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ALMOST NILPOTENT G A M M A RINGS

G.L. BOOTH AND N.J. GROENEWALD

In this paper we introduce the concept of almost nilpotence for F-rings, similar
to the corresponding concept for rings, as defined by Van Leeuwen and Hey man.
An almost nilpotent radical property Ao is introduced for F-rings, and shown to
be supernilpotent. If M is a F-ring with left and right operator rings L and
R respectively, then A(L)+ - Ao(M) = A(R)*, where AQ denotes the almost
nilpotent radical of a ring. If M is a F-ring and m, n are positive integers, then
Ao(Mmtn) is the almost nilpotent radical of the rn,m-ring Mm,n-

1. BASIC CONCEPTS

Let M and T be additive abelian groups. If we have a map from M x T x M to
M such that for all x,y,z 6 M, y,(M G F

(i) xy(ynz) = (x'Yy)iAz;
(ii) x-f(y + z) = x~fy + xyz; x{y + n)y = xyy + x\iy;

(x + y)yz = x-yz + yyz

then M is called a T-ring. If U C M, V C M and <p CT then we define:

UipV = {u-yv :ueU,-ye<p,veV}.

If A is a subgroup of M, and ATM C A, MTA C A, then A is an ideal of M,
denoted by A < M. Similar notation will be used for ideals of rings. If Q < M, then
Q is called a semiprime ideal of M if A < M, ATA C Q = > AC.Q. The next result
is proved along the same lines as the corresponding result for rings:

PROPOSITION 1 . 1 . Let M be a T-ring and let Q < M. Then the following
are equivalent:

(a) Q is a semiprime ideal of M;
(b) \/x£M,xTMTxQQ=*x£Q.

If A < M, the factor F-ring M/A is defined in the natural way.
Let M, M' be F-rings and let f:M—> M' be a mapping. If for all x,y £ M,

7 € F, f(x + y) = f(x) + f{y) and f(xyy) = f(x)yf(y), then / is called a T-ring
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homomorphism. If, in addition, / is bijective, then / is called a F-ring isomorphism.
We will denote this by M S M'. Similar notation will be used for rings.

If A < M, and 0 ^ I < M implies / D A ^ 0, then A is called an essential ideal

of M, denoted A by < -M.

Let x £ M, 7 £ T. Define [x, 7]: M -> M by [x, y]y = x-yy for all y £ M. The

subring L of End(M) consisting of all sums J^[xi, 7<], Xi £ M, 7,- £ F, is called the
t

/e/t operator ring of M. A r*<;A< operator ring R of M is defined similarly, and consists
of all sums of the form Jlpy,-, *i]i 7i GT, i j GM.

If AQL, A* ={zG

UBCR,B* = {x£M|V 7 £F;[7 ,x]£B}.

If C C L,C+' = {i € L I £M C C} and

C*' = {r e ii I Mr C C}.

It is easily seen that all of these mappings take ideals to ideals, and preserve intersec-
tions.

If A C M, then [F, A] = {^[ji, xt] \ 7̂  £ F&Xj £ M}. It is easily shown that,
if A < M, then [F, .4] < J? and that [I\ A] C A*'. If 5 C JE, then MB = {]>><&< |
x; £ M, 6; £ B}. If B <R, then MB < M , and MB C B*.

All classes of rings considered will be for some fixed F, and abstract, that is closed
under isomorphisms. A radical property K for F-rings is defined as for the corresponding
concept for rings (see [7, p.3]). If U is a class of rings, the lower radical determined by
U is constructed as for rings [7, p.13]). A class C of F-rings is called weakly special, if:

(a) C consists of semiprime F-rings;

(b) if m £ C and A < M, then A £ C;

(c) if M is a F-ring and A < -M, then A £ C implies M £ C.

A weakly special class of rings is defined in the same way.

PROPOSITION 1 .2 . f[5, Theorem 2.5]). Let C be a weakly special class of
rings. Let C be the class of all T-rings M such that the right operator ring "R. of M is
in C, and MTx = 0 implies x = 0, for all x £ M. TAen C is a weakly special class of
gamma rings.

If C is a weakly special class of F-rings, the upper radical TZ determined by C is

7L — UC = {M | M has no nonzero homomorphic image in C}.

A radical property Ti, for F-rings is called supernilpotent if 72. includes all F-rings

M such that MFM = 0, and if M £ ft, then A < M implies A £ ft. As for rings we

have:
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PROPOSITION 1 . 3 . A radical property TZ for T-rings is supernilpotent if and
only if H = UC for some weakly special class C of T-rings M, K(M) = D{Q < M \
M/QeC}.

2. ALMOST NILPOTENT RINGS

Almost nilpotent rings were introduced by Van Leeuwen and Heyman [12]. A ring
R is called almost nilpotent (anp) if (VO ^ A < R)(3n G N)(Rn C A). This definition,
which first appeared in [8], is slightly stronger than the one given in [12]. Nevertheless,
all the results concerning anp rings which are discussed in this paper remain valid for
this definition. The lower radical property A determined by the class of all anp rings is
supernilpotent, and coincides with the upper radical property determined by the class
C of rings which contain no nonzero anp ideals (see [12, Theorems 2 and 4]). 4̂ is
called the almost nilpotent radical property in the variety of rings.

A T-ring M is called anp if (VO ^ A < M)(3n G N)(MT)nM = MTMT...TMc
A. Let AQ be the lower radical property determined by the class of anp F-rings. Since
the class of anp F-rings contains all F-rings M such that MTM — 0, the construction
of Ao terminates at the second step ([10, Lemma 2.4]), that is Ao is the set of all M
such that every nonzero homomorphic image of M has a non-zero ideal which is anp.

AQ is called almost nilpotent radical property for F-rings. Let CQ denote the class
of all F-rings which contain no nonzero anp ideals. Throughout this section, let M
denote a F-ring with left and right operator rings L and R, respectively.

PROPOSITION 2 . 1 . Suppose that A is an anp ideal of M. Then [F, A] is an
anp ideal of R.

PROOF: Let 0 ^ B < [F, A]. We claim that MB < A. For if x 6 M, b € B,
then b — X)[a»i a»] f°r some a< £ F, a< G A. Hence xb = ^xaidi G A since A < M.

i i

Thus MB C A. Since B ^ 0, MB ± 0. Now suppose x e M, b e B, a e A
and f G F. Then ay(xb) = (a-yx)b G MB, and (xb)fa = x(b[y,a\) G MB since
B < [F, A]. Thus 0 ^ MB < A. Since A is an anp ideal of M, (AT)nA C MB for
some n G N. Hence, A[T, A]n C MB, whence [F, A]n+1 C [F, MB] = RB. It follows
that [F, A]n+2 C [F, A)RB C [F, A]B C B since B < [F, A].

Since (AT)nA C MB, there exist x G Af, 6 G B such that xb £ (AT)71 A. Suppose
that 6 G [F, A]n+2. Then there exist a0- G A, m G F, 1 ^ t < n + 2, 1 < j! ^ m such
that

m

• • • hn+2j, an+2j].

https://doi.org/10.1017/S0004972700018050 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018050


240 G.L. Booth and N.J. Groenewald [4]

Hence
m

• • • 7n+2j<»n+2j 6 (AT)"A,

which contradicts our choice of x and 6. Hence b £ [F, A]n + 2 , so [F, A]n+2 C B,. as
required. D

PROPOSITION 2 . 2 . Suppose that M has the property that
(Vs G Af)(MFs; = 0 => x = 0). Let A be an anp idea/ of i i . Then A* is an anp
ideal of M.

PROOF: It is easily verified that [I\ A*] C A. Since [F, A*] < R, [F, A*] < A.
But the class anp rings is hereditary (see [12]), the Lemma before Theorem 2). Hence,
[r, A*} is an anp ideal of R. Suppose 0 ^ B < A*. If [F, B) = 0, then MTB = 0,
whence B —0, contradicting our choice of B. Thus 0 ^ [I\ B] < [T, A*]. Hence there
exists n e N such that [r, A*)n C [I\ B). It follows that (A*T)nA* C A*r£ C 5 since
5 < A*. Since [I\ A*)n C [T, B), there exist 7 £ T, 6 e B such that [7, b] £ [Y, A*]n.
Then b £ (A*T)nA* , otherwise [7, 6] G [7, A*]n+1 C [F, A*]n, contradicting our choice
of 7 and 6. Hence (A*T)nA* C B, as required. D

THEOREM 2 . 3 . Tie following are equivalent:

(a) M contains no nonzero anp ideals;
(b) R contains no nonzero anp ideals, and (Vz E M)(MTx = 0 => x = 0) ;
(c) L contains no nonzero anp ideals, and (Vz € M)(xTM = 0 = > z = 0).

PROOF:

(a) =>• (b): Suppose M contains no nonzero anp ideals. Clearly, M is a semiprime
F-ring. Suppose x 6 M and MTx — 0. Then zFMFz = 0, whence x = 0. Suppose
that A is an anp ideal of R. Then A* is an anp ideal of M, by Proposition 2.2. Hence,
A* = 0. Now A C (A*)*' = 0*' = {r 6 i?: Mr = 0} = 0, as required.
(b) = > (a): Suppose that R contains no nonzero anp ideals, and that
(Vz G M)(MFz = 0) => z = 0. Let A be an anp ideal of M. Then [F, A] is an
anp ideal of R, by Proposition 2.1. Hence [F, A] = 0, whence MTA = 0. It follows
that A = 0.
(a) =>• (c) follows by symmetry. U

Let Co denote the class of all F-rings without anp ideals. As an immediate conse-
quence of Proposition 1.2 and Theorem 3.3, we have

COROLLARY 2 . 4 . Co is a weakly special class of T-rings.

PROPOSITION 2.5. Ao-UC0.

The proof is identical to that of the corresponding result for rings ([12, Theorem
4]). D
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From Corollary 2.4 and Proposition 2.5, we have

THEOREM 2 . 6 . Ao is a supemilpotent radical property in the variety of T-ring.

It follows that Ao(M) = n{Q < M | M/Q e Co}.

LEMMA 2 . 7 . ([3, Corollary 2.2]). Let A < M, and let R' denote the right
operator ring of the factor T-ring M/A. Then

R' S R/A*'.

LEMMA 2 . 8 . The mapping Q —* Q* defines a one-to-one correspondence be-
tween ideals Q of R such that Q/R € C and ideals S of M such that M/S E Co •

PROOF: Let Q < R be such that R/Q G C. Then Q is a semiprime ideal of R.

Hence Q = (Q*)*' (see [9, Theorem 1]). The right operator ring R! of the factor F-ring

M/Q* is isomorphic to R/(Q*)* = R/Q, by Lemma 2.7. Suppose x E M is such that
(M/Q*)T(x + Q*) = 0. It follows that MTx C Q* . Since Q is a semiprime ideal of R,
Q* is a semiprime ideal of M ([9, Lemma 1]). Now xTMTx C Q*, whence x G Q*,
that is x + Q* = 0. By Theorem 2.3, M/Q* contains no nonzero anp ideals, whence
M/Q e Co.

Conversely, suppose 5 < M is such that M/S £ Co. Since S is a semiprime ideal

of M, 5 = ( S* j . Since the right operator ring of the factor F-ring M/S is isomorphic

to R/S*', by Lemma 2.7, it follows from Theorem 2.3 that R/Q*' £ C, as required. D

THEOREM 2 . 9 . A(R)* = A(M) = Ao(L)+.

PROOF: A(R) = Ao(M) follows easily from Lemma 2.8. It follows by symmetry
that A(L)+ =Ao(M). D

3. MATRIX F-RINGS

Let M be a F-ring, and let m,n be positive integers. Denote by Mm<n and Fn|Tn,
the sets o f m x n matrices with entries from R, and n X TO matrices with entries from
F, respectively. Then Mmin is a FniTn-ring with the matrix addition, and multiplication
defined by

where (<Kj)(7ii)(fcj) = (*,-), ey = J^^2 a'J-7P A ; •

LEMMA 3 . 1 . ([9, Lemma 3]j. Let m be a F-ring, and let M,n be- integers.
Denote by R' the right operator ring of the matrix Tn<m -ring MmiU. Then R! = Rn, the
ringofnxn matrices with entries from R. Moreover,if A C M, then (An)* = (A*)mn.

LEMMA 3 . 2 . ([8, Theorem 3]). Let R be a ring, and let n be a positive integer.
Then

= (A(R))n.
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THEOREM 3 . 3 . Let M be a T-ring, and let m,n be positive integers. Then

PROOF:

A(M m , n ) = (AiRn))* (by Theorem 2.9)

= (W9U* 0>7 Lemma 3.2)
) n (by Lemma 3.1)

n (by Theorem 2.9).

Every ring R is a F-ring with F = R and the usual addition and multiplication oper-
ations on R. Let R' denote the right operator ring of R considered as a F-ring with
F = R. Define / : R2 -> R' by

\ « / i

It is easily shown that / is well-defined, and maps the ring R2 homomorphically onto
R'. Moreover, the kernel K of / is equal to R2 C\r(R), where r(R) denotes the right
annihilator of R. Hence,

^ _ R2

K ~ R2 n r{R)'

U
LEMMA 3 . 4 . Let TZ be any supernilpotent radical property. Then

R2nn(R) R2nn(R)
= R*nr(R) = K •

PROOF: Note firstly that if is a zero ring. Since 1Z is a supernilpotent radical
property, K € U and hence K C U{R2) = R2 (Ml{R). Let n(R') = A/K where
K C A < R2. Let / be the natural homomorphism of R2 onto the factor ring R2/K.
Then f(Tl(R2)) C Tl(R'), whence R2 Ml{R) C A. But K G ft and A/K = Tl{R') 6
H, whence by the extension property, A £ K. It follows that A C 72.(i?2). Hence
A = R? 0 Tl{R), and the result follows. D

THEOREM 3 . 5 . Let Rbearing. Then A(R) — Ao{R), where A and Ao denote,
respectively, the anp radical of the ring R and the anp radical of R considered as a
F-ring with T = R.

PROOF: Let R' = R2/K be the right operator ring of R considered as a F-
ring with F = R, where K = R2 D r(R). Then by Theorem 2.9, Ao(R) = A(R')*.
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We will show that A(R')* = A(R). Let x G A{R). Then, for all r G R, rx G
R2HA(R), whence rx+K G R2nA{R)/K = A(R'), by Lemma 3.4. Hence x G A(R')*.

Conversely, suppose that y G A(R')*. Then ry + K e >!(/*') = R2 C\ A(R)/K, for all
r e R. It follows that Ry C .A(.R), whence y/ty C A{R). Since >4(i2) is a semiprime
ideal of E, this implies that y G A{R). Thus .A(.R')* = AR) • D

Let i? be a ring, and let m,n be positive integers. Let Rm,n denote the set of
m X n matrices with entries from R. Then clearly Rmtn is an /Zn>ni-ring with the usual
operations of matrix addition and multiplication.

THEOREM 3 . 6 . Let R be a ring, and let m,n be positive integers. Then

where Ao(Rmtn) denotes the anp radical of the Rnim-ring Rm,n-

The proof is an easy consequence of Theorems 3.3 and 3.5, and will be omitted.

4. POSITION OF THE ANP RADICAL

The prime, Jacobson and antisimple radicals /3, J and /?^ were defined for F-rings
in [6] and [4], respectively. We will use the same notation for the corresponding radical
properties of rings.

PROPOSITION 4 . 1 . Let 71 denote the prime, Jacobson or antisimple radical

property for a ring, and let Ho denote the corresponding radical property for a F-ring.

Let M be an arbitrary T-ring with right operator ring R. Then 7l(R)* — TZQ(M).

For the proof, we refer to [6, Theorems 4.1 and 8.2], and [4, Corollary 2.10].

It is known [12, Theorem 5] that for a ring R, 0(R) C A(R) C p^R). As an easy

consequence of this result, Theorem 2.9 and Proposition 4.1, we have

PROPOSITION 4 . 2 . Let M be a T-ring. Then P(M) C .4o(M) C /3^(M).

Analogues of Theorem 3.5 are known for the prime and Jacobson radicals ([1,
Theorem 4.7] and [6, Theorem 10.1] respectively). In [4, Theorem 2.4 and Corollary
2.10] respectively, it is shown that 0$ is a special radical property in the variety of
F-rings, and that for a F-ring M with right operator ring R, /S^R)* = /?^(M). Using
the techniques of proof employed in Lemma 3.4 and Theorem 3.5, it is easy to prove
the following result

LEMMA 4 . 3 . Let R be a ring and let P^{R) and fi'^R) denote, respectively, the

antisimple radicals of the ring R and of R considered as a T-ring with T = R. Then

For rings it is known (see [12, Theorem 5] and [11, Example 2]) that the inclusion

0 C A C (}<)> is strict and that A and J are independent. In view of Theorem 3.5,
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its analogues for the prime and Jacobson radicals and Lemma 4.3, we have for F-rings
that the inclusion /? C AQ C {}$ is strict and that the radical properties AQ and J are
independent.
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