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EIGENVALUES OF THE CURVATURE OPERATOR 
FOR CERTAIN HOMOGENEOUS MANIFOLDS 

J. E. D'ATRI AND I. DOTTI MIATELLO 

Introduction. Given a Riemannian manifold M, the Riemann tensor R in­
duces the curvature operator 

p: A2TPM-* A2TPM 

on the exterior power A2TPM of the tangent space, defined by the formula 

(p(XAY),UAV) = (R(X,Y)VJU) 

where the inner product is defined by (X A F, U A V) = (X, U){Y, V) -
(X, V)(y, U). From the symmetries of R, it follows that p is self-adjoint and so 
has only real eigenvalues. R also induces the sectional curvature function K on 
2-planes in TpM by K(ir) = (p(X A7) ,XAF) where {X, Y} is an orthonormal 
basis of the 2-plane IT. Conditions on the sign of p or of K are well known to 
be important in geometry. The main aim of this note is to explore, in the ho­
mogeneous case, some intermediate curvature conditions, some of which have 
recently proved to be useful. 

Given a nonzero element u in A2TpM, there is a number 2r such that ujr ^ 0 
but (jr+l = 0. This is also the minimal 2r such that u — Y^ r U( A V,-, £/;, 

1=1 

Vf G TPM. The number 2r is called the rank of u>. We will say that p is r-
negative if (p(a;), a;) < 0 for all 2-forms of rank =î 2r, with obvious similar 
definitions for r-positive, r-nonnegative, etc. Clearly the condition that p is 1-
negative is equivalent to the condition that K is negative, while the condition 
that p is [̂  dim M] - negative is equivalent to the condition that p is negative. J. 
D. Moore [Mo] essentially used the condition that p is 2-positive. Sampson [Sa] 
introduced a curvature on the complexified tangent space of a real Riemannian 
manifold which he called "Hermitian curvature" and was interested in finding 
non symmetric spaces with negative Hermitian curvature. Since p 2-negative 
implies negative Hermitian curvature, one of our results will show that there 
exist many homogeneous examples. 

In section 1, we modify an argument of Heintze [H] to show that the class of 
homogeneous manifolds admitting an invariant metric with K < 0 coincides with 
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the class admitting an invariant metric with p < 0. This gives the aforementioned 
examples of negative Hermitian curvature. These results contrast with known 
results on the class of homogeneous manifolds admitting an invariant metric 
with K > 0 since the examples of Aloff-Wallach [A-Wl do not admit any 
Riemannian metrics with p > 0, by results of Micaleff and Moore [M-M]. We 
also give an example where K < 0 but p is not 2-negative. 

In section 2, we consider various additional conditions on the class of natu­
rally reductive homogeneous spaces. For example, we define a strongly normal 
space to be a normal space for which [ , ]m defines a Lie algebra on the ortho-
complement m of the isotropy algebra. Strongly normal spaces have p ^ 0 (but 
examples will show that the converse is false) and we are able to classify them 
(except in dimension 3, only symmetric spaces appear as irreducible compo­
nents). This condition also occurs in work of Sagle [S1HS2] and we give some 
examples and results relating to his. 

Section 1. 
1.1 If M is a connected, simply connected homogeneous Riemannian man­

ifold with K è 0, then M is isometric to a solvable Lie group G with a left 
invariant metric, [H], [W]. Moreover, if g is the Lie algebra of the solvable 
group G and ( , ) is the inner product induced on g by a left invariant metric 
on G with K < 0, then Heintze [H] proved. 

(A) dim g' — dim g — 1 where g' = [g, g] 
(B) there exists an element A G g with (A, g') = 0 such that if D = |(ad A + 

ad A*) and S = |(ad A - ad A*) then on g', D and F = D2 + [D, S] are positive 
operators. 

In the next subsections, we adapt the argument of Heintze to show that con­
ditions (A) and (B) ensure the existence of left invariant metrics with p < 0. 

1.2 Assume g is a Lie algebra with inner product ( , ), derived algebra g' 
and g = g' 0 IRA (vector space sum) where (g',A) = 0. With respect to the 
associated left invariant metric on G, covariant derivative is given by 

(1.2.0) 2<v,r,z) = ([x,r],z> + <[z,x],Y) + <[z,Y],X) 
which implies 
(1.2.1) VAA = 0 

(1.2.2) VA = S = - (ad A - ad A*) on g7 

(1.2.3) For X <E g'? VXA = -DX = -]- (ad A + ad A*)(X) 

(1.2.4) If V7 denotes the connection associated to ( , )|g', then for 

X,Y e g7, VXY = VXY + a(X, Y) where a(X, Y) = (DX, Y)A/\A\2 
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Consider the operators 

(1.2.5) A2D : A2g' - • A2g' defined by A2D(X AY) = DXADY 

(1.2.6) F: A2g' -* g' A RA defined by 

(F(X A y ), Z A A) = (-cr(X, V'rZ) + a(Y, VXZ) + a([X, F], Z), A) 

(1.2.7) F A /: g' A RA -+ g' A RA defined by F A I(X A A) = F(X) A A where 

F = F>2 + [D,S] 

LEMMA 1.2. With respect to the decomposition g = g' 0 RA, the curvature 
operator p has the matrix representation 

\p'-A2D F* 1 
L F - F A / J 

where p' is the curvature operator of the metric restricted to g' and A has been 
normalized so that \\A\\ = 1. 

Proof. (1.2.4) just says that a is the second fundamental form of the hyper-
surface G' in G. The standard Gauss equation ([KN II], prop. 4.1) says for X, 
Y, Z, W <E g' 

(R(X, Y)Z, W) = (#(X, Y)Z, W) + {a{X,Z), a(Y, W)) 

-(a(Y,Z),a(X,W)) 

= (R'iX, Y)Z, W) + (DX1Z)(DY1 W) 

-(DY,Z)(DX,W) 

= (R'iX, Y)Z, W) - (DX A DY, W A Z) 

Note that (1.2.3) says the connection V x on the normal bundle T{G')L is given 
by V -̂A = -DX (see [KN II], prop. 3.4). Let V be the connection on T(Gf) + 
T(G')L obtained by combining the connections V and V 1 . Then 

(Vxa)(Y,Z) = Vx
x(a(r,Z)) - a(VxY,Z) - a(Y,VxZ) 

= -(DY,Z)DX - <x{VxY,Z) - a(Y,VxZ). 

The Codazzi equation ([KN II], prop. 4.3) says 

(R(X, Y)Z,A) = ((V,a)(y,Z) - (VKcr)(X,Z),A) 

= (-a(Y, VXZ) + a(X, VYZ) - a([X, Y], Z), A) 
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This proves p(X AY) = {pi - A2D)(X AF) + E(X A Y). 
Since p is self adjoint, we need only compute 

(p{Z A A), Y A A) = (R(Z,A)A, Y) 

= -(VAA, V z r ) + (VZA, VAY) - (V [Z^A, Y) 

= ( -DZ,sy) + (v(s+D)zA,r) 

= (SDZ,F) - (D(S+D)Z,F) 

1.3 Let g = g' 0 RA be as before with ||A|| = 1. For s > 0, let A, be the 
linear transformation of g defined by 

(1.3.1) ASX = sX for X G g', A,(A) = A. 

Now let [ , ]s be the Lie product defined on the set g so that 

(1.3.2) A,:(g,[ , L ) ^ ( g , [ , ]) 

is a Lie algebra isomorphism. As noted by Heintze, [ , ]o = lim [ , ]v also 
defines a Lie algebra structure on g. Note that the derived algebra of each 
(9? [ ? L), 0 ^ s ^ 1, agrees with g7 as a set (but the derived algebra of 
(g, [ , lo) is abelian). Also note that the adjoint action of A does not change. 
We keep the same inner product ( , ) on each (g, [ , ]s) and let Vv, V' be 
the induced covariant derivatives on g, g', ps, p's the induced curvature operators 
and Ds, Es, Fs the operators of section 1.2. 

The standard formula (1.2.0) for covariant derivatives in left-invariant metrics 
now shows that V^ = sV so p's = s2p'. Also Ds — D, Fs = F, and Es = sE so 

2\pf o i ro (1.3.3) ns=sz\H l+s, 
v J H ' 0 OJ IE 0 

A2D 0 
0 FM 

PROPOSITION 1.3. If g as above is a Lie algebra for which the associated left 
invariant metric on G has K < 0, then G has a invariant metric with p < 0. 

Proof We use the construction above. Since K < 0, part (B) of Heintze's 
result implies that 

IA2D 0 
L 0 F A / 

is a positive operator. By (1.3.3), for all small enough s,ps is negative defi­
nite. For such 5, the inner product ( , )̂  on (g, [ , ]) so that As: (g, ( , )) —• 
(g, ( , )s) is an orthogonal isomorphism has the desired property. 
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Remark 1.3. It follows from [H], lemma 2, that if (g, ( , )) is symmetric 

with K < 0, then [D,S] = 0. Hence, the construction above shows that there 

exist many nonsymmetric homogeneous manifolds with p < 0. In fact, this will 

always be the result of the construction if the original metric is nonsymmetric 

since D and S do not change with s. This gives many examples with negative 

Hermitian curvature, as defined by Sampson [Sa] in his work on harmonic maps. 

Combining Proposition 1.3 and the results summarized in 1.1, one obtains 

COROLLARY 1.3. Let M be a homogeneous manifold. Then the following con­

ditions are equivalent. 

(i) M admits an invariant Riemannian metric with negative curvature, 

(ii) M admits an invariant Riemannian metric with p < 0. 

Remark. This contrasts with the case of positive curvature since the Aloff-

Wallach examples of positively curved homogeneous manifolds [A-W] do not 

admit Riemannian metrics with p > 0 since their 3-homology is nontrivial, (see 

[M-M]). 

1.4 This subsection is devoted to give an example of a left invariant metric of 

negative curvature whose curvature operator is not 2-negative. 

Consider the nilpotent Lie algebra n which has basis {e\,e2,e3}
 a n d bracket 

relations 

(1.4.1) [euej] = 0,[e2,e3] = ex 

and let 8: n —» n be the derivation given by 

(1.4.2) ë(ej) = Xjej for y = 1,2,3 with X} = X2 + A3 

Consider the solvable Lie algebra q = rt 0 RA where adn A = 8. On q, take the 

inner product ( , ) making {e\1e21e31A} orthonormal. 

Keeping the notation of 1.2, we compute the curvature operator. Since ad A 

is self-adjoint (1.2.1-3) imply 

(1.4.3) VA = 0, VXA = -6(X) = -D(X), F = D2 = 82 

Then (1.4.2) gives 

(1.4.4) <x(ehej) = ëij\iA. 

For V , we get from (1.2.0) that 

(1.4.5) Veie2 = Ve2ei = ~ e3, 

V ^ 3 = Ve3ei = - e2, 

T-, / * 1-7/ X 

V,2£>3 = ^ *1'V*3*2 = ~ 2 e i 
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Now we compute (somewhat tediously) 

1 , 3 
(1.4.6) p (e{ A ej) = - ex A eh p (e2 A e3) = - - e2 A e3 

(1.4.7) E(e{ Ae2)=~ 1 + 2 e3 AA 

E(e\ A £3) = e2 A A 

1-/ A x A2 + A3 A , 
£(e2 A e3)= — - — ex A A 

Lemma 1.2 now gives p. One finds 

(1.4.8) (p(e\ Ae3+e2 AA),e\ Ae3 + e2 A A) = ((p' — A2£>)(ei A £3), e\ Ae3) 

+ 2(E(e{ A e3), e2 A A) - ((F A 7)(é?2 A A), <?2 A A) 

i - A 1 A 3 ) + ( A 1 - A 3 ) - A 2
2 

which is positive in particular for Aj = 1, X2 — \ + e, A3 = \ — e, 0 < e < \. 
The final task will be to show that this metric has negative curvature for some 

of these parameter values. 
To compute sectional curvatures, we decompose g = %\ © g2 where gi is 

spanned by {A, e\} and g2 is spanned by {e2. e3}. It follow from the expression 
of p and (1.4.3)~(1.4.7) that for Xu Yt G qh i = 1,2, R(Xh Yt) maps g7 into g,-
for 7 = 1,2. Hence for X = Xx +X2, Y = Yx + F2, Xh Yt e qh we get 

(1.4.9) R(X, F,X, Y) = /?(Xb FbX,, YX) + R(X2, F2,X2, F2) 

+ /?(X1 ,F2 ,X1 ,F2) + /?(X2 ,F1 ,X2 ,F1) 

+ 2R(X{, Fi, X2, F2) + 2R{Xx, F2, X2, F,) 

We next compute the above terms when e = 0, i.e. Ai = 1,A2 = A3 = 1/2. 
Set 

X{=aA + (3ex, Yx = a'A + 0ex,Ax = a0 - $OL 
(1.4.10) 

X2 = le2 + 6e3l Y2 = Jfe2 + 5fe3lA2 = l8f - Si' 

It easily follows that 

R(Xx,Yx,Xx,Y{) = A2xR(A,ex,A,ex) = -A] 

(1.4.11) R(Xx,Yx,X2,Y2) = A{A2R(A,ex,e2,e3) = ~ AjA2 

R(X2l F2,X2, F2) = A2
2R(e2j e3, e2l e3) = -A '2 
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For the remaining terms, set Z = xe2 + ye^, Z = ye2 — xej,. Using (1.4.3)— 
(1.4.5), we get 

(1.4.12) V„Z = i Z,VY2Z = l- ((Y2,Z)A + (Y2,Z)eO 

Since Z = - Z , (1.4.12) implies 

VYlZ=^((Y2,Z)A-(Y2,Z)el) 

Thus 

R(Xi, Y2)Z = aR(A, Y2)Z + fiR{e\, Y2)Z 

= -^Vy2Z + /3VeiVy2Z-^Vy2Z 

= -l- (a(Y2,Z)+f3(Y2,Z))el - l- (a(Y2,Z) - p(Y2,Z))A 

and 

R(Xi,Y2,X2,Yl)=j(a(Y2,k2)+0(Y2,X2)) 

+ j(a(Y2,X2)-(3(Y2,X2)) 

= -\*i&2 + \(Xi,Yi)(X2,Y2) 

from which it follows that 

/?(*,, y2,xI,y2) = -^||x1||2||y1||2 

/?(x2,y,,x2,y1) = ~||x2 | |2 | |y1 | |2 . 

From (1.4.9) we get 

(1.4.13) R(X, Y,X, Y) = - f A2 + | AiA2 + A2 \ 

-5(l l^l l2 l |y2 | |2-2(x1 ,y1)(X2,i '2) + ||x2||2||y1||2) 

The first terms in (1.4.13) give a negative definite quadratic form in Ai and A2 
and given a two plane, we can always find a basis {X, Y} such that (Xi, Y\) — 0. 
This shows that the sectional curvature of the metric with parameter values 
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Ai = 1, A2 = A3 = 1/2 is negative. Thus there exist e > 0 such that the same 
holds for the metric with parameter values Ai = 1, A2 = ^ + e, A3 = \— e. 

If G is a Lie group with Lie algebra q as in Section 1.4 then 

PROPOSITION 1.4. There is a one parameter family of left invariant metrics on 
G all of which have negative curvature but the curvature operator has some 
positive eigenvalues. 

Remark. Proposition 1.4 is in sharp contrast to the case of positive curvature 
since by a result of Wallach [W] a Lie group with a left invariant metric of 
positive curvature is covered by S3 with the canonical metric, and so in particular 
it has positive curvature operator. 

2.1 Let M be a connected homogeneous Riemannian manifold. Throughout 
section 2, we will assume M is naturally reductive. By Kostant's theorem [Kj], 
[K2], this means we can assume there exists a connected Lie group G acting by 
isometries on M such that 

(NR1) G act almost effectively on M 
(NR2) Let K be the isotropy subgroup at an arbitrary base point b G M and 

let I C q be the corresponding Lie algebras. Then there is an Ad G invariant, 
symmetric, nondegenerate, bilinear form Q on q which is nondegenerate on f 
and positive definite on m = ï±. Furthermore g|m induces the Riemannian 
inner product on T^M ĉ  m. 

The metric is called normal if we can choose G so that Q is positive definite 
on q. It is well known that a normal homogeneous metric has nonnegative sec­
tional curvature. One of our aims is to find additional conditions on a normal 
homogeneous metric so as to guarantee that the curvature operator is nonnega­
tive. 

Note that assuming G is connected and K is closed, conditions (NR1) and 
(NR2) can be replaced by 

(NRiy ï contains no proper nonzero ideals of q 
(NR2)' There is a symmetric, nondegenerate, bilinear form Q on q which is 

nondegenerate on I and positive definite on m = Ï 1 and for which each ad9X, 
X G g, is skew symmetric. (Of course, if a Riemannian metric is given a priori 
on M — G/K, we would assume Q\m induces this metric.) These conditions 
imply 

(2.1.1) q = m + [m, m] 

(where as usual [m,m] is the linear span of bracket products from m) since 
otherwise the orthogonal complement of m + [m, m] is an ideal in f. A pair 
(q1 ï) of Lie algebras q D f satisfying (NR1/ and (NR2/ will be called a natural 
pair. 
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It is well known that the De Rham components of a simply connected naturally 
reductive space are again naturally reductive. In fact, the corresponding pair 
(g, f) can be decomposed as an orthogonal direct sum of natural pairs (g,, f/) 
where each qt is an ideal of g and the form Q on g is the sum of associated 
forms Qt on g,-. Thus we will often restrict attention to pairs corresponding 
to irreducible spaces. Since the associated connection is the natural torsionless 
connection (canonical connection of the first find) results of Nomizu [N] (see 
also Sagle [Si], Kostant [Ki, K2]) show that the following condition is always 
necessary for irreducibility 

(2.1.2) No proper nonzero subspace v C m is invariant under the operators 

X M [ y , X ] w for all Yeq 

Actually, in case G is compact, Kostant shows (2.1.2) is equivalent to irreducibil­
ity. 

We call a natural pair (g, ï), with associated g, weakly irreducible if (2.1.2) 
holds. 

2.2 Let (g, f) be a natural pair with associated form Q, g = ï 0 m. For X G g, 
Xf, Xm will denote ï, m components. 

Definition. The pair (g, ï) is called supernatural if there exists an associated 
Q so that 

(2.2.3) Jt(X, Y,Z) = [[X, Y]UZ] + [[Y,Z]UX] + [[Z,X],, Y] 

vanishes identically for X, Y,Z G m. 
The pair (g, ï) is called supernormal if it is both normal and supernatural for 

the same Q. 
Note the condition J\ = 0 on m is equivalent to 

(2.2.4) m with the product [ , ]m is a Lie algebra. 

From [KNII, p. 202], one finds that the curvature tensor for a naturally-
reductive space is give by 

(2.2.5) R(X, Y)Z = -[[X, Y]UZ] - \ [[X, Y]m,Z]m 

+ x- [x,[r,z]m]m - l- [F, [x,z]m]m,x,y,z G m. 

Then it is clear from (2.2.4) that the curvature operator for a supernatural space 
is given by 

(2.2.6) Q(p(X AY),WAZ) = Q(R(X, Y)Z, W) = g([X, Y]u [W,Z]f) 

+ G([x, F]mjw,z]m),x, r, w,z e m 
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This immediately shows that 

(2.2.7) the curvature operator for a supernormal space is nonnegative. 

For a supernatural space (2.2.4) says (m, [ , ]m) is a Lie algebra. It is natural 
to ask whether the properties of this algebra are reflected in the geometry of 
M. As example 2 shows, the same Riemannian space can be represented in 
two different ways with the corresponding algebras m of quite different types. 
Further, as we explain now, the type of the algebra (m,[ , ]m) is severely 
restricted. 

In particular, Sagle [Si] proves that 

(2.2.8) for irreducible supernatural spaces, (m, [ , ]m) is either abelian 

or simple. 

Actually, Sagle proves more in that he does not assume the existence of 
a Riemannian metric or bilinear form Q (he works directly with the natural 
torsionless connection; in our case, the Riemannian connection is of this type) 
nor does he assume (m,[ , ]m) is a Lie algebra. He does however assume 
the connection is non flat, i.e. has non-trivial holonomy. This however is not a 
restriction since an irreducible flat Riemannian space is 1-dimensional, i.e. dim 
m — 1, which means m is abelian. 

In our situation it is quite easy to prove a weaker result which suffices for 
our purposes. 

PROPOSITION 2.2. Let (g, I) be a supernatural weakly irreducible pair. Then 
(m, [ , ]m) is either semisimple or abelian. 

Proof. The restriction Q\m is a biinvariant positive definite inner product so 
(m,[ , ]m) is a compact algebra and m = 3 0 £ where 3 is the center, g is 
a semisimple ideal, and the decomposition is Q orthogonal. For A G f, X G 3, 

r e m , 

[[A,X], Y]m = [A, [X, Y]m] + [[A, Y],X]m = 0 

so [ï, g] C 8 and clearly [m, g]m = 0 C 3- By (2.1.2), either 3 = 0 or 3 = m 
giving (m, [ , ]m) semisimple or abelian, respectively. 

Remark 2.2. If (m, [ , ]m) is abelian the map a(X) = Xf —Xm is an involutive 
automorphism with fixed point set ï and so (g, ï, a) is an effective symmetric Lie 
algebra (KNII, p. 225) so any G-invariant Riemannian metric would be locally 
symmetric. The converse however is false, as is shown by example 2.3. 

If further dim m > 1, G is semisimple by [Prop. 7.5, KNII] hence f is 
compactly embedded. We now check the last assertion. Let G be a simply 
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connected Lie group with Lie algebra g and let K be the connected subgroup 
with Lie algebra f. If Z denotes the center of G let G\ = G/Z and K{ — K/KHZ. 
We note that K\ is closed in G\ since it is the connected component of the fixed 
point set of an involutive automorphism. Now the homogeneous manifold G\/K\ 
admits a G\ -invariant Riemannian structure hence Ad(^i) is compact in GL(g). 
Being G\ semisimple it follows that Ad(^i) = cl AD(^i) where cl denotes the 
closure in Int(g). Thus G\ being centerless, K\ is compact as asserted. 

2.3 The following example illustrates the latitude available in choosing m 
and is also important in our classification. 

Let Qf, i = 1,2, be isomorphic Lie algebras with brackets [ , ]/ and inner 
products ( , )/ for which adfij. acts skewsymmetrically. Let <j>:q\ —* g2 be an 
isomorphism. Denote elements of gi by A, B, etc and of $2 by X, Y, etc. Let <// 
be the transpose defined by (</>(A), Y)2 = (A, <j>\Y))\. On the vector space sum 
G = Gi © 92 > define a product by 

A .B = [A,B]{ 

A • X = -X • A = [<j>(A),X]2 

X • Y = (//[X, F]2 + [X, F]2 

and consider the inner product Q = ( , ) = ( , )i + ( , >2- It is easy to check 
that left multiplication in q is g-skewsymmetric and less easy, but routine, to 
check that g is a Lie algebra with this product. With respect to Q, g2 is the 
orthogonal complement to g i. 

Suppose o is an ideal of g contained in g i. Then a is an ideal of g i and from 
X . A = -[</>(A),X]2 = - # A , <l>-l(X)]i for X G g2, A G a, we see [a, g ^ = 0, 
i.e. a C center (gi). Thus (g,gi), satisfies (NR1)7 iff center (g0 = 0. Since 
the existence of the form ( , )/ implies g* is compact, (NR1/ is equivalent to 
gi semisimple. Assuming this, (g, gi) is clearly a natural pair which is weakly 
irreducible (2.1.2) iff g2 (hence gi) is simple. Further, (g, gO with Q is clearly 
supernormal. Here (m, [ , ]m) = (g2, [ , ]2). 

Now assume gi simple. Then, up to multiple, ( , )t is unique. Thus scaling 
( , )2 by a constant multiple if necessary, we can assume <\> preserves inner 
product and (j>1 = </>~l. 

One can now verify that g is isomorphic to the standard product algebra 
9i x 92 by / : g —• gi x g2 defined by 

/(A) = (A,c/>(A)) 

f(X) =\(d- V5)<j>-lX, (1 + V5)X) 
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Let 9: g —• g be defined by 

0(A+X) = (A + 0 _ 1 ( X ) ) - X 

One verifies 6 is an involutive automorphism of g with fixed point set $\. It is 

easy to see that center g = 0 so g is a compact semisimple Lie algebra and 

if G is any connected Lie group with Lie algebra g, then G is compact. By 

Mostow [M], if K is the connected subgroup of G corresponding to the simple 

algebra g i, then K is closed hence M = G/K is Riemannian locally symmetric 

(VR = 0) for any G invariant metric, see [He]. 

We continue with the assumption g, simple. The orthogonal complement of gi 

with respect to the Killing form Kill of g will be the — 1 eigenspace of 6 which 

is p = {—|0_1X + X:X G Q2}. This gives the Cartan decomposition g = f 0 p, 

f = gi. Thus we have on the pair (g, gi), two forms Q and - Kill making the pair 

weakly irreducible supernormal and giving orthogonal complements g2 and p 

respectively. However, the Lie algebra structures induced on these complements 

are quite different (g2 is simple and p is abelian) even though, up to constant 

multiple, the Riemannian metrics induced on M = G/K are the same locally 

symmetric metric. In fact, this is locally, just the biinvariant metric on the Lie 

group associated to g,. 

2.4 PROPOSITION 2.4. Let (g, f ) be a supernatural weakly irreducible pair with 

(ttt, [ ? 1m) semisimple. Then either f is abelian or I is semisimple. In the latter 

case, (g,f) is constructed as in example 2.3 and ! ~ (m, [ , ]m) is actually 

simple. 

Proof. We denote elements of f by A, B, C, etc. and elements of m by X, 

Y, or Z. For A G f, ad A: m —• m is a derivation of (m, [ , ]m) . Since m is 

semisimple there is an element 0(A) € m such that 

(2.4.1) [A,X] = [<KA),X]m 

Since m is centerless, </>(A) is uniquely defined by (2.4.1). Now 

[0[A,B],X]m = [[A,fi],X] = [A, [ f i ,X]] - [ f l , [A,X]] 

= [0(A), [<KB),X]m]m - WB), [0(A),X]m]m 

= [[(/>(A),(/>(5)]m,Xlm 

so (j>: î —> (m, [ , ]m) is a Lie homomorphism. It is easy to see (by 2.4.1) Ker 

<j> is an ideal of g so by effectiveness, </> is injective. Let V C m be the image 

of (j> and write m = V © p (orthogonally). Note the relations 

[A,0(B)] = [ 0 ( A ) , ^ ) ] m = ^ [ A , B ] 
(2.4.2) 

G([X, F ] f , A) - Q(X, [F, A]) = G(X, [F, 0(A)]) = Q([X, F ] m , 0(A)) 
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Using (2.4.1), (2.4.2), and invariance of g, it is easy to prove successively the 
following 

(2.4.3) [f , ,f ,]mCf / 

[ f , f ' ]c f ' 

[ f , p ] c p 

[f', p]f = 0 and [f, p]m C p 

Now take X G f, 7, Z G p. Then 0 = Jf(X,Y,Z) = [[Y,Z]UX]. Thus 
<t>[[Y,Z1u<jrxX\ = [0[F,Z] f,X]m = [[F,Z]f,X] = 0. Since 0 is injective, 
we get 

(2.4.4) [[p, p]f, f'] = 0 and [p,p] fC 3(f) 

where 3(f) is the center of ï. In (2.4.2), assume A G 8(f) and let X = 0(B), 
Y = 0(C) where £, C G f, giving 

g([X, F]f,A) = £(0(£), [0(C), 0(A)]m) = g(0(/?), 0[C,A]) = 0 

Thus 

(2.4.5) G(8(ï),[ï ,,ï ,]) = 0 

Thus if A G 8(ï) and g(A, [p, p]f) = 0, then 

Q(A, [tn, m]f) - G(A, [p, p]f) + G(A, [p, f']f) + G(A, [f, f']f) = 0 

But then RA is an ideal of g contained in f and by effectiveness, A = 0. Thus 

(2.4.6) [p,p], = 3(ï) 

Since Q is positive definite on m, V is a compact algebra and so therefore is f. 
Thus we have f = 3(f) 0 [ï, ï], ï' = 8(0 © [*'? Hm. where both decompositions 
are Q-orthogonal and f is treated as a subalgebra of (m, [ , ]m). Clearly, 0 
maps 3(f) onto 3(f) and [f, f] onto [V', f ] m . Combining (2.4.6) and (2.4.2), we 
get 

(2.4.7) [p, p]m C p © 3(f) = y 

Now 

[P, V\m = [P, Pirn + [P, 3(*')]m C 1/ + p = 1/ 

[ ï>Ln = W, PLn C p C z / 

[ï,l/]m = [f,P] + [f,3(f,)]m C p C l / 
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where in the last line we use g([f, 8(1')], Ï') = Ô(ï, [3(ï'), H) = 0- By (2.1.2), 
i/ = m or v — 0. In the first case, 3(f) = f and hence V and ï are abelian. In 
the second, p = g(!') = 0 so in particular, f ~ f ' are semisimple and g = f 0 f ' 
as a vector space. By (2.4.2) 

G(tx, n , A) = e«x, F]m, 0(A» = ew/[x, n m , ^) 

so the product on g agrees with that defined in 2.3 with Q\ == ï, G2 = ï7. 

2.5 We first present another example important for our classification 

Example 2.5. Let g = span{A, W,X, y} , ! = RA and define a skew-
symmetric bilinear product and symmetric bilinear form Q so that 

[A, W] = 0, [A,X] = ay , [A, F] = - a X 

[w,x] = PY, [w, y] = -/?x, [x, y] = w+A. 

(2.5.1) A, W,X, y are orthogonal. 

g ( x , x ) = Q(y,y) = i 

Q(W, W) = r2, g(A, A) = es2, e = ±1 , r,s > 0 

One easily checks (g, f ) is supernatural with associated invariant form Q pro­
vided a = es2 and (5 — r2. From (2.2.6), one finds 

p ( X A y ) = ( « 2 + ^ r M l A F 

p ( X A — = - r2X A — 
\ r y 4 r 

/ W \ 1 . W 
p( y A — U - r 2 r A -

V r J 4 r 

For 6 = 1 , (g, ï) is supernormal and p > 0. However, for e = —1, (g, f) is 
only supernatural and we have a family of naturally reductive metrics with p 
changing type from positive to mixed sign. 

In all cases [g, g] = span{X, y, W+A} is isomorphic to êu(2) unless r2+es2 — 
0. Also for r2 + es2 ^ 0, the center of g is K(r2A — es2W) and g is isomorphic 
to u(2). For e — 1, we get precisely the family of 3-dimensional Berger spheres 
([B]) which are symmetric only for the standard sphere (s = 0). In all cases, 
(m,[ , ] m )~3u(2) . 

PROPOSITION 2.5. Let (g, f ) be a supernatural weakly irreducible pair with f 
abelian and non zero. If m is semisimple, (g, Ï) is of the type of example 2.5. If 
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m is abelian, (g, ï) is an effective symmetric Lie algebra pair (cf. Remark 2.2) 
with dim g = 3, dim m = 2. 

Proof. First let (g, ï) just be a natural weakly irreducible pair with I abelian 
and nonzero. Let Q — ( , ) be an associated form. Set mo = {Xem: [ï,X] = 0} 
and p = nto" H m. Since (g, f ) is effective and ï ^ 0, we have p ̂  0 and clearly 
p is ad I invariant. Since {ad A\p: A G I} is an abelian set of skew symmetric 
operators on p, we can decompose pc — 0^p^, A G A, where each A is a 
nontrivial (real) linear functional on f and 

(2.5.2) pc
x = {Z G p c : [A,Z] = i\(A)Z for A G ï} 

One checks easily that 

(2.5.3) 
[Px,P%cCpc

x+u 

and that 

Z = Y + iXepx=* 

(2.5.4) (X, Y) = 0, (X,X) = (F, F) and 

[A,X] = A(A)F, [A, F] = A(A)X for A G ï. 

We can now find an orthonormal basis {Xtl Y[\ i — 1,2,...} of p and nontrivial 
linear functional at on f such that 

(2.5.5) [A,X,] = «/(A)^-, [A, F,] = -a/(A)X/ for A G ï. 

Of course, A = {±a/i / = 1,2,...} but we are not assuming the at distinct. 
Let m, = RXi © KYt. If X G m0, F G m or X G tit/., F G m, with / ^ y, 
skew-symmetry of ad X implies [X, F]f = 0 so 

[m0, m], = 0 
(2.5.6) 

[m;,ra7]f = 0 , i^j 

From (2.5.6) follows 

[m0, m0] C m0 
(2.5.7) 

[m0,p] =C p 

Then MX, Y\Z) = 0 (cf. 2.2.3) for X G m„ F G m,, Z G m* provided either 
at least one of /,y, k is 0 or ij, k are distinct. Thus (m, [ , ]m) is a Lie algebra 
iff 

(2.5.8) aj([XhYi]t) = 0 for i^j. 
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Assume this from now on. Suppose A G f and a,(A) = 0 for all /. Then A is in the 
center of g and, by effectiveness, A = 0. Again for A G f, ([X;, y,-], A) = a,(A); 
since a/ is nontrivial we have [X;, Yi\i ^ 0. With (2.5.8), this implies 

(2.5.9) OLidXuYÙÙÏO 

A consequence of (2.5.8) and (2.5.9) is that 

CLi^ctj for i^j 
(2.5.10) 

at + ay ^ a* for any ij, k. 

In particular, each p^ is one dimensional and m7
c 

[m0, PA! C ^ A S O 

(2.5.11) [m0,m ;] cm,-

Which implies with (2.5.6) that 

(2.5.12) [mhmj] C p for i^j, i, 7 ^ 1 

Now (2.5.3) implies [rrt/, m7]p C nu0m/ where a^ — at+cxj and ±or/ = a,—a,. 
Then (2.5.10) and (2.5.12) give 

(2.5.13) [mI-,my] = 0 for i?j,i,j^ 1 

[m,-,m,-] C f © m0 

For / ^ 7, (2.5.13) implies 0 = [nt/, [tit/, m,-]] and (2.5.8) implies 0 = 
[nv,[m/,m,-]f] so 

(2.5.14) [m7-,[mi,m/]mo] = 0 for i^j,i,j^ 1. 

Let m = mi 0 [mi,mi]OTo. Note [m0, [m b mi] m J = [m0 ,[mi,mi]]m o C 
[nti,mi]mo . Combined with the above relations, we see m is a subspace in­
variant under all operators X »—• [y,X]m , Y £ q. Since we assume weak irre-
ducibility, we have m = m, i.e. p — mi and mo = R[Xi,yi]mo. By (2.1.1), 
we have ï = R[Xi, Y\\. If m is semisimple, we must have [Xj, Y\]mo ^ 0. Let 
W = [Xi,yi]OTo, A = [Xi,yi]f. By (2.5.11) and skew-symmetry of ad Z, we 
have [W,X] = 0Y, [W, Y] = /3X. This is example (2.5). On the other hand, m 
abelian implies mo = 0 and dim g = 3. 

2.6 The previous results now immediately give the following classification. 

= p£,+P-«,. From (2.5.7), 
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PROPOSITION 2.6. Let (g, f ) be a supernatural weakly irreducible pair with 

dim g > 1. Then one of the following holds. 

(a) I = 0 and g is a simple Lie algebra of compact type. 

(b) (g, f ) is an irreducible effective orthogonal symmetric Lie algebra (cf. 

[He]) with î ^ 0. 

(c) Î is one dimensional, (m, [ , ]m) ~ 3u(2), and (g, f) is of the type of 

example 2.5. 

Conversely, each of the above is a supernatural weakly irreducible pair. 

Although we have now classified all the Lie algebra pairs (g, f ), to classify 

the corresponding forms Q is a bit more delicate. In case (a), Q must be a 

multiple of the Killing form of g and the corresponding Riemannian metric is 

locally symmetric and always supernormal. In case (b), there is more latitude 

in choosing Q and the orthocomplement m (see Example 2.3) but again the 

corresponding Riemannian metric is always locally symmetric. In case (c), all 

possible Q are already described in example 2.5 by the proof of Prop. 2.5. Here 

we get a family of 3-dimensional Riemannian spaces in general not symmetric, 

which includes the Berger spheres. 

Remark 2.6.1. As mentioned, normal metrics have sectional curvatures ^ 0 . 

The following example shows that there are however normal metrics where p has 

some negative eigenvalues; these are of course not supernormal. This example 

is the counterpart, in a sense, of Proposition 1.5. 

Let g = éo(n) for n ^ 4 and let I = $o(n— 1 ) considered as the subalgebra of g 

consisting of matrices with trivial last column. Let (X,Y)o — —\ Tra XY, which 

is a negative multiple of the Killing form of g. Let p be the orthocomplement 

of ï. Finally, define ( , ) on g by ( , )o|pxp +/?( , )o|fxf- By the results of 

[D'A-Z] (Sect. 4 and Th. 9), this defines a left-invariant metric on G — SO(n) 

which is normal homogeneous (with respect to the group G x K) for 0 < (3 ^ 1. 

Let Bij = —Bji — Eij — Eji G g where Ey is the matrix with entry 1 in the /th 

row, / h column and 0 entries elsewhere. One finds for the curvature operator p 

that 

p(Bin AB i n - \ ) = - Bin AB i n - \ + - 2_^ Brn A B m - \ . 

r<n-\ 

Then p has an eigenvector (n — 3) B\n A B\n-2 — Yl\<r<n-\ ^m A #™-i, with 
eigenvalue ^-. 

Remark 2.6.2. All supernormal metrics have p ^ 0. So do all Riemannian 

symmetric spaces of compact type. Of course, the problem of classifying all 

Riemannian metrics (or the underlying manifolds) with p > 0 or p ^ 0 is 
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studied extensively (see Nishikawa, Chow-Yang, Moore, Hamilton, Mori, etc.). 
However, it is useful to note that even within the class of normal metrics there 
are examples with p > 0 which are neither symmetric nor supernormal. These 
are the Berger spheres of dimension 2n + 1 for n > 1 which can be represented 
as normal pairs (G,K) with G — SU in + 1) x R (see 2.5 for the case n = 1). 
The necessary computations follow rather directly from the exposition given in 
[Ch]. 

2.7 In a series of papers, see [Si] and [S2] for example, A. Sagle considers 
what we call natural pairs (and various generalizations) and considers properties 
of the algebra (m, [ , ]m) (without assuming it is a Lie algebra). In [S2] Sagle 
assumes that there exist real constants b\, b3 and linear resp. bilinear, forms/, 
resp. /o, on m such that 

(2.7.1) ad[X, Y]f\m =/0(X, Y)I +f(Y)R(X) -f(X)R(Y) 

+ b][R(X),R(Y)] + b3R([X,Y]m) for X, Y e m 

where R(X)Z = [Z,X]m (see [S2, pp. 15-19]). A further condition he considers 
is t h a t / o = / = Oin (2.7.1). 

Suppose /o = / = 0. Then for X, Y G m, one computes 

(2.7.2) [[X, Y]f,X] = (b3 - bx)[X, [X, Y]m]m. 

In [Ch.], Chavel introduced operators Bx, Tx on m by 

(2.7.3) TX = -R(X),BX(Y) = [[X,Y]UX] 

and called the corresponding naturally reductive metric quasisymmetric if Tx 

and Bx commute. But (2.7.2) implies Bx = (Z?3 — b\)R\. Further, [D'A] proves 
that quasi-symmetric (in this sense) implies locally symmetric. Thus we have 
proven the following. 

PROPOSITION 2.7. Suppose M = G/K is naturally reductive with a natural 
pair (g, f ) which satisfies (2.7.1) withfo =f = 0. Then M is locally symmetric. 

In [S2], there is a Theorem (p. 18) which implies that, assuming (2.7.1) holds, 
a natural pair with (m, [ , ]m) a simple Lie, Malcev, or flat algebra must also 
satisfy/o = / = 0, and hence by Prop. 2.7 it is locally symmetric. We conclude 
that example 2.5 does not satisfy the conditions of Sagle's theorem. In fact a 
direct check shows that there does not exist any/o,/ , b\, and b3 so that (2.7.1) 
hold in example 2.5. In any event, (2.7.1) is perhaps too restrictive a condition, 
at least in the presence of additional hypothesis which force/0 = / = 0. 

https://doi.org/10.4153/CJM-1990-052-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-052-5


HOMOGENEOUS MANIFOLDS 999 

Added in proof. The authors thank Prof. Thomas Wolter for pointing out (1) 
our Proposition 1.3 is in Azencott-Wilson, Trans. A.M.S., 215 (p. 357), (2) our 
example in section 1.4 with parameters (1, | , | ,) is complex hyperbolic space, 
and (3) several misprints. 
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