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Abstract
Concentrating on a surface vessel with input saturation, model uncertainties and unknown disturbances, a path
following the adaptive backstepping control method based on prescribed performance line-of-sight (PPLOS)
guidance is proposed. First, a prescribed performance asymmetric modified barrier Lyapunov function (PPAMBLF)
is used to design the PPLOS and the heading controller, which make the path following position and heading errors
meet the prescribed performance requirements. Furthermore, the backstepping and dynamic surface technique
(DSC) are used to design the path following controller and the adaptive assistant systems are constructed to
compensate the influence of input saturation. In addition, neural networks are introduced to approximate model
uncertainties, and the adaptive laws are designed to estimate the bounds of the neural network approximation errors
and unknown disturbances. According to the Lyapunov stability theory, all signals are semi-globally uniformly
ultimately bounded. Finally, a 76 · 2 m supply surface vessel is used for simulation experiments. The experimental
results show that although the control inputs are limited, the control system can still converge quickly, and both
position and heading errors can be limited to the prescribed performance requirements.

1. Introduction

In recent years, manned and unmanned vessels (Naus et al., 2021; Rutkowski, 2021; Specht et al., 2021)
have played a key role in various ocean engineering such as maritime rescue, ocean exploration (Liang et
al., 2017; Stateczny et al., 2021) and resource development. Ship motion control has received widespread
attention to meet the needs of different tasks, realise the intelligence and automation of ships, and ensure
the safety and economy of ships. The research on ships in recent years includes path planning (Lyu and
Yin, 2019), collision avoidance (Li and Zheng, 2020; Xu et al., 2020) and track control. Track control is
divided into trajectory tracking and path following. Trajectory tracking (Wang and Su, 2021) is strictly
constrained by time, enabling the ship to track the desired trajectory in real-time; Path following (Nie
et al. 2021) is not subject to time requirements, it only needs to track the geometric position of the target
path. In actual ship navigation, it generally not needed to arrive at the designated location at a specific
time, so ship path following is more extensive. In some special marine engineering operations, such
as engineering drilling platforms and engineering experimental ships which require a high degree of
freedom, the control performance of underactuated ships (Hou et al., 2020; Xie et al., 2020; Zhang et
al., 2020) can no longer meet the engineering requirements. Therefore, the fully actuated (Zheng et al.,
2018a; Del-Rio-Rivera et al., 2020) path following surface vessel with higher degree of freedom and
stronger performance has great research value and significance.
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Aimed at the problem of surface vessel path following control, the main methods include the Serret–
Frenet (SF) frame (Liu et al., 2017), logical virtual ship (LVS) guidance (Zhang et al., 2015), line-of-sight
(LOS) guidance and so on. The LOS guidance can reduce the output dimension of the system and greatly
simplify the design of the path following controller. The LOS-based surface vessel path following control
system is composed of a kinematics-level LOS guidance control system and a dynamics-level heading
and speed tracking control system. The former provides a heading guidance angle for the surface vessel
by designing a guidance law, and the latter designs a heading and velocity tracking controller to realise
the surface vessel can follow the desired path at a certain desired speed. LOS guidance has been
extensively studied and applied by many researchers in different aspects. These LOS guidance can be
divided into three main categories. The first category is compensation for sideslip angle and disturbance.
The integral LOS (ILOS) (Lekkas and Fossen, 2014) guidance method introduces an integrator based
on the traditional LOS, which can compensate for the influence of constant sideslip angle on the path
following control system. Zhang et al. (2019) applied ILOS and a robust adaptive algorithm to the path
following control of an unmanned robot sailboat. Adaptive integral LOS (AILOS) (Fossen and Lekkas,
2017) adds an adaptive rate to the ILOS guidance. It overcomes the impact of unknown sideslip angles
and unknown time-varying ocean currents in kinematics on the system and enhances the robustness of
the system. Predictor-based LOS (PLOS) (Liu et al., 2016b) introduces the predictor into the design of
LOS guidance. This guidance uses a predictor to estimate the unknown constant drift angle to improve
the accuracy of the sideslip angle estimation. However, the sideslip angle involved in the above method
is constant or slowly time-varying, and it does not solve the problem of time-varying sideslip angle.
Extended state observer-based LOS (ELOS) (Liu et al., 2016a) based on extended state observers
(ESOs) solves the problem of time-varying sideslip angle. A real ship simulation can be used to verify
the feasibility of the guidance. The second category is to optimise parameters such as lookahead distance
and desired velocity in LOS guidance. Lekkas and Fossen (2014) presented the forward distance that
varies with the cross-track error in ILOS guidance. When the ship is far from the desired path, a smaller
forward distance is obtained, which will make the bow of the ship more perpendicular to the desired
path and increase the error rate. Surge-guided LOS (SGLOS) (Wang et al., 2019) is designed with
a time-varying speed that varies with the lateral error. Compared with the traditional single constant
speed, this guidance method has a faster convergence speed and is more reasonable. The third category
is to constrain the tracking error. In actual navigation, especially in complex sea conditions or narrow
waters, if the navigation path and tracking error of the ship are not restricted, there will be great safety
hazards. Zheng and Feroskhan (2017) used the logarithmic error transformed functions to construct
the LOS guidance. This guidance can convert performance constraints into an equivalent unrestricted
range, ensuring the prescribed performance in the path following process. Zheng et al. (2018b) proposed
error-constrained LOS (ECLOS) guidance based on the barrier Lyapunov function (BLF), and used the
tan-type BLF to limit the steady-state performance of the surface vessel in path following.

The heading and velocity control part of path following is similar to the principle of trajectory
tracking. At present, the common controller design methods include backstepping control, fuzzy control,
sliding mode control, robust control and so on. Among them, Fossen and Berge (1997) first proposed
the backstepping and applied it to ship control, by constructing the Lyapunov function to inverse the
controller. Because of its simple and direct design, it has been studied by many researchers. Swaroop
et al. (2000) added the dynamic surface control technique (DSC) to the backstepping, which avoids
the ‘differential explosion’ caused by the derivation of the virtual control rate in backstepping and
simplifies the computational complexity. In actual sea conditions, unknown disturbances such as wind,
waves and currents are inevitable. Additionally, the weight of the ship may change with the load, so
the ship may have model uncertainties. Shen et al. (2018) used neural networks with adaptive laws to
construct a fully actuated surface vessel trajectory tracking controller, which can not only approximate
the model uncertainties and unknown disturbances, but also effectively improve the robustness of the
system. Shen et al. (2020b) proposed a finite-time observer, which can observe unmeasurable speed
values and unknown interference within a limited time. This method simultaneously solves the problem
of an unmeasurable system state and unknown disturbances. Although the theoretical research results on
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unknown disturbances and model uncertainties are fruitful, few researchers have considered the physical
constraints of a surface vessel in actual navigation.

On the one hand, the surface vessel itself has the problem of input saturation. For example, the torque
generated by the rudder and propeller cannot be infinite. When the input signal of the actuator is too
large, saturation will occur. The most direct result will make the ship unable to track the desired path
or even cause the system to oscillate and become unbalanced. For a class of nonlinear systems with
input saturation, Chen et al. (2011) proposed constraint adaptive control and designed a command filter
controller (CFC). It can not only solve the problem of system input saturation, but also solve the problem
of ‘differential explosion’ caused by the backstepping method. By virtue of constructing an auxiliary
dynamic system to deal with output saturation, Du et al. (2016) designed a robust nonlinear controller
for ship dynamic positioning, which effectively solves the impact of limited output on the system. Shen
et al. (2020a) introduced the smooth Nussbaum function to construct the auxiliary system, which has
the property that the upper and lower bound integrals tend to infinity. This auxiliary system can well
compensate the nonlinear part caused by the input saturation. Shen et al. (2020b) and Yang and Chen
(2016) apply an adaptive auxiliary system to overcome the influence of input saturation on the system,
which can make the system stable in the presence of input saturation. Compared with that used by Shen
et al. (2020a), this adaptive auxiliary system is simpler.

On the other hand, from the external water environment, a surface vessel may be affected by the
output constraint. In narrow waterways or specific engineering operations, it is forbidden for ships to
have large path following errors in path following, so it is necessary to limit the output of the system.
At present, the methods to solve the output constraint include the prescribed performance function
(PPF) and the barrier Lyapunov function (BLF). Bechlioulis and Rovithakis (2008) first proposed the
prescribed performance control method. Through the error transformed function constructed by PPF, the
constrained performance is converted to the equivalent unconstrained range. Jia et al. (2019) combined
the prescribed performance with the backstepping and designed an underactuated trajectory tracking
controller with preset performance. However, obtaining the inverse function of the logarithmic error
transformed function is very complicated, which is not convenient for the design of the controller, and
will lead to the singularity of the system. To solve this problem, Li et al. (2019) improved the error
transformed function based on the work of Jia et al. (2019), and proposed a non-logarithmic error
transformed function, which effectively simplified the complexity of system design. The prescribed
performance function can constrain the steady-state and transient performance of the system, but it has
the disadvantages of poor scalability, sensitivity to the initial position and complicated controller design.
The BLF is an improvement on the Lyapunov function. Compared with the error transformed function,
the BLF solves the problem of output constraint more directly. BLF starts directly from the starting
point (Lyapunov function) of the controller design, and directly constrains the error by constructing an
appropriate BLF. This method does not need to convert the errors, thus simplifying the controller design
and solving the singularity problem. Xu and Jin (2013) proposed a tangential barrier Lyapunov function
(TBLF), which is used for the design of a multi-input multi-output nonlinear control system with output
constraints. However, when deriving the TBLF, the denominator contains a trigonometric function
term, which complicates the design of the controller. Zhao et al. (2014) used the symmetric barrier
Lyapunov function (SBLF) to solve the problem of trajectory tracking of the ship with input constraints.
Since the SBLF is the logarithmic form, the derivative is the regular fractional form, which can solve
the problem of increased complexity of the system caused by the time derivative of the trigonometric
function term. However, the initial restricted area of the SBLF is symmetrical, and the upper and lower
bounds of the output constraints may not be the same in the system, which makes the SBLF have
great limitations. To solve this problem, Qiu et al. (2015) proposed the asymmetric barrier Lyapunov
function (ABLF) to solve a problem of a class of nonlinear systems with output constraints. The ABLF
relaxes the restriction that the initial restricted area must be symmetrical. However, in special cases, such
as when the constraint boundary approaches infinity, no matter how large the error is, the traditional
ABLF approaches zero, which cannot be used as a basis for judging the stability of the system. Chen
et al. (2020) first proposed the asymmetric modified barrier Lyapunov function (AMBLF) to realise the
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full-state constrained control of spacecraft. AMBLF is an improvement of the traditional ABLF. When
the constraint boundary is infinite, the AMBLF can be transformed into a traditional quadratic BLF
by using L’Hospital’s rule, which makes the AMBLF more general. However, in the above literature
(Xu and Jin, 2013; Zhao et al., 2014; Qiu et al., 2015; Chen et al., 2020), the BLF can only realise
the steady-state constraints of the system, and cannot achieve dynamic constraints and improve the
steady-state constraint’s transient performance of the system.

Inspired by the above research, to efficiently complete complex and accurate engineering tasks, we
propose a BLF-based surface vessel path following controller which is suitable for model uncertain-
ties, unknown disturbances, input saturation and prescribed performance. The main contributions and
innovations of this paper are summarised.

(i) We propose the prescribed performance asymmetric modified barrier Lyapunov function
(PPAMBLF). Compared with the traditional AMBLF (Chen et al., 2020), the PPAMBLF is a
combination of the AMBLF and PPF, which can not only constrain the steady-state performance
of the system, but also has the prescribed performance characteristics of the PPF.

(ii) This paper proposes the prescribed performance line-of-sight (PPLOS) guidance law for the first
time. PPLOS guidance is based on the PPAMBLF, which can ensure that the tracking errors of the
path following kinematics guidance part converge within the expected constraint range in
real-time, ensuring the prescribed performance of the guidance system. Compared with ECLOS
(Zheng et al., 2018b), PPLOS has three obvious advantages: (1) PPLOS avoids the complexity of
the system caused by the trigonometric function term of the TBLF; (2) PPLOS can make the
restricted area asymmetric, which is more general; (3) PPLOS can not only meet the steady-state
constraints of the guidance system, but also meet its transient performance.

(iii) Zheng et al. (2018b) and Zheng and Feroskhan (2017) only limited the position error of the ship
by designing guidance in kinematics, and did not restrict the error between the heading guidance
angle and the actual heading angle in dynamics. In this paper, the PPAMBLF is further applied to
the heading control of ship path following, so that the heading error can also meet the prescribed
performance requirements and the tracking accuracy of the system is further enhanced.

(iv) This paper constructs a fully actuated surface vessel path following controller based on PPLOS,
introduces the adaptive assistant systems to compensate for the impact of input saturation, uses
RBF neural networks to approximate the model uncertainties, and designs adaptive laws to estimate
the bounds of the neural network approximation errors and unknown external environmental
disturbances. Finally, combining the backstepping, DSC and PPAMBLF, we design a surface vessel
path following adaptive backstepping control with prescribed performance and input saturation.

The specific arrangement of the paper is as follows: Section 1 provides an introduction; Section 2
includes the problem description and preliminary work; Section 3 presents the design of the surface
vessel path following controller; Section 4 gives the strict stability proof; Section 5 carries out MATLAB
simulation, and analyses the experimental result; and Section 6 includes the conclusions.

2. Problem description and preliminaries

2.1. Problem description

2.1.1. Surface vessel model
Figure 1 shows the surface vessel motion. In this paper, we define the inertial reference frame (IRF) as
𝑂𝐸 − 𝑋𝐸𝑌𝐸 and the body-fixed reference frame (BRF) as 𝑂 − 𝑋𝑌 . Considering the three-degrees-of-
freedom surface vessel in the presence of model uncertainties and external disturbances, the nonlinear
mathematical model (Shen et al., 2020a; Wang et al., 2021) for a surface vessel can be expressed as

�𝜼 = 𝑱(𝜓)𝝊 (2.1a)
𝑴 �𝝊 + 𝑪 (𝝊)𝝊 + 𝑫𝝊 + Δ 𝒇 = sat(𝝉) + 𝒅 (2.1b)
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where 𝜼 = [𝑥, 𝑦, 𝜓]T is the surface vehicle position vector in the earth-fixed frame, where (𝑥, 𝑦) is the
surface vehicle actual position and 𝜓 is the heading angle; 𝝊 = [𝑢, 𝑣, 𝑟]T is the velocity vector in the
body-fixed frame, consisting of surge 𝑢, sway 𝑣 and yaw 𝑟; Δ 𝒇 = [Δ 𝑓𝑢 ,Δ 𝑓𝑣 ,Δ 𝑓𝑟 ] are the uncertainties
of the surface vessel model; 𝒅 = [𝑑𝑢 , 𝑑𝑣 , 𝑑𝑟 ]T is the unknown external environmental disturbance;
𝑱(𝜓) is the rotation matrix; M is the positive definite inertia matrix including the vessel mass and the
hydrodynamic inertia; 𝑪 (𝝊) is the Coriolis centripetal; and D is the damping matrix. The specific form
is as follows:

𝑱(𝜓) =
⎡⎢⎢⎢⎢⎣

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

⎤⎥⎥⎥⎥⎦ , M =

⎡⎢⎢⎢⎢⎣
𝑚11 0 0
0 𝑚22 0
0 0 𝑚33

⎤⎥⎥⎥⎥⎦
𝑪 (𝝊) =

⎡⎢⎢⎢⎢⎣
0 0 −𝑚22𝑣
0 0 𝑚11𝑢

𝑚22𝑣 −𝑚11𝑢 0

⎤⎥⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎣
𝑑11 0 0
0 𝑑22 0
0 0 𝑑33

⎤⎥⎥⎥⎥⎦
𝝉 = [𝜏𝑢 , 𝜏𝑣 , 𝜏𝑟 ] is the actual control input consisting of surge force 𝜏𝑢 , sway force 𝜏𝑣 and yaw moment
𝜏𝑟 . Considering the input saturation, sat(𝝉) is the system input subject to saturation, and the specific
description is as follows:

sat𝑖 (𝜏𝑖) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜏+𝑖 , if 𝜏𝑖 > 𝜏+𝑖
𝜏𝑖 , if 𝜏−𝑖 ≤ 𝜏𝑖 ≤ 𝜏+𝑖 (𝑖 = 𝑢, 𝑣, 𝑟)
𝜏−𝑖 , if 𝜏𝑖 < 𝜏−𝑖

(2.2)

where 𝜏+𝑖 > 0, 𝜏−𝑖 < 0 are the maximum and the minimum control force or moment of the surface vessel
path following control system. Let Δ𝜏𝑖 = sat𝑖 (𝜏𝑖) − 𝜏𝑖 , 𝑖 = 𝑢, 𝑣, 𝑟 . We can expand Equation (2.1b) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�𝑢 =
1

𝑚11
(𝑚22𝑣𝑟 − 𝑑11𝑢 − Δ 𝑓𝑢) + sat𝑢 (𝜏𝑢) + 𝑑𝑢

𝑚11

�𝑣 =
1

𝑚22
(−𝑚11𝑢𝑟 − 𝑑22𝑣 − Δ 𝑓𝑣 ) + sat𝑣 (𝜏𝑣 ) + 𝑑𝑣

𝑚22

�𝑟 =
1

𝑚33
((𝑚11 − 𝑚22)𝑢𝑣 − 𝑑33𝑟 − Δ 𝑓𝑟 ) + sat𝑟 (𝜏𝑟 ) + 𝑑𝑟

𝑚33

(2.3)

Assumption 1. The disturbance of the external environment experienced by the surface vessel
is unknown, but the disturbance is bounded, and its rate of change is also bounded, that is,
‖ �𝑑 (𝑡)‖ ≤ 𝐶𝑑 < ∞.

Assumption 2. The parameter matrices 𝑴, 𝑪 (𝝊) and 𝑫 of the surface vessel model are known. In
addition, the model uncertainties are unknown but bounded.

2.1.2. Control objective
The surface vessel’s LOS guidance method is shown in Figure 2. We define the path reference frame
(PRF) as 𝑂 𝑝 − 𝑋𝑝𝑌𝑝 . Then the desired path to be followed is defined as 𝜂𝑝 (𝜃) = [𝑥𝑝 (𝜃), 𝑦𝑝 (𝜃)], where
𝜂𝑝 (𝜃) is the desired path parameter, and 𝜓𝑝 (𝜃) is the path-tangent angle of the desired path, defined as
𝜓𝑝 (𝜃) = arctan 2(𝑦′𝑝 (𝜃), 𝑥 ′𝑝 (𝜃)).

Remark 1. For ( · )′𝑝 (𝜃), we have ( · )′𝑝 (𝜃) Δ
= 𝑑 ( · ) 𝑝/𝑑𝜃.
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Figure 1. Motion of surface vessel.

For the surface vessel with positions, the along-tracking error and cross-tracking error (as shown in
Figure 2) of the position in the IRF can be expressed in the PRF as[

𝑥𝑒
𝑦𝑒

]
=

[
cos𝜓𝑝 − sin𝜓𝑝

sin𝜓𝑝 cos𝜓𝑝

]T [
𝑥 − 𝑥𝑝
𝑦 − 𝑦𝑝

]
(2.4)

The derivative of 𝑥𝑒 is

�𝑥𝑒 = �𝑥 cos𝜓𝑝 + �𝑦 sin𝜓𝑝︸������������������︷︷������������������︸
𝑎1

− �𝑥𝑝 cos𝜓𝑝 − �𝑦𝑝 sin𝜓𝑝︸����������������������︷︷����������������������︸
𝑎2

+ �𝜓𝑝 (−(𝑥 − 𝑥𝑝) sin𝜓𝑝 + (𝑦 − 𝑦𝑝) cos𝜓𝑝)︸�������������������������������������������︷︷�������������������������������������������︸
cross-tracking error (𝑦𝑒)

(2.5)

According to Equation (2.1a), the 𝑎1 and 𝑎2 in Equation (2.5) can be further rewritten as

𝑎1 = 𝑈 cos(𝜓 − 𝜓𝑝 + 𝛽) (2.6a)

𝑎2 = �𝜃
√
𝑥 ′𝑝

2(𝜃) + 𝑦′𝑝
2(𝜃) cos(𝜓𝑝 + 𝜙) (2.6b)

where 𝑈 =
√
𝑢2 + 𝑣2 ≥ 0 is the actual velocity of the surface vessel, 𝛽 = arctan2(𝑣, 𝑢) is the sideslip

angle (as shown in Figure 2) and 𝜙 = arctan2(−𝑦′𝑑 (𝜃),−𝑥 ′𝑑 (𝜃)) = −𝜓𝑑 .
Because the simplification of �𝑥𝑒 and �𝑦𝑒 are similar, the derivative of the tracking errors become

⎧⎪⎪⎨⎪⎪⎩
�𝑥𝑒 = 𝑈 cos(𝜓 − 𝜓𝑝 + 𝛽) + �𝜓𝑝𝑦𝑒 − �𝜃

√
𝑥 ′𝑝

2(𝜃) + 𝑦′𝑝
2(𝜃)

�𝑦𝑒 = 𝑈 sin(𝜓 − 𝜓𝑝 + 𝛽) − �𝜓𝑝𝑥𝑒

(2.7)

where �𝜓𝑝 = ((−𝑥 ′′𝑝 𝑦′𝑝 + 𝑦′′𝑝𝑥
′
𝑝)/(𝑥 ′2𝑝 + 𝑦′2𝑝)) �𝜃.
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Figure 2. Line-of-sight guidance.

Assumption 3. For the desired path 𝜂𝑝 (𝜃), its first and second derivatives �𝜂𝑝 (𝜃), 	𝜂𝑝 (𝜃) exist and are
bounded. Furthermore, 𝜂𝑝 (𝜃) is a regular curve, guaranteeing 𝑥 ′2 𝑝 (𝜃) + 𝑦′2 𝑝 (𝜃) ≠ 0.

Assumption 4. The desired surge 𝑢𝑑 > 0 and its derivative �𝑢𝑑 are bounded. Since this paper is for
a fully actuated surface vessel, the sway 𝑣 is controllable. The desired sway 𝑣𝑑 should be considered.
To ensure the sideslip angle is small, the desired sway 𝑣𝑑 is defined as 𝑣𝑑 = 0. That is, lim𝑣→0
𝛽 = arctan2(𝑣, 𝑢) = 0.

2.2. Prescribed performance function

According to the idea of Bechlioulis (Bechlioulis and Rovithakis, 2008), the prescribed performance
function can be expressed as

𝐹 = {(𝑡, 𝑧1) ∈ 𝑅𝑡≥0 × 𝑅 | − 𝛿𝑏 (𝑡) < 𝑧1(𝑡) < 𝛿�̄� (𝑡)}

where 𝛿𝑎 (𝑡) and 𝛿𝑏 (𝑡) satisfy being smooth and bounded. Moreover, 𝛿𝑎 (𝑡) ≥ 0, 𝛿𝑏 (𝑡) ≥ 0, lim𝑡→∞ 𝛿 (𝑡) =
𝛿𝑎,∞ > 0, lim𝑡→∞ 𝛿𝑏 (𝑡) = 𝛿𝑏,∞ > 0. Here, 𝛿𝑎 (𝑡) and 𝛿𝑏 (𝑡) can be expressed as

𝛿𝑎 (𝑡) = (𝛿𝑎,max − 𝛿𝑎,∞)𝑒−𝑙𝑎𝑡 + 𝛿𝑎,∞

𝛿𝑏 (𝑡) = (𝛿𝑏,min − 𝛿𝑏,∞)𝑒−𝑙𝑏 𝑡 + 𝛿𝑏,∞
(2.8)

where 𝛿�̄�,max, 𝛿𝑏,min, 𝑙𝑎, 𝑙𝑏 is the design constant. The pictorial illustration of prescribed performance is
shown in Figure 3.
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Figure 3. Pictorial illustration of prescribed performance.

2.3. Barrier Lyapunov function

2.3.1. Asymmetric modified barrier Lyapunov function
The asymmetric modified barrier Lyapunov function (AMBLF) (Chen et al., 2020) can be expressed as

𝑉𝑏 =
𝑞(𝑧(𝑡))

2
ln

𝑘2
𝑎𝑒

𝑧 (𝑡)2

𝑘2
𝑎 − 𝑧(𝑡)2 + 1 − 𝑞(𝑧(𝑡))

2
ln

𝑘2
𝑏𝑒

𝑧 (𝑡)2

𝑘2
𝑏 − 𝑧(𝑡)2 (2.9)

where 𝑧(𝑡) is the variable that needs to be constrained, which generally is the systematic error. We define
𝑘𝑎 = 𝑘𝑐 − 𝑌0, 𝑘𝑏 = 𝑘𝑑 − 𝑌0. Here, 𝑘𝑐 > 0, 𝑘𝑑 > 0 are the upper and lower bounds of constant value
constraints, and 𝑌0 is the expected value. Hence, −𝑘𝑏 < 𝑧(0) < −𝑘𝑎, 𝑞(∗) = { 1, ∗>0

0, ∗≤0 .

Remark 2. Through simple calculations, we can get 𝑉𝑏 (0+) = 𝑉𝑏 (0−) = 0, lim𝑧→0+ 𝑑𝑉𝑏/𝑑𝑧 =
lim𝑧→0− 𝑑𝑉𝑏/𝑑𝑧 = 0, which explain that 𝑉𝑏 is a continuous derivable function.

Remark 3. When 𝑘𝑎 → ∞, 𝑘𝑏 → ∞, lim𝑘𝑎→∞ 1
2 ln(𝑘2

𝑎𝑒
𝑧2/(𝑘2

𝑎 − 𝑧2)) = lim𝑘𝑏→∞ 1
2 ln(𝑘2

𝑏𝑒
𝑧2/

(𝑘2
𝑏 − 𝑧2)) = 1

2 𝑧
2 can be obtained using L‘Hospital’s rule. That is, when the system is unconstrained,

the AMBLF can be converted to a general quadratic Lyapunov function.

2.3.2. Prescribed performance symmetric modified barrier Lyapunov function
To ensure that the surface vessel path following position errors meet the prescribed performance
requirements, we further improve the AMBLF. We combine the PPF with AMBLF to design the
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PPAMBLF, which can make the system meet the steady-state performance and transient performance.
For compact 𝑍 = {𝑧(𝑡) : −𝛿𝑎 < 𝑧(𝑡) < 𝛿𝑏}, there are the following equations:

𝑉b =
𝑞(𝑧(𝑡))

2
ln

𝛿𝑎 (𝑡)2𝑒𝑧 (𝑡)
2

𝛿𝑎 (𝑡)2 − 𝑧(𝑡)2 + 1 − 𝑞(𝑧(𝑡))
2

ln
𝛿𝑏 (𝑡)2𝑒𝑧 (𝑡)

2

𝛿𝑏 (𝑡)2 − 𝑧(𝑡)2 (2.10)

where, 𝛿(𝑡) and 𝛿(𝑡) are the prescribed performance functions such as in Equation (2.8).

Remark 4. Finding the value of the function on both sides of the zero point of the PPAMBLF and its
first derivative, we can get 𝑉𝑏 (0+) = 𝑉𝑏 (0−) = 0, lim𝑧 (𝑡)→0+ 𝑑𝑉𝑏/𝑑𝑧(𝑡) = lim𝑧 (𝑡)→0− 𝑑𝑉𝑏/𝑑𝑧(𝑡) = 0.
That is, the PPAMBLF is a continuous derivative function.

Theorem 1. From Chen et al. (2020), we can get the following inequality:

1
2

(
1 + 𝑞(𝑧)

𝐾𝑎
2 − 𝑧2

+ 1 − 𝑞(𝑧)
𝐾𝑏

2 − 𝑧2

)
𝑧2 ≥ 𝑉𝑏 (2.11)

where −𝑘𝑎 < 𝑧(𝑡) < 𝑘𝑏 .

Let 𝐾𝑎 = 𝛿𝑎, 𝐾𝑏 = 𝛿𝑏 . Because 𝛿𝑎 and 𝛿𝑏 have no direct functional relationship with 𝑧, we can obtain

1
2

(
1 + 𝑞(𝑧)

𝛿2
𝑎 − 𝑧2

+ 1 − 𝑞(𝑧)
𝛿𝑏

2 − 𝑧2

)
𝑧2 ≥ 𝑉𝑏 (2.12)

Remark 5. When 𝑙𝑎 → 0, 𝑙𝑏 → 0, limiting to the prescribed performance functions, we can get
lim𝑙𝑎→0 𝛿𝑎 (𝑡) = 𝛿𝑎,max, lim𝑙𝑏→0 𝛿𝑏 (𝑡) == 𝛿𝑏,min. That is, the PPAMBLF proposed in this paper can be
simplified to the AMBLF. On this basis, we continue to let 𝛿𝑎,max = 𝛿𝑏,min = ∞, so the PPAMBLF
proposed can be simplified to the general quadratic Lyapunov function.

Remark 6. A conventional AMBLF can only guarantee the steady-state performance of the system.
While ensuring steady-state performance, the PPAMBLF further restricts the transient performance of
the system according to the prescribed performance function. the PPAMBLF can ensure that the system
has a better tracking effect in the initial and mid-stage tracking. The specific performance is shown in
the intermediate time period from the start of the path following of the system (𝑡 = 0) to the steady-state
stage of the expected path (𝑡 = 𝑡0).

3. Design of surface vessel path following controller

Assuming that there are input saturation, model uncertainties, unknown disturbances and all the states
of the surface vessel are measurable, we first design the PPLOS guidance, which enables the surface
vessel’s position tracking errors to meet the consistent asymptotic stability while remaining within
the prescribed performance constraints. The PPAMBLF is further used to constrain the heading of
the surface vessel, so that the heading error also meets the prescribed performance requirements. We
use backstepping and DSC to design the heading control system and velocity control system. The
adaptive assistant systems are used to compensate for input saturation. Neural networks are introduced
to approximate the model uncertainties. The adaptive laws are designed to estimate the bounds of the
neural network approximation errors and the unknown. This method achieves the following control
objectives: (1) the surface vessel can track the desired path and meet the prescribed performance; (2) the
surface vessel can reach the desired velocity and maintain it; (3) all signals in the system are consistent
asymptotic stability. A block diagram of the control system is shown in Figure 4.
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Figure 4. Block diagram of the control system.

3.1. PPLOS guidance

We introduce the PPAMBLF to the along-track error 𝑥𝑒 and the across-track error 𝑦𝑒 as follows:

𝑉1 =
1
2

(
𝑞(𝑥𝑒) ln

𝛿2
𝑎1𝑒

𝑥𝑒
2

𝛿2
𝑎1 − 𝑥𝑒2

+ (1 − 𝑞(𝑥𝑒)) ln
𝛿2
𝑏1𝑒

𝑥𝑒
2

𝛿2
𝑏1 − 𝑥𝑒2

)
︸�������������������������������������������������������������︷︷�������������������������������������������������������������︸

section of 𝑥𝑒

+ 1
2

(
𝑞(𝑦𝑒) ln

𝛿2
𝑐1𝑒

𝑦𝑒
2

𝛿2
𝑐1 − 𝑦𝑒2

+ (1 − 𝑞(𝑦𝑒)) ln
𝛿2
𝑑1𝑒

𝑦𝑒
2

𝛿2
𝑑1 − 𝑦𝑒2

)
︸�������������������������������������������������������������︷︷�������������������������������������������������������������︸

section of 𝑦𝑒

(3.1)

where 𝛿𝑎1, 𝛿𝑏1, 𝛿𝑐1, 𝛿𝑑1 are prescribed performance functions, 𝑞(∗) = { 1, if ∗>0
0, if ∗≤0

�𝑉1 =

(
1 + 𝑞(𝑥𝑒)

𝛿2
𝑎1 − 𝑥2

𝑒

+ 1 − 𝑞(𝑥𝑒)
𝛿2
𝑏1 − 𝑥2

𝑒

)
𝑥𝑒 �𝑥𝑒

+
(
1 + 𝑞(𝑦𝑒)

𝛿2
𝑐1 − 𝑦2

𝑒

+ 1 − 𝑞(𝑦𝑒)
𝛿2
𝑑1 − 𝑦2

𝑒

)
𝑦𝑒 �𝑦𝑒

− 𝑞(𝑥𝑒)𝑥2
𝑒
�̄𝛿𝑎1

𝛿𝑎1 (𝛿2
𝑎1 − 𝑥2

𝑒)
− (1 − 𝑞(𝑥𝑒))𝑥2

𝑒𝛿𝑏1

𝛿𝑏1(𝛿2
𝑏1 − 𝑥2

𝑒)

− 𝑞(𝑦𝑒)𝑦2
𝑒
�̄𝛿𝑐1

𝛿𝑐1 (𝛿2
𝑐1 − 𝑦2

𝑒)
− (1 − 𝑞(𝑦𝑒))𝑦2

𝑒𝛿𝑑1

𝛿(𝛿2
𝑑1 − 𝑦2

𝑒)
(3.2)
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Together with Equations (2.7) and (3.2), we have

�𝑉1 = 𝜉11𝑥𝑒 (𝑈 cos(𝜓 − 𝜓𝑝 + 𝛽) − �𝜃𝜗)
+ 𝜉12𝑦𝑒 (𝑈 sin(𝜓 − 𝜓𝑝 + 𝛽))
+𝜛11𝑥

2
𝑒 +𝜛12𝑦

2
𝑒 (3.3)

where 𝜉12, 𝜛11, 𝜛12, 𝜗 are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜉11 = 1 + 𝑞(𝑥𝑒)
𝛿2
𝑎1 − 𝑥2

𝑒

+ 1 − 𝑞((𝑥𝑒)
𝛿2
𝑏1 − 𝑥2

𝑒

𝜉12 = 1 + 𝑞(𝑦𝑒)
𝛿2
𝑐1 − 𝑦2

𝑒

+ 1 − 𝑞(𝑦𝑒)
𝛿2
𝑑1 − 𝑦2

𝑒

𝜛11 = −
(

𝑞(𝑥𝑒) �̄𝛿𝑎1

𝛿𝑎1(𝛿2
𝑎1 − 𝑥2

𝑒)
+ (1 − 𝑞(𝑥𝑒)) �𝛿𝑏1

𝛿𝑏1(𝛿2
𝑏1 − 𝑥2

𝑒)

)
𝜛12 = −

(
𝑞(𝑦𝑒) �̄𝛿𝑐1

𝛿𝑐1 (𝛿2
𝑐1 − 𝑦2

𝑒)
+ (1 − 𝑞(𝑦𝑒)) �𝛿𝑑1

𝛿𝑏1(𝛿2
𝑑1 − 𝑦2

𝑒)

)
(3.4a)

𝜗 =
√
𝑥 ′𝑝

2 (𝜃) + 𝑦′𝑝
2 (𝜃)

− 𝑦𝑒
−𝑥 ′′𝑝 𝑦′𝑝 + 𝑦′′𝑝𝑥

′
𝑝

𝑥 ′𝑝
2 + 𝑦′𝑝

2
���1 −

1 + 𝑞 (𝑦𝑒)
𝛿2
𝑐1−𝑦2

𝑒
+ 1−𝑞 (𝑦𝑒)

𝛿2
𝑑1−𝑦2

𝑒

1 + 𝑞 (𝑥𝑒)
𝛿2
𝑎1−𝑥2

𝑒
+ 1−𝑞 (𝑥𝑒)

𝛿2
𝑏1−𝑥2

𝑒

��� (3.4b)

Remark 7. Because −𝛿𝑏1 < 𝑥𝑒 < 𝛿𝑎1, when 0 < 𝑥𝑒, we can get 𝜉11 = 1 + 1/(𝛿2
𝑎1 − 𝑥2

𝑒) ≥ 1 > 0, and
when 𝑥𝑒 ≤ 0, we can get 𝜉11 = 1 + 1/(𝛿2

𝑏1 − 𝑥2
𝑒) ≥ 1 > 0. In summary, 𝜉11 > 0, and by the same token,

𝜉12 > 0.

We design the desired heading angle 𝜓𝑑 and the update law of 𝜃 as

𝜓𝑑 = 𝜓𝑝 (𝜃) + arcsin
����

−𝑘Δ𝑦𝑒√
1 + (𝑘Δ𝑦𝑒)2

���� − 𝛽 (3.5a)

�𝜃 =
𝑈 cos(𝜓 − 𝜓𝑑 + 𝛽) + (𝑘 𝜃 − (𝜛12𝑦

2
𝑒/𝑥𝑒 +𝜛11)/𝜉11)𝑥𝑒

𝜗
(3.5b)

Assumption 5. Since the design of the guidance law is based on kinematics and does not consider the
dynamics, we assume the actual heading angle 𝜓 of the surface vessel can perfectly track the desired
heading angle 𝜓𝑑 given by the guidance. That is, 𝜓 = 𝜓𝑑 .

3.2. Heading tracking control

To compensate for the impact of input saturation, we introduce a second-order adaptive assistant system
(Yang and Chen, 2016; Shen et al., 2020b):⎧⎪⎪⎨⎪⎪⎩

�𝜆1 = −ℏ1𝜆1 + 𝜆2

�𝜆2 = −ℏ2𝜆2 + 1
𝑚33

Δ𝜏𝑟
(3.6)
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where ℏ1, ℏ2 > 0 are design constants, 𝜆1, 𝜆2 are auxiliary variables. The heading error 𝑧1 and yaw error
of 𝑧2 of the surface vessel are given as {

𝑧1 = 𝜓 − 𝜓𝑑 − 𝜆1

𝑧2 = 𝑟 − 𝑟𝑑 − 𝜆2
(3.7)

Step 1: According to 𝑧2, the time derivation of 𝑧1 is

�𝑧1 = 𝑧2 + 𝑟𝑑 + 𝜆2 − �𝜓𝑑 − �𝜆1 (3.8)

To ensure the prescribed performance of the system, we introduce the PPAMBLF of 𝑧1 as

𝑉2 =
1
2

(
𝑞(𝑧1) ln

𝛿2
𝑎2𝑒

𝑧2
1

𝛿2
𝑎2 − 𝑧2

1
+ (1 − 𝑞(𝑧1)) ln

𝛿2
𝑏2𝑒

𝑧2
1

𝛿2
𝑏2 − 𝑧2

1

)
(3.9)

where 𝛿𝑎2(𝑡) > 𝑧1(0) > −𝛿𝑏2(𝑡), 𝛿𝑎2(𝑡), 𝛿𝑏2(𝑡) are prescribed performance functions, which are used
to restrict the upper and lower bounds of 𝑧1.

Similar to Equation (3.2), the time derivation of Equation (3.9) is

�𝑉2 = 𝜉2𝑧1 �𝑧1 +𝜛2𝑧
2
1 (3.10)

where the expressions of 𝜉2 and 𝜛2 are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜉2 = 1 + 𝑞(𝑧1)

𝛿2
𝑎2 − 𝑧2

1
+ 1 − 𝑞(𝑧1)

𝛿2
𝑏2 − 𝑧2

1

𝜛2 = −
(

𝑞(𝑧2) �̄𝛿𝑎2

𝛿𝑎2
(
𝛿2
𝑎2 − 𝑧2

2
) + (1 − 𝑞(𝑧1)) �𝛿𝑏2

𝛿𝑏2
(
𝛿2
𝑏2 − 𝑧2

1
) ) (3.11)

The designed virtual control law is 𝛼 used to stabilise 𝑧1:

𝛼 = −
(
𝑘1 + 𝜉2

2
+ 𝜛2

𝜉2

)
𝑧1 + �𝜓𝑑 − ℏ1𝜆1 (3.12)

where 𝑘1 > 0.
To avoid derivation of the virtual control law 𝛼, we introduce the dynamic surface control. Let

𝛼 pass the following first-order low-pass filter:{
𝑇 �𝑟𝑑 + 𝑟𝑑 = 𝛼
𝑟𝑑 (0) = 𝛼(0) (3.13a)

𝑦1 = 𝑟𝑑 − 𝛼 (3.13b)

where 𝑟𝑑 is the state variable of the first-order low-pass filter, 𝑇 is the filter time constant and 𝑦1 is the
filter output error.

According to Equations (3.6)–(3.13) and the Young’s inequality, �𝑉2 can be further written as

�𝑉2 = 𝜉2𝑧1𝑧2 − 𝜉2
2

2
𝑧2

1 + 𝜉2𝑧1𝑦1 − 𝑘1𝜉2𝑧
2
1

≤ 𝜉2𝑧1𝑧2 − 𝑘1𝜉2𝑧
2
1 +

1
2
𝑦2

1 (3.14)
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Step 2: According to Equations (2.3) and (3.7), the time derivation of 𝑧2 is

�𝑧2 =
1

𝑚33
((𝑚11 − 𝑚22)𝑢𝑣 − 𝑑33𝑟 − Δ 𝑓𝑟

+ 𝑑𝑟 + 𝑡𝑟 − 𝑚33 �𝑟𝑑 + ℏ2𝑚33𝜆2) (3.15)

Consider that there are model uncertainties Δ 𝑓 = [Δ 𝑓𝑢 ,Δ 𝑓𝑣 ,Δ 𝑓𝑟 ]T in the three-degrees-of-freedom
surface vessel. According to the universal approximation characteristics of the RBF neural network, we
first approximate Δ 𝑓𝑟 , where the output expression is given as

Δ 𝑓𝑟 = 𝑾∗
𝑟

T𝒉(𝒛) + 𝑒𝑤𝑟 (𝒛) (3.16)

where 𝑧 = [𝑢, 𝑣, 𝑟]T is the input vector of the neural network.
Here, 𝒉(𝒛) = [ℎ1(𝑧), ℎ2(𝑧), . . . , ℎ𝑛 (𝑧)]T is the vector of radial basis function. The specific expression

is given by

ℎ 𝑗 (𝑧) = exp

[
−

##𝒛 − 𝒄 𝒋
##2

2𝑏 𝑗
2

]
, ( 𝑗 = 1, . . . , 𝑛) (3.17)

where 𝑏 𝑗 > 0 is the width of the Gaussian function; 𝑐 𝑗 = [𝑐1, 𝑐2, . . . , 𝑐𝑚]T ∈ 𝑹𝑚 is the centre of the
Gaussian function, which has the same dimension as the input vector 𝒛; 𝑒𝑤𝑟 (𝒛) is the approximation
error of neural network; and 𝑾∗

𝑟 = [𝑤∗
𝑟 ,1, 𝑤

∗
𝑟 ,2, . . . , 𝑤

∗
𝑟 ,𝑛]T ∈ 𝑹𝑛×1 is the ideal weight vector, that is, the

value of the vector 𝑾∗
𝑟 which makes |𝑒𝑤𝑟 (𝒛) | the smallest for all 𝒛 ∈ Ω𝑧 . Here, 𝑾∗

𝑟 is given by

𝑾∗
𝑟 = arg min

𝑾 ∈𝑹𝑛

{
sup
𝒛∈Ω

|Δ 𝑓𝑟 (𝒛) −𝑾T
𝑟 𝒉(𝒛) |

}
(3.18)

In practical applications, the ideal weight vector 𝑾∗
𝑟 cannot be obtained, so the estimation �̂�𝑟 of 𝑾∗

𝑟

needs to be used in the controller design, and �̃�𝑟 = �̂�𝑟 −𝑾∗
𝑟 .

Assumption 6. For all 𝒛 ∈ 𝛀𝑧 , the ideal weight vector 𝑾∗
𝑟 of the neural network and the approximation

error 𝑒𝑤𝑟 (𝒛) are bounded, that is, there are positive constants 𝑾𝑟 ,max and bounded functions 𝑒𝑤𝑟,max(𝒛)
that satisfy ‖𝑾∗

𝑟 ‖ ≤ 𝑾𝑟 ,max and 𝑒𝑤𝑟 (𝒛) ≤ 𝑒𝑤𝑟,max(𝒛). By Assumption 1, path following external
environmental disturbance 𝑑𝑟 and approximation error 𝑒𝑤𝑟 (𝒛), there is a bounded function𝜆𝑟 > 0,
which makes |𝑒𝑤𝑟 (𝒛) | + |𝑑𝑟 | <𝜆𝑟

Remark 8. To simplify the description, in this paper, the neural network approximation error 𝑒𝑤𝑟 (𝒛)
and environmental disturbance 𝑑𝑟 are collectively referred to as compound disturbance, where𝜆𝑟 is the
bounding of compound disturbance.

Then, we design the control input 𝑡𝑟 as

𝑡𝑟 = −(𝑚11 − 𝑚22)𝑢𝑣 + 𝑑33𝑟 − 𝑐2𝑚33𝜆2 − 𝑘2𝑧2

−
(
1 + 𝑞(𝑧1)

𝛿2
𝑎2 − 𝑧2

1
+ 1 − 𝑞(𝑧1)

𝛿2
𝑏2 − 𝑧2

1

)
𝑧1 + 𝑚33 �𝑟𝑑 + �̂�

T
𝑟 𝒉(𝒛) − ˆ̄𝜆𝑟𝜙(𝑧2) (3.19)

where 𝛾1 > 0 and 𝜎1 > 0 are the design constants, 𝜙(𝑧2) = tanh(𝑧2/𝜀1), 𝜀1 > 0 is the design constants
and𝜆0

𝑟 is the prior estimate of ˆ̄𝜆𝑟 .
The weight update law and the adaptive law of the estimation ˆ̄𝜆𝑟 are designed as

�̂𝑾𝑟 = −Γ1 [𝑧2𝒉(𝒛) + 𝜗1�̂�𝑟 ] (3.20a)
�̄̂𝜆𝑟 = 𝛾1 [𝑧2𝜙(𝑧2) − 𝜎1(ˆ̄𝜆𝑟 −𝜆0

𝑟 )] (3.20b)
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Table 1. Model parameters of surface vessel simulation.

Parameter Value Parameter Value

𝑀11 5 · 3122 × 106 𝐶31 8 · 2831 × 106𝑣
𝑀12 8 · 2831 × 106 𝐶32 −5 · 3122 × 106𝑢
𝑀13 3745 · 4 × 106 𝐷11 5 · 0242 × 104

𝐶13 −8 · 2831 × 106𝑣 𝐷12 27 · 229 × 104

𝐶23 5 · 3122 × 106𝑢 𝐷13 41894 × 104

Table 2. Control parameters of surface vessel simulation.

Parameter Value Parameter Value Parameter Value

ℏ1 100 Γ1 1 × 104 𝜎2 1 × 10−7

ℏ2 100 Γ2 1 × 105 𝜎3 1 × 10−9

ℏ3 10 Γ3 1 × 105 𝜀1 1 × 10−9

ℏ4 10 𝜗1 1 × 10−6 𝜀2 1 × 10−9

𝑘Δ 0 · 01 𝜗2 1 × 10−4 𝜀3 1
𝑘 𝜃 1 𝜗3 1 × 10−4 𝜆0

𝑢 0 · 1
𝑘1 0 · 001 𝛾1 1 × 105 𝜆0

𝑣 0 · 1
𝑘2 10 𝛾2 5 × 104 𝜆0

𝑟 0 · 1
𝑘3 10 𝛾3 5 × 104 T 0 · 01
𝑘4 10 𝜎1 5 × 10−7

Table 3. Prescribed performance functions of surface vessel simulation.

Constrained error Prescribed performance function

𝑥𝑒

{
𝛿𝑎1(𝑡) = (1500 − 10)𝑒−0 · 2𝑡 + 10
𝛿𝑏1(𝑡) = (1200 − 8)𝑒−0 · 2𝑡 + 8

𝑦𝑒

{
𝛿𝑐1 (𝑡) = (800 − 10)𝑒−1 · 75𝑡 + 10
𝛿𝑑1(𝑡) = (600 − 8)𝑒−1 · 75𝑡 + 8

𝜓𝑒

{
𝛿𝑎2(𝑡) = (0 · 8 − 0 · 1)𝑒−0 · 1𝑡 + 0 · 1
𝛿𝑏2(𝑡) = (0 · 7 − 0 · 08)𝑒−0 · 1𝑡 + 0 · 08

where 𝛾1 > 0 and 𝜎1 > 0 are the design constants, 𝜙(𝑧2) = tanh(𝑧2/𝜀1), 𝜀1 > 0 are the design constants
and𝜆0

𝑟 is the prior estimate of ˆ̄𝜆𝑟 .

Remark 9. For the design of control input 𝑡𝑟 at this stage, the neural network and the adaptive law only
approximate the model uncertainties Δ 𝑓𝑟 and disturbances 𝑑𝑟 . In the next design of control input 𝑡𝑢 and
𝑡𝑣 , (Δ 𝑓𝑢 ,Δ 𝑓𝑣 ) and (𝑑𝑢 , 𝑑𝑣 ) will be estimated, the specific process is similar.

3.3. Velocity tracking control

To compensate for saturation of controller inputs 𝜏𝑢 and 𝜏𝑣 , two first-order adaptive assistant systems
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Figure 5. Straight line path following.

are introduced as [ �𝜆3
�𝜆4

]
=

⎡⎢⎢⎢⎢⎢⎣
−ℏ3𝜆3 + 1

𝑚11
Δ𝑡𝑢

−ℏ4𝜆4 + 1
𝑚22

Δ𝑡𝑣

⎤⎥⎥⎥⎥⎥⎦ (3.21)

The surface vessel’s surge error 𝑧1 and sway error 𝑧2 can be obtained as[
𝑧3
𝑧4

]
=

[
𝑢 − 𝑢𝑑 − 𝜆3
𝑣 − 𝑣𝑑 − 𝜆4

]
(3.22)

Remark 10. Since the research object of this paper is a fully actuated surface vessel with three controller
inputs, which is different from an underactuated surface vessel, we cannot only control the surge, but
can also control the sway of the surface vessel.

According to Equations (2.3) and (3.22), we can find the time derivative of 𝑧3 and 𝑧4 as

[ �𝑧3
�𝑧4

]
=

⎡⎢⎢⎢⎢⎢⎣
1

𝑚11
(𝑚22𝑣𝑟 − 𝑑11𝑢 − Δ 𝑓𝑢) + 𝑠𝑎𝑡𝑢 (𝜏𝑢) + 𝑑𝑢

𝑚11
− �𝑢𝑑 − �𝜆3

1
𝑚22

(−𝑚11𝑢𝑟 − 𝑑22𝑣 − Δ 𝑓𝑣 ) + 𝑠𝑎𝑡𝑣 (𝜏𝑣 ) + 𝑑𝑣

𝑚22
− �𝑣𝑑 − �𝜆4

⎤⎥⎥⎥⎥⎥⎦ (3.23)

https://doi.org/10.1017/S0373463323000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463323000061


270 Zhipeng Shen et al.

Figure 6. Position errors of straight line path following.

Similarly, two neural networks are designed to approximate the model uncertainties Δ 𝑓𝑢 and Δ 𝑓𝑣 ,
and the output expression of the neural network is{

Δ 𝑓𝑢 = 𝑾∗
𝑢

T𝒉(𝒛) + 𝑒𝑤𝑢 (𝒛)
Δ 𝑓𝑣 = 𝑾∗

𝑣
T𝒉(𝒛) + 𝑒𝑤𝑣 (𝒛)

(3.24)

Let �̂�𝑢 be the estimated value of 𝑾∗
𝑢 and �̂�𝑣 be the estimated value of 𝑾∗

𝑣 . We design the control
input 𝑡𝑢 and 𝑡𝑣 as{

𝜏𝑢 = −𝑘3𝑧3 + 𝑚11 �𝑢𝑑 − ℏ3𝑚11𝜆3 − 𝑚22𝑣𝑟 + 𝑑11𝑢 + �̂�
T
𝑢𝒉(𝒛) − ˆ̄𝜆𝑢𝜙(𝑧3)

𝜏𝑣 = −𝑘4𝑧4 + 𝑚22 �𝑣𝑑 − ℏ4𝑚22𝜆4 + 𝑚11𝑢𝑟 + 𝑑22𝑣 + �̂�
T
𝑢𝒉(𝒛) − ˆ̄𝜆𝑣𝜙(𝑧4)

(3.25)

We design the weight update law and the adaptive law of the estimation as{ �̂𝑾𝑢 = −Γ2 [𝑧2𝒉(𝒛) + 𝜗2�̂�𝑢]
�̂𝑾𝑣 = −Γ3 [𝑧3𝒉(𝒛) + 𝜗3�̂�𝑣 ]

(3.26a)
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Figure 7. Desired heading angle, heading angle and heading errors of straight line path following.

{ �̄̂𝜆𝑢 = 𝛾2 [𝑧3𝜙(𝑧3) − 𝜎2(ˆ̄𝜆∗
𝑢 −𝜆0

𝑢)]
�̄̂𝜆𝑣 = 𝛾3 [𝑧4𝜙(𝑧4) − 𝜎3(ˆ̄𝜆∗

𝑣 −𝜆0
𝑣 )]

(3.26b)

where Γ2 > 0, Γ3 > 0, 𝜗2 > 0, 𝜗3 > 0, 𝛾2 > 0, 𝛾3 > 0, 𝜎2 > 0, 𝜎3 > 0 and 𝜙(𝑧3) = tanh(𝑧3/𝜀2),
𝜙(𝑧4) = tanh(𝑧4/𝜀3), 𝜀2 > 0, 𝜀3 > 0 are the design constants. The bounds𝜆𝑢 and𝜆𝑣 of the compound
disturbance satisfy |𝑒𝑤𝑢 (𝒛) | + |𝑑𝑢 | <𝜆𝑢 , |𝑒𝑤𝑣 (𝒛) | + |𝑑𝑣 | <𝜆𝑣 , where𝜆0

𝑢 is the prior estimate of ˆ̄𝜆𝑢 and
𝜆0
𝑣 is the prior estimate of ˆ̄𝜆𝑣 .

4. Stability analysis

Consider the candidate Lyapunov function as

𝑉 = 𝑉1 + 𝑚33𝑉2 + 1
2
𝑚33𝑧

2
2 +

1
2
𝑚11𝑧

2
3 +

1
2
𝑚22𝑧

2
4 +

1
2
𝑦2

+ 1
2𝛾2

˜̄𝜆2
𝑟 +

1
2𝛾1

˜̄𝜆2
𝑢 +

1
2𝛾2

˜̄𝜆2
𝑣

+ 1
2Γ3

�̃�
T
𝑟 �̃�𝑟 + 1

2Γ1
�̃�

T
𝑢�̃�𝑢 + 1

2Γ2
�̃�

T
𝑣�̃�𝑣 (4.1)
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Figure 8. Actual velocity of straight line path following.

where �̃�𝑢 = �̂�𝑢 −𝑾∗
𝑢 , �̃�𝑣 = �̂�𝑣 −𝑾∗

𝑣 and �̃�𝑟 = �̂�𝑟 −𝑾∗
𝑟 are the weight approximation errors of

three neural networks. Here, ˜̄𝜆𝑢 =𝜆𝑢 − ˆ̄𝜆𝑢 , ˜̄𝜆𝑣 =𝜆𝑣 − ˆ̄𝜆𝑣 and ˜̄𝜆𝑟 =𝜆𝑟 − ˆ̄𝜆𝑟 are the estimation errors.
In light of Equations (3.3)–(3.5), (3.14)–(3.17), (3.19)–(3.20) and (3.23)–(3.26), the time derivation

of 𝑉 is

�𝑉 = �𝑉1 + �𝑉2 + 𝑚33𝑧2 �𝑧2 + 𝑚11𝑧3 �𝑧3 + 𝑚22𝑧4 �𝑧4 + 𝑦1 �𝑦1 − 1
𝛾1

˜̄𝜆𝑟 �̄̂𝜆𝑟

− 1
𝛾2

˜̄𝜆𝑢
�̄̂𝜆𝑢 − 1

𝛾3
˜̄𝜆𝑣
�̄̂𝜆𝑣 + 1

Γ1
�̃�

T
𝑟
�̂𝑾𝑟 + 1

Γ2
�̃�

T
𝑢
�̂𝑾𝑢 + 1

Γ3
�̃�

T
𝑣
�̂𝑾𝑣

= �𝑉1 + �𝑉2 − 𝑘2𝑧
2
2 − 𝜉1𝑧1𝑧2 + 𝑧2(�̃�T

𝑟 𝒉(𝒛) − ˜̄𝜆𝑟𝜙(𝑧2) − 𝑒𝑤𝑟 (𝒛) + 𝑑𝑟 )
− 𝑘3𝑧

2
3 + 𝑧3(�̃�T

𝑢𝒉(𝒛) − ˜̄𝜆𝑢𝜙(𝑧3) − 𝑒𝑤𝑢 (𝒛) + 𝑑𝑢) − 𝑘4𝑧
2
4

+ 𝑧4(�̃�T
𝑣𝒉(𝑧) − ˜̄𝜆𝑣𝜙(𝑧4) − 𝑒𝑤𝑣 (𝒛) + 𝑑𝑣 ) − ˜̄𝜆𝑟 (𝑧2𝜙(𝑧2) − 𝜎1(˜̄𝜆𝑟 −𝜆0

𝑟 ))
− ˜̄𝜆𝑢 (𝑧3𝜙(𝑧3) − 𝜎2(˜̄𝜆𝑢 −𝜆0

𝑢)) − ˜̄𝜆𝑣 (𝑧4𝜙(𝑧4) − 𝜎3(˜̄𝜆𝑣 −𝜆0
𝑣 ))

− �̃�
T
𝑟 𝑧2𝒉(𝑧) − �̃�

T
𝑢𝑧3𝒉(𝑧) − �̃�

T
𝑣 𝑧4𝒉(𝑧) − 𝜗1�̃�

T
𝑟 �̂�𝑟
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Figure 9. Input signal of straight line path following.

− 𝜗2�̃�
T
𝑢�̂�𝑢 − 𝜗3�̃�

T
𝑣�̂�𝑣 + 𝑦1 �𝑦1 (4.2a)

≤ −𝑘 𝜃𝜉11𝑥
2
𝑒 −

𝑘Δ𝜉12𝑈√
1 + (𝑘Δ𝑦𝑒)2

𝑦2
𝑒 − 𝑘1𝜉2𝑧

2
1 − 𝑘2𝑧

2
2 − 𝑘3𝑧

2
3 − 𝑘4𝑧

2
4

+𝜆𝑟 (|𝑧2 | − 𝑧2𝜙(𝑧2)) +𝜆𝑢 (|𝑧3 | − 𝑧3𝜙(𝑧3)) +𝜆𝑣 (|𝑧4 | − 𝑧4𝜙(𝑧4))
− 𝑧2𝑒𝑤𝑟 − 𝑧3𝑒𝑤𝑢 − 𝑧4𝑒𝑤𝑣 − 𝜎1(ˆ̄𝜆𝑟 −𝜆𝑟 )(ˆ̄𝜆𝑟 −𝜆0

𝑟 ) − 𝜎2(ˆ̄𝜆𝑢 −𝜆𝑢)(ˆ̄𝜆𝑢 −𝜆0
𝑢)

− 𝜎3(ˆ̄𝜆𝑣 −𝜆𝑣 )(ˆ̄𝜆𝑣 −𝜆0
𝑣 ) − 𝜗1�̃�

T
𝑟 �̂�𝑟 − 𝜗2�̃�

T
𝑢�̂�𝑢 − 𝜗3�̃�

T
𝑣�̂�𝑣

+ 𝑦1 �𝑦1 + 1
2
𝑦2

1 (4.2b)

According to the nature of the hyperbolic tangent function, for any 𝜀 > 0, 𝜄 ∈ 𝑅, 0 ≤ |𝜄| − 𝜄𝜙(𝜄) =
|𝜄| − tanh(𝜄/𝜀) ≤ 0 · 2785𝜀, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

|𝑧2 | − 𝑧2𝜙(𝑧2) = |𝑧2 | − tanh(𝑧2/𝜀1) ≤ 0 · 2785𝜀1

|𝑧3 | − 𝑧2𝜙(𝑧3) = |𝑧3 | − tanh(𝑧3/𝜀2) ≤ 0 · 2785𝜀2

|𝑧4 | − 𝑧2𝜙(𝑧4) = |𝑧4 | − tanh(𝑧4/𝜀3) ≤ 0 · 2785𝜀3

(4.3)
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Figure 10. Approximation curves of model uncertainties of straight line path following.

and consider the following inequalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 𝑒𝑤𝑟 𝑧2 ≤ 𝑒2
𝑤𝑟

2
+ 𝑧2

2
2

≤ 𝑒2
𝑤𝑟,max

2
+ 𝑧2

2
2

− 𝑒𝑤𝑢𝑧3 ≤ 𝑒2
𝑤𝑢

2
+ 𝑧2

3
2

≤ 𝑒2
𝑤𝑢,max

2
+ 𝑧2

3
2

− 𝑒𝑤𝑣 𝑧4 ≤ 𝑒2
𝑤𝑣

2
+ 𝑧2

4
2

≤ 𝑒2
𝑤𝑣,max

2
+ 𝑧2

4
2

(4.4a)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
− 𝜗1�̃�

T
𝑟 �̂�𝑟 ≤ −𝜗1

2
�̃�T

𝑟 �̃�𝑟 + 𝜗1

2
𝑊2

𝑟 ,max

− 𝜗2�̃�
T
𝑢 �̂�𝑢 ≤ −𝜗2

2
�̃�T

𝑢 �̃�𝑢 + 𝜗2

2
𝑊2

𝑢,max

− 𝜗3�̃�
T
𝑣 �̂�𝑣 ≤ −𝜗3

2
�̃�T

𝑣 �̃�𝑣 + 𝜗3

2
𝑊2

𝑣,max

(4.4b)

− (ˆ̄𝜆𝑖 −𝜆𝑖)(ˆ̄𝜆𝑖 −𝜆0
𝑖 ) = −1

2
(ˆ̄𝜆𝑖 −𝜆𝑖)2 − 1

2
(ˆ̄𝜆𝑖 −𝜆0

𝑖 )2 + 1
2
(𝜆𝑖 −𝜆0

𝑖 )2

≤ −1
2

˜̄𝜆2
𝑖 +

1
2
(𝜆𝑖 −𝜆0

𝑖 )2, (𝑖 = 𝑢, 𝑣, 𝑟) (4.4c)
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Figure 11. Curves of the bounds of the compound disturbances and its estimation.

According to Equation (3.13), the time derivation of 𝑦1 is

�𝑦1 = �𝑟𝑑 − �𝛼 = −𝑦1/𝑇 − �𝛼
= −𝑦1/𝑇 − 𝜁𝛼 (𝑧1, �𝑧1, �𝜓𝑑 , 	𝜓𝑑 , 𝑦1, 𝜆1, �𝜆1 · · ·) (4.5)

For 𝐵0 > 0, Θ0 > 0, consider the following compact sets:

Ωd = {(𝑥𝑑 , �𝑥𝑑 , 	𝑥𝑑 , 𝑦𝑑 , �𝑦𝑑 , 	𝑦𝑑 , 𝑢𝑑 , �𝑢𝑑 , 	𝑢𝑑 , 𝑣𝑑 , �𝑣𝑑 , 	𝑣𝑑) :
𝑥2
𝑑 + �𝑥2

𝑑 + 	𝑥2
𝑑 + 𝑦2

𝑑 + �𝑦2
𝑑 + 	𝑦2

𝑑

+ 𝑢2
𝑑 + �𝑢2

𝑑 + 	𝑢2
𝑑 + 𝑣𝑑 + �𝑣2

𝑑 + 	𝑣2
𝑑 ≤ 𝐵0} (4.6a)

Ω1 = {(𝑥𝑒,𝑦𝑒, z1,z2,z3, z4, 𝑦1, ˜̄𝜆𝑟 , ˜̄𝜆𝑢 , ˜̄𝜆𝑣 , �̃�𝑟 , �̃�𝑢 , �̃�𝑣 ) : 𝐿1 ≤ Θ0} (4.6b)

where Ωd × Ω1 is also compact set, and the nonlinear continuous function 𝜁𝛼 ( · ) has the maximum
value 𝑁u on the compact set Ωd ×Ω1.
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Table 4. Prescribed performance functions of surface vessel simulation.

Constrained error Prescribed performance function

𝑥𝑒

{
𝛿𝑎1(𝑡) = (1500 − 10)𝑒−0 · 2𝑡 + 10
𝛿𝑏1(𝑡) = (1200 − 8)𝑒−0 · 2𝑡 + 8

𝑦𝑒

{
𝛿𝑐1 (𝑡) = (800 − 20)𝑒−1 · 75𝑡 + 20
𝛿𝑑1(𝑡) = (600 − 16)𝑒−1 · 75𝑡 + 16

𝜓𝑒

{
𝛿𝑎2(𝑡) = (1 · 2 − 0 · 1)𝑒−0 · 1𝑡 + 0 · 1
𝛿𝑏2(𝑡) = (1 − 0 · 08)𝑒−0 · 1𝑡 + 0 · 08

Figure 12. Sin curve path following.

In light of Equations (4.5) and (4.6), we can get

𝑦1 �𝑦1 = − 𝑦1
2

𝑇
+ 𝑦1

2

𝑇
+ 𝑦1 �𝑦1 = − 𝑦1

2

𝑇
+ 𝑦1

( 𝑦1

𝑇
+ �𝑦1

)
≤ − 𝑦1

2

𝑇
+ 𝛼1𝑦1

2 + 𝑁u
2

4𝛼1
(4.7)

where 𝛼1 is the design constant.
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Figure 13. Position errors of sin curve path following.

According to Equations (4.3), (4.4) and (4.7), �𝑉 can be written as

�𝑉 ≤ −𝑘 𝜃𝜉11𝑥
2
𝑒 −

𝑘Δ𝜉12𝑈√
1 + (𝑘Δ𝑦𝑒)2

𝑦2
𝑒 − 𝑘1𝜉2𝑧

2
1

− 2𝑘2 − 1
2

𝑧2
2 −

2𝑘3 − 1
2

𝑧2
3 −

2𝑘4 − 1
2

𝑧2
4

− 𝜎1

2
˜̄𝜆2
𝑟 −

𝜎2

2
˜̄𝜆2
𝑢 −

𝜎3

2
˜̄𝜆2
𝑣 −

𝜗1

2
�̃�

T
𝑟 �̃�

− 𝜗2

2
�̃�

T
𝑢�̃�𝑢 − 𝜗3

2
�̃�

T
𝑣�̂�𝑣 −

(
1
𝑇
− 𝛼1 − 1

2

)
𝑦2

1

+ 0 · 2785𝑧2𝜆𝑟 + 0 · 2785𝑧3𝜆𝑢 + 0 · 2785𝑧4𝜆𝑣

+ 𝑒2
𝑟 ,max

2
+ 𝑒2

𝑢,max

2
+ 𝑒2

𝑣,max

2
+ 𝜎1

2
(𝜆𝑟 −𝜆0

𝑟 )2
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Figure 14. Desired heading angle, heading angle and heading errors of sin curve path following.

+ 𝜎2

2
(𝜆𝑢 −𝜆0

𝑢)2 + 𝜎3

2
(𝜆𝑟 −𝜆0

𝑟 )2 + 𝜗1

2
𝑾2

𝑟

+ 𝜗2

2
𝑾2

𝑢 +
𝜗3

2
𝑾2

𝑣 +
𝑁2
𝑢

4𝛼1
(4.8)

According to Theorem 1, Equation (4.7) can be rewritten as

�𝑉 ≤ −𝜇1𝑉 + 𝐶1 (4.9)

where

𝜇1 = min
{
2𝑘 𝜃 , 2𝑘Δ𝑈/

√
1 + (𝑘Δ𝑦𝑒)2,

2𝑘1𝑧
2
1, (1 − 2𝑘2), (1 − 2𝑘3),

(1 − 2𝑘4), 𝜎1, 𝜎2, 𝜎3, 𝜗1.𝜗2,

𝜗3, 2
(

1
𝑇
− 𝛼1 − 1

2

)}
> 0 (4.10a)

𝐶1 = 0 · 2785𝑧2𝜆𝑟 + 0 · 2785𝑧3𝜆𝑢 + 0 · 2785𝑧4𝜆𝑣

+ 𝑒2
𝑟 ,max

2
+ 𝑒2

𝑢,max

2
+ 𝑒2

𝑣,max

2
+ 𝜎1

2
(𝜆𝑟 −𝜆0

𝑟 )2
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Figure 15. Actual velocity of sin curve path following.

+ 𝜎2

2
(𝜆𝑢 −𝜆0

𝑢)2 + 𝜎3

2
(𝜆𝑣 −𝜆0

𝑣 ) +
𝜗1

2
𝑊2

𝑟

+ 𝜗2

2
𝑊2

𝑢 +
𝜗3

2
𝑊2

𝑣 +
𝑁2
𝑢

4𝛼1
(4.10b)

Hence, we can get

0 ≤ 𝑉 (𝑡) ≤ 𝐶1

𝜇1
+

[
𝑉 (0) − 𝐶1

𝜇1

]
𝑒−𝜇1𝑡 (4.11)

Since lim𝑡→∞𝑉 (𝑡) = 𝐶1/𝑉1, we known 𝑉 (𝑡) is uniformly ultimately bounded. From Equation (49),
the signal 𝑥𝑒, 𝑦𝑒, 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑦1, ˜̄𝜆𝑟 , ˜̄𝜆𝑢 , ˜̄𝜆𝑣 , �̃�𝑟 , �̃�𝑢 , �̃�𝑣 is consistent and finally bounded. From the
boundedness of 𝑥𝑝 , 𝑦𝑝 and 𝑥𝑒, 𝑦𝑒, we know that 𝑥, 𝑦 is bounded. Then from Equation (3.7) and the
boundedness of 𝑧1, 𝜓 is also bounded. From Equations (3.7), (3.13b) and the boundedness of 𝑧1 and
𝑦1, 𝑟 is bounded. Moreover, from the boundedness of 𝑧3, 𝑧4 and 𝑢𝑑 , 𝑣𝑑 , we know 𝑢 and 𝑣 are bounded.
Because ˜̄𝜆𝑟 , ˜̄𝜆𝑢 , ˜̄𝜆𝑣 are bounded, we know that the estimated values ˆ̄𝜆𝑟 , ˆ̄𝜆𝑢 , ˆ̄𝜆𝑣 are bounded. Similarly,
because �̃�𝑟 , �̃�𝑢 , �̃�𝑣 are bounded, �̂�𝑟 , �̂�𝑢 , �̂�𝑣 are bounded. Finally, all signals in the closed-loop
system of fully actuated surface vessel path following are consistent and ultimately bounded.
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Figure 16. Input signal of sin curve path following.

5. Simulations

To verify the effectiveness of the designed controller, this paper adopts a 76 · 2 m supply surface vessel
(Fossen and Strand, 1999) as the object for path following control simulation experiments, and two sets
of simulations are carried out. The positive definite inertia matrix, Coriolis centripetal matrix M and
damping matrix 𝑪 (𝝊) are in Table 1.

The external environmental disturbance 𝒅 and model uncertainties 𝚫𝒇 are

𝒅 =

⎡⎢⎢⎢⎢⎣
𝑑𝑢
𝑑𝑣

𝑑𝑟

⎤⎥⎥⎥⎥⎦ = 103 ×
⎡⎢⎢⎢⎢⎣

sin(0 · 2 × 𝑡) + cos(0 · 5 × 𝑡)
sin(0 · 1 × 𝑡) + cos(0 · 4 × 𝑡)
sin(0 · 5 × 𝑡) + cos(0 · 3 × 𝑡)

⎤⎥⎥⎥⎥⎦
𝚫 𝑓 =

⎡⎢⎢⎢⎢⎣
0 · 2 × 5 · 0242 × 103𝑢2 + 0 · 1 × 5 · 0242 × 103𝑢3

0 · 2 × 2 · 7299 × 105𝑣2 + 0 · 1 × 2 · 7299 × 105𝑣3

0 · 2 × 4 · 1894 × 108𝑟2 + 0 · 1 × 4 · 1894 × 108𝑟3

⎤⎥⎥⎥⎥⎦
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Figure 17. Approximation curves of model uncertainties of sin curve path following.

The neural network has 61 hidden nodes, and the 𝑐 𝑗 ,1 and 𝑐 𝑗 ,2 are evenly distributed in the interval
[−18, 18], 𝑏1, 𝑗 = 𝑏2, 𝑗 = 3, 𝑏3, 𝑗 = 1, 𝑗 = 1, . . . , 61 and the initial value of the network weight
estimation is 0. The range of system input saturations is 𝜏𝑟 ∈ [−2 × 105, 2 × 105] (kN ·m), 𝜏𝑢 ∈
[−2 · 5 × 103, 2 · 5 × 103] (kN), 𝜏𝑣 ∈ [−1 · 5 × 103, 1 · 5 × 103] (kN). The other control parameters of
the surface vessel simulation are in Table 2.

In addition, we will give the following simulation comparison. The comparative guidance adopts the
ECLOS (Zheng et al., 2018b). In this paper, we choose Equation (3.4) as the desired heading angle
𝜓𝑑 , and choose Equations (3.3) and (3.1) as the update law of 𝜃 where 𝑘𝑐𝑠 = 1500, 𝑘𝑐𝑒 = 800. For
better comparison, we use the same surface vessel model, model uncertainties and disturbances. The
remaining parameters are the same.

5.1. Straight line path following

In this simulation, the desired straight line path is 𝜂𝑝 = [𝑥𝑝 , 𝑦𝑝]T = [𝜃, 𝜃]T, the desired velocities are
[𝑢, 𝑣] = [10, 0], and the initial position and velocity of the surface vessel are

[𝑥(0), 𝑦(0), 𝜓(0), 𝑢(0), 𝑣(0), 𝑟 (0)]T = [100 m, 1000 m, 0 rad, 5 m/s, 0 m/s, 0 rad/s]T

The prescribed performance functions used in straight line path following are in Table 3.
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Figure 18. Curves of the bounds of the compound disturbances and its estimation.

The straight line path following simulation results on the proposed PPLOS and comparison with the
ECLOS (Zheng et al., 2018b) method are demonstrated in Figures 5–11. Figure 5 displays the straight
line path following curves. It shows that, compared with ECLOS guidance using the traditional tan-type
BLF, the prescribed performance path following controller of PPLOS guidance based on the PPAMBLF
can make the surface vessel reach the desired path quicker and more accurately, and the steady-state
error is reduced to a certain extent. Figure 6 shows the long-track error and the across-track error of
straight line path following curves. It illustrates that compared with the ECLOS, the path tracking error
of PPLOS completely converges within the prescribed performance requirements, which improves the
transient performance and steady-state performance of the system. From Figure 7, we can see that
the guidance desired heading angle calculated by PPLOS is slightly better, which can make the ship
follow the desired path slightly sooner. Moreover, the heading angle error is also within the prescribed
performance requirements, the convergence speed is greater and the steady-state error is a little smaller.
Figure 8 shows the actual velocity of straight line path following. It can be seen that the surge, sway and
yaw of the surface vessel can quickly track the desired velocity. The input signal of straight line path
following is presented in Figure 9, which shows that the input signal is within the preset saturation range,
so the system can remain stable. The neural network curves are shown in Figure 10, which shows that
the model uncertainties can be estimated around 100 s of the straight line path following. Furthermore,
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Figure 11 shows the curves of the bounds of the compound disturbance and its estimation. It is obvious
that the adaptive laws can approach the bound of compound disturbance.

5.2. Sin curve path following

The desired sin curve path is 𝜂𝑝 = [𝑥𝑝 , 𝑦𝑝]T = [10𝜃, 500 sin(0 · 01𝜃)]T, the desired velocities are
[𝑢, 𝑣] = [10, 0], the initial position and velocity of the surface vessel are

[𝑥(0), 𝑦(0), 𝜓(0), 𝑢(0), 𝑣(0), 𝑟 (0)]T = [500 m, 1000 m, 0 m/s, 5 m/s, 0 rad/s]T

The prescribed performance functions used in sin curve path following are in Table 4.
The sin curve path following simulation results on the proposed PPLOS and comparison with the

ECLOS method are demonstrated in Figures 12–18. The sin curve path following curves are shown in
Figure 12, from which we can see the method in this paper can ensure that the surface vessel reaches the
desired path sooner, and the steady-state error is reduced to a certain extent. As shown in Figure 13, when
tracking more complex sin curves, the long-track error and the across-track error can also completely
converge within the prescribed performance requirements. Compared with ECLOS, PPLOS slightly
improves the transient performance and steady-state performance. From Figure 14, we can see that
the PPLOS guidance desired heading angle is better, which can make the ship follow the desired path
sooner. In addition, the heading angle error is also within the prescribed performance requirements.
It converges slightly faster and its steady-state error is slightly smaller. Furthermore, Figure 15 shows
the actual velocity of sin curve path following. The surge, sway and yaw of surface vessel can quickly
track the desired velocity. Figure 16 displays the input signal of sin curve path following, which shows
that the input signal is within the preset saturation range, while the system can remain stable. Figure 17
shows the neural network curves, and the model uncertainties can be estimated around 100 s of the sin
curve path following. As shown in Figure 18, the curves of the bounds of the compound disturbances
and their estimation, we can see the adaptive laws can approach the bound of compound disturbance.
Consequently, we can conclude that the PPLOS-based path following controller proposed in this paper
can track the desired path quicker, and has smaller steady-state errors and better transient performance.

6. Conclusion

In this paper, aimed at the path following control problem of a fully actuated surface vessel, for the system
to meet the prescribed performance requirements, we have further improved on the basis of ECLOS
and proposed the PPLOS guidance. The guidance is based on the PPAMBLF, which can well converge
the position error of path following within the prescribed performance requirements, and improve
the steady-state performance and transient performance of the system. Furthermore, the PPAMBLF is
also applied to the heading control of surface vessel path following, which can further constrain the
heading angle error. We use the backstepping and dynamic surface technique to design the surface
vessel path following controller. Furthermore, adaptive assistant systems are constructed to compensate
the influence of input saturation on the system, which make the system stable with input saturation.
Considering the model uncertainties and the external environment disturbances, the neural network
is used to approximate the model uncertainties. At the same time, the neural network approximation
errors and external disturbance are combined into compound disturbances, and the upper bound of the
compound disturbances are approximated by the adaptive law. The proposed path following controller
can guarantee that all signals are semi-globally uniformly ultimately bounded. Finally, the experimental
results show the effectiveness of the proposed control in this paper which restricts the steady-state and
transient performance of the system.
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