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Tensor Algebras, Induced Representations,
and the Wold Decomposition
Paul S. Muhly and Baruch Solel

Abstract. Our objective in this sequel to [18] is to develop extensions, to representations of tensor algebras
over C∗-correspondences, of two fundamental facts about isometries on Hilbert space: The Wold decompo-
sition theorem and Beurling’s theorem, and to apply these to the analysis of the invariant subspace structure
of certain subalgebras of Cuntz-Krieger algebras.

1 Introduction

Throughout, E will be a C∗-correspondence over a fixed C∗-algebra A. This means that E is
a Hilbert C∗-module over A and that E is endowed with a left module structure over A. That
is, there is a ∗-homomorphismϕ from A to the bounded, adjointable operators on E, L(E),
such that the left module structure is given in terms of ϕ: aξ = ϕ(a)ξ, for all a ∈ A and
ξ ∈ E. We denote the A-valued inner product on E by 〈· , ·〉. The full Fock space over E will
be denoted by F(E), so F(E) = A⊕ E⊕ E⊗2 ⊕ · · · . (The tensor products here are internal
tensor products, see [18] or [19].) The space F(E) is evidently a Hilbert C∗-module over
A, being the direct sum of Hilbert C∗-modules, and it is also a C∗-correspondence with left
action ϕ∞ given by the formula ϕ∞(a) = diag

(
a, ϕ(a), ϕ(2)(a), . . .

)
, where ϕ(n)(a)(ξ1 ⊗

ξ2 ⊗ · · · ξn) =
(
ϕ(a)ξ1

)
⊗ ξ2 ⊗ · · · ξn. For ξ ∈ E, we write Tξ for the creation operator

on F(E): Tξη = ξ ⊗ η, η ∈ F(E). Then Tξ is a continuous, adjointable operator on F(E).
The norm closed subalgebra of L

(
F(E)
)

generated by all the Tξ ’s and ϕ∞(A) is called the
tensor algebra over E and is denoted T+(E). The C∗-algebra generated by T+(E) is called the
Toeplitz algebra of the correspondence and is denoted by T(E).

A certain quotient of T(E), called the Cuntz-Pimsner algebra and denoted O(E), plays
an important role in this work. To define it, let J denote the C∗-subalgebra of L

(
F(E)
)

generated by operators of the form QnTQm, n,m = 0, 1, . . . , where Qn denotes the projec-
tion of F(E) onto the summand E⊗n (by definition, E⊗0 = A), and T ∈ L

(
F(E)
)

. Then
T(E) is contained in the multiplier algebra of J, M(J), and by definition O(E) is the image
of T(E) in the corona algebra M(J)/J. It is not hard to see that O(E) may reduce to 0.
However, if ϕ is injective, then O(E) 6= 0, as was shown by Pimsner in [19].

In the special case when A = E = C andϕ has its only possible meaning, one finds easily
that F(E) may be identified with `2(Z+); T+(E) is (completely) isometrically isomorphic to
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the disc algebra A(D), viewed as represented by analytic Toeplitz matrices; T(E), then, is
the C∗-algebra generated by all Toeplitz operators with continuous symbols; and O(E) is
naturally C∗-isomorphic to C(T).

Coburn’s celebrated theorem [6] says that when A = E = C, C∗-representations of
T(E) are in bijective correspondence with Hilbert space isometries. Two representations of
T(E) are unitarily equivalent if and only if the associated isometries are unitarily equiva-
lent. Wold’s decomposition theorem asserts that every isometry decomposes into a direct
sum of a pure isometry, i.e., a shift of a suitable multiplicity, and a unitary operator. This
decomposition decomposes the associated C∗-representation, of course. Shifts are deter-
mined up to unitary equivalence by their multiplicities. Unitary operators, in turn, cor-
respond bijectively with C∗-representations of C(T); spectral theory parameterizes their
unitary equivalence classes.

In the setting of general C∗-correspondences, the C∗-representations of T(E) are in bi-
jective correspondence with so-called isometric covariant representations of E (see below).
Our primary objective in the next section, Theorem 2.9, is to show that each isometric co-
variant representation decomposes uniquely into the direct sum of representations of two
kinds: the first is “induced” by a representation of A, in the sense of Rieffel [25], while the
second yields a representation of the Cuntz-Pimsner algebra O(E). The induced isometric
covariant representations of E have many of the properties of shifts. In fact, close inspection
of the proofs of the classical facts about shifts reveals that to a large extent they reflect the
representation theory of C and the fact that shifts are really induced by representations of C.
In the general setting, however, things are more complicated than in the restricted setting
of shifts. Some induced representations can represent O(E), and we identify which ones in
Corollary 2.15. Also, of course, while the representation theory of C(T) is well understood,
there is no hope in general of parameterizing the representations of O(E).

Our Wold decomposition theorem, Theorem 2.9, generalizes Popescu’s Wold decompo-
sition theorem [20] which may be obtained from our result by specializing to the case when
A = C, E is a Hilbert space over C, and ϕ(c) = cIE, c ∈ C.

If one thinks in terms of Hilbert modules over general operator algebras (see [10] and
[15] for the basic theory), then isometries correspond to so-called Shilov Hilbert modules
over A(D)—which, as we have said, may be viewed as T+(E) when A = E = C. In the set-
ting of tensor algebras in general and in particular in the setting of A(D), Shilov modules
coincide with the so-called orthoprojective Hilbert modules [18, Proposition 4.5]. The
classical Wold decomposition theorem may be viewed as the assertion that every ortho-
projective Hilbert module over A(D) decomposes into the direct sum of boundary Hilbert
module (essentially) in the sense of Arveson [1] and an orthoprojective Hilbert module
that is pure in the sense that it contains no boundary summands. The boundary represen-
tations for A(D) correspond to C∗-representations of its C∗-envelope in the sense of [1],
C(T), and the pure orthoprojective Hilbert modules correspond to shifts. In Theorem 3.2,
we prove that a similar decomposition theorem holds for orthoprojective Hilbert modules
over arbitrary operator algebras. This result, coupled with Rieffel’s imprimitivity theorem
[25, Theorem 6.29], is then applied in Theorem 3.5 to refine Theorem 2.9 under hypothe-
ses on the correspondence E that allow us to assert that the C∗-envelope of T+(E) is O(E)
(see [18, Theorem 6.4 and corollaries]).

Beurling’s theorem [2], as generalized by Lax [14] and Halmos [12], asserts that if S is
a shift on a Hilbert space H and if M is a subspace of H that is invariant under S, then
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there is an essentially unique partial isometry V in the commutant of S such that M =
V H. Such operators V are called inner operators to remind one of inner functions. On
the face of it, there appears to be no hope of generalizing this result to the full context of
tensor algebras over C∗-correspondences. After all, this would contain the setting of free
semigroup algebras studied by Popescu in [21], [22] and Davidson and Pitts in [5]. They
showed emphatically that such a representation of invariant subspaces in terms of single
operators in the commutant is not possible. They showed, instead, that in their setting
every invariant subspace M may be expressed as M =

∑
ViH, where the Vi are partial

isometries in the commutant of the representation having orthogonal ranges. We show in
Theorem 4.7 that this sort of representation is valid for induced representations of tensor
algebras over arbitrary correspondences E, provided the representation π of A from which
the representation of the tensor algebra is induced is what we call quasi-invariant with
respect to E. In fact, the validity of this extension of Beurling’s theorem is equivalent to the
quasi-invariance of π.

Another way to formulate the Beurling-Lax-Halmos theorem is the assertion that every
submodule of a pure Shilov module over the disc algebra A(D) is unitarily equivalent to
a reducing submodule. If one replaces “unitary equivalence” by “quasi-equivalence”, then
our result may be viewed as asserting that a Shilov module S over T+(E), that is induced
by a representation π of A, has the property that every submodule is quasi-equivalent to a
reducing submodule of S if and only if E is quasi-invariant with respect to π.

Still another formulation of Beurling’s original theorem from 1949 [2] is the assertion
that the space H∞(T) has the property that every weak-∗ closed ideal is generated by an
inner function. Thus, in a very specific sense, H∞(T) may be viewed as a Hilbert space ana-
logue of the polynomial ring in one variable C[X]; both are principal ideal domains. This,
of course, breaks down in the setting of general tensor algebras over C∗-correspondences:
The free semi-group algebras of Davidson and Pitts have weak-∗ closed ideals that fail to
be singly generated. However, they were able to show that in the Fock representation (i.e.,
the left regular representation) of a free semi-group algebra, the invariant subspaces are
in bijective correspondence with σ-weakly closed right ideals of the weakly closed algebra
generated by the representation. In the last section of this paper, we extend their analysis to
tensor algebras over correspondences determined by finite quivers. These, essentially, are
those correspondences that parameterize Cuntz-Krieger algebras.

2 The Wold Decomposition

An isometric covariant representation of E on a Hilbert space H is a pair (V, σ) where σ is a
C∗-representation1 of A on H and where V is a linear map from E into B(H), the bounded
linear operators on H, satisfying the two conditions:

1) V (ϕ(a)ξb) = σ(a)V (ξ)σ(b), ξ ∈ E and a, b ∈ A.
2) V (ξ)∗V (η) = σ(〈ξ, η〉), ξ, η ∈ E.

Note that condition 2) implies that V is continuous; in fact, ‖V (ξ)‖ ≤ ‖ξ‖. The reason for
the adjective “isometric” will be clear in a moment.

1All representations of C∗-algebras are assumed to be nondegenerate, unless otherwise specified.
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The map that sends ϕ∞(a) ∈ T(E) to σ(a) and Tξ to V (ξ) extends to a C∗-representa-
tion of T(E) on H, denoted σ×V and called the integrated form of (V, σ). Conversely, given
a C∗-representation π : T(E) → B(H), defining σ by the formula, σ(a) := π

(
ϕ∞(a)

)
, and

V by the formula, V (ξ) := π(Tξ), yields an isometric covariant representation of E on
H. This was proved by Pimsner in Theorem 3.4 of [19] under the assumptions that ϕ is
injective and E is full, meaning that A is generated by the scalar products 〈ξ, η〉, ξ, η ∈ E.
These assumptions are not necessary, as we remarked in Theorem 2.12 of [18]. This result,
without any hypotheses on E, is proved in full detail in [11], where T(E) is presented as a
universal object for covariant representations of E.

An important role in our work will be played by induced representations in the sense of
Rieffel [25]. If F is a Hilbert C∗-module over A and if π : A→ B(H) is a C∗-representation,
then the representation of L(F) induced by F, πF , is defined as follows. The Hilbert space
of πF , denoted F ⊗π H, is the Hausdorff completion of the algebraic tensor product of F
and H in the inner product

(ξ ⊗ h, η ⊗ k) =
(
π(〈η, ξ〉)h, k

)
.

The representation πF is given by the formula

πF(T) = T ⊗ IH,

T ∈ L(F). It should be noted that the restriction of πF to K(F) is nondegenerate. It is
important to keep in mind that L(F) is the multiplier algebra of K(F), so a representation
of L(F) is completely determined by its behavior on K(F) if and only if its restriction to
K(F) acts nondegenerately.

It is important for the present investigation to know that the commutant of πF may
be expressed in terms of the commutant of π as follows: An operator X on F ⊗π H com-
mutes with πF

(
L(F)

)
if and only if X is of the form I ⊗ X0, where X0 is an operator in the

commutant of π(A) [25, Theorem 6.23]; i.e., πF
(
L(F)

) ′
= C ⊗

(
π(A) ′

)
. For the sake of

completeness, we outline a proof here.
First, let F̃ be the adjoint or dual module of F [25, Definition 6.17]. It may be identi-

fied with F, but with “conjugated and reversed” operations; alternatively, it may be iden-
tified with K(F,A). Then F̃ is naturally a left A-, right K(F)-imprimitivity bimodule. In
particular, F̃ ⊗K(F) F is an A,A-bimodule and the map from F̃ ⊗K(F) F to A that sends
η̃ ⊗ ξ to 〈η, ξ〉 is an A,A-bimodule, isometric, isomorphism. It follows that the map
W : F̃ ⊗K(F) F ⊗π H→ H defined by the equation W (η̃ ⊗ ξ ⊗ ζ) = π(〈η, ξ〉)ζ is a Hilbert
space isomorphism that implements an equivalence between πF̃⊗K(F)F and π. In a similar
fashion, one sees that πF⊗AF̃⊗K(F)F is naturally unitarily equivalent to πF. Now, to prove

that πF
(
L(F)

) ′
= C⊗

(
π(A) ′

)
, note that we really need only prove that the left hand side

is contained in the right, since the other inclusion is evident. Therefore, suppose X com-
mutes with πF

(
L(F)

)
. Then I ⊗ X commutes with πF̃⊗K(F)F

(
L(F̃ ⊗K(F) F)

)
' π
(
M(A)

)
.

Since π(A) and π
(
M(A)

)
have the same commutants, there is an X0 ∈ π(A) ′ such that

W (I ⊗ X)W ∗ = X0. With the identification of πF⊗AF̃⊗K(F)F with πF , it is easy to see that
X = I ⊗ X0.

The following lemma extends Lemmas 3.5 and 3.6 of [18]. The first assertion was also
proved in [11]. It describes all the isometric covariant representations in terms of more
familiar constructs and helps to explain the choice of terminology.

https://doi.org/10.4153/CJM-1999-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-037-8


854 P. S. Muhly and B. Solel

Lemma 2.1 Given an isometric covariant representation (V, σ) of the correspondence E on
a Hilbert space H, define Ṽ : E ⊗σ H → H by the formula Ṽ (ξ ⊗ h) = V (ξ)h. Then Ṽ is an
isometry, with range equal to the closed linear span of {V (ξ)h | ξ ∈ E, h ∈ H}, that satisfies
the equation

ṼσE ◦ ϕ = σṼ .(2.1)

Conversely, given an isometry Ṽ from E ⊗σ H to H that satisfies equation (2.1), the map
V : E → B(H), defined by the formula V (ξ)h = Ṽ (ξ ⊗ h), ξ ∈ E, h ∈ H, together with σ,
constitutes an isometric covariant representation of E on H.

Proof The “direct” part of the lemma is proved in Lemmas 3.5 and 3.6 of [18], and in [11].
For the converse, simply observe that given Ṽ , V is a well defined linear map from E to B(H),
by the properties of tensor products. It satisfies the bimodule condition, V

(
ϕ(a)ξb

)
=

σ(a)V (ξ)σ(b), by virtue of equation (2.1) and the definition of σE. Finally, to see that
V (ξ)∗V (η) = σ(〈ξ, η〉), simply note that for all h, k ∈ H, and ξ, η ∈ E,

(
V (ξ)∗V (η)h, k

)
=(

V (η)h,V (ξ)k
)
=
(
Ṽ (η ⊗ h), Ṽ (ξ ⊗ k)

)
= (η ⊗ h, ξ ⊗ k) =

(
σ(〈ξ, η〉)h, k

)
, by definition

of the inner product on E ⊗σ H.

Inducing a representation π of A on a Hilbert space H up to L
(
F(E)
)

and then restrict-
ing to T(E) yields a representation of T(E) on F(E) ⊗π H, which in turn gives a covariant
representation (V, σ) of E on F(E)⊗π H defined by the formulae

σ(a) = πF(E) ◦ ϕ∞(a) = ϕ∞(a)⊗ IH,

V (ξ) = πF(E)(Tξ) = Tξ ⊗ IH.

We call this (V, σ) the isometric covariant representation induced by π. By abuse of lan-
guage, we shall say that any isometric covariant representation that is unitarily equivalent
to an induced isometric covariant representation is also induced.

As we indicated in the introduction, one may profitably think of induced isometric co-
variant representations as generalizations of unilateral shifts. Indeed, when A = C = E
and E is given the obvious structure of a correspondence over A, then T(E) is the usual
Toeplitz algebra, the C∗-algebra generated by the unilateral shift. There is, of course, but
one irreducible representation of A and every representation is a multiple of it. If (V, σ)
is the covariant representation of E induced by a representation π of A on H0, then after
identifying E ⊗σ F(E) ⊗π H0 with F(E) ⊗π H0, as we may in this case, the isometry Ṽ is
simply the unilateral shift of multiplicity equal to the dimension of H0.

It is also worthwhile to note that when (V, σ) is induced by a representation π of A on
H0, then the map Ṽ is tautological, reflecting the associativity of the various tensor products
involved: Ṽ maps from E⊗σ(F(E)⊗πH0) to F(E)⊗πH0 via the formula, Ṽ

(
ξ⊗σ(η⊗πh)

)
=

(ξ ⊗ϕ∞ η)⊗π h, ξ ∈ E, η ∈ F(E), h ∈ H0, where, recall, σ = ϕ∞ ⊗ IH0 .
An isometric covariant representation (V, σ) of a general correspondence E on the

Hilbert space H gives rise to an isometric covariant representation (V⊗n, σ) of E⊗n on H

https://doi.org/10.4153/CJM-1999-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-037-8


Tensor Algebras 855

defined by the formula V⊗n(ξ1⊗ξ2⊗· · ·⊗ξn) = V (ξ1)V (ξ2) · · ·V (ξn), ξ1⊗ξ2⊗· · ·⊗ξn ∈
E⊗n. This may be proved easily from the basic facts about tensor products. We write Ṽn for
the isometry from E⊗n ⊗σ H to H determined by V⊗n in Lemma 2.1. Henceforth, we shall
write Ṽ1 for Ṽ . The next lemma describes the fundamental relations among the Ṽn that we
will need.

Lemma 2.2 For positive integers n and m, the expression In ⊗ Ṽm gives a well defined isom-
etry from E⊗n ⊗ E⊗m ⊗σ H to E⊗n ⊗σ H. Its adjoint, (In ⊗ Ṽm)∗ is In ⊗ Ṽ ∗m. Furthermore,
Ṽn+m = Ṽn(In ⊗ Ṽm) = Ṽm(Im ⊗ Ṽn).

Proof Given its formal looking nature, the lemma may seem like a triviality; and indeed, it
is easy to prove. However, there is a key observation that is necessary to prove it, to which
we wish to call attention, namely equation (2.1). At the level of E⊗n it reads

Ṽnσ
E⊗n

◦ ϕ(n) = σṼn.

This condition guarantees (and probably is necessary to prove) that In⊗Ṽm is a well-defined
bounded operator. Once this is noted, the calculations needed to complete the proof are
straightforward and are left to the reader.

The following lemma is an easy consequence of the preceding two lemmas. Variants of
it seem to be known in more abstract settings (see, e.g., [8] and [9]). We learned the first
assertion in it from Neal Fowler and Iain Raeburn (see [11]).

Lemma 2.3 If (V, σ) is an isometric covariant representation of E on a Hilbert space H, then
the formula

L(x) = Ṽ1(I1 ⊗ x)Ṽ ∗1 ,

x ∈ σ(A) ′, defines a normal endomorphism of the commutant of σ(A), σ(A) ′. The n-th
iterate of L, n ≥ 1, is given by the formula

Ln(x) = Ṽn(In ⊗ x)Ṽ ∗n ,

x ∈ σ(A) ′. Finally, if Pn denotes the projection onto the range of Ṽn, which is the closed linear
span of {V⊗n(ξ)h | ξ ∈ E⊗n, h ∈ H}, then Pn = Ln(I) and Pn+m = Ṽn(In ⊗ Pm)Ṽ ∗n =
Ṽm(Im ⊗ Pn)Ṽ ∗m, for all positive integers n and m.

Proof For the first assertion, we note that the expression defining L makes sense, since
x is assumed to be in σ(A) ′, i.e., I ⊗ x is a bounded operator on E ⊗σ H. The fact that
L maps σ(A) ′ into σ(A) ′ is a consequence of formula (2.1). Indeed, if x ∈ σ(A) ′, then
I ⊗ x ∈ σE

(
L(E)

) ′
. Consequently, by Lemma 2.1 we have the following equation that
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proves the assertion:

σ(a)Ṽ (I ⊗ x)Ṽ ∗ = Ṽ
(
σE ◦ ϕ(a)

)
(I ⊗ x)Ṽ ∗

= Ṽ (I ⊗ x)
(
σE ◦ ϕ(a)

)
Ṽ ∗

= Ṽ (I ⊗ x)Ṽ ∗Ṽ
(
σE ◦ ϕ(a)

)
Ṽ ∗

= Ṽ (I ⊗ x)Ṽ ∗σ(a)ṼṼ ∗

= Ṽ (I ⊗ x)Ṽ ∗ṼṼ ∗σ(a)

= Ṽ (I ⊗ x)Ṽ ∗σ(a).

The normality of L results from the evident normality of the map x → I ⊗ x from the
commutant of σ(A) to the commutant of σE

(
L(E)

)
. The formula for the iterates of L is

immediate from Lemma 2.2. The final assertion is just the observation that Pn = ṼnṼ ∗n
coupled with the formulas of Lemma 2.2.

This lemma guarantees that the projections Pn associated to an isometric covariant rep-
resentation (V, σ) of E on a Hilbert space H decrease with increasing n. That is, P1 ≥ P2 ≥
P3 ≥ · · · . We write Q0 = I − P1, and for k ≥ 1, we write Qk = Pk − Pk+1. Since the
Pk all commute with σ(A) by virtue Lemma 2.3, so do all the Qk. By definition, the Qk’s
are orthogonal and their direct sum is the complement of the infimum of the projections
Pk. We denote this infimum by P∞; i.e.,

⊕∞
k=0 Qk = I − P∞. The following corollary is

an immediate consequence of Lemma 2.3. It is the generalization to our setting of the well
known fact that if V is an isometry on a Hilbert space H and if Q is the defect projection
I−VV ∗, then Q is a wandering projection in the sense that {V nQV ∗n}∞n=0 is an orthogonal
family, each term of which has the same dimension. For this reason, we refer to Q0 as the
wandering projection associated with (V, σ); its range is the wandering subspace associated
with (V, σ); and vectors in the range of Q0 will be called wandering vectors.

Corollary 2.4 For l ≥ 0 and k > 0, Lk(Ql) = Ṽk(Ik ⊗ Ql)Ṽ ∗k = Qk+l.

The relation between the commutant of σ × V
(
T+(E)

)
and L will play a role in our

analysis. The following easy lemma and its corollary summarize what we need.

Lemma 2.5 Let (V, σ) be an isometric representation of E on the Hilbert space H and let x
be an operator in the commutant of σ(A). Then the following assertions are equivalent:

1. x commutes with σ ×V
(
T+(E)

)
.

2. Ṽ1(I ⊗ x) = xṼ1.
3. L(x) = xP1.

Proof If x commutes with σ ×V
(
T+(E)

)
, then for ξ ⊗ h ∈ E ⊗σ H,

xṼ1(ξ ⊗ h) = xV (ξ)h = V (ξ)xh

= Ṽ1(ξ ⊗ xh) = Ṽ1(I ⊗ x)(ξ ⊗ h).
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So xṼ1 = Ṽ1(I ⊗ x). On the other hand, if this equation is satisfied, then xV (ξ)h =
xṼ1(ξ ⊗ h) = Ṽ1(I ⊗ x)(ξ ⊗ h) = V (ξ)xh. Thus x commutes with the V (ξ). Since
x commutes with σ(A) by hypothesis, x commutes with σ × V

(
T+(E)

)
. This shows the

equivalence of the first two assertions.
If Ṽ1(I⊗x) = xṼ1, then L(x) = Ṽ1(I⊗x)Ṽ ∗1 = xṼ1Ṽ ∗1 = xP1. Conversely, if L(x) = xP1,

then Ṽ1(I ⊗ x) = L(x)Ṽ1 = xP1Ṽ1 = xṼ1, since P1 is the projection onto the range of Ṽ1.
Thus, the second two assertions are equivalent.

Corollary 2.6 With the notation of Lemma 2.5, if x commutes with σ×V
(
T+(E)

)
, then the

following assertions are equivalent:

1. x∗ commutes with σ ×V
(
T+(E)

)
.

2. x commutes with σ ×V
(
T(E)
)

.
3. x commutes with P1.

Proof Since T(E) is the C∗-algebra generated by T+(E), the first two assertions are clearly
equivalent. Observe that x commutes with σ × V

(
T(E)
)

if and only if both x and x∗

commute with σ × V
(
T+(E)

)
. Also, the second assertion implies the third, since P1 is in

the strong closure of σ×V
(
T(E)
)

. Conversely, if x commutes with P1, then so does x∗, and,
therefore, since x commutes with σ ×V

(
T+(E)

)
, L(x∗) = L(x)∗ = (xP1)∗ = P1x∗ = x∗P1,

proving that so does x∗ by Lemma 2.5.

In the classical case, when (pure) isometries are represented by multiplication by z on
vector-valued Hardy spaces, operators in their commutants are represented by operator-
valued, bounded analytic functions. The ∗-commutant is represented by constant opera-
tor-valued functions. Consequently, we shall call operators that commute withσ×V

(
T(E)
)

constant operators.
It is helpful to relate the restriction of an isometric covariant representation (V, σ) to an

invariant subspace in terms of the operators Ṽk. To say that a subspace M is invariant for
(V, σ), we mean, of course, that M is invariant under σ(A) (so that in fact the projection
onto M, PM, commutes with σ(A)) and that M is invariant for all the operators V (ξ),
ξ ∈ E. This is the same as saying that M is invariant under σ ×V

(
T+(E)

)
. We say that M

reduces (V, σ) in case M and M⊥ are invariant under (V, σ). This is equivalent, of course,
to saying that PM commutes with σ ×V

(
T(E)
)

.

Lemma 2.7 Let (V, σ) be an isometric covariant representation of E on the Hilbert space
H and let M ⊆ H be a subspace that reduces σ(A). If PM denotes the projection of H onto
M, then M is invariant for (V, σ) if and only if L(PM) ≤ PM, and M reduces (V, σ) if and
only if L(PM) = PMP1 = P1PM. Further, if M is invariant for (V, σ), then Ṽk(Ik ⊗ PM) =
PMṼk(Ik ⊗ PM) for all k ≥ 1; while if M reduces (V, σ), then Ṽk(Ik ⊗ PM) = PMṼk for all
k ≥ 1.

Proof The assertions about reducing subspaces follow immediately from Corollary 2.6 and
so we attend only to invariant subspaces. The fact that PM commutes with σ(A) guaran-

tees that Ik ⊗ PM is a projection in the commutant of σE⊗k(
L(E⊗k)

)
by general properties
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of induced representations [25, Theorem 6.23] as we noted above. If M is invariant un-
der all the operators V (ξ), then M is invariant under all the operators V⊗k(ξ), ξ ∈ E⊗k.
Consequently, for all such ξ, V⊗k(ξ)PM = PMV⊗k(ξ)PM. Therefore, for all h ∈ H and
ξ ∈ E⊗k,

Ṽk(Ik ⊗ PM)(ξ ⊗ h) = V⊗k(ξ)PMh = PMV⊗k(ξ)PMh = PMṼk(Ik ⊗ PM)(ξ ⊗ h).(2.2)

Thus, Ṽk(Ik⊗PM) = PMṼk(Ik⊗PM). But if Ṽk(Ik⊗PM) = PMṼk(Ik⊗PM) then Lk(PM) =
Ṽk(Ik ⊗ PM)̀Ṽ ∗k = PMṼk(Ik ⊗ PM)Ṽ ∗k , proving that Lk(PM) ≤ PM.

For the converse, observe that if L(PM) ≤ PM, then Ṽ1(I⊗PM)Ṽ ∗1 is a projection Q, say,
smaller than PM. Consequently, Ṽ1(I ⊗ PM) = QṼ1 = PMQṼ1. But then, for all h ∈ M

and ξ ∈ E, we have V (ξ)h = Ṽ1(I ⊗ PM)(ξ ⊗ h) = PMQṼ1(ξ ⊗ h), showing that V (ξ)
leaves M invariant.

The following terminology comes from [18].

Definition 2.8 Let (V, σ) be an isometric covariant representation of E on the Hilbert
space H, let P1 = Ṽ1Ṽ ∗1 —the projection onto closed linear span of {V (ξ)h | ξ ∈ E, h ∈
H}, and let J be the (possibly degenerate) ideal ϕ−1

(
K(E)

)
in A. Then (V, σ) is called J-

coisometric, or simply coisometric, in case P1H contains the essential subspace of σ| J, σ( J)H.
We say that (V, σ) is fully coisometric in case the projection P1 = I.

Under the assumption that E is full and ϕ is injective, the coisometric, isometric covari-
ant representations (V, σ) are precisely those isometric covariant representations of E such
that the integrated representation of T(E), σ ×V , passes to the quotient, O(E) [19, Theo-
rem 3.13]. They are thus analogues of unitary operators. Fully coisometric (V, σ)’s form a
proper subclass of the coisometric (V, σ)’s. However, it is not possible to see the distinction
at the level of the classical Toeplitz algebra. We will have more to say about the distinc-
tion shortly. At this point, we are able to prove the first version of a Wold decomposition
theorem for isometric covariant representations of C∗-correspondences.

Theorem 2.9 If (V, σ) is an isometric covariant representation of E on a Hilbert space H,
then (V, σ) decomposes into the direct sum of two such representations, (V, σ) = (V1, σ1) ⊕
(V2, σ2) on H = H1⊕H2, where (V1, σ1) is an induced isometric covariant representation and
(V2, σ2) is fully coisometric. The decomposition is unique in the sense that if K is a subspace of
H which reduces (V, σ) (i.e., if K reduces σ×V

(
T(E)
)

), and if the restriction of (V, σ) to K is
induced (resp. is fully coisometric), then K ⊆ H1 (resp. K ⊆ H2).

Proof We follow the notation already established, and write Pk for the projections Lk(I) =
ṼkṼ ∗k , so that P1 ≥ P2 ≥ · · · . We let P∞ =

∧∞
k=1 Pk, we set H2 = P∞H, and we set

H1 = P⊥∞H (= H	H2). Recall from Lemma 2.3 Pk = Lk(I) so that L(P∞) = P∞ = P∞P1.
Thus, by that lemma, the spaces Hi , i = 1, 2, reduce (V, σ). Further, the lemma shows that
if Vi(ξ) is the restriction of V (ξ) to Hi , i = 1, 2, then Ṽ2,1 = P∞Ṽ1 = Ṽ1(I ⊗ P∞) =
P∞Ṽ1(I ⊗ P∞), while Ṽ1,1 = P⊥∞Ṽ1 = Ṽ1(I ⊗ P⊥∞) = P⊥∞Ṽ1(I ⊗ P⊥∞). (Here, of course,
Ṽi,1 denotes the isometry from E ⊗σ Hi to Hi determined by Vi , i = 1, 2.) Consequently,
Ṽ2,1Ṽ ∗2,1 = P∞Ṽ1Ṽ ∗1 P∞ = P∞P1P∞ = P∞, proving that (V2, σ2) is fully coisometric.
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Similarly, if P1,k = Ṽ1,kṼ ∗1,k, k = 1, 2, . . . , then P1,k = Pk − P∞, so
∧∞

k=1 P1,k = 0. Thus
to complete the first half of the proof, i.e., to show that (V1, σ1) is induced, we need only
show that if P∞ = 0, then (V, σ) is induced.

To this end, form Qk = Pk − Pk+1, k = 0, 1, . . . , where P0 = I. Set H0 = Q0H, and set
σ0(·) = σ(·)|H0. By Corollary 2.4, Lk(Q0) = Ṽk(I ⊗ Q0)Ṽ ∗k = Qk, k = 1, 2, . . . . Since

P∞ = 0, by hypothesis, I =
∑⊕

k≥0 Q0. So, if U : F(E) ⊗σ0 H0 (=
∑⊕

k≥0 E⊗n ⊗σ0 H0)→ H

is defined by the formula

U
(∑

k≥0

hn

)
=
∑
k≥0

Ṽnhn,

where hn ∈ E⊗n⊗σ0 H0 = (In⊗Q0)F(E)⊗σH, then since Ṽn maps E⊗n⊗σ0 H0 onto QnH, a
straightforward calculation shows that U is a Hilbert space isomorphism from F(E)⊗σ0 H0

onto H such that U
(
ϕ∞(a)⊗ IH0

)
= σ(a)U and U (Tξ ⊗ IH0 ) = V (ξ)U , for all a ∈ A and

ξ ∈ E. This shows that (V, σ) is induced if P∞ = 0.
The proof of the uniqueness could be given here, but we defer it until after Proposi-

tion 2.11, which enables us to say somewhat more.

For the sake of emphasis, we state the following immediate corollary of our proof of
Theorem 2.9.

Corollary 2.10 Let (V, σ) be an isometric covariant representation of E on the Hilbert space
H. Then (V, σ) is induced if and only if

∧
k≥1 ṼkṼ ∗k (= P∞) = 0.

Proposition 2.11 Let (V, σ) be an induced isometric covariant representation of E on a
Hilbert space H and let M be invariant for (V, σ). Then the restriction of (V, σ) to M is an
induced isometric covariant representation.

Proof Observe that the restriction of a (not-necessarily-induced) isometric covariant rep-
resentation to an invariant subspace gives a covariant representation that is still isometric.
Thus, the issue is whether the restriction is induced, if the original representation is in-
duced.

Write (W, τ ) for the restriction of (V, σ) to M and write PM for the projection of H onto
M. By Corollary 2.10, we need to show that

∧
k≥0 W̃kW̃ ∗

k = 0. Observe that W (·) may be

viewed as PMV (·)PM. Consequently, for each k ≥ 1, W̃k may be viewed as PMṼk(Ik⊗PM) =
Ṽk(Ik ⊗ PM) by Lemma 2.7. Hence W̃kW̃ ∗

k = PMṼk(Ik ⊗ PM)Ṽ ∗k PM = Ṽk(Ik ⊗ PM)Ṽ ∗k ≤
ṼkṼ ∗k . Since

∧
k≥0 ṼkṼ ∗k = 0, we conclude from this inequality that

∧
k≥0 W̃kW̃ ∗

k = 0.

Completion of the proof of Theorem 2.9 We prove a bit more than is claimed. Let K be
a reducing subspace for (V, σ) with projection PK. By Lemma 2.5, we know that PK com-
mutes with σ(A) and satisfies the equation Ṽk(Ik ⊗ PK) = PKṼk for all k ≥ 1. This easily
implies that PK commutes with P∞, so that K = K ∩ H1 ⊕ K ∩ H2. Now K ∩ H1 is a
reducing subspace for (V1, σ1) and so the restriction of (V1, σ1) to K ∩ H1 is induced by
Proposition 2.11. On the other hand, since V2 may be identified with P∞V = V P∞ =
P∞V P∞, an easy calculation shows that Ṽ2,1(I ⊗ PK∩H2 ) = PK∩H2Ṽ2,1 from which it fol-
lows that if (W, τ ) is the restriction of (V2, σ2) to K ∩ H2, then W̃1 may be identified with
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Ṽ2,1(I ⊗ PK∩H2 ) = PK∩H2Ṽ2,1 = PK∩H2Ṽ2,1(I ⊗ PK∩H2 ), showing that W̃1 maps E ⊗σ|K∩H2

K ∩ H2 onto K ∩ H2. Thus, (W, τ ) is fully coisometric. From these two calculations, the
proof of the uniqueness assertion in Theorem 2.9 is immediate.

Definition 2.12 If (V, σ) is an isometric covariant representation of E on the Hilbert
space H, and if (V, σ) is decomposed into the direct sum, (V, σ) = (V1, σ1) ⊕ (V2, σ2) on
H = H1⊕H2, as in Theorem 2.9, where (V1, σ1) is an induced isometric covariant represen-
tation and (V2, σ2) is fully coisometric, then we call H1 (or (V1, σ1)) the induced summand,
or part, of H (or (V, σ)), and H2 (or (V2, σ2)) is called the fully coisometric summand, or
part, of H.

The following corollary of Proposition 2.11 should be noted.

Corollary 2.13 If (V, σ) is an isometric covariant representation of E on a Hilbert space H

that is induced by a representation π of A on a Hilbert space H0, then the weakly closed algebra

generated by σ×V
(
T(E)
)

is πF(E)
(
L
(
F(E)
)) ′ ′

and the commutant of σ×V
(
T(E)
)

consists

of all operators of the form I ⊗ x, where x ∈ σ(A) ′. Thus, in particular, the map

M→ F(E)⊗π M

from the subspaces of H0 that reduce π(A) to the subspaces of F(E)⊗πH0, is a bijection between
all the subspaces of H0 that reduce π(A) and the subspaces of F(E)⊗π H0 that reduce (V, σ).

Proof Of course, the weakly closed algebra generated by σ × V
(
T(E)
)

is contained in

πF(E)
(
L
(
F(E)
)) ′ ′

. So to show equality, one needs only to show that any projection P

that commutes with σ × V
(
T(E)
)

also commutes with πF(E)
(
L
(
F(E)
)) ′′

. Lemma 2.7

implies that P commutes with all the projections Pk and hence with the projections Qk,
k ≥ 0. Since (V, σ) is induced, H = F(E) ⊗π H0 and QkH = E⊗k ⊗π H0. The map that
sends ξ1 ⊗ ξ2 ⊗ · · · ξk ⊗ η∗k ⊗ η

∗
k−1 ⊗ · · · η

∗
1 ∈ K(E⊗k) to Tξ1 Tξ2 · · ·Tξk T∗ηk

T∗ηk−1
· · ·T∗η1

extends to a C∗-homomorphism of K(E⊗k) into T(E) [19, p. 199]. A moment’s reflection
directed toward the matricial form of the operators in σ ×V

(
T(E)
)

(corresponding to the

decomposition of F(E)⊗πH0 as
∑⊕

k≥0 E⊗k⊗πH0) reveals that in Qk

(
σ×V

(
T(E)
))

Qk the

image of this homomorphism may be identified with πE⊗k(
K(E⊗k)

)
. Since PQk commutes

with πE⊗k(
K(E⊗k)

)
and L(E⊗k) is the multiplier algebra of K(E⊗k), PQk commutes with

πE⊗k(
L(E⊗k)

)
. Consequently, PQk is of the form Ik ⊗ Rk for a projection Rk commuting

with π(A) by [25, Theorem 6.23]. Thus, P =
∑⊕

k≥0(Ik ⊗ Rk). However, from Lemma 2.7

and the tautological form of Ṽk in the case of induced, isometric, covariant representations,
it is immediate that the Rk are all equal. Thus, P = IF(E) ⊗ R0, and by [25, Theorem 6.23]
again, P commutes with πF(E)(L

(
F(E)
)

.

Remark 2.14 It is worthwhile to note that if E were full, if ϕ were injective, and if ϕ(A)
were contained in K(E), then Corollary 2.13 would follow easily from the fact that
K
(
F(E)
)
⊆ T(E) [19, Theorem 3.13]. In light of this, it is somewhat surprising that

Corollary 2.13 holds even when K
(
F(E)
)
∩ T(E) = {0}.

https://doi.org/10.4153/CJM-1999-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-037-8


Tensor Algebras 861

In the special case when A = E = C, Corollary 2.13 gives the structure of the von
Neumann algebra (and its commutant) generated by a unilateral shift and establishes the
well-known fact that the reducing subspaces of a unilateral shift are “slices” [12].

We conclude this section with one more corollary of Theorem 2.9, a result that identifies
isometric covariant representations that are also coisometric.

Corollary 2.15 Let (V, σ) be an isometric covariant representation of E on the Hilbert space
H and let (V, σ) = (Vi, σi) ⊕ (V f , σ f ) on H = Hi ⊕ H f be its Wold decomposition (where
(Vi, σi) is induced and (V f , σ f ) is fully coisometric). Then (V, σ) is coisometric if and only
if (Vi , σi) is induced by a representation π of A on the Hilbert space H0 with the property
that π( J) = 0, where J is the ideal ϕ−1

(
K(E)

)
in A. Further, every isometric covariant

representation (V, σ) of E on a Hilbert space decomposes as (V, σ) = (V p, σp) ⊕ (Vc, σc),
where (Vc, σc) is coisometric and (V p, σp) is pure in the sense that it contains no coisometric
summands.

Proof For the first assertion of the corollary, note that since (V f , σ f ) is fully coisometric,
(V, σ) is coisometric if and only if (Vi, σi) is coisometric. So we may as well assume at the
outset that (V, σ) is induced, say by π : A → B(H0). Consider the matrices of elements
in σ × V

(
T(E)
)

with respect to the direct sum decomposition of H = F(E) ⊗π H0 as∑⊕
n≥0 E⊗n ⊗π H0. Then for a ∈ A,

σ(a) = diag
(
π(a), ϕ(a)⊗ IH , . . . , ϕ(a)⊗ In−1 ⊗ IH , . . .

)
,

where In−1 denotes the identity operator on E⊗n−1. On the other hand, if σ(1) denotes the
natural representation of K(E) determined by (V, σ), so that σ(1)(ξ ⊗ η∗) = V (ξ)V (η)∗

(see [18], [19]), then for k ∈ K(E),

σ(1)(k) = diag(0, k⊗ IH , . . . , k⊗ In−1 ⊗ IH , . . . ).

Now recall that by Theorem 2.19 and Lemma 5.4 of [18], (V, σ) is coisometric if and only
if σ(1) ◦ ϕ(a) = σ(a) for all a ∈ J (see [19] also). Applying this criteria with the matrix
representations for σ and σ(1), we see that (V, σ) is coisometric if and only if π(a) = 0 for
all a ∈ J.

For the second assertion, it again suffices to assume at the outset that (V, σ) is induced,
say by π : A → B(H0). Restrict π to J and decompose π in the usual way into πp ⊕ πc on
H0p ⊕ H0c, where H0p = π( J)H0 and H0c = H⊥0p. Then (V, σ) decomposes as (V, σ) =
(V p, σp)⊕ (Vc, σc), where (V p, σp) is induced by πp and (Vc, σc) is induced by πc. Since πc

annihilates J, (Vc, σc) is coisometric, as we have just seen. The issue is to see that (V p, σp)
has no coisometric summands. But if (V ′, σ ′) is any summand of (V p, σp), then (V ′, σ ′)
is induced by a summand of πp by Corollary 2.13. But no summand of πp can annihilate
J, since the restriction of πp to J is nondegenerate. Hence no summand (V ′, σ ′) of (V, σ)
can be coisometric, by the first assertion of the corollary.

Remark 2.16 If (V, σ) is induced by a representation π : A → B(H), then for any ideal
J0 of A, we may decompose π into π1 ⊕ π2 where π1| J0 is nondegenerate and where π2

annihilates J0. This decomposition induces a corresponding decomposition of (V, σ) as
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(V, σ) = (V1, σ1) ⊕ (V2, σ2), where (Vi , σi) is induced by πi . This fact will be useful for
analyzing the representations of the relative Cuntz-Pimsner algebras O( J0, E) introduced
in [18, Definition 2.18].

3 An Abstract Wold Decomposition

In the presence of additional assumptions on E, Theorem 2.9 may be refined somewhat.
See Theorem 3.5. While a proof could be generated from Theorem 2.9 and Corollary 2.15,
another proof, that exhibits interesting connections with general operator algebra, will be
given.

We adopt the language of Hilbert modules over general operator algebras from [10] and
[15]. Let A be an arbitrary operator algebra. For us, this means that A is a norm closed
algebra of operators on some Hilbert space and that A is either unital or approximately
unital, meaning that A has a contractive approximate identity. Thanks to the wonderful
theorem of Blecher, Ruan, and Sinclair [3], A may be given an abstract characterization
independent of any Hilbert space on which A might sit.

A Hilbert module over A is simply a Hilbert space on which A is represented completely
contractively. If H is the Hilbert space and if ρ : A → B(H) is the representation, then the
module action is given by the formula aξ := ρ(a)ξ. We say that ρ is the representation
associated with H and that H is the Hilbert module associated with ρ. Each perspective,
Hilbert modules and (completely contractive) representations, has its advantages and we
shall pass from one to the other as is convenient.

Observe that if H is a Hilbert module over an operator algebra A, then End(H) will
denote the collection of all operators S in B(H) such that S is a module map of H, i.e., S
satisfies S(ah) = a(Sh), for all a ∈ A and h ∈ H. Of course, End(H) is just the commutant
of ρ(A) where ρ is the representation determined by H.

Recall from [15] that a short exact sequence of Hilbert modules over A,

0→ K
Ψ
→M

Φ
→ P→ 0,

is called isometric in case Ψ is an isometric module map and Φ is a coisometric module
map. Such a sequence is called orthogonally split when there is a contractive module map
Φ ′ : P → M such that Φ ◦ Φ ′ = IP. Equivalently, the sequence is orthogonally split
when Φ∗ is a module map. In this event, M is isomorphic (i.e., unitarily equivalent) to the
(orthogonal) direct sum of K and P. A Hilbert module K over A is called orthoinjective in
case whenever it appears as the first term in a short exact isometric sequence, the sequence
is orthogonally split. To say the same thing differently, K is orthoinjective iff whenever K

appears (isometrically) as a submodule of another Hilbert module M, K is an (orthogonal)
direct summand of M. Similarly, a Hilbert module P over A is called orthoprojective in case
whenever P appears as the last term of a short exact isometric sequence, the sequence is
orthogonally split. Equivalently, P is orthoprojective if whenever P appears (isometrically)
as a compression of a Hilbert module M to a co-invariant subspace, then P is an orthogonal
summand of M.

Orthoprojective Hilbert modules are a natural generalization of isometries and orthoin-
jective Hilbert modules are a natural generalization of coisometries. Indeed, if A is the disc
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algebra, then Hilbert modules over A are determined by contraction operators. A contrac-
tion T corresponds to an orthoprojective Hilbert module (resp. an orthoinjective Hilbert
module) if and only if T is an isometry (resp. coisometry). This example is generalized
in [18]. It is helpful to recall some of the details here. A Shilov Hilbert module S over an
arbitrary operator algebra A is one such that the associated representation ρ is obtained by
taking a C∗-representation π of the C∗-envelope of A, π : C∗(A) → B(Hπ), restricting π
to A, and then restricting π(A) to an invariant subspace. That is, S may be viewed as a
subspace of Hπ that is invariant under π(A) and then ρ is given by the formula

ρ(a) = π(a)|S.

The following lemma summarizes facts from [18, Proposition 4.2 and Corollary 4.6] that
we will need.

Lemma 3.1 Let S be a Hilbert module over T+(E) and let ρ be the associated representation.
Then the following assertions are equivalent:

1. S is a Shilov module.
2. S is orthoprojective.
3. ρ is the restriction to T+(E) of σ×V for a unique isometric covariant representation (V, σ)

of E on S.

The interest in these notions is further heightened when one recognizes, as was proved
in [17], that a Hilbert module over a general operator algebra A is simultaneously ortho-
projective and orthoinjective if and only if the associated representation is the restriction
to A of a boundary representation of the C∗-envelope of A, in the following sense: If B
is the C∗-envelope of A, then a C∗-representation π of B on a Hilbert space Hπ is called
a boundary representation of B for A iff π is the only completely positive map from B to
B(Hπ) whose restriction to A coincides with the restriction of π to A. This notion was first
defined by Arveson in [1], but with the extra assumption that π is irreducible. A Hilbert
module over A that comes from a boundary representation of B in this way is called a
boundary Hilbert module.

The following result generalizes the familiar fact that every contraction decomposes into
a direct sum of a coisometry and a contraction that has no coisometric summands. If
the operator happens to be an isometry to begin with, then the coisometric summand is
a unitary operator—which necessarily comes from a boundary representation of the C∗-
envelope of the disc algebra—and the other part is a pure isometry.

Theorem 3.2 If M is a Hilbert module over an operator algebra A, then M may be written
as M = Mp ⊕Mi , where Mi is orthoinjective and Mp is pure in the sense that it contains no
orthoinjective submodules. One or the other summands may, of course, be zero. Further, if M

is orthoprojective, then Mp is orthoprojective and Mi is a boundary Hilbert module.

Proof First observe that if the Hilbert module M is expressed as M =
⋃

Mα, where each
Mα is an orthoinjective Hilbert module, then M is orthoinjective. Indeed, consider a short

exact isometric sequence 0 → M
Φ
→ K → P → 0. Then for every α, 0 → Mα

Φ|Mα
−→
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K → K 	 Φ(Mα) → 0 is a short exact isometric sequence. Consequently K 	 Φ(Mα) is
a submodule of K, i.e., Φ(Mα) is an orthogonal summand of K. But then K 	 Φ(M) =
K	∨Φ(Mα) =

⋂
α K	Φ(Mα) is a submodule of K, showing thatΦ(M) is an orthogonal

summand of K. Thus M is orthoinjective. So, to prove the theorem, all one needs to do
is to set Mi :=

∨
{K ⊆ M | K is orthoinjective}. Then the assertion shows that Mi is

orthoinjective and, of course, no submodule of Mp := M⊥
i is orthoinjective. The fact that

Mp is orthoprojective, if M is follows from [15, Proposition 3.5], which asserts that the
direct sum of two Hilbert modules over an operator algebra is orthoprojective if and only if
each summand is. Likewise, if M is orthoprojective so that Mi is also orthoprojective, then
since it is also orthoinjective, it is a boundary Hilbert module by the main result of [17].

Corollary 3.3 Every submodule of a pure Hilbert module over an operator algebra A is pure.

Proof An orthoinjective summand of a submodule of a Hilbert module M is an ortho-
injective summand of M, too.

To apply these results to the setting of tensor algebras, we use a special case of Rieffel’s
imprimitivity theorem [25, Theorem 6.29]. For the reader’s benefit, we recall the key ideas
behind it. Suppose that F is a Hilbert C∗-module over a C∗-algebra A and that B is a C∗-
subalgebra of L(F). Then if π is a representation of A on a Hilbert space H, we may induce
it to a representation πF of L(F) and restrict πF to B to obtain a representation of B. We
will denote the restriction also by πF. The question arises: Given a representation ρ of B
on the Hilbert space Hρ, when is it (unitarily equivalent to) πF for some representation π
of A? Rieffel’s imprimitivity theorem asserts that this is the case if and only if there is a
(nondegenerate) representation σ of K(F) on Hρ such that

σ(bk) = ρ(b)σ(k)(3.1)

for all b ∈ B and k ∈ K(F). The necessity of the condition is clear. For the sufficiency,
simply observe that if such a σ exists, then as we indicated prior to Lemma 2.1,σF̃ represents
K(F̃) ' A on F̃ ⊗σ Hρ and σ ' (σF̃)F|K(F). It follows that ρ ' (σF̃)F|B.

For our application of this result, first recall that when ϕ(A) ⊆ K(E), the entire algebra
K
(
F(E)
)

is contained in T(E) [19, Theorem 3.13]. So a representation of T(E) yields a
(possibly degenerate) representation of K

(
F(E)
)

by restriction.

Lemma 3.4 Assume ϕ(A) ⊆ K(E). Then a representation ρ of T(E) is of the form πF(E)

(restricted to T(E)) for some representation π of A if and only if the restriction of ρ to K
(
F(E)
)

is nondegenerate.

Proof If ρ = πF(E) restricted to T(E), then as K
(
F(E)
)
⊆ T(E) by the remarks preceding

the statement of the lemma, ρ|K
(
F(E)
)

is nondegenerate. For the opposite implication,
simply note that in the preceding discussion, the representation ρ restricts to K

(
F(E)
)

to
give a representation σ of K

(
F(E)
)

, which is nondegenerate by hypothesis. Evidently, then,
equation (3.1) is satisfied where F = F(E) and B = T(E).
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Our refinement of the Wold decomposition theorem, Theorem 2.9, is an immediate
corollary of this lemma.

Theorem 3.5 Suppose the correspondence E is strict in the sense that the essential subspace
ϕ(A)E is a summand of E, i.e., it is of the form QE for a projection in L(E), suppose, too, that
ϕ is injective and that ϕ(A) ⊆ K(E). If S is a Shilov module for T+(E) and if S = Sp ⊕Si

is the abstract Wold decomposition of S as in Theorem 3.2, then Sp is a Hilbert module that
is induced from a Hilbert module over A and Si is a boundary Hilbert module obtained by
restricting a C∗-representation of O(E) to T+(E). Conversely, every Hilbert module over T+(E)
that is induced is pure.

Proof As we mentioned at the outset of this section, the first part of this lemma is easily
proved on the basis of Theorem 2.9 and Corollary 2.15. We give an alternate proof, based
on Lemma 3.4, that takes advantage of the hypothesis that ϕ(A) ⊆ K(E). We write ρ for
the representation of T+(E) associated with S. Since S is Shilov, we may apply Lemma 3.1
to write ρ as ρ = σ × V where (V, σ) is an isometric covariant representation of E on
S. Since Sp ⊆ S, Sp is Shilov and we can assume for the time being that Sp = S;
i.e., we may drop the “p”. Since (V, σ) is isometric, ρ extends to a C∗-representation of

T(E) on S. Write N =
(
K
(
F(E)
)

S

)⊥
and recall that since ϕ(A) ⊆ K(E), K

(
F(E)
)

is an ideal in T(E). Thus T(E)N ⊆ N. Also K
(
F(E)
)

N = 0. Hence N is a module for
O(E) (which is T(E)/K

(
F(E)
)

by [19, Theorem 3.13]). In particular, N is orthoinjective
by Theorem 6.4 of [18] and the main theorem of [17]. By our assumption, N = {0}. Thus
S =

[
K
(
F(E)
)r

akS
]
. It follows, then, from the imprimitivity theorem, Lemma 3.4, that

there is a representation π of A on a Hilbert space H such that S is unitarily equivalent to
F(E)⊗π H. That is, S is induced.

To see that Si is a boundary Hilbert module, simply note that since S is Shilov, S is also
orthoprojective. Thus Si is a boundary Hilbert module by the second half of Theorem 3.2.
The fact that Si comes from a representation of O(E) follows from Corollary 6.6 of [18].

For the converse assertion, simply note that if S = F(E) ⊗π H is an induced Hilbert
module for T+(E), and if its abstract Wold decomposition is S = Sp ⊕ Si , then Sp and

Si reduce σF(E)
(
T(E)
)

and, in particular, they reduce σF(E)
(
K
(
F(E)
))

, since K
(
F(E)
)
⊆

T(E). By Theorem 6.23 of [25], or by Proposition 2.11 above, both the Hilbert modules Sp

and Si are induced. However, as we have noted before, Si is a boundary Hilbert module,
arising, in particular, from restricting a representation of O(E) = T(E)/K

(
F(E)
)

to T+(E).
Thus, Si viewed as a Hilbert module over T(E) kills the compacts. By Theorem 6.23 of
[25], again, Si (which is induced) must be induced by the zero representation of A, i.e., Si

must be zero.

Remark 3.6 We now have two uses of the word “pure” in the context of Hilbert modules
over tensor algebras: The first, from Corollary 2.15, refers to induced Hilbert modules that
contain no coisometric summands and the second, from Theorem 3.2, refers to Hilbert
modules that contain no orthoinjective summands. Under the hypotheses of Theorem 3.5,
these two notions are the same. However, while in general every orthoinjective (Shilov)
module corresponds to a coisometric, isometric covariant representation, we do not know
when the converse holds.
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4 Beurling’s Theorem

The proof of the Beurling-Lax-Halmos theorem essentially boils down to showing this: If S
is a shift on a Hilbert space H and if M is an invariant subspace, then the dimension of the
wandering subspace M0 (=M	SM) associated to M is less than or equal to the dimension
of the wandering subspace H0 (= H	SH) associated to H. This observation and our analy-
sis of induced isometric covariant representations, in particular, Proposition 2.11, suggests
that when studying a submodule M of an induced Shilov module over T+(E), induced, say
by a representation π0 of A, one should try to compare π0 with the representation π of A
obtained by restricting πF(E)

0 ◦ϕ∞ to the wandering subspace M0 determined by M. As we
shall see in Remark 4.6 below, simple examples show that without additional hypotheses,
π0 and π may be incomparable in the strongest sense: each contains subrepresentations
that are disjoint from the other. Our objective in this section is to identify natural hypothe-
ses that disallow this sort of disjointness and to show how to use them to prove a natural
generalization of Beurling’s theorem for tensor algebras.

Proposition 4.1 Let S be a Shilov Hilbert module over T+(E) that is induced by a repre-
sentation π : A → B(H), let (V, σ) be the associated isometric covariant representation of E,
and let L be the endomorphism of σ(A) ′ constructed from V . If M be a submodule of S, with
projection PM; if M0 is the corresponding wandering subspace, i.e., the range of PM − L(PM);
and if π0 be obtained by restricting σ(·) to M0, then π0 is unitarily equivalent to a subrepre-
sentation of π if and only if there is a partial isometry in End(S) with final space M.

Proof Suppose π0 is unitarily equivalent to a subrepresentation of π, and let u0 : H →
M0 be a partial isometry such that u∗0π0(·)u0 ≤ π(·). Recall that H may be viewed as a
summand of S and that π is just σ restricted to this summand. Thus, if u is defined to be
zero off H and u0 on H, then u is a partial isometry in the commutant of σ(A) with initial
space contained in H and final space M0. For k ≥ 0, set Qk = Pk − Pk+1 = Lk(I)− Lk+1(I),
as above, and set QM

k = Lk(PM) − Lk+1(PM). Then by Proposition 2.11 and Corollary 2.4,

PM =
∑⊕

k≥0 QM
k . Since u has initial space contained in the range of Q0 and range equal to

the range of QM
0 , Lk(u) has initial space contained in the range of Qk and final space equal

to the range of QM
k . Consequently, U :=

∑⊕
k≥0 Lk(u) is a well-defined partial isometry with

range M. Further, since u ∈ σ(A) ′ and L is an endomorphism of σ(A) ′, U lies in σ(A) ′. It
remains, then, to prove that U commutes with V (ξ), ξ ∈ E. On the basis of Lemma 2.2, it
is easy to see that Lk(u)V (ξ) = V (ξ)Lk−1(u) for all k ≥ 1. Indeed, for h ∈ S,

Lk(u)V (ξ)h = Ṽk(Ik ⊗ u)Ṽ ∗k V1(ξ ⊗ h)

= Ṽ1(I1 ⊗ Ṽk−1)(I1 ⊗ Ik−1 ⊗ u)(I1 ⊗ Ṽk−1)∗Ṽ ∗1 Ṽ1(ξ ⊗ h)

= Ṽ1

(
I1 ⊗ Lk−1(u)

)
(ξ ⊗ h)

= V (ξ)Lk−1(u)h.

Consequently, since Q0V (ξ) = 0, so that uV (ξ) = 0, we see that
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UV (ξ) =
∑⊕

k≥0

Lk(u)V (ξ) = uV (ξ) +
∑⊕

k≥1

Lk(u)V (ξ)

= 0 +
∑⊕

k≥1

V (ξ)Lk−1(u) = V (ξ)U .

Conversely, if U is any partial isometry in End(S) whose final space is M, then by
Lemma 2.5,

U P1U ∗ = UṼ1Ṽ ∗1 U ∗ = Ṽ1(I ⊗U )(I ⊗U )∗Ṽ ∗1

= L(UU ∗) = L(PM).

Consequently, U Q0U ∗ = U (I − P1)U ∗ = PM − L(PM) = QM
0 . This shows that the

restriction of U to Q0 is a partial isometry with initial space contained in H and final space
equal to the range of QM

0 . Since this restriction commutes with σ (restricted to H), we see
that the restriction implements an equivalence between π0 and a subrepresentation of π.

Following the traditional theory of shifts, we call a partial isometry in the commutant
of a representation an inner operator. We want to establish the level of uniqueness that is
available in the representation of an invariant subspace as the range of an inner operator.
This requires a little preparation that is of interest in its own right. The following lemma
was inspired by Theorem 2 of [26]; the proof is a minor adaptation of the proof given there.

Lemma 4.2 Let S be a Shilov Hilbert module over T+(E), afforded by an isometric covariant
representation (V, σ) of E, and let U ∈ End(S) be an inner operator. Then

1. the initial projection of U , U ∗U , also lies in End(S); and
2. for all T ∈ T+(E), σ ×V (T) satisfies the equation

U ∗
(
σ ×V (T)

)
UU ∗ = σ ×V (T)U ∗.

Proof Of course U∗U commutes with σ(A), so to prove the first assertion, it suffices to
prove that if M is the range of U∗U , then M reduces {V (ξ) | ξ ∈ E}. First observe that
M = U ∗S. Consequently, for ξ ∈ E, V (ξ)∗M = V (ξ)∗U ∗H = U∗V (ξ)∗H ⊆ U∗H = M,
proving that M is invariant under {V (ξ)∗ | ξ ∈ E}. On the other hand by Lemma 2.5, for
h ∈M and ξ ∈ E,

‖UV (ξ)h‖ = ‖UṼ1(ξ ⊗ h)‖ = ‖Ṽ1(I ⊗U )(ξ ⊗ h)‖

= ‖(I ⊗U )(ξ ⊗ h)‖ = (ξ ⊗U h, ξ ⊗U h)1/2

=
(
σ(〈ξ, ξ〉)U h,U h

)1/2
=
(
Uσ(〈ξ, ξ〉)1/2h,Uσ(〈ξ, ξ〉)1/2h

)1/2

=
(
σ(〈ξ, ξ〉)1/2h, σ(〈ξ, ξ〉)1/2h

)1/2
= (ξ ⊗ h, ξ ⊗ h)1/2

= ‖Ṽ1(ξ ⊗ h)‖ = ‖V (ξ)h‖,
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which shows that V (ξ)h ∈ M. Thus M is invariant under {V (ξ) | ξ ∈ E}, and the first
assertion is proved.

The second assertion is immediate from the first (we need only check the equation on
generators, V (ξ)): Since U and U ∗U ∈ End(S), it follows that U∗V (ξ)UU ∗ =
U ∗UV (ξ)U ∗ = V (ξ)U ∗UU ∗ = V (ξ)U ∗.

Corollary 4.3 In the notation of Proposition 4.1, if U1 and U2 are two inner operators in
End(S) with the same range, then U2 = U1W , where W is a constant inner operator that
maps the initial space of U2 onto the initial space of U1.

Proof Recall that a constant inner operator is a partial isometry in the commutant of σ ×
V
(
T(E)
)

. Observe that U ∗1 U2 is a partial isometry in σ(A) ′ that maps the initial space of
U2 to the initial space of U1 and U1(U ∗1 U2) = U2. Therefore, it suffices to show that both
U ∗1 U2 and (U∗1 U2)∗ = U ∗2 U1 lie in End(S). By the second assertion of Lemma 4.2, for all
ξ ∈ E, V (ξ)U ∗1 U2 = U ∗1 V (ξ)U1U ∗1 U2. Since U1U ∗1 is the projection on the range of U1,
which is the projection onto the range of U2, by hypothesis, U1U ∗1 U2 = U2. Consequently,
U ∗1 V (ξ)U1U ∗1 U2 = U ∗1 V (ξ)U2 = U ∗1 U2V (ξ). This shows that U ∗1 U2 lies in End(S); the
proof that U ∗2 U1 ∈ End(S) is the same.

Recall that two representations π1 and π2 of a C∗-algebra A are called quasi-equivalent,
and one writes π1 ≈ π2, in case a multiple of π1 is unitarily equivalent to a multiple of π2

(see [7, 5.3]). We say that π1 is quasi-contained in π2, and write π1 � π2, in case π1 is quasi-
equivalent to a subrepresentation of π2. Using Proposition 5.3.1 of [7], it is not difficult to
see that π1 � π2 if and only if there is a family {Vi} of partial isometries, with Vi mapping
Hπ2 to Hπ1 and intertwining π1 and π2, such that

∑
i ViV ∗i is the identity operator on Hπ1 .

Definition 4.4 A representation π of A is said to be quasi-invariant with respect to a
correspondence E if π is quasi-equivalent to the representation πF(E) ◦ ϕ∞ = σ of A.

We also write πn for πE ◦ ϕ(n), n ≥ 0. So, when we form the isometric covariant rep-
resentation (V, σ) induced by π, then, clearly, σ (= πF(E) ◦ ϕ∞) =

∑⊕
πn. Observe that

since π0 = π, we see that π ≤ σ.

Lemma 4.5 The representation π of A is quasi-invariant with respect to E if and only if every
πn is quasi-contained in π.

Proof Suppose π is quasi-invariant with respect to E. If πn � π then there is a subrepre-
sentation τ ≤ πn such that τ is disjoint from π. However, then, τ is contained in σ, which
is quasi-equivalent to π, and τ is disjoint from π—which is clearly impossible. Conversely,
if πn - π for all n, then σ =

∑
πn - π ≤ σ. Thus π ∼ σ.

Remark 4.6 The terminology, quasi-invariant, is suggested by ergodic theory and the
theory of dynamical systems. Indeed, suppose the C∗-algebra A is C(X), for a compact
Hausdorff space X, suppose E = C(X), also, and suppose that ϕ is given by a homeomor-
phism τ of X, so that ϕ( f )ξ(x) = f ◦ τ (x)ξ(x). Then as is discussed in [18, Example 2.6],
the module E⊗n may be identified with E = C(X), but the left action ϕn of A = C(X)
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is given by the formula ϕn( f )ξ(x) = f ◦ τ n(x)ξ(x). If µ is a positive measure on X and
π is the representation of C(X) on L2(µ) given by multiplication, then πn is the repre-
sentation of C(X) on L2(µ) given by multiplication by functions composed with τ n; i.e.,
πn( f )ξ(x) = f ◦ τ n(x)ξ(x). It follows in this case that πn is quasi-contained in π if and
only if µ ◦ τ−n � µ. From Lemma 4.5, we conclude that π is quasi-invariant with respect
to E = C(X) if and only if µ ≡

∑∞
n=0 µ ◦ τ

−n. Now recall that a measure µ is called quasi-
invariant under τ in case µ◦τ−1 � µ. A moment’s reflection reveals that this is, in fact, the
same as saying that µ ≡

∑∞
n=0 µ ◦ τ

−n. Thus, we see that our notion of quasi-invariance
extends the ergodic/dynamical-systems-theoretic notion.

This example helps to illustrate, too, the point made at the outset of this section that if
(V, σ) is a covariant representation obtained by inducing a representation π0 of A, so that
σ = πF(E)

0 ◦ϕ∞, and if π is obtained by restricting σ to a wandering subspace, then π and π0

may be entirely unrelated. Indeed, in our example when E = A = C(X), suppose π0 is the
representation determined by a point mass δx, and assume for the sake of this discussion
that x is not a periodic point. Then π0n is the representation determined by δτ n(x). The
representation σ, then, is determined by counting measure along the forward orbit of x.
The Hilbert space of (V, σ) can be taken to be `2(Z+), with the representation σ given
by the formula σ( f )ξ(n) = f

(
τ n(x)

)
ξ(n) and with V given by the formula V ( f )ξ(n) =

f
(
τ n(x)

)
ξ(n− 1), ξ ∈ `2(Z+), f ∈ C(X). It follows, for example, that if M is the subspace

of `2(Z+) consisting of all functions ξ such that ξ(0) = 0, then the wandering subspace
associated with M is the set of all functions ξ such that ξ vanishes at all n 6= 1. The
representation π associated with this subspace is the representation associated with δτ (x);
i.e., π = π0 ◦ ϕ = π01. Evidently, π0 and π are disjoint.

The following result can be viewed as Beurling’s theorem in our context. It extends
Theorem 2.4 of [22] and Theorem 2.1 of [5].

Theorem 4.7 Let π be a representation of A on a Hilbert space H and let S = F(E)⊗π H be
the Shilov Hilbert module over T+(E) that is induced by π. If π is quasi-invariant with respect
to E and if M ⊆ S is a submodule, then there is a family of inner operators {Vi} contained in
End(S), with orthogonal ranges, such that

M =
∑⊕

ViS.(4.1)

Conversely, if every submodule M of S can be represented in this form, for a suitable family
{Vi} of inner operators with orthogonal ranges, then π is quasi-invariant with respect to E.

Proof Let (V, σ) be the isometric covariant representation of E associated with S, so that
σ = πF(E) ◦ϕ∞, and let L be the endomorphism of σ(A) ′ determined (V, σ). As in Propo-
sition 4.1, let PM be the projection of S onto M and let M0 be the range of PM − L(PM).
If πM0 is the representation of A by restricting σ to M0, then πM0 is a subrepresentation of
σ, which, in turn, is quasi-equivalent to π. Thus πM0 - π. Hence there is a family {V0,i}
such that

∑
i V0,iV ∗0,i is the projection onto M0, the initial space of each V0,i is contained

in H, and V0,i intertwines π and πM0 . Hence V0,i ∈ σ(A) ′. If we set Vi =
∑⊕∞

k=0Lk (V0,i)

as in the proof of Proposition 4.1, we conclude that Vi ∈ End(S) and M =
∑⊕ViS as
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required. The ranges of the Vi are orthogonal since this is the case for the V0,i (and L is
normal).

For the converse assertion, observe that if every submodule of S can be represented in
the form of equation (4.1), then in particular, the spaces PnS (=

∑
k≥n E⊗k ⊗π H) have

such a representation. Consequently, we may write PkS =
∑⊕

i ViS, for inner operators
in End(S) having orthogonal ranges. As we saw in the proof of Proposition 4.1, each Vi

maps a subspace of H (regarded as the 0-th summand of S) onto a subspace of E⊗k ⊗π H

isometrically and in such a way that the restriction of Vi to H intertwines π and πn. Further,
if we write V0,i for the restriction Vi to H, it follows easily from the fact that

∑
i ViV ∗i is the

projection onto PkS that
∑

i V0,iV ∗0,i is the projection onto E⊗k ⊗π H. We conclude, then,
that πk � π for all k. By Lemma 4.5, π is quasi-invariant.

5 Quiver Algebras

In this section, we apply the analysis presented so far to study what happens when A is a
finite dimensional C∗-algebra and E is finite dimensional over C. Such a situation is usefully
described in terms of quivers. Our goal, is to identify situations when the invariant subspace
structure of induced Shilov Hilbert modules over the tensor algebra is nicely related to the
ideal structure of the weakly closed algebra generated by the representation.

A (finite) quiver is simply a directed graph with n vertices {v1, . . . , vn} and Ci j arrows
from v j to vi . Here, Ci j is a non-negative integer. We let A denote the C∗-direct sum of n
copies of C indexed by the vertices. It will be convenient to view A as the algebra of all n×n
diagonal matrices. The correspondence over A that we shall associate with the quiver, and
denote by E(C), is defined to be the direct sum of Hilbert spaces,

∑
1≤i, j≤n Hi j , where Hi j

is a Hilbert space of dimension Ci j . For each Hi j , with Ci j > 0, we fix an orthonormal basis

{e(k)
i j : 1 ≤ k ≤ Ci j}, so that E(C) = span {e(k)

i j : 1 ≤ i, j ≤ n, 1 ≤ k ≤ Ci j}. The Hilbert
space E(C) may be viewed as an A-A bimodule via the formulae:

e(k)
i j ell = δ jle

(k)
i j

ϕ(ell)e(k)
i j = δi,le

(k)
i j .

Also, E(C) has an A-valued inner product defined by the formula

〈e(k)
i j , e

(p)
lm 〉 = δk,pδi,lδ j,me j j .

This makes E(C) into a C∗-correspondence over A.
It perhaps should be emphasized that the Hilbert space structure obtained by identify-

ing E(C) with
∑

1≤i, j≤n Hi j plays no role in our discussion. The norm structure on E(C)
viewed as a Hilbert space is different from the norm structure on E(C) viewed as a C∗-
correspondence. It is the latter that is relevant for our considerations here.

If C , B are two Z+-valued n× n matrices, we have

Lemma 5.1 The interior tensor product E(C)⊗A E(B) is naturally isomorphic to E(CB).
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Proof For every pair (i, l), with 1 ≤ i, l ≤ n, the set {(k, r, j) | 1 ≤ k ≤ Ci j , 1 ≤ r ≤
B jl, 1 ≤ j ≤ n} has

∑n
j=1 Ci jB jl (= (CB)il) elements. Hence we may write E(CB) as the

span of all e(k,r, j)
i,l for (k, r, j) in this set. Now define the map

e(k)
i j ⊗ e(r)

jl 7→ e(k,r, j)
il

from E(C) ⊗A E(B) to E(CB) and extend by linearity. It is straightforward to check that
the extended map is a well defined A-A isomorphism that is unitary; i.e., that preserves the
A-valued inner products.

Corollary 5.2 For each n ≥ 2, E(C)⊗n = E(Cn) and F
(
E(C)
)
=
∑⊕∞

n=0E(Cn), where we
identify E(C0) with A.

Every representation π of A is determined by the multiplicities of the 1-dimensional
representations δk, defined by δk(a) = akk, a ∈ A. We write

m(π) =
(
m(π)1,m(π)2, . . . ,m(π)n

)

for the vector of multiplicities (i.e., m(π)k is the multiplicity of δk in π); the m(π)k are
non-negative integers or∞. Given two representations of A, π ′, π ′′, it is easy to see that
π ′ - π ′′ if and only if m(π ′ ′)k = 0 ⇒ m(π ′)k = 0; i.e., iff the support of m(π ′) is
contained in the support of m(π ′ ′).

If π is a representation of A on a Hilbert space Hπ, we may write Hπ =
∑n

k=1 Cm(π)k ,
where C∞ is interpreted as `2. When this is done, we have the following decomposition of
E(C)⊗π Hπ that reflects the choices of the bases we have made:

E(C)⊗π Hπ = E(C)⊗π
∑
π(ekk)Cm(π)k

=
∑

k

E(C)ekk ⊗ Cm(π)k

=
∑

k

span {e( j)
ik ⊗ ep | 1 ≤ p ≤ m(π)k, 1 ≤ j ≤ Cik, 1 ≤ i ≤ n}

=
∑⊕

Ki,

where Ki = span {e( j)
ik ⊗ ep | 1 ≤ p ≤ m(π)k, 1 ≤ k ≤ n, 1 ≤ j ≤ Cik}; i.e., dim Ki =∑

Cikm(π)k =
(
Cm(π)

)
i
. Consequently, for each i, k, j, p as above and a ∈ A,

πE(C)
(
ϕ(a)
)

(e( j)
ik ⊗ ep) = aii(e( j)

ik ⊗ ep).

Hence m(πE(C) ◦ ϕ) = Cm(π).

Corollary 5.3 A representation π of A is quasi-invariant if and only if for every i ∈
supp m(π) and j /∈ supp m(π), (Cl)i j = 0, for all l ∈ N. Hence if C is irreducible then
π is quasi-invariant if and only if for every 1 ≤ k ≤ n, m(π)k 6= 0.
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Proof The fact that supp Cm(π) is contained in supp m(π) implies that for i ∈ supp m(π)
and j /∈ supp m(π), 0 =

(
Cm(π)

)
j
=
∑

k C jkm(π)k ≥ C jim(π)i ; hence C ji = 0. Thus π

is quasi-invariant if this holds for all Cn. If S = supp m(π) and if S 6= {1, . . . , n} then

Sc × S ⊆ {(i, j) | Ci j = 0}.

So, if C is irreducible, this implies that S = {1, . . . , n}.

Fix C and a representation π of A on a Hilbert space H and let m denote the vector
of multiplicities associated with π. We are interested in the Shilov module S(C,m) :=
F
(

E(C)
)
⊗π H for the algebra T+

(
E(C)
)

, and our objective is to understand the structure
of End

(
S(C,m)

)
as a function of C and m. For this purpose, we write ρ(C,m) or simply

ρ for the representation associated to S(C,m), and we shall write A(C,m) or simply A

for the algebra ρ(C,m)
(
T+

(
E(C)
))

. Of course, End
(

S(C,m)
)

is just A(C,m)′. We first

consider the case when m = (1, 1, . . . , 1), i.e., the case when π is multiplicity free and of
full support, so we denote the vector m by 1.

A crucial role in our analysis is played by a natural Hilbert space isomorphism, W , from
S(C, 1) to S(Ct , 1). We emphasize that W is not a module map, but it does reflect the
structure we have been developing. In order to define W we should note first that H = Hπ
is simply Cn and we fix in Cn its usual orthonormal basis {ei}n

i=1. Writing E = E(C), we see

that S(C, 1) = F
(
E(C)
)
⊗π H =

∑⊕∞
k=0E⊗k ⊗π H and, in the notation established above,

E⊗k ⊗π H = span {e(l1)
i1i2
⊗ e(l2)

i2i3
⊗ · · · ⊗ e(lk)

ikik+1
⊗ eik+1 : 1 ≤ l j ≤ Ci j i j+1}.

To shorten the notation we shall write a typical element in this spanning set as e(l1,...,lk)
(i1,...,ik+1)

or simply el
i . Also, for any n, we write θ for the permutation of an n-tuple of integers that

reverses the order. Thus, for i = (i1, . . . , ik+1), we write θ(i) = (ik+1, . . . , i1) and similarly
θ(l) = (lk, . . . , l1). We then define W : S(C, 1)→ S(Ct , 1) by setting

Wel
i = eθ(l)

θ(i),(5.1)

and extending W by linearity. It is easy to check that W is indeed a well defined Hilbert
space isomorphism mapping S(C, 1) onto S(Ct , 1).

Proposition 5.4 The map W relates the algebras A(C, 1) and A(Ct , 1) via the equation

A(C, 1) ′ =W ∗A(Ct , 1)
w

W,

where A(Ct , 1)
w

denotes closure of A(Ct , 1) in the weak operator topology.

Proof To prove that W ∗A(Ct , 1)W ⊆ A(C, 1)′, it suffices to show that for e(k)
i j ∈ E(Ct ),

1 ≤ k ≤ C ji , and for eii ∈ A, we have

W ∗ρ(Ct , 1)(e(k)
i j )W, W ∗ρ(Ct , 1)(eii)W ∈ A(C, 1)′,
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where ρ(Ct , 1)(e(k)
i j ) denotes ρ(Ct , 1)(Te(k)

i j
) ∈ A(Ct , 1). For this we show that they both

commute with ρ(C, 1)(e(r)
q,p) and with ρ(C, 1)(eqq). For simplicity we write ρ, ρt for ρ(C, 1)

and ρ(Ct , 1).

W ∗ρt (e(k)
i j )Wρ(e(r)

q,p)el
i =W ∗ρt (e(k)

i j )We(r,l)
(q,i) · δp,i1

=W ∗ρt (e(k)
i j )eθ(r,l)

θ(q,i) · δp,i1

=W ∗e(k,ln,...,l1,r)
(i, j,in,...,i2,p,q)δp,i1δ j,in+1

= δp,i1δ j,in+1 e(r,l1,...,k)
(q,p,...,in, j,i)

,

ρ(e(r)
q,p)W ∗ρt (e(k)

i j )Wel
i = ρ(e(r)

q,p)W ∗ρt (e(k)
i j )eθ(l)

θ(i)

= ρ(e(r)
q,p)W ∗e(k,ln,...,l1)

(i, j,in,...,i1)δ j,in+1

= ρ(e(r)
q,p)e(l1,...,k)

(i1,...,in, j,i)
δ j,in+1

= δ j,in+1δq,i1 e(r,l1,...,k)
(q,p,i2,..., j,i)

.

The other equalities are proved similarly. This shows that W ∗A(Ct , 1)
w

W ⊆ A(C, 1)′.
The proof of the reverse containment is more involved. We write Qk for the projec-

tion of S(C, 1) =F
(

E(C)
)
⊗ H onto E(C)⊗k ⊗ H and we write Qt

k for the projection of
S(Ct , 1) =F

(
E(Ct )

)
⊗ H onto E(Ct )⊗k ⊗ H, and for k < 0, we set both Qk and Qt

k equal
to 0. Clearly, then, W QkW ∗ = Qt

k and for ξ ∈ E,

Wρ(ξ)W ∗Qt
k = Qt

k+1Wρ(ξ)W ∗, k ∈ Z,

where, again, we write ρ(ξ) for ρ(Tξ). Let Ut =
∑∞

n=0 e−int Qt
n, and for any operator R on

S(Ct , 1), let αt (R) = Ut RU ∗t . Then on ρt
(
T
(
E(Ct )

))
, {αt} is the gauge automorphism

group. Also, we set Φ j(R) =
∫

e−i jtαt (R) dt , for j ∈ Z. Thus Φ j is a bounded operator on
B
(

S(Ct , 1)
)

. A straightforward computation shows that for R ∈ W A(C, 1)′W ∗, Φ j(R) is
given by the formula Φ j(R) =

∑
k Qt

kRQt
k+ j . Therefore for ξ ∈ E, we have

Wρ(ξ)W ∗Φ j(R) =
∑

k

Wρ(ξ)W ∗Qt
kRQt

k+ j

=
∑

k

Qt
k+1Wρ(ξ)W ∗RQt

k+ j

=
∑

k

Qt
k+1RWρ(ξ)W ∗Qt

k+ j

=
∑

k

Qt
k+1RQt

k+ j+1Wρ(ξ)W ∗

= Φ j(R)Wρ(ξ)W ∗,
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which shows that Φ j(R) ∈W A(C, 1) ′W ∗.
Now, for k ≥ 1 and R ∈W A(C, 1) ′W ∗, set

Σk(R) =
∑
| j|<k

(
1−
| j|

k

)
Φ j(R) ∈W A(C, 1) ′W ∗.

Then

Σk(R)
WOT
−→ R

because Σk(R) =
∫
αt (R)Kk(t) dt , where Kk is Fejer’s kernel.

It is left to show that, for every j, Φ j(R) ∈ A(Ct , 1). We now write σt for ρt ◦ ϕ∞.
Then σt is a representation of A and, by what was already proved, σt (A) = ρt

(
ϕ∞(A)

)
⊆

A(Ct , 1) ⊆
(
W A(C, 1)W ∗

) ′
. It suffices to show that, for all i, j, k,

σt (eii)Φ j(R)σt (ekk) ∈ A(Ct , 1).

We note that

Ql

(
F
(
E(C)
)
⊗ H

)
= Qlρ

(
E(C)⊗l

)(
F
(
E(C)
)
⊗ H

)

(as ρ
(
E(C)⊗l

)(
F
(
E(C)
)
⊗H

)
⊇ ρ
(
E(C)⊗l

)
(A⊗H) = E(C)⊗l⊗H = Ql

(
F
(
E(C)
)
⊗H

)
)

and, thus,

Qt
l

(
F
(
E(Ct )

)
⊗ H

)
= Qt

lWρ
(
E(C)⊗l

)
W ∗
(
F
(
E(Ct )

)
⊗ H

)
.

Hence

F
(
E(Ct )

)
⊗ H =

∨
l

Qt
lWρ
(
E(C)⊗l

)
W ∗
(
F
(
E(Ct )

)
⊗ H

)
.(5.2)

For j > 0 and R ∈
(
W A(C, 1)W ∗

) ′
, Φ j(R)Qt

0 = 0. Thus

0 =Wρ
(
E(C)⊗l

)
W ∗Φ j(R)Qt

0

= Φ j(R)Wρ
(
E(C)⊗l

)
W ∗Qt

0

= Φ j(R)Qt
lWρ
(
E(C)⊗l

)
W ∗.

By equation (5.2), Φ j(R) = 0 whenever j > 0. So we can assume that j ≤ 0 and write
p = | j|. Fixing i and k, with 1 ≤ i, k ≤ n, we consider σt (eii)Φ j(R)σt (ekk)ek, where
ek ∈ H = A ⊗ H ⊆ F

(
E(Ct )

)
⊗ H. Clearly it is an element of E(Ct )⊗p ⊗ H and, thus, can

be written as a sum
∑

a(i, l)el
i where each i is of length p + 1. Also it is clear that i1 = i,

since it is in the range of σt (eii). Since Wσ(ekk)W ∗ek = ek, we have

σt (eii)Φ j(R)σt (ekk)ek = σ
t (eii)Φ j(R)σt (ekk)Wσ(ekk)W ∗ek

=Wσ(ekk)W ∗σt (eii)Φ j(R)σt (ekk)ek

=Wσ(ekk)
(∑

a(i, l)eθ(l)
θ(i)

)
.
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Thus i p+1 = k. Now, each el
i is of the form ξl

i ⊗ ek, for ξl
i ∈ E⊗p. We claim, therefore, that

σt (eii)Φ j(R)σt (ekk) =
∑

a(i, l)ρt (ξl
i)(5.3)

(note that this is a finite sum). Write the right hand side of equation (5.3) as S. We
know that σt (eii)Φ j(R)σt (ekk)ek = Sek and both sides vanish when applied to eq, q 6= k

(as i p+1 = k); hence σt (eii)Φ j(R)σt (ekk)Qt
0 = SQt

0. For q ≥ 0, Qt
q

(
F
(
E(Ct )

)
⊗ H

)
=

Wρ
(
E(C)⊗q

)
W ∗Qt

0

(
F
(
E(Ct )

)
⊗ H

)
and, for ξ ∈ E⊗q, h ∈ Qt

0

(
F
(

E(Ct )
)
⊗ H

)
we have

σt (eii)Φ j(R)σt (ekk)Wρ(ξ)W ∗h =Wρ(ξ)W ∗σt (eii)Φ j(R)σt (ekk)h

=Wρ(ξ)W ∗Sh

= SWρ(ξ)W ∗h.

(We used the fact that S ∈ A(Ct , 1) ⊆
(
W A(C, 1)W ∗

)′
.) This proves equation (5.3) and it

follows that, for each i, j, k, σt (eii)Φ j(R)σt (ekk) ∈ A(Ct , 1). This completes the proof.

Proposition 5.4 extends a result of Popescu [22, Corollary 1.3] and Davidson and Pitts
[5, Theorem 1.2]. Their analyses fit into ours if one takes n = 1, m = 1 and C to be a 1× 1
matrix, which necessarily must be Ct .

In order to deal with the case of a general m we need only note that as a consequence of
Corollary 2.13, we have

Lemma 5.5 If π is expressed as the direct sum of two representations π = π1⊕π2 and if the
multiplicity of πi is mi, i = 1, 2, then ρ(C,m1)⊕ ρ(C,m2) = ρ(C,m1 + m2).

In the following, σt and H are as in Proposition 5.4.
Write τ (a) =W ∗σt (a)W , a ∈ A. Then

τ (eii)el
i =W ∗σt (eii)eθ(l)

θ(i) = δin,iW
∗eθ(l)
θ(i) = δin,i e

l
i.

Hence τ (eii)(ξ ⊗ h) = ξ ⊗ Pih where ξ ∈ F
(

E(C)
)

, h ∈ H and Pi is the projection onto
the subspace of H spanned by ei . From Proposition 5.4 we know that τ (eii) ∈ A(C, 1)′.
Suppose now that m(π) is a vector of 1’s and 0’s and set Γ = {1 ≤ i ≤ n : m(π)i = 1}.
We can clearly view Hπ as a subspace of Cn (= Hπ0 where m(π0) = 1) and F

(
E(C)
)
⊗

Hπ is a subspace of F
(
E(C)
)
⊗ Cn. In fact, we can identify F

(
E(C)
)
⊗ Hπ with∑

i∈Γ τ (eii)
(
F
(

E(C)
)
⊗ Cn

)
. We write H for Cn and P(Γ) for

∑
τ (eii). Note that P(Γ) ∈

A(C, 1) ′.

Lemma 5.6 Viewing A(C,m) ⊆ B

(
P(Γ)
(
F
(

E(C)
)
⊗ H

))
we have

A(C,m)′ = P(Γ)A(C, 1) ′P(Γ).
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Proof From the considerations above it follows that A(C,m) = A(C, 1)P(Γ) and P(Γ) ∈
A(C, 1). So the lemma follows.

Now we consider a general multiplicity vector m. Let N = maxi mi and let Γi = { j :
m j ≥ i}, 1 ≤ i ≤ N . Given π with m(π) = m we may write ρ(C,m) =

∑N
i=1 ρ(C, m̃i)

where (m̃i) j = χΓi ( j), thanks to Lemma 5.5. Hence F
(
E(C)
)
⊗ Hπ can be identified with

the direct sum,

F
(

E(C)
)
⊗ Hπ =

N∑⊕
P(Γi)

(
F
(
E(C)
)
⊗ H

)

and

ρ(C,m) =
N∑

i=1

ρ(C, 1)|P(Γi)
(
F
(
E(C)
)
⊗ H

)
.

(Here, as above, F
(
E(C)
)
⊗ H is the representation space of ρ(C, 1)). We can also write(

F
(
E(C)
)
⊗H

)(N)
for the direct sum of N copies of F

(
E(C)
)
⊗H and P(m) for the projec-

tion of
(
F
(

E(C)
)
⊗ H

)(N)
onto

∑⊕N

i=1P(Γi)
(
F
(

E(C)
)
⊗ H

)
. Thus, P(m) =

∑⊕ P(Γi).

Theorem 5.7 For every representation π of A on Hπ we can identify F
(

E(C)
)
⊗π Hπ with

P
(

m(π)
)(

F
(
E(C)
)
⊗ H

)(N)
, where N is max m(π)i , and then

End
(
F
(
E(C)
)
⊗π Hπ

)
= P
(

m(π)
)
MN

(
W ∗A(Ct , 1)W

)w
P
(

m(π)
)

where W is the unitary operator defined by equation (5.1) and where MN

(
W ∗A(Ct , 1)W

)w

is the algebra of N × N matrices over W ∗A(Ct , 1)W
w

.

Proof Straightforward.

Our objective now is to identify useful, general conditions under which σ-weakly con-
tinuous linear functionals on A(E(C),m) are vector functionals.

Definition 5.8 We shall say that the quiver, or its incidence matrix C , satisfies the entrance
condition in case there is a k > 0 such that for all 1 ≤ i ≤ n,

∑n
j=1(Ck)i j ≥ 2.

The reason for the terminology is that the condition means that there is a k such that
each vertex is the range of at least two distinct paths of length k; i.e., at least two distinct
paths of length k enter each vertex. Observe that any quiver or matrix that is primitive in the
sense that there is a k such that for all i and j, (Ck)i j > 0 satisfies the entrance condition.
(Primitive quivers are also called aperiodic.)

https://doi.org/10.4153/CJM-1999-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-037-8


Tensor Algebras 877

Lemma 5.9 Suppose that C satisfies the entrance condition, and suppose π is a representa-
tion of A with m(π) = 1. If S is the T+(E)-module F

(
E(C)
)
⊗π Hπ , then there are infinitely

many, pairwise orthogonal submodules {Si}∞i=1 of S such that each is isomorphic to S; i.e.,
there are infinitely many inner isometries Vi such that Si = ViS.

Proof First note that it suffices to prove that there exist two inner isometries, V1 and W1,
with orthogonal ranges, say S1,S

′
1. Indeed, suppose we can prove this. Then the sequence

of inner isometries {V k
1W1}∞k=1 has pairwise orthogonal ranges. In order to construct the

desired V1 and W1 (or S1,S
′
1), it will suffice to construct in E⊗k ⊗π H two orthogonal

subspaces, M0 and N0, such that the representations of A, σ|M0 and σ|N0, will both be
equivalent to π. (The index k in E⊗k ⊗π H is the k that appears in the entrance condi-
tion, i.e., the hypothesis that

∑n
j=1(Ck)i j ≥ 2.) The fact that M0 and N0 are contained

in E⊗k ⊗π H guarantees that M0 and N0 are wandering subspaces. The isometries V1 and
W1 are then constructed as in Proposition 4.1 and S1,S

′
1 are defined by the equations

S1 = ρ
(
T+(E)

)
M0, S ′1 = ρ

(
T+(E)

)
N0.

To produce M0 and N0, note that the entrance condition,
∑n

j=1(Ck)i j ≥ 2 for all i,

implies that mk := m(E⊗k ⊗π H) = Ck1 ≥21. Hence, in particular, mk ≥ m ⊕ m. Thus,
there are two orthogonal subspaces M0 and N0 of E⊗k ⊗π H that reduce σ such that the
multiplicity of each is 1; i.e., σ|M0 and σ|N0 are both equivalent to π.

With this lemma available, we are in a position to apply the argument of [5, Theo-
rem 2.10] to prove that every σ-weakly continuous linear functional on A(C, 1) is a vector
functional when C satisfies the entrance condition.

Theorem 5.10 Suppose m(π) = 1 and that C satisfies the entrance condition. Then every
σ-weakly continuous linear functional f of norm < 1 on A(C, 1) is implemented by a pair of
vectors of norm< 1; i.e., there are vectors ξ, η in F(E)⊗π Hπ , with ‖ξ‖, ‖η‖ < 1, such that

f (T) = 〈Tξ, η〉, T ∈ A(C, 1).

Proof The proof is as in [5, Theorem 2.10]. Since f is σ-weakly continuous and of norm
< 1, there are vectors ξk, ηk, ‖ξk‖, ‖ηk‖ < 1, and numbers sk ≥ 0 with

∑
sk < 1 such that

f (T) =
∑∞

k=1 sk〈Tξk, ηk〉, T ∈ A(C, 1). Let {Vi} be a sequence of inner isometries, with
orthogonal ranges (such a sequence exists, by Lemma 5.9), and set

ξ =

∞∑
k=1

s
1
2
k Vkξk, η =

∑
s

1
2
k Vkηk.

Then ‖ξ‖, ‖η‖ < 1, and f (T) =
∑

sk〈TVkξk,Vkξk〉 = 〈Tξ, η〉, T ∈ A(C, 1).

This result enables us to use the argument from [4, Theorem 2.1] to show that there is a
bijective correspondence between the right ideals in the algebra A(C, 1)

w
and Lat A(C, 1)′.

We start by adopting the following notation. We write T0 for the ideal in T+(E) generated
by {Tξ | ξ ∈ E}. We write A for A(C, 1) and B = A

w
. By Idr(B) we denote all the right

ideals in B that are closed in the weak operator topology and by Lat A ′ the lattice of all
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closed A ′-invariant subspaces. If S is a family of vectors in a Hilbert space K, we shall
write [S] for the closed linear span of S in K. For I ∈ Idr(B) and M ∈ Lat A ′ we set

µ(I) =
[
I
(
F
(

E(C)
)
⊗ H

)]
and ι(M) =

{
T ∈ B : T

(
F
(

E(C)
)
⊗ H

)
⊆M

}
.

Lemma 5.11

1. µ
(
Idr(B)

)
⊆ Lat A ′.

2. ι(Lat A ′) ⊆ Idr(B).

Proof Obvious.

In order to show that µ and ι are inverse maps, we need the following lemma.

Lemma 5.12 Let m(π) = 1 and fix ξ ∈ F
(

E(C)
)
⊗ Hπ. Then there is an inner operator

U ∈ A(C, 1) ′ whose range is [A(C, 1)ξ].

Proof First assume that ξ is a wandering vector; i.e., assume ρ(T0)ξ ⊥ ξ. If we set
ξ ′ =

∑ σ(ekk)ξ
‖σ(ekk)ξ‖ , where the sum ranges over all k such that σ(ekk)ξ 6= 0, then it is easy

to check that [σ(A)ξ] = [σ(A)ξ ′]. Hence ξ ′ is also a wandering vector and [A(C, 1)ξ] =
[A(C, 1)ξ ′]. We may therefore replace ξ by ξ ′ and assume that, for every k, ‖σ(ekk)ξ‖ is
either 0 or 1. Then we may define a partial isometry U0 : H → [σ(A)ξ] by setting U0ek =
σ(ekk)ξ, for every k and defining U0 to be zero on the orthogonal complement of span M0

of the ek’s. Then U0 ∈ σ(A) ′ and its range is [σ(A)ξ]. Since M0 and [σ(A)ξ] are wandering
subspaces, we can then use Proposition 4.1 to obtain U as required. Now suppose ξ is an
arbitrary vector in F

(
E(C)
)
⊗ H. Write N = [A(C, 1)ξ] and N0 = N 	 [ρ(T0)N]. By

Proposition 2.11, we know that N0 is different from zero and that if we set η = PN0ξ, then
η 6= 0. Further, η is a wandering vector and, clearly, [A(C, 1)η] ⊆ [A(C, 1)ξ] (= N). If
we show that [A(C, 1)ξ] ⊆ [A(C, 1)η], we will be done. In fact, it will suffice to show that
N0 ⊆ [A(C, 1)η] (since N = [A(C, 1)N0]). So fix h ∈ N0. Since h ∈ N = [A(C, 1)ξ]
there is a sequence {Tn} ⊆ A(C, 1) such that Tnξ → h. Thus, also, PN0 Tnξ → PN0 h = h.
For every n, Tn = T ′n + T ′ ′n where T ′n ∈ σ(A) and T ′ ′n ∈ ρ(T0). But PN0 T ′ ′n ξ = 0 since
T ′ ′n ξ ∈ [ρ(T0)N] ⊆ N⊥0 . Thus PN0 T ′nξ → h. As PN0 commutes with σ(A) we conclude that
T ′nη = T ′nPN0ξ = PN0 T ′nξ → h. This shows that h ∈ [A(C, 1)η]. Since this holds for all
h ∈ N0, we are done.

Theorem 5.13 If C satisfies the entrance condition, then µ = ι−1. Hence, in this case there
is a bijective, order preserving correspondence between Idr(B) and Lat A ′.

Proof The inclusions µ
(
ι(M)

)
⊆ M (M ∈ Lat A ′) and I ⊆ ι

(
µ(I)
)

(I ∈ Idr(B)) follow
immediately from the definitions. We shall prove the reverse inclusions.

For the inclusion M ⊆ µ
(
ι(M)

)
, observe that we have A ′ = W ∗B(Ct )W , where

B(Ct ) = A(Ct , 1)
w

, by Proposition 5.4. Since A ′M ⊆ M we have B(Ct )W M ⊆ W M.
We write N for W M ⊆ F

(
E(Ct )

)
⊗ H. By Proposition 2.11,

N = N0 ⊕ [ρt (E)N0]⊕ [ρt (E⊗2)N0]⊕ · · · .
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Hence

M =M1 ⊕ [R1M1]⊕ [R2M1]⊕ · · ·

where M1 = W ∗N0 and Rk = W ∗ρt
(
E(Ct )⊗k

)
W ⊆ A ′. Fix ξ ∈ M1. Applying

Lemma 5.12 to W ξ (∈ N0) we find an inner operator U ∈ A(Ct , 1)′ = W BW ∗ whose
range is [A(Ct , 1)W ξ]. Write U0 for W ∗UW (∈ B). Then U0 is an inner operator whose
range is W ∗[A(Ct , 1)W ξ] = [A ′ξ]. Since [A ′ξ] ⊆ M (as ξ ∈ M1 and A ′M ⊆ M)

and [A ′ξ] = U0

(
F
(
E(C)
)
⊗ H

)
, we see that U0 ∈ ι(M). But then ξ ∈ [A ′ξ] =

U0

(
F
(

E(C)
)
⊗ H

)
⊆
[
ι(M)

(
F
(
E(C)
)
⊗ H

)]
= µ
(
ι(M)

)
. This shows that M1 ⊆

µ
(
ι(M)

)
. However, since µ

(
ι(M)

)
is in Lat A ′, M = W ∗N = W ∗[A(Ct , 1)N0] =

[W ∗A(Ct , 1)W M1] = [A ′M1] ⊆
[
A ′µ
(
ι(M)

)]
⊆ µ
(
ι(M)

)
.

For the inclusion, I ⊇ ι
(
µ(I)
)
, let I ∈ Idr(B) and fix ξ ∈ F

(
E(C)
)
⊗ H. Us-

ing Lemma 5.12, we may find an inner operator U ∈ A(C, 1) ′ whose range is [Aξ].

We then have [Iξ] = [IAξ] =
[
IU
(
F
(
E(C)
)
⊗ H

)]
= U

[
I
(
F
(
E(C)
)
⊗ H

)]
=

Uµ(I) and, similarly,
[
ι
(
µ(I)
)
ξ
]
=
[
ι
(
µ(I)
)
Aξ
]
=
[
ιµ(I)U

(
F
(
E(C)
)
⊗ H

)]
=

U
[
ιµ(I)

(
F
(

E(C)
)
⊗ H

)]
⊆ Uµ(I). Since ι

(
µ(I)
)
⊇ I, [ιµ(I)ξ] ⊇ [Iξ] = Uµ(I).

Hence [ιµ(I)ξ] = Uµ(I) = [Iξ]. This holds for every ξ ∈ F
(

E(C)
)
⊗ H. The argument

used in [4, Theorem 2.1], using Theorem 5.10, now applies to show that I = ι
(
µ(I)
)

.

Acknowledgement We would like to thank Neal Fowler and Iain Raeburn for helpful con-
versations on the material of this paper and for the opportunity to present some of the re-
sults from it in seminars at the University of Newcastle. We would also like to thank Ken
Davidson and Gelu Popescu for helpful comments on an earlier draft of this paper. We
encourage the reader to consult their papers cited in the references for antecedents to some
of our results and for further information about noncommutative function theory. Finally,
we are grateful to the referee for very helpful comments and, in particular, for simplifying
our original proof of Lemma 5.9.

References
[1] Wm. Arveson, Subalgebras of C∗-algebras. Acta Math. 123(1969), 141–224.
[2] A. Beurling, On two problems concerning linear transformations in Hilbert space. Acta Math. 81(1949), 239–

255.
[3] D. Blecher, Z.-J. Ruan, and A. Sinclair, A characterization of operator algebras. J. Funct. Anal. 89(1990),

188–201.
[4] K. Davidson and D. Pitts, The algebraic structue of non-commutative analytic Toeplitz algebras. Math. Ann.

311(1998), 275–303.
[5] , Invariant subspaces and hyper-reflexivity for free semigroup algebras, Proc. London Math. Soc., to

appear.
[6] L. Coburn, The C∗-algebra generated by an isometry. Bull. Amer. Math. Soc. 73(1967), 722–726.
[7] J. Dixmier, C∗-Algebras. North-Holland, 1977.
[8] S. Doplicher, C. Pinzari, and R. Zuccante, The C∗-algebra of a Hilbert bimodule. Boll. Un. Mat. Ital. B (8)

1(1998), 263–281.
[9] S. Doplicher and J. Roberts, A new duality theory for compact groups. Invent. Math. 98(1989), 157–218.
[10] R. G. Douglas and V. Paulsen, Hilbert Modules for Function Algebras. Research Notes in Math. 217, Long-

man, 1989.

https://doi.org/10.4153/CJM-1999-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-037-8


880 P. S. Muhly and B. Solel

[11] N. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule. Preprint.
[12] P. Halmos, Shifts on Hilbert spaces. J. Reine Angew. Math. 208(1961), 102–112.
[13] K. K. Jensen and K. Thomsen, Elements of KK-Theory. Birkäuser, Boston, Bassel, Berlin, 1991.
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