beta_{\phi}(M)$.

Analogues of Theorem 3.5 are known for the prime and Jacobson radicals ([1, Theorem 4.7] and [6, Theorem 10.1] respectively). In [4, Theorem 2.4 and Corollary 2.10] respectively, it is shown that β_{ϕ} is a special radical property in the variety of Γ -rings, and that for a Γ -ring M with right operator ring R, $\beta_{\phi}(R)^* = \beta_{\phi}(M)$. Using the techniques of proof employed in Lemma 3.4 and Theorem 3.5, it is easy to prove the following result

LEMMA 4.3. Let R be a ring and let $\beta_{\phi}(R)$ and $\beta'_{\phi}(R)$ denote, respectively, the antisimple radicals of the ring R and of R considered as a Γ -ring with $\Gamma = R$. Then $\beta_{\phi}(R) = \beta'_{\phi}(R)$.

For rings it is known (see [12, Theorem 5] and [11, Example 2]) that the inclusion $\beta \subset \mathcal{A} \subset \beta_{\phi}$ is strict and that \mathcal{A} and \mathcal{J} are independent. In view of Theorem 3.5,

its analogues for the prime and Jacobson radicals and Lemma 4.3, we have for Γ -rings that the inclusion $\beta \subset \mathcal{A}_0 \subset \beta_{\phi}$ is strict and that the radical properties \mathcal{A}_0 and \mathcal{J} are independent.

References

- [1] G.L. Booth, A contribution to the radical theory of gamma rings (Ph.D. thesis, University of Stellenbosch, 1986).
- G.L. Booth, 'Characterizing the nil radical of a gamma ring', Quasestiones Math 9 (1986), 55-67.
- [3] G.L. Booth, 'Operstor rings of a gamma ring', Math. Japon. 31 (1986), 175-184.
- [4] G.L. Booth On antisimple gamma rings, Quaestiones Math. 11 (1988), 7-15.
- [5] G.L. Booth, 'Supernilpotent radicals of gamma rings', Acta. Math. Hungar. (to appear).
- [6] W.E. Coppage and J. Luh, 'Radicals of gamma rings', J. Math. Soc. Japan 23 (1971), 40-52.
- [7] N. Divinsky, Rings and Radicals (Univ. of Toronto Press, Toronto, 1965).
- [8] G.A.P. Heyman, T.L. Jenkins and H.J. Le Roux, 'Variations on almost nilpotent rings, their radicals and partitions', Acta. Math. Hungar. 39 (1982), 11-15.
- [9] S. Kyuno, 'Prime ideals in gamma rings', Pacific J. Math. 98 (1982), 375-379.
- [10] H.J. Le Roux, Lower radicals of Γ -rings, (Preprint).
- [11] G. Tzintzis, 'An upper radical property and an answer to a problem of L.C.A. van Leeuwen and G.A.P. Heyman', Acta. Math. Hungar 39 (1982), 381-385.
- [12] L.C.A. Van Leeuwen and G.A.P. Heyman, 'A class of almost nilpotent rings', Tomus, Acta. Math. Hungar. 26 (1975), 259-262.

Department of Mathematics University of Zululand Private Bag X1001 Kwadlangezwa 3886 South Africa Department of Mathematics University of Port Elizabeth P.O. Box 1600 Port Elizabeth 6000 South Africa