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Chiral symmetry

In this chapter we pay attention to a very important aspect of QCD and
the Standard Model: chiral symmetry. It is a symmetry that is natural
in the continuum but it poses special problems for regularizations,
including the lattice. We review first some aspects of chiral symmetry in
QCD, then discuss chiral aspects of QCD on a lattice, and finally give a
brief introduction to chiral gauge theories, of which the Standard Model
is an example.

8.1 Chiral symmetry and effective action in QCD

Consider the mass terms in the QCD action,

Smass = −
∫

d4x ψ̄mψ, (8.1)

where m = diag (mu,md,ms, · · ·) is the diagonal matrix of mass param-
eters. We know that the first three quarks u, d and s have relatively
small masses compared with a typical hadronic scale such as the Regge
slope (α′)−1/2 ≈ 1100 MeV or the string tension

√
σ ≈ 400 MeV. (Recall

that mud = 4.4 MeV and ms ≈ 90 MeV in section 7.5.) Suppose we set
the first nf quark-mass parameters to zero. In that case the QCD action
has U(nf) × U(nf) symmetry, loosely called chiral symmetry, in which
the left- and right-handed components of the Dirac field are subjected
to independent flavor transformations VL,R ∈ U(nf),

ψ → V ψ, V = VLPL + VRPR,

ψ̄ → ψ̄V̄ , V̄ = V †
LPR + V †

RPL = βV †β,

PL = 1
2 (1− γ5), PR = 1

2 (1 + γ5). (8.2)
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194 Chiral symmetry

Here VL,R act only on the first nf flavor indices of the quark field. The
matrix γ5 ≡ iγ0γ1γ2γ3 = −γ1γ2γ3γ4 has the properties γ†5 = γ5, γ25 = 1
and it anticommutes with the γµ, i.e. γ5γµ = −γµγ5. The PL,R are
orthogonal projectors, P 2

L = PL, P 2
R = PR, PLPR = 0, PL + PR =

1. Because of these properties the derivative terms in the action are
invariant,

ψ̄γµDµψ → ψ̄V̄ γµV Dµψ = ψ̄γµ(V †
LVL+V †

RVR)Dµψ = ψ̄γµDµψ. (8.3)

The mass terms transform as

ψ̄mψ → ψV̄ mV ψ = ψ̄(V †
RmVLPL + V †

LmVRPR)ψ, (8.4)

so they break the symmetry. A flavor-symmetric mass term has m ∝ 11.
Such a mass term is invariant under flavor transformations, for which
VL = VR. However, it is not invariant under transformations with VL �=
VR. A special case of these are chiral transformations in the narrow
sense,1 for which VL = V †

R. For m = 0 in the nf ×nf subspace the action
is invariant under chiral U(nf)× U(nf) transformations.

In the quantum theory the U(nf) × U(nf) symmetry is reduced to
SU(nf) × SU(nf) × U(1) by so-called anomalies (this will be reviewed
in section 8.4). Here U(1) is the group of ordinary (Abelian) phase
transformations ψ → eiω ψ, ψ̄ → e−iω ψ̄. Furthermore, the dynamics
is such that the SU(nf)× SU(nf) symmetry is spontaneously broken.

An informative way to exhibit the physics of this situation is by using
an effective action. We have met already in chapter 3 the O(4) model for
pions (which can be extended to include nucleons, cf. problem (i)). This
illustrates the case nf = 2 (the group SO(4) is equivalent to SU(2) ×
SU(2)/Z2, cf. (D.19) in appendix D). One introduces effective fields φ
which transform in the same way as the quark bilinear scalar fields ψ̄gψf

and pseudoscalar fields ψ̄giγ5ψf , f, g = 1, . . ., nf . We start with

Φfg ≡ ψ̄gPLψf , (8.5)

which transforms as

Φfg → (VL)ff ′(V †
R)g′g Φf ′g′ , (8.6)

or, in matrix notation,

Φ → VLΦV †
R. (8.7)

The other possibility leads to Φ†:

ψ̄gPRψf = (ψ+f PR βψg)∗ = (ψ̄fPLψg)∗ = (Φgf )∗ (8.8)

≡ (Φ†)fg. (8.9)
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8.1 Chiral symmetry and effective action in QCD 195

Under parity Φ and Φ† are interchanged,

Φ(x0,x) P→ Φ†(x0,−x). (8.10)

Ignoring the symmetry breaking due to anomalies, the effective action
for the effective field φ↔ Φ has the same chiral transformation proper-
ties as the QCD action. We shall first examine the form of this effective
action and derive some consequences, and later take into account that
anomalies reduce the U(nf)×U(nf) symmetry to SU(nf)×SU(nf)×U(1).

For m = 0 we want an invariant action. The combination Tr[(φφ†)k]
is invariant under (8.7). An invariant action is given by

S = −
∫

d4xTr(F2∂µφ†F1∂µφ+G), (8.11)

where F1,2 and G have the forms

F1 =
∑
k

f1k(φφ†)k, F2 =
∑
k

f2k(φ†φ)k, (8.12)

G =
∑
k

gk(φφ†)k. (8.13)

Reality of the action requires the coefficients f1k, f2k and gk to be real.
Invariance under parity requires

f1k = f2k. (8.14)

The action might also contain terms of the type

Tr[(φφ†)k] Tr[(φφ†)l]. (8.15)

At this point we assume such terms to be absent and come back to them
later.

There may also be higher derivative terms. Their systematic inclusion
is part of chiral perturbation theory, see e.g. [19]. For slowly varying fields,
which is all we need for describing physics on the low-energy–momentum
scale, we may assume such higher derivative terms to be negligible.

The classical ground state will be characterized by ∂µφ = 0 and
correspond to a minimum of TrG. Let λ1, . . ., λnf be the eigenvalues of
the Hermitian matrix φφ†. Then

TrG =
∑
k

gk(λk1 + · · ·+ λknf
). (8.16)

A stationary point of TrG has to satisfy

0 =
∂

∂λj
TrG =

∑
k

gkkλ
k−1
j , (8.17)
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196 Chiral symmetry

which is the same equation for each j. Hence, the solution is

λ1 = · · · = λnf ≡ λ, φφ† = λ11. (8.18)

Since φφ† ≥ 0 (i.e. all eigenvalues are ≥ 0), λ ≥ 0.
We shall now assume that λ �= 0 at the minimum of TrG. The

symmetry is then spontaneously broken, because a non-zero φ in the
ground state is not invariant under U(nf)×U(nf) transformations. It is
helpful to use a generalized polar decomposition for φ,

φ = HU, H = H†, U† = U−1. (8.19)

The H and U can be found as follows: H can be calculated from H =
±
√
φφ† and then U = H−1φ. In the ground state H = ±

√
λ11. The

degeneracy of the ground state is described by U , which is an element
of U(nf). It transforms as U → VLUV

†
R. Without loss of generality we

may assume that U = 11 and H = −
√
λ11 (the minus sign becomes

natural on taking into account the explicit symmetry breaking due to
the quark masses). This exhibits clearly the residual degeneracy of the
ground state: it is invariant under the diagonal U(n) subgroup, for which
VL = VR. The pattern of spontaneous symmetry breaking is

U(nf)× U(nf)→ U(nf). (8.20)

The variables of U (e.g. using the exponential parameterization) are
analogous to angular variables for the O(n)-vector field ϕα in the O(n)
model. We expect these to correspond to Nambu–Goldstone bosons.

Let us linearize the effective action about the ground state, writing
H = −v + h, U = exp(iα),

φ = (−v + h)
(
1 + iα− 1

2α
2 + · · ·

)
, v =

√
λ > 0 (8.21)

(from now on we no longer distinguish between 1 and 11). We keep only
terms up to second order in h and α. Since ∂µφ is of first order, we may
replace φ by v in F1,2 in (8.12),

F1 = F2 ≡ F, for φ = −v, (8.22)

and obtain

S = −
∫

d4xTr (F 2v2 ∂µα∂
µα+ F 2∂µh∂

µh+ r h2) + · · · . (8.23)
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8.1 Chiral symmetry and effective action in QCD 197

The · · · also include the ground-state value of S. The coefficient r follows
from

TrG =
∑
k

gkv
2k Tr [(−1 + h/v)2k] (8.24)

=
∑
k

gkv
2k[nf + k(2k − 1)v−2 Trh2 + · · ·], (8.25)

where the term linear in h vanishes because TrG is stationary at h = 0.
Since we expand around a minimum of TrG, the coefficient

r =
∑
k

gkk(2k − 1)v2k−2 (8.26)

is positive. The form (8.23) shows that the α fields have zero mass
parameter – they correspond to n2f Nambu–Goldstone bosons. The h

fields have a mass given by

m2
h = r/F 2. (8.27)

At this point we shall make the useful approximation of ‘freezing’
the ‘radial’ degrees of freedom H to their ground-state value H = −v,
or h = 0. This approximation is justified when mh is sufficiently large
compared with the momenta of interest (cf. problem (i) for numbers)
and it simplifies the derivations to follow. Thus we get

φ(x) = −v U(x), (8.28)

S = −
∫

d4x
f2

4
Tr (∂µU†∂µU), f2 = 4F 2v2, (8.29)

where we omitted a constant term.
We now comment on the terms of the form (8.15). When these are

included the uniqueness of the form (8.18) is no longer compelling and
other solutions with λj �= λk are also possible. This depends on the de-
tails of the action. However, arguments based on the large-nc behavior of
the generalization of QCD to an SU(nc) gauge theory suggest that terms
of the form (8.15) are subdominant [100]. The ground-state solution of
the complete effective action including terms of the form (8.15) is still
expected to have the symmetric form (8.18), and the symmetry-breaking
pattern is still expected to be U(nf)× U(nf)→ U(nf).
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198 Chiral symmetry

The quark-mass terms in the QCD action explicitly break chiral
symmetry. They have the form of an external source coupled to quark
bilinears,

Smass = −
∫

d4x ψ̄m(PL + PR)ψ (8.30)

=
∫

d4xTr (J†Φ + Φ†J), J = −m. (8.31)

Hence, we can absorb the quark-mass terms in the coupling to such
an external source. The total effective action including this source has
the form lnZ(J) = S(φ) +

∫
d4xTr (J†φ + φ†J), where φ is again the

effective field. Setting J = −m thus leads to an addition ∆S in the
effective action

∆S = −
∫

d4xTr [m(φ+ φ†)]. (8.32)

Expanding† φ = −vU = −v exp(iα) to second order in α gives

∆S = −
∫

d4x vTr (mα2) + · · · = −
∫

d4x v
∑
fg

mf αfg αgf + · · · .

(8.33)
Since U is unitary, αgf = α∗

fg. Taking αfg with f ≤ g as independent
variables leads to

∆S = −
∫

d4x v


∑
f<g

(mf +mg)αfg α
∗
fg +

∑
f

mf α
2
ff + · · ·


. (8.34)

Similarly, expanding the gradient term (8.29) gives

S = −
∫

d4x
f2

4


2
∑
f<g

∂µα
∗
fg ∂

µαfg +
∑
f

∂µαff ∂
µαff + · · ·


.
(8.35)

As expected from the O(4) model, ∆S gives a mass to the Goldstone
bosons, which for small m is linear in m,

m2
fg = B(mf +mg), B = 2v/f2. (8.36)

In the next section we shall confront these mass relations with experi-
ment.

By coupling the effective action to the electroweak gauge fields it
can be shown that the constant f determines the leptonic decays

† We neglect here the effect of the quark masses on the ground-state value of φ.
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8.2 Pseudoscalar masses and the U(1) problem 199

of the pseudoscalar mesons. It is known as the pion decay constant,
f = fπ ≈ 93 MeV. This constant also determines the size of the s-wave
pi–pi scattering lengths in good agreement with experiment.

To end this section we note a relation between the pion decay con-
stant f , the unrenormalized chiral condensate 〈ψ̄ψ〉 =

∑
f 〈ψ̄fψf 〉 =

2
∑

f 〈φff 〉 = −2nfv, and the wave-function renormalization constant Z
of the pseudoscalar fields Pfg ≡ i(φ† − φ)fg ↔ ψ̄giγ5ψf . The constant
Z can be read off from S = −

∫
d4xZ−1∑

f<g ∂µP
∗
fg∂

µPfg + · · ·, using
U = −φ/v and (8.29) and (8.35): Z−1 = f2/8v2. Hence, f is given by
the renormalized chiral condensate 〈ψ̄ψ〉/

√
Z,

f =
2
√

2v√
Z

=
−
√

2〈ψ̄ψ〉
nf
√
Z

. (8.37)

8.2 Pseudoscalar masses and the U(1) problem

The candidate Nambu–Goldstone (NG) bosons and their masses are

π±: m2
π+ = m2

ud = 0.0195 GeV2

K±: m2
K+ = m2

us = 0.244 GeV2

K0, K̄0: m2
K0 = m2

ds = 0.248 GeV2

π0: m2
π0 = 0.0182 GeV2

η: m2
η = 0.301 GeV2

η′: m2
η′ = 0.917 GeV2 (8.38)

For the unequal-flavor particles (f �= g) we have indicated the quark
labels. For the neutral π0, η and η′ the quark assignment turns out to
be less straightforward.

Consider two light flavors, nf = 2. The mass formula (8.36) with
f = u, d and g = u, d predicts four NG bosons in this case. The obvious
candidates are π±, π0 and η, with

m2
π+ = m2

ud = B(mu +md). (8.39)

According to (8.36), the other eigenstates are ūu and d̄d. If we try to
assign π0 ↔ ūu, η ↔ d̄d, the relation

m2
ud = 1

2 (m
2
uu +m2

dd) (8.40)

cannot be fulfilled at all. If we assume that mu ≈ md and π0 is an equal
mixture of ūu and d̄d to get m2

π0 ≈ m2
π+ , the orthogonal combination of
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200 Chiral symmetry

ūu and d̄d should have approximately the same mass as π0: the η does
not fit in.

Consider next three light flavors, n = 3. The mass formulas now
predict nine NG bosons. We find

mu +md

mu +ms
=

m2
π+

m2
K+

≡ R1,
mu +ms

md +ms
=

m2
K+

m2
K0

≡ R2, (8.41)

and from this

ms

mu
=

R2(R1 − 1)
1−R2 −R1R2

= 31,
ms

md
=

R2
1−R2 +mu/ms

= 20. (8.42)

Hence mu :md :ms ≈ 1 : 1.5 : 30. The effective action furthermore pre-
dicts particles with masses

m2
uu =

2mu

mu +md
m2

π+ = 0.0155 GeV2, (8.43)

m2
dd =

2md

mu +md
m2

π+ = 0.0235 GeV2, (8.44)

m2
ss =

2ms

mu +ms
m2

K+ = 0.473 GeV2. (8.45)

The candidates π0, η and η′ do not fit into the n = 3 formulas either.
The effective action obtained so far must be wrong.

This is an aspect of the notorious U(1) problem. The problem is
the chiral U(1) invariance contained in U(nf) × U(nf). These are the
transformations of the type VL = V †

R = exp(iω) 11, or more generally,
transformations VL = V †

R with detVL �= 1. We know that this invariance
of the classical QCD action is broken in the quantum theory by ‘anoma-
lies’: QCD has only approximate SU(nf) × SU(nf) chiral symmetry,
plus the flavor U(1) symmetry VL = VR = exp(iω) 11 corresponding to
quark-number conservation.

The resolution of the U(1) problem through ‘anomalies’ turned out to
be a difficult but very interesting task. Here we shall simply add terms to
the action that break the chiral U(1) symmetry and see what this implies
for the mass formulas. We need to introduce terms of the type detU ,
which is invariant under SU(nf)×SU(nf) but not under U(nf)×U(nf):

detU → det(VLUV
†
R) = det(U) det(VLV

†
R) = detU, (8.46)

for VL,R ∈ SU(n). A term like

∆′S =
∫

d4x c (detU + detU†) (8.47)
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8.2 Pseudoscalar masses and the U(1) problem 201

would do, but considerations of the large-nc behavior of ‘nc-color QCD’
suggest using instead the form

∆′S =
∫

d4x c (Tr lnU − Tr lnU†)2. (8.48)

In fact, c ∝ 1/nc. (Both choices for ∆′S lead to the same form of the
mass matrix for the neutral pseudoscalar mesons to be derived below.)
Writing U = exp(iα) gives

∆′S = −
∫

dx 4c


∑

f

αff



2

. (8.49)

Hence, the masses of αfg, f < g, are unaffected, but the αff modes are
now coupled by a mass matrix of the form

m2
ff,gg = 2Bmfδfg + λ, λ = 16c/f2, (8.50)

or

m2 = 2B


mu 0 0

0 md 0
0 0 ms


+ λ


 1 1 1

1 1 1
1 1 1


. (8.51)

We shall treat the quark-mass term as a perturbation to the λ term. For
mf = 0 we have the eigenvectors and eigenvalues

φ0 =
1√
3
(1, 1, 1), m2 = 3λ, (8.52)

φ3 =
1√
2
(1,−1, 0), m2 = 0, (8.53)

φ8 =
1√
6
(1, 1,−2), m2 = 0. (8.54)

Using mu,d,s as a perturbation (in the way familiar from quantum
mechanics) leads to the following mass formulas:

m2
η′ = 3λ+B( 23mu + 2

3md + 2
3ms), (8.55)

m2
π0 = B(mu +md), (8.56)

m2
η = B( 13mu + 1

3md + 4
3ms), (8.57)

which hold for the mass ratios (8.42) up to tiny corrections. The eigen-
vectors are also interesting, but here we merely mention that π0 and η

are mainly φ3 and φ8, whereas the η′ is predominantly φ0. From (8.55)
we can determine the chiral U(1) breaking strength λ,

3λ = m2
η′ − 1

2 (m
2
π0 +m2

η) = 3(0.252) GeV2. (8.58)
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202 Chiral symmetry

The mass terms in the effective action depend on four parameters,
Bmu, Bmd, Bms and λ. Hence we have two predictions for the five
pseudoscalar masses:

m2
π0 = m2

π+ , (8.59)

m2
η = 1

6 (m
2
uu +m2

dd) + 2
3m

2
ss = 0.322 GeV2, (8.60)

which agree reasonably well with experiment. It should be kept in
mind that electromagnetic corrections, which affect in particular the
electrically charged particles, are neglected.

In the early days the near equality of mπ0 and mπ+ was interpreted
as an aspect of approximate flavor symmetry, mu ≈ md. Now we
know that md is substantially larger than mu and that the approxi-
mate flavor symmetry is due to approximate chiral symmetry, mu,d �√
σ, the spontaneous-symmetry-breaking pattern U(nf) × U(nf) →

U(nf)flavor, and the flavor-singlet character of the chiral-anomaly term
∆′S.

8.3 Chiral anomalies

The Noether argument tells us that to each continuous symmetry of the
action corresponds a ‘conserved current’ jµ, ∂µjµ = 0, and a conserved
‘charge’ Q =

∫
d3x j0(x), ∂0Q = 0. This is true in the classical theory but

not necessarily in the quantum theory, which needs more specification
than merely giving the action, such as the precise definition of the path
integral. In case the quantum analog of jµ is not conserved, one speaks
of an anomaly A ≡ ∂µj

µ. In four space–time dimensions A is typically
∝ εκλµν Tr (GκλGµν), where Gµν is a gauge-field tensor. Relations like
∂µj

µ = A can be found in perturbation theory by studying correlation
functions of jµ and A with other fields.

Chiral anomalies correspond to diagrams of the type shown in figure
8.1, and related diagrams, in which one vertex corresponds to a (polar)
vector current, ψ̄iγµψ, or an axial vector current, ψ̄iγµγ5ψ, and the
other two vertices to gauge fields. There must be an odd number of γ5’s
in the trace over the Dirac indices (Tr (γ5γκγλγµγν) = 4iεκλµν), hence
the name ‘chiral anomalies’. These γ5 may come from the gauge-field
vertices or from the current.

In QCD there is no γ5 associated with the gauge-field vertices and only
axial vector currents can have an anomaly. In the Euclidean formulation
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8.3 Chiral anomalies 203

Fig. 8.1. Triangle diagram in which chiral anomalies show up.

their divergence reads†

∂µ(ψ̄f iγµγ5ψg) = (mf +mg)ψ̄f iγ5ψg + δfg 2iq, (8.61)

q =
g2

32π2
εκλµν Tr (GκλGµν). (8.62)

For zero quark masses the right-hand side of (8.61) is the anomaly. The
vector currents have no such anomaly. Their divergence reads

∂µ(ψ̄f iγµψg) = i(mf −mg)ψ̄fψg, (8.63)

which is zero in the symmetry limit mf = mg, hence also in the chiral
limit mf = mg = 0. The right-hand sides of the divergence equations
(8.61) and (8.63) are zero for the currents corresponding to SU(nf) ×
SU(nf) symmetry, obtained by contraction of ψ̄f iγ

µPL,Rψg with the
n2f −1 flavor SU(nf) generators (λk)fg/2, Trλk = 0. Hence, the anomaly
in (8.61) breaks only chiral U(1) invariance corresponding to λ0 ∝ 11 with
∂µ
∑

f ψ̄f iγµγ5ψf = 2nf iq.
The quantity q is called the topological charge density. Continuum

gauge fields on topologically non-trivial manifolds (such as the torus T 4

which corresponds to periodic boundary conditions) fall into so-called
Chern classes characterized by an integer, the Pontryagin index or

† The gauge fields are normalized here according to S = − ∫ d4x Gk
µνGk

µν/4 + · · ·
with Gk

µν = ∂µGk
ν − ∂νGk

µ + gfklmGl
µGm

ν .
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topological charge Qtop:

Qtop =
∫

d4x q(x). (8.64)

An important example of configurations with topological charge is given
by superpositions of (anti)instantons. The latter are solutions of the Eu-
clidean field equations (hence they are saddle points in the path integral)
with localized action density, non-perturbative action S = 8π2/g2 and
topological charge ±1. In this context we mention also the Atiyah–Singer
index theorem:

Qtop = n+ − n−, (8.65)

where n± are the numbers of zero modes (eigenvectors with zero eigen-
value) of the Dirac operator γµDµ with chirality γ5 = ±1 (cf. problem
(iii)).

The significance of all this for our pseudoscalar particle mass spectrum
is that the phenomenologically required chiral U(1) breaking is present
indeed in quantum chromodynamics, provided that gauge-field configu-
rations with topological charge density give sufficiently important con-
tributions to the path integral. The analysis of this is complicated [101]
but fortunately there is a simple approximate formula which expresses
the effect of the chiral anomaly on the neutral pseudoscalar masses, the
Witten–Veneziano formula [102, 103]:

λ ≈ 1
2f2π

χtop, no quarks. (8.66)

Here λ is the U(1)-breaking mass term introduced in (8.50) and χtop is
the topological susceptibility,

χtop =
∫

d4x 〈q(x)q(0)〉. (8.67)

Note that in (8.66) χtop is to be computed in the pure gauge theory with-
out quarks, although it can of course also be evaluated in the full theory
with dynamical fermions. From (8.58) we have χtop ≈ (180 MeV)4.

8.4 Chiral symmetry and the lattice

With Wilson’s fermion method chiral symmetry is explicitly broken by
two large mass terms ∝ M and r/a in the action. With staggered
fermions there are not even any flavor indices to act on with chiral
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transformations (cf. (6.67)). So we have a problem translating the con-
tinuum lore in the previous section to the lattice using these fermion
formulations. As will be mentioned at the end of this section, this
problem can be avoided or at least ameliorated with formulations of
the ‘Ginsparg–Wilson variety’, but an introduction in terms of Wilson
fermions is instructive and this will be the focus of our immediate
attention.

Let us first derive the Noether currents of chiral symmetry. Consider
the fermion part of the action,

SF =
∑
xµf

1
2

[
ψ̄fx(r − γµ)Uµxψfx+µ̂ + ψ̄fx+µ̂(r + γµ)U†

µxψfx

]
−
∑
xf

Mf ψ̄fxψfx, (8.68)

where we have explicitly indicated the flavor index f in addition to x.
We make a variation of ψ and ψ̄ that looks like a chiral transformation,

ψ′
fx = Vfgx ψgx, ψ̄′

fx = ψ̄gx V̄gxf , (8.69)

in which V has been generalized to depend on the space–time point x:

Vfgx = δfg + iωLfgxPL + iωRfgxPR +O(ω2) (8.70)

≡ δfg + iωVfgx + iωAfgxγ5 + · · ·, (8.71)

V̄fgx = δfg − iωVfgx + iωAfgxγ5 + · · ·, (8.72)

where ωfg = ω∗
gf for L, R, V and A. The variation of the action can be

written for infinitesimal ω’s as

δSF = SF(ψ′, ψ̄′)− SF(ψ, ψ̄)

= −
∑
x

[
V µ
fgx∂µω

V
fgx +Aµ

fgx∂µω
A
fgx

+DV
fgxω

V
fgx +DA

fgxω
A
fgx +O(ω2)

]
(8.73)

=
∑
x

[
(∂′

µV
µ
fgx −DV

fgx)ω
V
fgx + (∂′

µA
µ
fgx −DA

fgx)ω
A
fgx

]
.

(8.74)

We recall that ∂µ and ∂′
µ denote the forward and backward lattice

derivatives, ∂µωx = ωx+µ̂ − ωx and ∂′
µωx = ωx − ωx−µ̂. In (8.73), the

terms without derivatives of ω are due to symmetry breaking, while the
terms containing ∂µω are a consequence of the fact that ω depends on x

– they serve to identify the vector (V µ) and axial-vector (Aµ) currents.
The classical Noether argument can be given as follows: if ψ and ψ̄
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satisfy the equations of motion, the action is stationary, δSF = 0, and
consequently

∂′
µV

µ
fg = DV

fg, ∂′
µA

µ
fg = DA

fg. (8.75)

Explicitly we have

V µ
fgx =

1
2
[
ψ̄fxi(γµ − r)Uµxψgx+µ̂ + ψ̄fx+µ̂i(γµ + r)U†

µxψgx

]
, (8.76)

Aµ
fgx =

1
2
[
ψ̄fxiγµγ5Uµxψgx+µ̂ + ψ̄fx+µ̂iγµγ5U

†
µxψgx

]
, (8.77)

DV
fgx = i(Mf −Mg)ψ̄fxψgx, (8.78)

DA
fgx = (Mf +Mg)ψ̄fxiγ5ψgx

− r

2

∑
µ

[
ψ̄fxiγ5(Uµxψgx+µ̂ + U†

µx−µ̂ψgx−µ̂)

+ (ψ̄fx+µ̂U
†
µx + ψ̄fx−µ̂Uµx−µ̂)iγ5ψgx

]
. (8.79)

We see that, in the flavor-symmetry limit Mf = Mg = M , the vector-
current divergence DV = 0. For the axial-vector divergence the story is
more subtle: we can set all mass parameters Mf and r to zero, in which
case DA = 0, but then we get back the species doublers, which is not
Wilson’s method. To get chiral symmetry without fermion doubling, we
have to take the continuum limit. In the classical continuum limit we
expect DA

fg to be proportional to the quark masses because then the
mass terms in the action reduce to

∫
d4x ψ̄mψ, by construction (recall

(6.58)):2

DA
fg(x) = (mf +mg)ψ̄f (x)iγ5ψg(x) +O(a). (8.80)

Hence, the classical DA vanishes in the chiral limit, which is ‘Noether’s
theorem’ for Wilson fermions.

In the quantum theory the fields become operators. Their correlation
functions can be obtained with the path integral. Consider the expec-
tation value of an arbitrary set of fields φ1 · · ·φn ≡ F , composed of the
fermion fields and/or gauge fields,

〈F 〉 =
1
Z

∫
Dψ̄DψDU eS F, Z =

∫
Dψ̄DψDU eS , (8.81)
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and let us make the transformation of variables (8.69). A transformation
of variables cannot change the integrals, so Z ′ = Z and 〈F 〉′ = 〈F 〉.
However, by following how the path-integral measure and the integrant
transform we can derive useful relations, called Ward–Takahashi identi-
ties. The path-integral measure is invariant,

Dψ̄′Dψ′ ≡
∏
xaαf

dψ̄′
xaαf dψ

′
xaαf =

∏
xaαf

dψ̄xaαf dψxaαf (detVx det V̄x)−1

= Dψ̄Dψ, (8.82)

because detV det V̄ = det(V V̄ ) = det(VLV
†
RPL+VRV

†
LPR) = det(VLV

†
R)

× det(VRV
†
L ) = det(VLV

†
RVRV

†
L ) = det 11 = 1. On the other hand, the

change in the action is given in (8.74) and the fields in F may also
change, F ′ = F +

∑
fgx ω

A
fgx∂F/∂

A
fgx + · · · + A → V . So we get the

identity, e.g. for a chiral transformation,

0 =
∂

∂ωAfgx
〈F 〉′ =

∂

∂ωAfgx

(
1
Z ′

∫
Dψ̄′Dψ′DU eS

′
F ′
)

=
1
Z

∫
Dψ̄DψDU

∂

∂ωAfgx

(
eS

′
F ′
)

=

〈
∂S

∂ωAfgx
F +

∂F

∂ωAfgx

〉

=

〈
(∂′

µA
µ
fgx −DA

fgx)F +
∂F

∂ωAfgx

〉
. (8.83)

The content of such relations may be studied in perturbation theory. To
one-loop order this can be done in the way seen in section 3.4 and the
problems in section 6.6. A crucial example is the case F = GκxGλy, for
which ∂F/∂ωAfg = 0 since F consists only of gluon fields, which leads to
triangle-diagram contributions of the type shown in figure 8.1. A calcu-
lation [70] shows that, for this case, DA

fg → (mf +mg)ψ̄f iγ5ψg + δfg 2iq
in the continuum limit. The topological-charge-density contribution is
due to the Wilson mass term and the coefficient of q is formally ∝ r,
but actually independent of r, provided that it is non-zero.

Another example is F = ψfxψ̄gy, which leads to the conclusion that,
for this case, DA

fg → (mf+mg)κPψ̄f iγ5ψg−(κA−1)∂µA
µ
fg, where κP and

κA are finite renormalization constants of order g2 (cf. [70, 109, 104]).
The topological charge density does not contribute here in this order
because it is already of order g2.

At one-loop order we get the same contributions as those found in
continuum perturbation theory because the bare vertex functions reduce
to the continuum ones (in the balls around the origin of the loop-
momentum integration) in the classical continuum limit. There are also
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differing contributions, which are, however, only contact terms.† These
translate into the finite renormalization constants κ.‡ The anomaly is a
singlet under flavor transformations (i.e. ∝ δfg) because the r-mass term
is a flavor singlet. Note that, by a global finite chiral transformation, we
could transform rδfg → r(V̄ V )fg, implying that Mc ∝ V̄ V . However,
this is merely a change of reference frame and the physics cannot depend
on it. The quark masses have to be identified as the mismatch between
M and Mc.

The above examples show the phenomenon of operator mixing: opera-
tors (fields) with the same quantum numbers tend to go over into linear
combinations of each other in the continuum limit (the scaling region).
Such mixing is restricted by the symmetries of the model and there
is more mixing on the lattice than there is in the continuum because
there is less symmetry on the lattice. The κ’s above are due to the
chiral-symmetry breaking of the Wilson mass term at non-zero lattice
spacing. On general grounds of scaling and universality one assumes
these results to be qualitatively valid also non-perturbatively. One in-
troduces renormalized field combinations that are finite as a → 0 that
satisfy some standard normalization conditions. Before writing these
down, let us introduce a lattice field that reduces to the topological
charge density q in the classical continuum limit. There are many of
course, as usual, e.g. the one introduced in [105],

qx = − 1
32π2


∑
κλµν

εκλµνTr (UκλxUµνx)



symmetrized

, (8.84)

where the symmetrization is such that qx transform as a scalar under
lattice rotations. Denoting the renormalized fields by a ‘bar’, they can
be written as [104]

Āµ
fg = κAA

µ
fg + δfg(ZA − 1)κA

1
2nf

∑
f

∂′
µA

µ
ff , (8.85)

D̄A
fg = DA

fg + (κA − 1)∂′
µA

µ
fg

+ δfg(ZA − 1)κA
1

2nf

∑
f

∂′
µA

µ
ff , (8.86)

† Recall that contact corresponds in momentum space to polynomials in the mo-
menta, of degree less than or equal to the mass dimension of the vertex function
under consideration.

‡ In the literature these κ’s are often denoted by Z, which notation we have reserved
for renormalizations diverging when a → 0.
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∂′
µĀ

µ
fg = D̄A

fg, (8.87)

q̄ = κqq − i(ZA − 1)κA
1

2nf

∑
f

∂′
µA

µ
ff , (8.88)

where ZA is a diverging renormalization constant of order g4. The
operator subtractions ∝ (ZA − 1) are suggested by analysis at two-loop
order in the continuum [106]. In the quenched approximation ZA = 1.
In the scaling region

D̄A
fg = (mf +mg)κPψ̄f iγ5ψg + δfg 2iq̄ +O(a), (8.89)

with mf = Mf − Mc. Similar analysis of Ward–Takahashi identities
shows that the vector currents V µ

fg need no finite renormalization, V̄ µ
fg =

V µ
fg, κV = 1. The reason is that they are conserved if mf = mg even for

a �= 0.
The implications of the lattice Ward–Takahashi identities can of

course be studied also non-perturbatively. As a first step one can use only
external gauge fields with F = 1 and test the index theorem (8.65), using
topologically non-trivial gauge fields transcribed from the continuum to
the lattice [107, 108]. Adding dynamical gauge fields, we can then also
use the Ward–Takahashi identities to determine the renormalization con-
stants κ in the quenched approximation [104, 70, 109]. The computation
of the topological susceptibility turns out to be complicated by the fact
that 〈q̄xq̄y〉 has divergent contact terms that severely influence the value
of
∑

x〈q̄xq̄0〉. One can try to subtract this contribution,

χtop =
1
V

∑
xy

〈q̄xq̄y〉U − contact contribution (8.90)

(assuming periodic boundary conditions, space–time volume V → ∞),
but it is hard to define it unambiguously [110]. In practice it appears
to work well [111]. By ‘cooling’ the gauge fields after they have been
generated by a Monte Carlo process this problem can be reduced further
(see e.g. [112] and also [108]).

A different approach to the topological susceptibility is to accept
that the configurations in the path integral are inherently not smooth
functions of space–time and to avoid defining a topological integer
from a collection of wildly fluctuating lattice variables. Instead, one
can return to the physical role played by χtop and derive the Witten–
Veneziano formula entirely within the lattice formulation. This can be
done by studying the pseudoscalar meson contribution in the 〈ĀµĀν〉
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Fig. 8.2. Correlation between ‘fermionic’ and ‘cooling’ topological charge as-
signments for 32 SU(3) gauge-field configurations at β = 6.0. From [117].

and 〈D̄AD̄A〉 correlators. The analysis is subtle [104] but results in the
simple formula

χtop =
κ2Pm

2
f

V
〈Tr [γ5Sff (U)] Tr [γ5Sff (U)]〉U . (8.91)

Here Sff (U) is the fermion propagator in the gauge field U and the
trace is over all non-flavor indices (x, a and α). The large-nc limit is
not taken in this derivation, only the quenched approximation. From
this, the formula in terms of q̄ can be understood from (8.87), (8.89),
and

∑
x ∂

′
µĀ

µ = 0 for periodic boundary conditions. A derivation for
staggered fermions can also be given [113]. The limit mf → 0 is needed
in order to avoid divergences (this limit must be carefully controlled by
taking mf at the lower end of a scaling window that extends to zero as
a→ 0).

In the two-dimensional U(1) model the properties of (8.91) have been
studied and compared with the index theorem as well as with definitions
of χtop in terms of the gauge field only [114, 115]. The staggered form
was explored in numerical SU(3) simulations [116, 117]. Figure 8.2 shows
that the individual topological charges obtained with this ‘fermionic
method’ are at β = 6/g2 = 6.0 already quite correlated to the charges
obtained with the cooling method. This is expected to improve at higher
β but at lower β the gauge fields are too ‘rough’ on the lattice scale for
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notions of topology to make sense (also, the staggered-fermion renor-
malization factor κP becomes uncannily very large [116]). The resulting
χtop ≈ (154±17 MeV)4 seems a bit low compared with the experimental
value following from the Witten–Veneziano formula (180 MeV)4, but
this may be due to the somewhat low value a−1 = 1900 MeV used for
conversion to physical units. Using a−1 = 2216 MeV inferred from the
values 1934 MeV (β = 5.9) and 2540 MeV (β = 6.1) recorded in [98]
would give χtop ≈ (180± 20 MeV)4.

By contracting the currents with the n2f −1 SU(nf) generators λkfg/2,
we can form the left- and right-handed currents jL,Rµk = (V̄ µ

fg ± Āµ
fg)

×(λk)fg/4. According to (8.78) and (8.89), these currents and the U(1)
vector current Vµ =

∑
f V

µ
ff are conserved in the limit mf → 0.

Further Ward–Takahashi identities can be derived to fix renormalization
constants and ensure that the currents satisfy ‘current algebra’ [118].
The corresponding charges would then satisfy the algebra of generators
of SU(nf) × SU(nf), were it not that the symmetry is supposed to be
broken spontaneously. It should also be possible to introduce the QCD
theta parameter (cf. problem (iv)).

From the chiral-symmetry point of view there are now much better
lattice fermion methods. Ginsparg and Wilson made a renormalization-
group ‘block-spin’ transformation for fermions from the continuum to the
lattice, paying special attention to chiral symmetry [124]. More recently
such transformations were studied in search of ‘perfect actions’ [125].
The continuum action is chirally symmetric for zero mass parameters
but this symmetry is hidden in the resulting lattice action, because the
blocking transformation to the lattice breaks chiral symmetry to avoid
fermion doubling. Writing the massless fermion action as SF = −ψ̄Dψ,
chiral symmetry in the continuum can be expressed as γ5D +Dγ5 = 0.
On the lattice there is a remnant of this: the blocked D satisfies the
Ginsparg–Wilson relation

γ5D +Dγ5 = aD 2Rγ5D, (8.92)

where we used matrix notation also for the space–time indices; R is
a matrix commuting with γ5 that enters in the renormalization-group
blocking transformation. It is local, which means that Rxy falls off
exponentially fast as |x − y| → ∞ (on the lattice scale, in physical
units it resembles a delta function). So Dxy practically anticommutes
with γ5 for physical separations, provided that it is itself local, as it
should be (this is a basic requirement for universality). Taking (8.92) as
a starting point, one can take Rxy = 1

2 δxy. Dirac matrices Dxy satisfying
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(8.92) are complicated, because for given x all y contribute, albeit with
exponentially falling magnitude as |x−y| increases. An explicit solution
[126], arrived at via the ‘overlap’ approach to chiral gauge theories (see
the next section), has the form

aD = 1−A(A†A)−1/2, A = 1− aDW, R = 1
2 , (8.93)

where DW is Wilson’s lattice Dirac operator with zero bare mass (r = 1,
M = 4/a). Adding mass terms the resulting lattice QCD action has very
nice properties with respect to broken chiral symmetry and topology,
which can be studied again by deriving Ward–Takahashi identities [130].

Moreover, the resulting action has (for m = 0) an exact chiral sym-
metry [131] under

δψ = iωγ5
(
1− 1

2aD
)
ψ, δψ̄ = iψ̄

(
1− 1

2aD
)
ω, (8.94)

with infinitesimal ωfg. (Note that such a finite chiral transformation is
non-local as it involves arbitrarily high powers of D.) The chiral anomaly
in this formulation comes from a non-invariance of the fermion measure
[131], similar to continuum derivations [132]. Domain-wall fermions [128,
129] are closely related. At the time of writing the research into these
directions is very active; for a review, see [135]. Applications to the
topological susceptibility can be found in [136, 137].

8.5 Spontaneous breaking of chiral symmetry

We now turn to the question of spontaneous chiral-symmetry breaking.
One would like to compute the expectation value of the order field
ψ̄fPLψg at vanishing quark masses and verify that SU(nf) × SU(nf)
symmetry is broken spontaneously to SU(nf). As for the O(n) model (cf.
(3.157)), this could be done by introducing explicit symmetry-breaking
quark masses and studying the infinite-volume limit.

However, with Wilson fermions we cannot simply use ψ̄fPLψg as
an order field because the cancellation of the chiral-symmetry break-
ing by the M and r terms is a subtle issue. Even for free fermions
〈ψ̄fPLψg〉 �= 0 at mf = Mf − 4r/a = 0: it diverges in the con-
tinuum limit (cf. problem (ii)). The chiral-symmetry breaking causes
ψ̄fPLψg to mix with the unit operator, with a coefficient c(g2,m) δfg =
[c0(g2)a−3 + c1(g2)ma−2 + c2(g2)m2a−1] δfg that diverges in the limit
a → 0 (for simplicity we assume here all quark masses to be equal).
The identification of c(g2,m), and a computation of the subtracted
expectation value 〈ψ̄fPLψg〉−c(g2,m)δfg in the limit of zero quark mass
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is a hazardous endeavor, because several powers of a−1 have to cancel
out, and, moreover, because the gauge coupling g2 also depends on a.

On the other hand, we have seen (section 7.5) that the relation
(8.36), i.e. m2

fg ≈ B(mf + mg), B = 2v/f2π , is borne out by the
numerical results when f �= g. So, using this relation, we could define
〈ψ̄ψ〉 by

∑
f 〈ψ̄fψf 〉 = −nfBf2π , with mu = md ≡ mud → 0, or

〈ψ̄uψu〉 = −f2πm2
π/2mud. Using renormalized quark masses instead of

the bare mud would give a renormalized B and a correspondingly renor-
malized 〈ψ̄fψf 〉. Note that mud〈ψ̄uψu〉 should be renormalization-group
invariant. Using e.g. mud = 3.4 MeV (the result of [97]), the value
of 〈ψ̄uψu〉 is about (290 MeV)3 in the MS-bar scheme on the scale
µ = 2 GeV.

We may appeal to continuity at any fixed gauge coupling 0 < g <∞
by sending the symmetry-breaking parameters M and r to zero and
studying spontaneous breaking of chiral symmetry there. Actually, at
r = M = 0 the staggered-fermion form (6.66) of the action is more
appropriate and it shows that the Dirac labels are to be interpreted as
flavor indices. At M = r = 0 the symmetry of the action enlarges to
U(4nf) × U(4nf). Combining the Dirac (α) and flavor (f) indices into
one label A = (α, f) the transformation is

χAx →
(
VLAB

1− εx
2

+ VRAB

1 + εx
2

)
χBx,

χ̄Ax → χ̄Bx

(
VR†
BA

1− εx
2

+ VL†BA

1 + εx
2

)
(8.95)

with εx = (−1)x1+···x4 . Moreover, in the scaling region at weak coupling
the staggered-fermion flavors also emerge, implying a further multipli-
cation of the number of flavors by four. With such a large number of
flavors (i.e. 16nf) and only three colors, asymptotic freedom is lost as
soon as nf > 1 (recall (7.54)) and we can expect continuity in M, r → 0
only if we consider a sufficiently large number of colors nc. Assuming
this to be the case, we can get analytic insight at strong coupling
[119, 120, 83, 84, 82, 121].

At strong gauge coupling and for a large number of colors the ex-
act continuous symmetry breaks spontaneously as U(4nf) × U(4nf) →
U(4nf), resulting in 16n2f NG bosons. The baryons acquire a mass
∝ nc from the spontaneous symmetry breaking. Suppose now nf = 3.
Turning on the symmetry-breaking parameters M and r, it is possible
to keep the pions, kaons and eta massless by choosing M = Mc(g, r)
and in the process all other NG bosons become massive. We need to
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keep M −Mc(g, r) infinitesimally positive to let the order field ψ̄fPLψg

acquire its expectation value in the direction −vδfg, with real positive
v. Otherwise we might induce complex v, which corresponds to non-zero
〈ψ̄f iγ5ψg〉 and spontaneous breaking of parity [119, 122]. The situa-
tion is similar in the model using continuous time (the Hamiltonian
method), in which the symmetry breaking at strong coupling is actually
U(4nf)→ U(2nf)×U(2nf). At non-zero r the U(1) problem is also qual-
itatively resolved by giving the flavor-singlet boson a (small) non-zero
mass [119, 122, 123].

So in this way, connecting with M = r = 0, we can understand
spontaneous breaking of chiral symmetry in multicolor QCD with Wilson
fermions. However, it is conceptually simpler to study the corresponding
order field for staggered fermions.

The staggered-fermion action (6.67) has for m = 0 a chiral U(1)×U(1)
symmetry, which is (8.95) with phase factors VL,R (since there is no
spin–flavor index A to act on). The axial U(1) transformation contained
in this U(1) × U(1), i.e. VL = VR∗ = exp(iωA), is in the staggered-
fermion interpretation [74] a flavor-non-singlet transformation, of the
form exp(iωAξ5) with Tr ξ5 �= 0. In the scaling region, where the symme-
try enlarges to SU(4)×SU(4)×U(1)V, this ξ5 is a linear combination of
the generators of SU(4). So it is natural to study spontaneous breaking
of this U(1) remnant of SU(4) × SU(4) chiral symmetry. A suitable
order field for this symmetry is the coefficient of the quark mass m in
the action, i.e. χ̄xχx, which together with εxχ̄xχx forms a doublet under
the chiral U(1). In the scaling region χ̄xχx →

∑4
f=1 ψ̄f (x)ψf (x) and

εxχ̄xχx →
∑

fg ψ̄f (x)ξ5fgγ5ψg(x).
A definition of Σ ≡ −〈χ̄χ〉 in which the quark mass is introduced

as a symmetry breaker, which is to be taken to zero after taking the
infinite-volume limit, as in (3.157) for the O(n) model, is hard to
implement in practice. This can be circumvented by using a method
based on the eigenvalues of the Dirac operator, which we shall denote
by D(U), where U is a given gauge-field configuration. In the continuum
D is anti-Hermitian, D(U) = −D(U)†, and therefore its eigenvalues are
purely imaginary. On the lattice the staggered-fermion Dirac matrix

D(U)xa,yb =
∑
µ

ηµx[(Uxy)abδx+µ̂,y − (Uyx)abδy+µ̂,x] (8.96)

has the same property (unlike the Wilson–Dirac operator D(U) =
D/(U)+M−W (U) which is the sum of an anti-Hermitian and a Hermitian
matrix). Let ur denote the complete orthonormal set of eigenvectors with
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eigenvalues iλr,

Dur = iλr ur, u†rus = δrs,
∑
r

uru
†
r = 11. (8.97)

The matrix εxy = εxδxy anticommutes with D, Dε = −εD, so

D εur = −iλr εur, (8.98)

and for every eigenvalue λr there is also an eigenvalue −λr. The expec-
tation value of the order field at finite quark mass, Σ ≡ −〈χ̄xχx〉, can
be written as

Σ =
1
V

∑
x

〈χxχ̄x〉 =
1
V
〈Tr [(D +m)−1]〉U

=
1
V

〈∑
r

1
iλr +m

Tr (uru†r)

〉
U

=
1
V

〈∑
r

1
iλr +m

〉
U

=
1
V

〈∑
r

m

λ2r +m2

〉
U

. (8.99)

In terms of the spectral density ρ(λ),

ρ(λ) =
1

V ∆λ
〈n(λ+ ∆λ, λ)〉U , ∆λ→ 0, (8.100)

where n(λ + ∆λ, λ) =
∑

r θ((λ + ∆λ − λr)θ(λr − λ) is the number of
eigenvalues of D(U) in the interval (λ, λ + ∆λ), this can be written as
[138]

Σ = lim
m→0

lim
V→∞

∫
dλ ρ(λ)

m

λ2 +m2
(8.101)

= πρ(0). (8.102)

Here we used the identity limε→0 ε/(x2 + ε2) = πδ(x). Note that ρ(λ)
depends on the gauge coupling, the dynamical quark mass and the
volume V ; it furthermore satisfies ρ(λ) = ρ(−λ) because of (8.98).

The spectral density can be computed numerically by counting the
number of eigenvalues in small bins and figure 8.3 shows an example for
the gauge group SU(2) in the quenched approximation. The quantity
ρ(λ)/V in the plot is our density ρ(λ) in lattice units, i.e. a3ρ(λ). The
value ρ(0) may be determined by extrapolating λ→ 0, it is nearly equal
to the value in the first bin. The resulting a3Σ drops rapidly from the
value 0.1247(22) to 0.00863(48) as β is increased from 2.0 to 2.4 and the
lattice spacing decreases accordingly. Actually, the value β = 2.0 is near
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Fig. 8.3. The quenched spectral density in lattice units of the SU(2) staggered-
fermion matrix for two values of β = 4/g2 and lattice volumes V = L4. The
number of gauge-field configurations used is also indicated. From [142].

the edge of the scaling region on the strong-coupling side, while β = 2.4
is more properly in the scaling region3 (see e.g. figure 8 in [69]).

The volume dependence of Σ obtained this way is expected to be
small. This can be made more precise by using scaling arguments based
on a remarkable connection with random-matrix theory (for a review
see [140]). From (8.100) and (8.102) we see that, in the neighborhood
of the origin, ρ(λ) behaves like 1/[V Σ d(λ)], with d(λ) the average
distance between two eigenvalues. This observation leads one to define
the microscopic spectral density [141]

ρs(ζ) =
1
Σ
ρ

(
ζ

ΣV

)
, (8.103)

in which the region around the origin is blown up by the factor ΣV .
The function ρs(ζ) is predicted to be a universal function in random-
matrix theory depending only on the gauge group and the representation
carried by the fermions, provided that it is evaluated for gauge fields with
fixed topological charge Qtop = ν. For example for SU(nc > 2) and nf
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dynamical fermions it is given by

ρ(ν)s (ζ) =
ζ

2
[
Jnf+ν(ζ)2 − Jnf+ν−1(ζ)Jnf+ν+1(ζ)

]
, (8.104)

where J is the Bessel function. So, by fitting ρ(ν)(λ) according to (8.103)
and (8.104) with only one free parameter (Σ), one obtains the infinite-
volume value of Σ.

Zero modes corresponding to the index theorem should be ignored
here. This is not easy with staggered fermions as the would-be zero
modes fluctuate away from zero and can be identified only by the
expectation value of the ‘staggered γ5’ (cf. (8.134) and (8.135)) [107,
113, 114, 116].

The prediction (8.104) works well using staggered fermions and SU(2)
[142] or SU(3) [143] quenched (nf = 0) gauge-field configurations at
relatively strong gauge coupling and selecting4 ν = 0. The dependence on
the fermion representation and the pattern of chiral-symmetry breaking
is studied for various gauge groups in [144]. A (finite-temperature) study
with nf = 2 dynamical fermions is given in [145].

A recent study [146] using related finite-size techniques with Neu-
berger’s Dirac operator (8.93) in quenched SU(3) at β = 5.85 gave
the result a3Σ = 0.0032(4). A further non-perturbative computation
[147] of the appropriate multiplicative renormalization factor then allows
conversion value ΣMS(µ = 2 GeV) ≈ (270 MeV)3 in the MS-bar scheme.

8.6 Chiral gauge theory

In QED and QCD the representation of the gauge group carried by
all left- and right-handed fields is real up to equivalence. For example,
in QCD, let Ω be the fundamental representation of SU(3). The left-
handed fields are ψL = PLψ and (ψ̄RC)T = PL(ψ̄C)T, with C the charge-
conjugation matrix (cf. appendix D), while the right-handed fields are
ψR = PRψ and (ψ̄LC)T = PR(ψ̄C)T. The fields transform as

ψL → ΩψL, (ψ̄RC)T → Ω∗(ψ̄RC)T, left; (8.105)

ψR → ΩψR, (ψ̄LC)T → Ω∗(ψ̄LC)T, right. (8.106)

Taking ψL and ψ̄R in pairs, the representation of the gauge group has
the form of a direct sum Ω ⊕ Ω∗, which is real up to the equivalence
transformation Ω⊕ Ω∗ → Ω∗ ⊕ Ω.

The fundamental representation of U(1), a phase factor, is evidently
complex, but the fundamental representation of SU(2) is real up to
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equivalence: Ω∗ = exp(iωk
1
2σk)

∗ = σ2Ωσ2. It is not difficult to see, e.g.
by looking at the element exp(iω8 12λ8), that the fundamental represen-
tation of SU(3) is complex. The adjoint representation of SU(n) is real
for all n.
Chiral gauge theories are models in which the representation of the

gauge group is truly complex (no reality up to equivalence). The Stan-
dard Model, which has the gauge group U(1) × SU(2) × SU(3), is a
chiral gauge theory, as can be seen by looking at the U(1) charges of
the left- and right-handed fields. Since this model is able to describe
all known interactions up till now, it is evidently desirable to give it a
non-perturbative lattice formulation.† This turns out to be very difficult.

To get a glimpse of the problem, consider a U(1) model with contin-
uum action

SF = −
∫

d4x ψ̄Lγ
µ(∂µ − igqLAµ)ψL + L→ R, (8.107)

assuming for the moment no further quantum numbers (no ‘flavors’).
The fields transform as

ψL → eiωqLψL, ψ̄R → e−iωqR ψ̄R, left; (8.108)

ψR → eiωqRψR, ψ̄L → e−iωqL ψ̄L, right, (8.109)

and we see, e.g. from the pair ψL and ψ̄R, that the model is chiral if the
charges qR and qL are not equal. Assuming this to be the case, it follows
that ψ̄ψ = ψ̄RψL + ψ̄LψR is not gauge invariant. Consequently there
can be no mass term for the fermions. We also cannot use PL + PR = 1
and eliminate γ5 from the action. So the gauge-field couples also to an
axial-vector current (there is a term ψ̄iγµγ5ψAµ in the action), instead of
only to vector currents as in QED and QCD. These features are generic
for chiral gauge theories: no mass terms and axial-vector currents that
are dynamical (rather than being just symmetry currents of global chiral
symmetry). With γ5 prominent in the vertex functions we may expect
chiral anomalies to play a role. This has been analyzed in perturbation
theory in the continuum, with the conclusion that the above model is
unsatisfactory because gauge invariance is spoilt by anomalies due to
contributions involving triangle diagrams (cf. figure 8.1). These problems
can be avoided by extending the model to contain more than one ‘flavor’,
with charges qLf and qRf , such that the anomalies cancel out between
the different flavors, which requires

∑
f (q3Lf − q3Rf ) = 0. The model

† We consider U(1)-neutral right-handed neutrino fields ψR (and ψ̄R) as part of the
Standard Model.
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and its representation of the gauge group are then called ‘anomaly-free’.
Such considerations played an important role in the construction of the
Standard Model. It was noticed that the anomalies in the lepton sector
could cancel out against those in the quark sector [148, 151]. This is how
the Standard Model is anomaly-free.

We continue with the choice of integer qL = q, qR = 0. With just one
flavor the continuum model is then anomalous. Let us see what happens
if we put the above model naively on the lattice.

A Euclidean naive lattice action is easy to write down:

SF = −
∑
xµ

1
2

[
ψ̄xγµ(UµxPL + PR)ψx+µ̂ − ψ̄x+µγµ(UµxPL + PR)ψx

]
,

(8.110)
with a path integral

Z =
∫

Dψ̄DψDU eS , (8.111)

in which S = SF + SU with SU the usual plaquette action. The lattice
action and measure are gauge invariant (for the fermion measure this
follows from (8.82) with VLx = exp(iωx), VRx = 1). In this model
the right-handed ψR and the left-handed (ψ̄RC)T are just free fields,
they are not coupled to the gauge fields. However, the species-doubling
phenomenon induces 16 fermion flavors in the scaling region. What are
the charges of these fermions?

To answer this question consider a fermion line in a diagram with a
gauge-field line attached to it. The corresponding mathematical expres-
sion is

· · ·S(p)Vµ(p, q; k)S(q)· · ·, (8.112)

where S(p) is the massless naive fermion propagator and Vµ(p, q; k) the
bare vertex function for the model (p = q+k). Such vertex functions have
been determined in problem (i) in section 6.6 for the case of QED, and
to get these for the present case we only have to make the substitution
gγµ → gγµPL in (6.99), giving

Vµ(p, q; k) = igγµPL
1
2

(
eiaqµ + eiapµ

)
. (8.113)

To interpret this expression in the scaling region for fermion species A
we use (6.26) and (6.31) and substitute p→ kA + p and q → kA + q into
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(8.112) (kA = πA/a),

· · ·S(kA + p)Vµ(kA + p, kA + q; k)S(kA + q) · · · (8.114)

= · · ·S†
A

[
−iγκpκ
p2

giγµ
1
2 (1− εAγ5)

−iγλqλ
q2

+O(a)
]
SA· · ·,

where we used (6.30) and (6.28) for the terms not involving γ5 and

εAγµγ5 = SAγµγ5S
†
A cos(πAµ). (8.115)

Using (6.29) we find εA = +1 for πA = π0, εA = −1 for πA = π1, . . .,
π4, εA = +1 for πA = π12, . . ., π34, εA = −1 for πA = π123, . . ., π234 and
εA = +1 for πA = π1234, such that∑

A

εA = 1− 4 + 6− 4 + 1 = 0. (8.116)

From (8.114) we conclude that in the scaling region we have eight contin-
uum fields with qcontL = 1 (εA = 1), and eight with qcontR = 1 (εA = −1),
in addition to the uncharged fields: the lattice has produced flavors (the
species doublers) such that the anomalies cancel out.5 However, since
all the qcontL and qcontR are equal, the model is not a chiral gauge theory!
It is just QED with eight equal-mass Dirac fermions (plus eight neutral
Dirac fermions).

A natural suggestion for a lattice formulation of the Standard Model is
to give the doubler fermions masses of order of the lattice cutoff through
Wilson-type Yukawa couplings with the Higgs field [119, 149, 150].
Because the Standard Model is anomaly-free the set of doublers in
such a formulation is anomaly-free too: the set of 15 doublers of some
fermion contributes to anomalies with the same strength as this fermion
(opposite in sign,

∑16
A=2 εA = −1). Insofar as anomalies are concerned

there is no objection to the decoupling of the doublers. Other objec-
tions [151, 152], namely that masses of the order of the cutoff might
not be possible because renormalized couplings cannot be arbitrarily
strong (triviality is expected to play a role here), do not apply if
new phases come into play. This is indeed the case. On turning on
the Wilson–Yukawa couplings one runs into a new phase, called the
paramagnetic strong-coupling (PMS) phase [153]. Unfortunately, in this
phase the doublers bind with the Higgs field to give right-handed fields
transforming in the same representation as the left-handed fields, or
vice-versa, and the result is a non-chiral (vector) gauge theory in the
scaling region [154, 155]. Other models [156] (see also [157]) which can
be put into this Wilson–Yukawa framework have been argued to fare

https://doi.org/10.1017/9781009402705.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402705.009


8.6 Chiral gauge theory 221

the same fate [158]. Another approach is to keep the doublers as heavy
physical particles in mirror fermion models [159].

How to formulate a lattice chiral gauge model? This problem is diffi-
cult because of the peculiar symmetry breaking of chiral anomalies. We
want them to be there without interfering with gauge invariance. Nielson
and Ninomiya [160] formulated a no-go theorem that has to be overcome
first. They used a Hamiltonian description (continuous time and spatial
lattice), and, loosely speaking, the theorem states that, under cherished
conditions such as translation invariance, locality and Hermiticity, a
free-fermion lattice model with a U(1) invariance has always an equal
number of left- and right-handed fermions of a given U(1) charge. The
U(1) is supposed to be contained in the gauge group and the implication
is that the model can be extended only into an interacting gauge theory
that is ‘vector’ and not chiral. A simpler Euclidean formulation is given
in [161]. An extension to an effective action formulation is given in [129].

The Euclidean reasoning runs as follows. Suppose that we replace
sin kµ → Fµ(k) in the naive fermion propagator. This corresponds to
the translation-invariant action of the form (ignoring possible neutral
fields)

SF = −
∑
xyµ

ψ̄xγµPLF̃µ(x− y)ψy, iFµ(k) =
∑
x

exp(−ikx)F̃µ(x),

(8.117)
which has a U(1) invariance ψ → exp(iωq)ψ, ψ̄ → exp(−iωq) ψ̄.
Hermiticity is easy to state in the Hamiltonian formulation: Ĥ† = Ĥ.
In the Euclidean formulation we require the spatial part of the action
(µ = 1, 2, 3) to be Hermitian and extend this to µ = 4 by covariance.
Then Hermiticity means that Fµ(x)∗ = −Fµ(−x), so Fµ(k) is real.
Locality means that F̃µ(x) approaches zero sufficiently fast as |x| → ∞.
This implies that its Fourier transform is not singular and we shall
assume Fµ(k) to be smooth, i.e. it and all its derivatives are continuous.
If Fµ(k) has isolated zeros of first order then the model has a particle
interpretation. Near a zero at k = k̄,

Fµ(k) = Zµν(kν − k̄ν) +O((k − k̄)2), (8.118)

with coefficients Zµν forming a matrix Z with detZ �= 0. We write

Z = RP, (8.119)

with R an orthogonal matrix and P a symmetric positive matrix. The
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matrix R can be absorbed in a unitary transformation,

γµ(1− γ5)Rµν = Λ†γν(1− εγ5)Λ, ε = detR = ±1. (8.120)

For ε = 1, Λ is a rotation exp(12ϕµν [γµ, γν ]), for ε = −1, Λ is e.g. γ4 times
a rotation (cf. appendix D). So for k near k̄ the fermion propagator is
equivalent to the continuum expression

S(k) ≈ −iγµpµ
p2

1− εγ5
2

, pµ ≡ Pµν(k − k̄)ν , (8.121)

which corresponds to a left- (ε = +1) or right-handed (ε = −1) fermion
field.

Now comes input from topology: ε is the index of the vector field
Fµ(k) of its zero at k = k̄, i.e. the degree of the mapping Fµ/|F | =
Rµνpν/|p| onto S4. The Poincaré–Hopf theorem states that the global
sum of the indices equals the Euler characteristic χE of the manifold on
which the vector field is defined:

∑
ε = χE. In our case this manifold is

the momentum-space torus T 4, for which χE = 0. Hence, there must be
an even number of zeros and in the continuum limit we have an equal
number of left- and right-handed fermion fields with the same charge.
The naive U(1) model above is a typical illustration of the theorem.

To avoid these theorems we have to avoid some of their assumptions
(including hidden assumptions). Giving up translation invariance (e.g.
using a random lattice), Hermiticity (e.g. SF = −

∑
xµ ψ̄xγµ∂µψx, which

gives the complex Fµ(k) = (eikµ − 1)/i), or locality (e.g. the discon-
tinuous Fµ(k) = 2 sin(kµ/2) (mod 2π) has only a zero at the origin
but corresponds to Fµ(x) falling only like |x|−1) tends to lead to other
trouble (for a review, see [162]). The basic reason is that, with an exactly
gauge-invariant action and fermion measure, there can be no anomaly,
which means that it cancels out in one way or another, generically
without the desired particle interpretation.

One line of approach is to give up gauge invariance at finite lattice
spacing by working in a fixed gauge and adding counterterms such that
gauge invariance is restored in the continuum limit [163, 164]. How-
ever, non-perturbative gauge fixing has its own complications, not least
the existence of Gribov copies, i.e. configurations differing by a gauge
transformation satisfying the same gauge condition. A gauge-fixed U(1)
model appears to have passed basic tests [166]. For a review see [168].
One may try to keep the fermions in the continuum, or on a finer lattice
than the gauge-field lattice, and invoking restoration of gauge symmetry
by the mechanism of [167]. See [168] for a review. Gauge-symmetry
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restoration was also invoked in models gauging non-invariant models,
using Wilson fermions or gauging the staggered flavors [162, 169] but it
failed in its simplest realization [170]. Further information can be found
in the reviews presented at the Lattice meetings [171].

New developments that constitute a major advancement can be clas-
sified under the heading ‘overlap’ and ‘Ginsparg–Wilson’ fermions. The-
orems of the Nielson–Ninomiya type are avoided by having an infinite
number of fermion field components (‘overlap’), and changing the defi-
nition of γ5, such that it is as usual for ψ̄ but for ψ it involves replacing
γ5 by

γ̂5 = γ5(1− aD), (8.122)

where D is a Ginsparg–Wilson Dirac operator, together with an elabo-
rate definition of the fermion measure in the path integral (apparently
giving up Hermiticity on the lattice) [172]. The subject is beautiful
and erudite and the reader is best introduced by the reviews [173, 174]
(‘overlap’) and [175] (‘Ginsparg–Wilson’). One may feel uncomfortable,
though, about using formulations with an infinite number of field com-
ponents; it runs contrary to the basic idea of being able to approach
infinity from the finite.

8.7 Outlook

There is of course a lot more to lattice field theory than has been
presented here. An introduction to finite temperature can be found in
[9]. Simulation algorithms are introduced in [4, 10]; improved actions
and electroweak matrix elements are discussed in [14, 15]. See also
[16] for advanced material. For an introduction to simplicial gravity6

see [17]. Non-perturbative lattice formulations of quantum fields out of
equilibrium are still in their infancy.7 For the current status of all this,
see the proceedings of the ‘Lattice’ meetings.

8.8 Problems

(i) The pion–nucleon σ model
Consider an effective nucleon field N that is a doublet in terms
of Dirac proton (p) and neutron (n) fields

N(x) =
(
p(x)
n(x)

)
. (8.123)
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The effective action of the pion–nucleon sigma model is given by

Seff = −
∫

d4x [N̄γµ∂µN+GN̄(φPR+φ†PL)N ]+SO(4), (8.124)

where SO(4) is the scalar field action of the O(4) model (equations
(3.1) and (3.4)) and φ is a matrix field constructed out of the
scalar fields,

φ = ϕ011 + i

3∑
k=1

ϕkτk. (8.125)

The τk are the three Pauli matrices, which act on the p and n

components of N and G is the pion–nucleon coupling constant.
Show that the action is invariant under SU(2)× SU(2) trans-

formations

N → V N, N̄ → N̄ V̄ , φ→ VLφV
†
R, VL,R ∈ SU(2). (8.126)

Verify that the transformation on the matrix scalar field φ is
equivalent to an SO(4) rotation on the ϕα. Hint: check that φ†φ =
ϕ211, detφ = ϕ2; and hence that φ may be written as φ =

√
ϕ2 U ,

U ∈ SU(2).
This chiral invariance of the sigma-model action is a nice

expression of the symmetry properties of the underlying quark–
gluon theory. When the symmetry is spontaneously broken, such
that the ground-state value of the scalar field is φg = f11, f = ϕ0g,
the action acquires a mass term GfN̄N : the nucleon gets its mass
from spontaneous breaking of chiral symmetry, mN = Gf . This
relation is in fair agreement with experiment. On introducing
the weak interactions into the model one finds that f equals the
pion decay constant, f = fπ ≈ 93 MeV, while G ≈ 13 from
pion–nucleon-scattering experiments, so with mN = 940 MeV we
have to compare mN/f ≈ 10 with 13.

The field ϕ0 is often denoted by σ, and ϕk by πk, the sigma and
pion fields. The pions are stable within the strong interactions but
the σ is a very unstable particle with mass mσ in the range 600–
1200 MeV. Given mπ = 140 MeV and mσ = 900 MeV, determine
the other parameters in the action.

Reanalyze the model in ‘polar coordinates’ φ = ρU , U ∈ SU(2)
with ρ a single-component scalar field. Note that ρ plays the role
of the matrix field H introduced in (8.19). What is its mass?
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In sections 8.1 the effective field φ is a general complex 4 × 4
matrix, which has eight independent real parameters, whereas the
above φ has only the four real ϕα, which cannot incorporate chiral
U(1) transformations. Verify this, and work out a generalization
in which φ has the general form. (Include in the action terms that
break chiral U(1).)

(ii) Free fermion 〈ψ̄ψ〉
Consider free ‘naive’ fermions on the lattice (one flavor). Show
that

Σ ≡ −〈ψ̄ψ〉 = a−3
∫ π

−π

d4k

(2π)4
4am

a2m2 +
∑

µ sin2 kµ
, (8.127)

and that it has the expansion

Σ = c1ma−2 +m3[c3 ln(am) + c′3] + · · ·, (8.128)

where the · · · vanish as a→ 0. Hint: use (3.66).
Now consider free Wilson fermions. Show that for this case the

expansion takes the form

Σ = c0a
−3 + c1ma−2 + c2m

2a−1 +m3[c3 ln(am) + c′3] + · · ·,
(8.129)

where m = M − 4r/a. Find expressions for the coefficients ck.
(iii) Research project: the index theorem

Go through the following formal arguments.
In the continuum, let D = γµ[∂µ− iGµ(x)] be the Dirac opera-

tor in an external gauge field Gµ in a finite volume with periodic
(up to gauge transformations) boundary conditions. Consider the
divergence equation for the flavor-singlet axial current

∂µψ̄iγµγ5ψ = 2mψ̄iγ5ψ + 2iq, (8.130)

where we assumed that there is only one flavor. Taking the
fermionic average and integrating over (Euclidean) space–time
gives

0 = −2mTr [γ5(m+D)−1] + 2iν, (8.131)

where the trace is over space–time and Dirac indices and ν = Qtop

is the topological charge.
Verify that iD is a Hermitian operator, (iD)† = iD.
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Let fs be the eigenvectors of D with (purely imaginary) eigen-
values iλs,

Dfs = iλsfs, Dγ5fs = −iλsγ5fs, (8.132)

and assume the eigenvectors to be orthogonal and complete,

f†
s ft = δst,

∑
s

fsf
†
s = 1. (8.133)

Because fs and γ5fs correspond generically to different eigen-
values,

f†
sγ5fs = 0, λs �= 0. (8.134)

For λs = 0, [D, γ5]fs = 0, so in this subspace we can look for
simultaneous eigenvectors of D and γ5. The eigenvalues of γ5 are
±1,

γ5fs = ±fs, λs = 0. (8.135)

It follows that

ν = m
∑
s

Tr (γ5fsf†
s )

m+ iλs
=
∑

s, λs=0

f†
sγ5fs = n+ − n−, (8.136)

with n± the number of zero modes with chirality γ5 = ±1.
Periodicity modulo gauge transformations is needed in order to

allow non-zero topological charge. For the proper mathematical
setting in the continuum, see e.g. [12]. Lattice studies using
Wilson and staggered fermions are in [107, 108, 114, 115, 90],
while [135] gives an introduction to Ginsparg–Wilson fermions.
Choose one of these studies and reproduce (and possibly extend)
its results.

(iv) Research project: the theta parameter of QCD
Consider the QCD action with generalized mass term∫

d4x ψ̄′mψ′, m = mLPL +m†
LPR, (8.137)

in which mL is a fairly arbitrary complex matrix. Assume that it
can be transformed into a diagonal matrix by the transformation

V †
LmLVR = mdiag = diagonal with entries ≥ 0. (8.138)

Suppose this transformation is the result of a chiral transforma-
tion on the fermion fields (cf. (8.2)),

ψ′ = V ψ, ψ̄′ = ψ̄V̄ . (8.139)
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In continuum treatments the fermion measure is not invariant
under such a transformation, but is produces the chiral anomaly
in the form [132]

Dψ̄′Dψ′ = Dψ̄Dψ eiθ
∫
d4x q(x), θ = arg(detmL). (8.140)

So in terms of the un-primed fermion fields we have an addi-
tional term in the (Euclidean) action proportional to the topo-
logical charge,

S = −
∫

d4x

[
1

2g2
Tr (GµνGµν) + ψ̄γµDµψ + ψ̄mdiagψ − iθq

]
.

(8.141)
The original mass m may be the result of electroweak symmetry
breaking. Experiments constrain the value of θ, which violates
CP invariance, to be less than 10−9 in magnitude.

Our problem is to give a rigorous version of the above reasoning
using the lattice regularization. With Wilson’s fermion method
the following steps get us going.

Consider the fermion determinant exp[Tr ln(D/ − W + M)],
where M is arbitrary. In the scaling region M is close to the
critical value Mc; if not, then there is no continuum physics. So
assume that M = Mc + m, with Mc ∝ r11 and m arbitrary as in
the above continuum outline. With Wilson’s fermion method the
fermion measure is invariant under chiral transformations and the
anomaly comes from the non-invariant term ψ̄(W −Mc)ψ in the
action. So we have

Tr [ln(D/−W +Mc +m)] = Tr {ln[D/+ V̄ (Mc −W )V +mdiag]}.
(8.142)

To evaluate this consider a change δV of V . Then the above
expression changes by

Tr {[δV̄ (Mc −W )V + V̄ (Mc −W ) δV ]

×[D/+ V̄ (Mc −W )V +mdiag]−1}. (8.143)

Expanding this expression in terms of the gauge field leads to an
infinite number of diagrams with external gauge-field lines im-
pinging upon a closed fermion loop. The crucial point is now that
the factor Mc −W in the numerator above suppresses the region
of loop-momentum integration where mdiag has any influence.
For example in momentum space at lowest order, Mc − W →
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ra−1
∑

µ[1− cos(akµ)], and we therefore need a loop momentum
k of order a−1 
 mdiag to give a non-vanishing contribution.
See [70] for an explicit computation of the triangle-diagram-like
contributions. So we may as well set mdiag = 0 in (8.143). Then
(8.143) can be rewritten in the form

Tr [V̄ −1 δV̄ (Mc −W )(D/+Mc −W )−1

+ δV V −1(D/+Mc −W )−1(Mc −W )]

= Tr [(VL δV −1
L − VR δV −1

R ) γ5 (Mc −W )(D/+Mc −W )−1],

(8.144)

where we used the fact that D/, Mc and W are all flavor diagonal,
and the cyclic property of the trace. Denoting the trace over
space–time plus Dirac indices (excluding the flavor indices) by
Trst we have the result [70, 133, 134]

Trst [γ5 (Mc −W )(D/+Mc −W )−1] = Qtop, a→ 0. (8.145)

Note that this result is independent of the r parameter [70], as
long as it is non-zero. The coefficient of Qtop is given by

Trflavor (VL δV −1
L − VR δV −1

R )=δln[det(VRV −1
L )]= i δarg(detmL).

(8.146)
So one concludes that, in the continuum limit,

exp{Tr [ln(D/+Mc −W +m)]}
= eiθQtop exp{Tr [ln(D/+Mc −W +mdiag)]}, (8.147)

θ = arg(detmL), (8.148)

which is equivalent to the continuum result.
By taking the continuum limit we have happily been able to

ignore finite renormalization factors κ (κ = 1 + O(g2) → 1, g2 is
the bare gauge coupling).

The problem with the above reasoning, taken from [149], is how
to improve it such that it applies in a practical scaling region with
g2 not much less than 1.
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