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COMBINED TWO STABILITIES IMPLY AXIOM A
FOR VECTOR FIELDS

LAN WEN

It is proved in this paper that if a vector field is both C1 structurally stable and
topologically stable, then it satisfies Axiom A.

1. INTRODUCTION

Let M be a compact Riemannian manifold without boundary. In this note we
present a proof of the following Theorem A. See Section 2 for precise definitions.

THEOREM A. If a vector field X of M is both C1 structurally stable and topo-
logically stable, then X satisfies Axiom A.

Note that by combining Theorem A with earher results of Nitecki [10] and Robinson
[13, 14, 15], it follows immediately that X is C1 structurally stable and topologically
stable if and only if X satisfies Axiom A and the strong transversality condition. See
[5] for more details about this.

For the case of diffeomorphisms, Theorem A was established by Hurley [5], and
considerably strengthened later by Mane [9] who solved the famous C1 stability con-
jecture of Palis and Smale [12] which reduced to proving that C1 structural stability
alone implies Axiom A. We note that for the case of vector fields, the C1 stability
conjecture still remains open if dim M ^ 4, and what we do in the present note is to
generalise Hurley's result to the case of vector fields. We point out that we are not the
one who first tried to do this. In fact, Chi, Choi and Park[l] have recently given a proof
for Theorem A. Unfortunately, the proof given in [1] contains some serious gaps as we
point out below, and the aim of the present note is to provide a way of making it up.

The main reason the proof in [1] falls short is that there is a delicate difference
between the case of vector fields and that of diffeomorphisms regarding the results of
Liao [6] and Mane [8]. This is the type of problem of "separation implies Axiom A".
To be more precise, let X1(M) be the set of C1 vector fields of M, and X*{M) be
the set of vector fields X that have a C1 neighbourhood U in X1(M) such that all
singularities and all periodic orbits of every Y 6 U are hyperbolic. Let Sing(X)
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be the set of singularities of X, and A;(X) be the closure of the union of hyperbolic
periodic orbits of X whose stable manifolds have dimension i. Similarly, let Diff1 (M)
be the set of C1 diffeomorphisms of M, and T*(M) be the set of diffeomorphisms /
that have a C1 neighbourhood U in Diff1 (M) such that all periodic points of every
g E.U are hyperbolic. Let A<(/) be the closure of the set of hyperbolic periodic points
of / whose stable manifolds have dimension i. An important theorem obtained by Liao
[6] was the following

THEOREM L. (Liao). Assume that there is a C1 neighbourhood W of X
in X*(M) together with some mutually disjoint open sets G and Wi of M, i =
I , - - ,d imM, such that for every Y G W one has Sing(y) C G and A;(F) C
Wi, i = 1, • • • ,dimM. Then X satisfies Axiom A.

Not long after, Mane [8] obtained another important theorem of this type for the
case of diffeomorphisms:

THEOREM M. (Mane). Assume that f is in .F*(M) and Aj(/) ("I Aj(f) - <j> for

all 0 ^ i < j' ^ dim M. Then f satisfies Axiom A.

Note that the separation assumption made in Theorem M for diffeomorphisms is
weaker than that in Theorem L for vector fields. Hence it remained for some time an
important question whether or not Theorem L could be strengthened to the following
statement which is an analogue of Theorem M for the case of vector fields.

STATEMENT S: If X is in X*(M), and if Sing(X) and Ai(X),i = 1, • • • , dimM,
are mutually disjoint, then X satisfies Axiom A.

Strikingly enough, statement S was shown false by an example of Ding [2]. This
was a warning that there are some delicate differences between X* and T* . See [7] for
more comments about this.

Unfortunately, it is statement S that is assumed as a major argument to prove
Theorem A. Thus the proof is incomplete. (This does not affect the proof of Hurley [5]
because he used Theorem M.) In the present note we shall use Theorem L to fill the
gap. Another point which is missed in [1] is the problem of dealing with singularities.
This will be made up by Lemma 4 of Section 3 below.

2. PRELIMINARIES

Let X1(M) be the set of C1 vector fields on M. We say that Y G X1(M) is
semiconjugate to X G X1(M) if there is a continuous surjection h : M —> M and a
continuous map r : M x R —> R such that:

(1) for all x G M,T(X,Q) — x, and T(X,») : R —* R is an orientation preserv-
ing homeomorphism;
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(2) for all x G M and t G R, h{^(x,t)) = 4>{hx,r{x,t)), where <f> and xp
are the flows induced by X and Y respectively.

The pair (h,r), or more briefly, the surjection h, is called a semiconjugacy from Y to
X . If h can be taken as a homeomorphism, we say that Y is conjugate, or topologically
equivalent, to X , and h is a conjugacy, or a topological equivalence.

We shall consider both the C° and the C 1 topology on X1(M). X is called C 1

structurally stable if there is a C1 neighbourhood U of X in A'1(M) such that any
Y G W is conjugate to X . X is called topologically stable if for any e > 0, there is a C°
neighbourhood U of X in ^ ( M ) such that for any Y G U, there is a semiconjugacy
h = hy from Y to X with d(hx,x) < e for any x £ M, where d is the distance
induced by the Riemannian metric. Note that in the definition of topological stability
an arbitrarily small e is involved. This will play a crucial role in the final proof of
Theorem A below.

Let X G X1(M) and <f>t = <f>{»,t) be the induced flow of X . A point x G M is
a non-wandering point of X if for any neighbourhood U of x in M, there is a t ^ 1
such that <f>t(U) (1 U ̂  <j>. The set of non-wandering points of X is denoted fi(X).
Clearly, the singularities and the points of periodic orbits are all non-wandering. We
say that X satisfies Axiom A if the following two conditions are satisfied.

Axiom A(a). The tangent flow d<j>t : T M —» T M leaves invariant a continuous
splitting Tn(X)M = E' @ SpanX © Eu such that, for some constants C > 0 and
A > 0 ,

\\d<f,t\E'(x)\\^Cexp(-\t),

for any t > 0 and x G

Axiom A(b). The periodic orbits are dense in f2(X)-Sing(X) .

Note that if X satisfies Axiom A, then the singularities are bounded away from

the periodic orbits by the continuity of the invariant splitting.

Denote

W(x) = {y G M | d(<f>t(y),<t>t(*)) -» 0 as t ^ oo},

and W"{x) = {y G M \ d{<j>t(y), <t>t{x)) -* 0 as t -+ - o o } .

We call W'(x) and Wu(x) the stable and the unstable manifold of x, respectively. If
A is a subset of M, define W'(A) to be the union of W'{x) for x G A. Similarly
we define ^ " ( , 4 ) . If 7 is a hyperbolic periodic orbit of X , then W{t) and Wu{f)

are immersed submanifolds of M with dim ^ " ( 7 ) + dim ^ " ( 7 ) = dim M + 1. We call
d imW J (7 ) the index of 7 . If X satisfies Axiom A, then for any x G M, W'(x) and
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Wu(x) are immersed submanifolds of M. In this case we say that X satisfies the strong
transversality condition if W'(x) is transverse to Wu(x) at any x £ M. It is well
known that if X satisfies Axiom A and the strong transversality condition, then X is
both C 1 structurally stable and topologically stable [10, 14, 15].

Let x, y G M and e,T > 0 be given. A finite sequence {(x^, t t )}, t = I , - - ,n ,
in M x E is called an (e,T)-chain from i to y if i i = x, *,- ^ T for * =
I , - - , n , d(<f>(xi,U),xi+1) < e for i - I , - - , n - 1 , a n d d(<j>(xn,tn),y) < e. D e n o t e
x ~ y if for any e,T > 0, there is an (e,T)-chain from x to y and an (e,T)-chain
from y to x. A point x is chain recurrent if x ~ x. Let CR(X) denote the set of
chain recurrent points of X. Clearly, ~ is an equivalence relation on CR(X). The
equivalence classes are called the chain components of X. The chain components of X
are disjoint, closed, invariant sets.

3. THE PROOF OF THEOREM A

In this section we prove Theorem A. The route of the proof will be essentially that
of Hurley [5] with some specific consideration put on the singularities.

By virtue of Theorem L quoted in Section 1, the proof of Theorem A reduces
to proving that if X is both C1 structurally stable and topologically stable, then X

satisfies the assumptions of Theorem L. To this end we shall need the following four
lemmas. Three of them have been essentially obtained by Hurley [4, 5], and the fourth
one is an easy application of the C° perturbation technique.

LEMMA 1. ([4]) Assume that X is topologically stable. Then the union of the

singularities and periodic orbits of X is dense in the chain recurrent set of X. Moreover,

X has only finitely many chain components.

LEMMA 2 . Assume that X is topologically stable, and that Y is semiconjugate

to X by a semiconjugacy h. Then h maps each chain component of Y into some

chain component of X, and each chain component of X is the h -image of some chain

component of Y.

For the case of diffeomorphisms, Lemma 2 was proved in [5]. The proof works for
vector fields equally well.

LEMMA 3 . Let X be both C1 structurally stable and topologically stable, and

C be any chain component of X which is not just a single point. Then all periodic

orbits of C have the same index.

The proof of Lemma 3 given below is a slight modification of the proof given in [5]
for the case of diffeomorphisms. A refined version of Lemma 3 is proved in [1].

PROOF: Since X is topologically stable, there is a C° neighbourhood U of X

in X1(M) such that each Y G U is semiconjugate to X by a continuous surjection
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h. By Shub's C° density theorem [16] we can find a Y € U such that Y satisfies
Axiom A and the strong transversality condition. It is standard that in this case
C R ( y ) = fi(y), and the chain components of Y are exactly those basic sets of Y in
the spectural decomposition of fl(Y"). Let C be any chain component of X which is
not just a single point. By Lemma 2, there is a basic set, say fii, of Y such that
h(Q.\) = C. It is a standard fact about basic sets that, for any two points x and
y in Cli, whether on periodic orbits or not, one has W'(O(x)) PI Wu(O(y)) ^ <f>,
where O(x) and O(y) denote the Y-orbit of x and y respectively. It follows from the
semiconjugacy that for any two periodic orbits 71 and 72 of C, W'{fi) D ^ " ( 7 2 ) 7̂  <f>-
Since X is C 1 structurally stable, the intersections of WM(^(\) and ^ " ( 7 2 ) are all
tranverse [13]. Then 71 and 72 must have the same index. In fact, if we denote Si =
d i m W ( n ) , U{ = dim W"(7i), i = 1,2, then s\ + u i = S2+U2 = d i m M + 1. Moreover,
si +1*2 ^ d imM + 1, S2 +wi ^ d imM + l by transversality. Thus aj = S2, ui = U2 . LI

As Hurley [5] observed, a direct consequence of Lemma 3 is that, if X is both C1

structurally stable and topologically stable, then A,(X) C\ Aj(X) = <j> for 1 ^ i <
j ^ d i m M . Note that it is still not yet clear in this case if the periodic orbits could
accumulate on the singularities. The following lemma deals with this, which is missed
in [1].

LEMMA 4 . If X is both C1 structrually stable and topologically stable, then
Sing(X) fl Ai{X) = <j> for all i = l,--- ,dimM.

PROOF: If dimM = 2, Lemma 4 is certainly true according to Peixoto's classical
results [11]. Hence we shall assume dimM ^ 3 below.

Suppose for contradiction that there is a sequence of periodic orbits 71,72, • ' ' oi X
that accumulate on a singularity <T of X, that is, there is a sequence of points ztJt € ~yik

such that Zik —> <r. Clearly, a must be a saddle. We shall find a C1 vector field Y,
arbitrarily C° close to X and coinciding with X in a neighbourhood of er, such that
Y has a homoclinic orbit associated with 7. Then since X is topologically stable, Y is
semiconjugate to X by some semiconjugacy, which would give back a homoclinic orbit
of X associated with a singularity of X. But X is also C1 structurally stable and
hence can not have any homoclinic orbits. This contradiction will complete the proof
of Lemma 4. Thus it remains to find such a C° perturbation Y. This is just an easy
application of the C° perturbation technique. We only sketch the way the perturbation
is made.

Let 5 ' and 5" be two small closed balls of center a in W'{a) and Wu(<r),
respectively. By compactness of 5* and Su there are two points p 6 5" and q G S'
such that {71} accumulates on both p and q. About p and q we take two small flow
boxes Bp = Ep x / and Bq = S, x J, where Ep and E, are local transversals. We
can find a subarc [x,y] of some 7^, leaving Bp at x and entering Bq at y, see figure 1.
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There are probably some intermediate intersections of [x,y] with the two flow boxes.

SUCwu(a)

SSCwS(a)

Now a standard way of C° perturbation creates a C1 vector field Y, arbitrarily C°
close to X and coinciding with X outside Bp and Bq, such that Y has a homoclinic
orbit associated with <r. The intermediate intersections will not affect the perturbation
process since we have assumed dimM ^ 3 and hence dimEp = dimE? ^ 2. In fact,
the perturbation can be made so that the positive Y -orbit of p hits x before leaving
Bp, then goes through [x,y] to get to y since [x,y] remains unperturbed, and finally
hits q right afterwards. D

Now we prove the main result of this paper.

THEOREM A. It X is both C1 structurally stable and topologically stable, then
X satisfies Axiom A.

PROOF: By Lemma 1, X has only finitely many chain components Cj, • • • , Cp,
each being the closure of a union of some singularities and periodic orbits. By Lemma 4,
singularities are bounded away from periodic orbits. Thus each singularity itself forms
a chain component of X, and each of the other chain components has, by Lemma
3, a unique value of the index of periodic orbits. Without loss of generality we may
assume that the subscripts of Cj have been arranged so that C\, • • • , C*o are each a
singularity, and Cko+i, • • • ,0^ are the chain components whose periodic orbits have
index 1, and so on. In other words, Sing(X) = {Cj,- • • , (7^}, and Ai(X) is the union
of Cj, j = k{-i + 1,- • • ,fcj. In particular, Sing(A') and Aj(-X") are mutually disjoint,
t = 1, • • • , dim M.

Let e > 0 be small enough such that the e-neighbourhoods of these sets,
iVe(Sing(X)), Ne(\i(X)), i = 1, • • • ,dimM, are mutually disjoint. For this e, there
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is a C 1 neighbourhood W of X in X*(M) such that

(1) each Y G W is conjugate (that is, topologically equivalent) to X , and is
semiconjugate to X by a semiconjugacy h with d(h,id) < e /2 ;

(2) each Y € W is both C 1 structurally stable and topologically stable.

The existence of such a W follows directly from the definitions of C 1 structural
stability and topological stability, together with the two standard facts that any C1

structurally stable system is in X* (see [3]), and that topological stability is a conjugacy
invariant. There will be in fact an additional condition we want W to satisfy, see the
end of the proof. Now denote

G = Ne/2 (Sing(-Y)),

and Wi = Ne/2 (Ai(X)), i = 1, • • • ,dimAf.

We shall prove that for any Y G W, one has Sing(F) C G, and Aj(Y) C Wi, i =

I , - - ,dimM. By Theorem L quoted in Section 1, this will complete the proof of
theorem A. Let Y € W by given, and let h be the semiconjugacy from Y to X.

Since Y is conjugate to X, X and Y have the same number of chain components,
and the same number of singularities. Let Z>i, • • • , Dp be the chain components of Y,
and £>!,-•• , Dk0 be the sigularities of Y. By Lemma 2, h induces a bijection map
from {£>!,••• ,DP} to {Ci,--- ,CP}, because p is a finite number. Note that h must
map singularities to singularites. Rearranging the subscripts of Dj if necessary, we may
assume that h(Dj) = Cj for j = 1,- • • ,p. Since d(h,id) < e/2 it follows that Dj C
Ne/2{Cj). Thus Sing(r) C G. To see that At{Y) C Ŵ  for i = 1,- •• ,dimM,
it suffices to prove that, for each j = ko +!.,••• ,p, the periodic orbits of Dj and
(7j have the same index. And by Lemma 3, this reduces to proving that for each
j = ko + 1, • • • ,p, there is a periodic orbit 7;- of Cj and a periodic orbit fij of Dj such
that fj and /S,- have the same index. To this end we use Hartman's theorem. For each
j = ko + 1, • • • ,p, choose and fix a periodic orbit fj in Cj. By Hartman's theorem, if
W is small enough, there is a periodic orbit j3j of Y in the (e/2)- neighbourhood of fj
in M such that flj and 7^ have the same index. Clearly /3j is contained in Dj. But
as remarked earlier, we could have chosen W this small. This completes the proof of
Theorem A. D
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