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ON ELLIPTIC SURFACES OF MORDELL-WEIL RANK 4

ANDREW BREMNER

§1.

Let /: E-> P'(C) be an elliptic fibration with non-constant j-invariant,
and possessing a section σ0. The group © of sections of / is then naturally
identified with the group of points defined over a function field C(u) of
the generic fibre of /.

Take as generic fibre the Weierstrass equation

(i) y2 = 4χ3 - g2χ - gs, g2, g3 e c(u)

so that © is isomorphic to the group of C(ι/)-rational solutions of (1),
with the zero section σ0 corresponding to the point at infinity. By abuse
of notation we shall denote this latter group also by ©.

The geometric genus pg of the elliptic surface E is determined by a
knowledge of the singular fibres of / (see Kodaira [4] or 2.5 of Cox and
Zucker [3]); and when pg — 0 then the rank r of © is easily determined
by a formula of Shioda [7]. It turns out that if pg = 0 then the model
(1) may be chosen so that g2 and g3 are respectively quartic and sextic
polynomials in C[u]; and for generic g2, gz the rank of © equals 8.

Let P — (xQ, j0) e © define P to be at most quadratic if
(i) xo,yQeC[u]
(ii) the degree of x0 in u is at most 2.

Then Schwartz [5] proves that for almost all choices of g2, g3, it is the
case that © is generated by the points of (1) which are at most quad-
ratic; and conjectures that this is still true for all choices of g2, g3.

We consider in this paper the subset of such surfaces where there
is a rational section of order 2. In particular, we take as model for the
generic fibre the surface

y2 = x(x2 + mx + n)

with m, neC[u] of degrees at most 2, 4, respectively. The rank of © for
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102 ANDREW BRΣMNER

generic m, n, respectively quadratic, quartic, has dropped to 4. We show

that under some weak restrictions on m, n then the rank is precisely 4

and @ is indeed generated by the at most quadratic points. Further,

the restrictions on m, n can be removed to show that if the rank of ®

does equal 4, then © is generated by the at most quadratic points.

Whereas Schwartz uses a specialization technique, resulting in 'almost

alΓ, the method here is an application of some careful estimates on

heights. It is not without possibility that similar methods will resolve

the original conjecture of Schwartz, but the intricate computations seem

a little daunting.

In the final section, we make some remarks about the field of defi-

nition of ©.

§2.

We are considering the elliptic surface over C(ύ)

(2) E: y2 = x(x2 + mx + n)

with

(3) m,neC[u], deg (m) < 2, deg (n) < 4.

The group of C(u) points on (2) will be denoted by ©.

LEMMA 1. The surface (2) has Mordell-Weίl rank 4 over C(u) when

the following hold:

(4) ( i ) n and m2 — An are of degree 4

(5) (ii) n and m% — An are square free elements of C[ύ\.

Proof. This will be shown in the course of the derivation below of

a system of generators for ©/2®. Henceforth, we shall hypothesize that

m, n satisfy conditions (4), (5).

The bulk of this section is devoted to showing that it is possible to

find a set of points on E, nearly all of which (29 out of 32, to be precise!)

are at most quadratic points whose cosets form a full set of representatives

for ©/2®. The verification is by descent, following Cassels, Ellison,

Pfister [2].

Consider E in conjunction with the curve

(6) E': Y2 = x(x2 - HLx + JL(m2 - 4
\ 2 16
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ELLIPTIC SURFACES 103

There are 2-isogenies v, ι/ whose composition is multiplication by 2, as

follows:
1/ v

Γ > Γ • Γ
where

(7)

(7)

Suppose first P is a point of 2?, defined over C(ύ). Then

(8) p _ / ^ 2 ΔRT\

where, J, i?, Se C[u], Δ squarefree, (R, S) = 1, and

(9) T2 = Ji?4 + m# 2 S 2 + — S 4 .

When (8) holds, say that P belongs to Δ. By appropriate multiplication

of R by an element of C, the leading coefficient of Δ may be assumed if

necessary to equal 1.

For local solvability of (2), it is necessary that n be divisible by Δ.

By hypothesis (5), n splits into four distinct linear factors over C, and

there are accordingly 24 possibilities for Δ. However, if has Δ odd degree

in u, then since the right hand side of (9) must have even degree, there

is cancellation between leading coefficients of Ji?4 and (n[Δ)S\ In par-

ticular, they have the same degree. But this is contradictory to Δ having

odd degree.

Thus, there are at most 23 possibilities for Δ. If Δ e C or (n/Δ) e C

then there certainly do exist solutions of (9) with S = 0, R = 0 respec-

tively. Suppose now Δ is quadratic, Δ = axu
2 + a2u + α3, at e C. Further,

put m — bxιι
2 + b2u + 63, njΔ = cxι? + c2u + c3, bί9 ct e C. Then from (9).

T2 = u\aλ& + bxR
2S2 + ClS

4) + u{a2R" + b2R
2S2 + c2S*)

+ ( B 4 + bzR
2S2 + c 3 S 4 ) .

If R/SeC, then the right hand side of (10) is a perfect square in C[u] if

and only if

(azR* + 62i?
2S2 + c2S7

{ } = 4(a,.R4 + 6,J?Sι + cS^aJ? + b3R
2S2 + cβ*).
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104 ANDREW BREMNER

Now (11) certainly does have solutions for R/S, and so we can construct
23 points of E corresponding to the 23 possibilities for Δ, whose cosets
are representatives for the group ©/v(©') This latter remark is by stand-
ard arguments; see for example Birch and Swinnerton-Dyer [1],

However, consider more closely solutions of (11). There certainly
are four such solutions in C for the ratio J?2/S2, and these solutions are
non-zero and finite since the coefficients of R8, S8 are a\ — 4α1α3, c\ — Acxcz

respectively, non-zero by hypothesis (5). Moreover, the four solutions
are distinct, as may be shown as follows.

The condition that (11) have a repeated root for R2/S2 is just that
the discriminant J3 — 27J2 of the associated quartic equation should be
zero (here /, J are the classical quartic invariants). But, as is straight-
forward to check, the invariants 7, J of (11) are precisely equal to the
invariants of the quartic

(12) (bxu
2 + b2u + bz)

2 = A(axu
2 + a2u + a^){cxu

2 + c2u + c3).

Hence, a repeated root at (11) implies a repeated root at (12), which is
just the statement that m2 — An has a square factor in C[u], contradicting
(5). In sum, corresponding to each quadratic J, there exist precisely four
distinct quadratic points on Γ with first coordinate of type cΔ, c eC.

Additionally, each such set of four points of @ corresponds to distinct
cosets in @/2®. For arguing directly, consider the points (Ji?2, ART),
(ΔRf2, ΔR'T), R, Rf e C. Their sum on E is the point Q with first coor-
dinate ((RΓ - R'T)I(R2 - Rn))\ Now in order that (<*2, aβ) in © actually
lie in 2®, it is necessary and sufficient that one of the terms a2 ± β +
m/2 lie in C[u}2. So Qe2® if and only if

(13) ΔR2Rn + ™(R2 + R2) + IL±TT' e C[u]2.

However,

(ΔR2R2 + —(R2 + Rf2) + — + TTf\(ΔR2R2 + ™(R2 + R2) + — - TT'\
\ 2 Δ J\ 2 Δ I

(14) 1
= — (m2 - 4n)(ϋ2 - R2)2

4

and since R, R eC and m2 — 4n is squarefree, then (13), (14) force

(15) ΔR2R2 + —(R2 + R2) + ~±TT'eC
2 Δ
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(150 ΔR2R2 + —(R2 + R2) + ± + TT'e (m2 - Aή)C.
2 Δ

But (15r) is impossible, because the degree of the left hand side (which is

non-zero) is at most 2.

So at this stage we have 24 quadratic points of E with distinct cosets

in ®/2®.

Turn now to the curve E' and in exactly the same manner select a

set of 23 points (dr2js2, δrt/ss), each of which is at most quadratic, whose

cosets are representatives for the group ®7^(®). It follows now, from

the formulae of Birch and Swinnerton-Dyer [1], for instance, that the

Mordell-Weil rank of ® and ®' is equal to 4. Now o', (0, 0) e ©' corres-

ponding to δ = 1, m2 — An respectively, are in the kernel of v, and the

image under v of the points representing ©7*/(®) is a group of order 22.

From (7), these points of E have first coordinate f/r2s2, so are at most

quadratic, and belong to Δ = 1. By construction, they are incongruent

modulo 2®. (Remark: The set of four points found previously belonging

to a particular quadratic value of Δ is, modulo 2®, just any one of these

points together with its translates by means of the above set belonging

to Δ = 1. We can obtain four representatives in ®/2© belonging to Δ = n

by translating (0, 0) by the set belonging to Δ = 1 but now the points

obtained are not quadratic.)

THEOREM 2. If Pe ©, then provided P does not belong to Δ = n, there

exists Po e ©, Po at most quadratic, with P — Poe 2®.

§3.

Take a general point P in ®. By adding to P the point (0, 0) if

necessary, we suppose that P belongs to Δ where Δ is at most quadratic.

Let Po e ® with P ~ Po mod 2®, and Po at most quadratic, by Theorem

2. It is the intention of this section to show that at least one of the

points P ± Po cannot be too large'. The size of a point is measured

by a height function defined as follows.

Let P = (x, y) with x = p(u)lq(u), p(u), q(u) eC[u]; then h(P) =

max(degp(w), degq(u)). In general, we shall use the notation |p | for the

degree in u of the polynomial p.

So, suppose

(16) P = ( i* l , jψ^j Po = (dr\ Art)
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106 ANDREW BREMNER

with

(17) ΔR4 + mR2S2 + ItS*=T2; Δr" + mr2 + TL = f

and

(18) | J | + 2 | r | < 2 .

The first coordinate of P + Po is

(19) (RStrTY(RSt-rT
\ R2 - r2S2

There is from (17) the basic identity

(20) (RSt - rT)(RSt + rT) = (i?2 - r W - ^ - S 2 - Δr2R2\ .

This can be used to choose the sign of t in such a way that the highest

common factor of RSt — rT and R2 — r 2S 2 has degree at least half that

of R2 - r2S\

The proof of Theorem 7 is effected by some case-by-case lemmas.

LEMMA 3. Suppose \Δ\ = 0, \r\ — 0. Then, for a choice of sign,

Proof. The assumptions imply |έ| = 2 from (17).

(a) | B | * | S | .

Choose the sign of t according as to the remark following (20).

If | B | > | S | , then

|, \RSt - rT\ < 2\R\ + 1 so

(21) h(P ±P0)<2 max (|Λ| + 1, \R\) = h(P) + 2.

If |B | < \S\, then
|2jt _ Γ2S2| = 21S|, |JBS< - rT\ = 2|S| + 2 so

(22) h(P ± Po) < 2 max (|S| + 2, |S\) = h(P) + 4.

(b) |B | = \S\, whence | Γ | = 2|Λ| + 2.

Now \RSt\ = 2\R\ + 2 = \rT\, so at least one of the factors RSt ± rT

has degree 2|i?| + 2.

Put \R* - r 2 S 2 | = 2x, 0 < x < \R\. Since \(n/ά)S2 - Jr2i?2 | = 2|Λ| + 4,

it follows from (20) that \RSt ± rT\ = 2\R\ + 2; \RSt + rT\ = 2x + 2.
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If 0 < x < λ\R\ say, take the sign of t such that \RSt - rT\ = 2x + 2;

and then

(23) h(P ± Po) < 2 max (2x + 2, 2x) < 4λ\R\ + 4.

If λ\R\<x<\R\, take the sign of t according as to the remark

following (20). Then for \RSt - rT\ = 2\R\ + 2,

(24) h(P ±P0)<2 max (2| j?| + 2 - x, x)

and for \RSt - rT\ = 2x + 2,

(25) h(P ±P0)<2 max (x + 2, x).

So in either case, (24), (25) imply

(26) h(P ±PQ)<2 max ((2 - λ)\R\ + 2, |i?| + 2).

From (23), (26) on taking λ = 2/3, then

(27) h(P ± Po) < 1\R\ + 4 = i-Λ(P) + 4.

The result follows from (21), (22), (27).

LEMMA 4. Suppose \A\ = 0, \r\ = 1, \R\ φ \S\ + 1.

Then for a choice of sign, h(P ± Po) < h(P) + 4.

Proof. The hypotheses imply |ί| < 2. Choose the sign of t according

to remark.

(a) |B| > \S\ + 2 implies \R2 - r2S2\ = 2\R\,

\T\ = 2|Λ|, \RSt- rT\<2\R\ + 1. So

(28) h(P ± Po) < 2 max (\R\ + 1, |JS|) = h(P) + 2.

(b) \R\ = | S | implies |Λ2 - r2S2 | = 2|Λ| + 2.

3. So

(29) Λ(P ± Po) < 2 max (\R\ + 2, |Λ| + 1) = h(P) + 4 .

(c) \R\ < \S\ - 1 implies |i?2 - r2S2 | = 2|S| + 2,

lϊ7! = 2|S| + 2, |2?Sί- rϊ7! = 2|S| + 3. So

(30) h(P ± Po) < 2max(|S| + 2, \S\ + 1) = h{P) + 4.

The result follows from (28), (29), (30).

LEMMA 5. Suppose \Δ\ = 0, \r\ = 1, \R\ = \S\ + 1.
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108 ANDREW BREMNER

Then, for a choice of sign,

h(P ± Po) < max ί— h(P) + 4, min (— h(P) + 6, 2h(P)X\.

Proof. The hypotheses imply \t\ < 2, | Γ | < 2|JR|.

Suppose | Γ | Φ 2\R\ - 2 + \t\, so that \RSt\ Φ \rT\. Then \RSt ± rT\

= max{2|i?| - 1 + |*|, 1 + \T\} and so

(31) 2\R\ - 1 < \RSt ± rT\ < 2\R\ + 1.

Since \(nlΔ)S2 - Ar2R2\ < 2\R\ + 2, then from (20), (31)

(32) 2\R\ - 4 < \R2 - r2S2\<2\R\.

Choosing the sign of t according to remark, then it follows that

(33) h(P ±PQ)<2\R\ + 2 = h(P) + 2.

The remaining cases are those for which |27 | = 2|22| — 2 + |ί|. In this

instance, then at least one of RSt ± rT has degree | Γ | + 1; proceed as

in Lemma 3(b). Put

— S2

Δ

0< x<\R\;

0<k<2\R\ + 2.

Then |i?Sί ± rT\ = | Γ | + 1, |J?Sί + r Γ | - 2x + fe - | Γ | - 1. If 0 < x <

λ\R\, take the sign of t so that \RSt - rT\ = 2x + k - | Γ | - 1. Then

UP ± Po) < 2 max (2x + k - \ T\ - 1, 2x)

<Aλ\R\ + 6 - 2|ί | .

If λ\R\ < x < |i2|, take the sign of t according to remark.

If \RSt - rT\ = | Γ | + 1, then

/ι(P ± Po) < 2 max (| T\ + 1 - x, x)

<max((4 - 2X)\R\ - 2 + 2\t\, 2|B|).

If |.Rsί - rT7! = 2x + ife - \T\ - 1, then

4- P ^ 9moγ/Ύ J- i IT'I 1 ΎΛ
ΠI J-Q^ ^ ^ UlctA VX -f π, \J- \ -•-> Λ /( 3 6 )

With >ί = 2/3, then (34), (35), (36) imply
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(37) h(P ± Po) < max(—h(P) + 6 - 2\t\, — h(P) - 2 + 2 | ί | ) .

In particular, for | ί | = 1, 2:

(38) h(P ± Po) < — h(P) + 4.
ό

The estimate for \t\ = 0, namely

h(P ± Po) < ±h(P) + 6
ό

is not sufficient for our purposes when h(P) is small. But in this in-

stance, where \t\ = 0, \r\ = 1, | ϋ | = | S | + 1, | Γ | = 2|JR| - 2, then |i?S* - rΓ |

< 212? I - 1, |i?2 - r 2 S 2 | < 2|Jf?| and it follows directly from (19) that

h(P ± Po) < 2h(P).

So when \t\ = 0, there is the estimate

(39) h(P ± Po) < min (~h{P) + 6, 2h(P)\ .

The result follows from (33), (38), (39).

LEMMA 6. Suppose |Δ\ = 2. TΛerc /or α c/io/cβ o/ si^n

Λ(P ± A) < max ( A A ( P ) - | , h(P) + 2) .

Proo/. The hypothesis implies \r\ = 0, |ί | < 1. If |B | 9̂  |S | , then it

is straightforward as before to obtain the estimate

(40) h(P±P0)<h(P) + 2.

Suppose now \R\ = \S\; then | Γ | < 2 | B | + 1. If \T\ Φ 2\R\ + \t\, then

\RSt\ Φ \rT\ and we apply the argument as at the start of Lemma 5 to

show

< \RSt ± rT\ < 2\R\ + 1; 2|i2| - 2 < \R2 - r2S2\ < 2\R\.

Choosing the sign of t according to remark, then it follows

(41) h(P ± Po) < h(P) + 2.

The remaining cases are |ί | = 1, [Γ| = 2\R\ + 1; and \t\ = 0,\T\ = 2\R\.

In these cases at least one of RSt ± rT has degree 2|JR| + |ί|. Put
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110 ANDREW BREMNER

- r

2S2\ = 2x, 0 < x < | # | ; n— S2 - Δr2W = fe, 0</e<2|jR| + 2.

Then

± r 2 Ί = 2|JΪ| + |*|, |i?S* + r Γ | = 2x + Jfe - 2|JR| - \t\.

If 0 < x < λ\R\, take the sign of t so that \RSt - rT\ = 2x + k - 2|JH|

— |ί|. Then

A(P ± Λ) < 2 max (2x + k - 2\R\ - \t\, 2x)
( <4λ\R\ + 4-2\t\.

If ^|JR| < x< \R\9 take the sign of t according to remark.

If \RSt - rT\ = 2|Λ| + |ί|, then

A(P ± Po) < 2 max (2|B| + \t\ - x, x)
( 4 3 ) < max((4 - 2λ)\R\ + 2\t\, 2\R\).

If |ΛSί - rT\ = 2Λ: + A - 2|Λ| - |ί|, then

h(P ± Po) < 2 max (* + A - 2|i?| - |ί|, x)
(44)

< 2 | i ? | + 4 - 2 | ί | .

Taking λ = 2/3 then (42), (43), (44) imply (using h(P) = 2\R\ + 2)

2 - 2|ί |)M A) < max ( l
(45)

The result follows from (40), (41), (45).

Putting together Lemmas 3, 4, 5, 6 gives the following.

THEOREM 7. For a choice of sign,

h(P ± Po) < max (jh(P) + 4, min (- | W + 6, 2Λ(P)))

§4.

It is necessary now to obtain an estimate for h(2P).

THEOREM 8.

h(2P) > 4h(P) - 6
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Proof. As above, let P = (ΔR2/S2, ΔRT/S% where

(46) ΔR4 + mR2S2 + — S4 = T2.
Δ

Again, we assume that Δ is at most quadratic by adding to P, if neces-

sary, the point (0, 0).

The duplication formula on E gives 2P = (x2P, y2P) where

and in order to estimate h(2P) it is necessary to know what polynomial

factors can be common to both numerator and denominator at (47). In

fact, they are co-prime in C[u], as may be seen as follows,

( i ) Suppose there exists πeC[u], π&C, such that

Then (n/Δ, R) = 0 mod π, so that from (46), Γ Ξ O mod π, and (rc/J)S4 =

0 mod π2. Since S =£ 0 mod π, then n = 0 mod π2 which is impossible from

(5).

(ii) Suppose there exists πeC[u], πίC, such that

- JLS\ S\ =

Then J Ξ O mod i, Γ Ξ O mod π, Δ = 0 mod π1, impossible,

(iii) Suppose there exists π e C[u], π <£ C, such that

(48) (ΔR4 - ^ S \ T ) = 0 mod π.

Consider the following identity:

R2T2(3Δ3R6 - mΔ2R4S2 - δnΔR'S* + 2mnSe)

(49) - (3Δ2R* + 2mΔR2S2 - (nf - 4n)S)LiB

It follows that (m2 - 4n)(n/Δ)2S12 ΞΞ Omodjr2; so in virtue of (5), and

(ii) above,
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(50)
Δ

= 0 mod π.

But then from (48), ΔR* Ξ 0 mod π, so by (i) above,

(51) J Ξ O mod π.

And (50), (51) imply n = 0 mod π2, contradicting (5). Hence from (47),

(52) h(2P) = max — , \R2S2T

(i.e. \Δ\ + 2\R\ > 2\S\ + 2).

n , \ΔR*\ > \mR2S'

Case I \Δ

Then IΔRA\ >

so that

and 2\T\ = \Δ\ + 4|i?| whence I^S 2 ? 7 2 ! = \Δ\ + 6|J?| + 2|S|.

Since 2 |J | + 8|Λ| > \Δ\ + 6|22| + 2|S|, then

(53) h(2P) = 2| J | + 8|Λ| = 4A(P) - 2| J | .

Case II | J | + 4|i?| < 4 - | J | + 4 |S| .

As above,
Δ

= 4 - 6|S|.

It follows that

(54) h(2P) = 8 - 2|J| + 8|S| = 4Λ(P) + 8 - 2|z(|.

Case III \Δ\ + 4|Λ| = 4 - \Δ\ + 4|S|.

Estimating the degrees of the polynomials occurring in the identity

(49) gives

- mΔ2R4S2 - 5nΔR2S4 + 2mnS')\ <

and

1 + 2mΔR2S2 -

(m2 - An)(lL)
\ ΔI

- (m

V

2 — An

= 12

)S*)(jit4

- 2 | J | -

n QΛ2

h l 2 | S | .

6|S| + 6;

4|S|

Consequently, either \R2S2T2\ + 6|S] + 6 > 12 - 2\Δ\ + U\S\
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or + 4 | S | + 4 > 1 2 - 2\Δ\
Δ

Thus either \R2S2T2\ > 6 - 2\Δ\ + 8\S\

or

In any event, from (52),

(55) A(2P) > 6 - 2\Δ\ + 8\S\ = 4A(P) - 2\Δ\ - 2.

Since 0 < |Δ\ < 2, then (53), (54), (55) imply the result.

§5.

It is now possible to prove that © itself has a system of generators
which are at most quadratic points of E.

Given P e ©, assume as before that P belongs to Δ where Δ is at
most quadratic. Take Po e ©, Po at most quadratic, with P = Po mod 2®.
Let P ± Po = 2Q where the sign is determined to satisfy the inequality
of Theorem 7.

Using Theorems 7, 8:

4A(Q) - 6 < h(2Q) < max (— h(P) + 4, min ί— h(P) + 6, 2A(P)))

so that

(56) h(Q) < max ( 1 A(P) + A, min ( 1 A(P) + 3, 1 A(P) + - | ) ) .

Suppose now A(P) > 10; then (56) gives

ό

Suppose A(P) = 6, 8; then (56) gives

Suppose h(P) = 4; then (56) gives

Thus h(Q) < A(P) for A(P) > 4. Inductively repeating the process, it is
now evident that © is indeed generated by points which are at most
quadratic.
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§6.

By noting the argument in Section 2 for deriving a system of gen-

erators for ®/2®, it may be shown that Lemma 1 can be replaced by the

stronger form:

LEMMA 1'. The surface (2) has Mordell-Weίl rank A over C(u) if and

only if the following hold:

(57) ( i ) n and m2 — An are of degree 3 or 4

(58) (ii) n and m2 — An are squarefree elements of C[u],

Theorem 2, with a slightly modified proof, is still valid, as are The-

rems 7, 8 (N.B. Case III of Theorem 8, namely |ΔR\ = \(n/A)S'\ cannot

occur when \n\ = 3). Accordingly, the group © is still generated by points

at most quadratic.

THEOREM 9. The group of C(u) rational sections of the elliptic surface

y2 = χ(χ2 + rax + n) where m, n satisfy (3), (57), (58) has rank A and is

generated by the C(u) rational sections which are at most quadratic.

§7.

Since © is finitely generated over C(u), there exists an algebraic

number field Ko such that K0(ύ) is the least field over which © is defined.

Ko is called the field of definition of ©, and is interesting in its own

right because of applications to the Neron-Severi group of E. See Swin-

nerton-Dyer [8] who considers this problem more generally.

KQ for the examples of this paper may have large degree over Q,

although crude estimates from the given construction will show that

[Ko: Q] is bounded above by 248.

In any given instance, it is straightforward to determine Ko since

it suffices to find the field of definition of the points of the curve which

are at most quadratic.

As an example, consider the curve

(59) y2 = x(x2 -8x- I2(u* - 1)).

Following arguments of Section 2, it is readily found that Ko for

(59) is simply the splitting field of n and m2 — An at (2), namely
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Schwartz [6] finds a family of elliptic surfaces of rank 4, with cor-
responding Ko equal to Q.
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