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Abstract

This article describes a computationally simple, statistically consistent, rea-
sonably efficient, and statistically informative generalized least squares (GLS)
estimator for a general class of nonlinear, multidimensional scaling (MDS)
models including the "ideal-point" models of voters' and legislators' behavior
proposed by Melvin Hinich, Keith Poole, and others. Unlike other methods,
the method described in this article provides a statistical framework for testing
a wide range of hypotheses about these models including their functional
form, their dimensionality, and the values of specific parameters. The Hinich
ideal-point model is estimated using this method. It fits the data remarkably
well compared to a standard factor analysis model that does not provide a
reasonable fit to the data. This has the substantive implication of suggesting
that voters base their voting decisions upon ideal-point dimensions like
liberalism-conservatism and not upon factor analysis dimensions like compe-
tence and leadership.

1. Ideal-Point and Factor Models of Choices

I may vote for a candidate because she is the most competent alternative while
you may vote for someone else because he has liberal views closest to your
own. We are obviously using very different criteria for our choices. One
aspect of this difference is that I base my choice upon a dimension for which
everyone agrees that more is always better,1 whereas you base your choice

I would like to thank Christopher Achen, Fay Booker, Patricia Conley, Lars Hansen, Joseph
Hotz, and Douglas Rivers for helpful comments.

1. Perhaps Senator Roman Hmska (R-Nebraska) would not agree. In support of Richard
Nixon's controversial nomination of G. Harrold Carswell for the Supreme Court, Hruska attained
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98 Political Analysis

upon a dimension for which people strongly disagree about the ideal position.
Candidate traits are generally the first kind of dimension, and candidate issue
positions are usually the second kind.

Voting researchers, not to mention politicans themselves, have often
wondered whether traits or issues are more important in voting decisions: Do
voters vote for persons or for policies? Standard methods of answering this
question rely upon survey responses to questions about the candidates' traits
and issue positions. These responses, unfortunately, may be incomplete, or
they may suffer from serious projection effects (Page and Jones 1979). It
would be useful, and perhaps artful, if we could learn something about the
dimensions underlying voting decisions by analyzing just the preferences
themselves. This is what I shall do in this article by using factor and ideal-
point analysis to explore the dimensionality of the 100 point "feeling ther-
mometers" of the American National Election Studies.

Although the connection may not be obvious, the choice of linear factor
analysis or of nonlinear ideal-point analysis commits a researcher to a theo-
retical position on the nature of the underlying dimensions. This is surprising
because the choice between these methods is usually treated as simply a
matter of convenience. When confronted with a set of variables that might
have some common underlying structure, most survey researchers in-
stinctively apply some readily available factor analysis routine to get at this
structure. Yet, in the last twenty years, economic theories of party competi-
tion in multidimensional spaces (McKelvey 1975; Enelow and Hinich 1984)
and psychometric theories of ideological conceptualization (Shepard 1962a
and 1962b; Weisberg and Rusk 1970; Weisberg 1974) have suggested that the
nonlinear, ideal-point model might be theoretically more appropriate for many
kinds of data—especially preference data.

Both types of models assume that there are dimensions underlying pref-
erences, but they have significantly different implications for our understand-
ing of preferences. When candidate preferences are factor analyzed, the factor
model implies that more of each dimension is better so that dimensions are
traits like intelligence, competence, and leadership ability for which it is
generally agreed that more is better.2 When the ideal-point model is used,
however, it is assumed that each person has his or her own ideal notion of the

a sort of fame when he said that "there are a lot of mediocre judges and people and lawyers. They
are entitled to a little representation, aren't they, and a little chance?" (Barone, Ujifusa, and
Matthews 1975, 494).

2. To be precise, the model assumes that there may be two kinds of people. Those for
whom more of a specific dimension is better and those for whom less of this same dimension is
better. In practice, however, it seems likely that for most dimensions one type of person
predominates.
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Traits versus Issues 99

proper amount of each dimension. This means that dimensions are issues like
liberalism-conservatism and party identification for which there are substan-
tial differences of opinion about the proper amount or correct position.

The ideal-point and factor analysis models are very different models of
preferences. Unfortunately, none of the existing work compares them using
statistical tests because no such tests have been developed for the ideal-point
model. In this article I show how an ideal-point model can be estimated for
preferences, and I show how statistical tests can be constructed. Using these
techniques, I compare the results for one particular ideal-point model with
those from standard factor analysis methods. I resoundingly reject the factor
analysis model in favor of the ideal-point model, and I conclude that issue
dimensions may be substantially more important than trait dimensions in
voters' decision making.

2. Ideal-Point Models

In the one-dimensional case, ideal-point models have the following form:

fy=-|X/-/8,| + «/>, (1)

where Ytj is person j's rating or evaluation of candidate j , Xt is the person's
location or "ideal-point" on some underlying dimension such as "liberalism-
conservatism," (3j is the candidate's location on this dimension, and 5,-, repre-
sents random or unique factors that affect the rating. The quantity \X, - fyl
represents the distance between the person and the candidate, and as this
distance gets bigger, the rating goes down.

A general multidimensional scaling (MDS) model for T dimensions can
be written as:

(2)

Parameter a, summarizes those aspects of a candidate's rating that are not the
result of spatial location. The summation is over the T spatial dimensions in
the model, and the values of v and 17 describe the generalized distance mea-
sure that people use in forming their evaluations. Keith Poole (1981) uses the
"Euclidian" metric in which v = 2 and 17 = V2. The "city-block" metric sets v
= 17 = 1. Both of these are special cases of the general Minkowski metric
with v = 1/rj. Melvin Hinich and his collaborators (Enelow and Hinich 1984)
have suggested a model with v — 2 and 77 = 1.

It is relatively easy to write down a general ideal-point model such as
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100 Political Analysis

equation 2, but it is much harder to produce a method for estimating its
parameters. Equation 2 poses two major complications: it is nonlinear in its
parameters and nonlinear in the unobserved Xlr Estimating nonlinear models
with perfectly observed variables requires complicated iterative estimation
methods and careful attention to a number of theoretical issues (see Gallant
1987). The estimation of simple linear unobserved or errors-in-variables mod-
els (Fuller 1987) is often complicated by identification problems and the need
for strong assumptions about the stochastic form of the unobserved variables.
It is no surprise, then, that models that are both nonlinear in the parameters
and nonlinear in the unobserved variables have appeared intractable and have
barely been studied.

Some estimation methods have been proposed for specific models
(Weisberg and Rusk 1970; Rabinowitz 1976 and 1978; Cahoon, Hinich, and
Ordeshook 1978; Poole 1981 and 1984), but little is known about their statisti-
cal properties and they do not provide a general framework for testing one
model versus another. In this article, I describe a computationally simple,
statistically consistent, reasonably efficient, and statistically informative es-
timator for general nonlinear, ideal-point models. In the next section I illus-
trate this method by applying it to the one dimensional Hinich ideal-point
model. Section 4 describes a generalized estimator for nonlinear MDS mod-
els. Section 5 discusses the statistical properties of the estimator. This might
be skipped on an initial reading. In section 6,1 discuss the basic equations and
identification conditions for the multidimensional Hinich model. I also com-
pare these equations with those for factor analysis. Finally, in section 7, I
analyze American National Election Studies data using these models.

3. An Estimator for the Hinich Model

Consider the one-dimensional, Hinich ideal-point model:

Yj = otj - (X - /3,)2 + Sj. (3)

fory = 1, . . . , J where Yjt X, and 5, are random variables, a, and /3, are
parameters, 5, is assumed to be independent of X, arid each 8, is assumed to be
uncorrelated with every other 8k and to have a zero expectation because its
mean is folded into a,-. In this model, the random variable X represents the
distribution of voters' ideal points along the one dimension. Parameter /3y is
the location of candidate j along this dimension, and parameter a, represents
the population's average evaluation of candidate j once variation along the one
common dimension has been controlled. Finally, random variable 8j repre-
sents all the unique factors, uncorrelated with the distribution of ideal points
X, that affect voters' evaluations of candidate j .
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Traits versus Issues 101

The data, of course, are evaluations Y^. A natural way to summarize
these observations is to form their means and covariances:

dj = Z tyl, <4>

and

dJk = X (Yy - dj)(Yik - dk)ll. (5)

Under most standard sampling conditions (certainly under random sampling),
the law of large numbers implies that these empirical moments will converge
to the true ones. Thus, d} will be close to y} = E(Yj) and dJk will be close to yJk

= Cov(Yj, Yk).
These true moments, in turn, will be functions of the parameters of the

model in equation 3 and the characteristics of the random variables X and 5,.
One obvious approach to estimating the parameters of the model is to choose
estimated values for them that provide the best fit between the sample mo-
ments and the true moments. To do this, we must know how the true moments
depend upon the parameters.

We start with the expectation of Yy.

y} = a, - £(**) + 2(3jE(X) - pj + E(Sj).

Because the pair X and fij and the pair X + A and fij — A always yield the same
result in equation 3, the values of X are unidentified up to an additive con-
stant. One way to solve this problem is to choose one value or characteristic of
X arbitrarily—we choose to set E(X) = 0 because this simplifies the following
algebra. With these results and the fact that £(5y) is zero for all j :

yj = a, - fi2 - &), (6)

where fi2 equals E(X2).
In the same fashion, yJk = Co\(Yj, Yk):

yJk = £ [ ( - X* + 2fijX + Sj + M 2 ) ( - X* + 2/3kX + Sk

By repeatedly using the fact that X is independent of 5,:

yjk = E{X*) - 2
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102 Political Analysis

where if/Jk = E(8k8k). Combining terms and letting E(Xk) = nk:

yJk = M4 - 2(/3; + /3t)M3 + 4fy3*M2 + <A,* ~ n\- O)

By assumption, \f>ik is zero unless j = £.
The moments y, and yyjk are thus functions of the parameter vector 0' =

[(a,, . . . . ay), (/3,, . . . . /37), (^,, , . . . . iAyy), (M2> M3- M^l- The most
remarkable aspect of this result is that even though the Hinich model is highly
nonlinear in the random variable X, only the second, third, and fourth mo-
ments about the mean (the variance, skew and kurtosis) of X appear in equa-
tions 6 and 7. When we turn to the task of estimating this model, this means
that there are only a few "nuisance" parameters that get in the way of obtain-
ing estimates of the parameter vectors a ' = (a, . . . , aj), 13' = (j3,, . . . ,
/3y), and 0 ' = W , , , . . . , if/jj).

The vector of observed moments D is:

D' = [</,, . . . ,dj, . . . , dj; du, dl2, . . . , djk 4/ . / -I . dn\,

so that the first set of moments consists of the observed means of ratings and
the succeeding sets consist of the observed covariances. Parallel to these
observed quantities, there is the vector F(0) ' consisting of moments fitted to
the vector 6 of unknown parameters:

I W = [y,, . . . , jj, . . . , y,; y, , , y,2 , . . . , yjk y,.7_,, y,y].

The vector of observed moments can then be fitted to the vector of fitted
moments by minimizing the following with respect to 0:

F(8) = [D - r(8))' ( A ) - ' [D - r(6)), (8)

where Cl is a weighting matrix. If Cl is the identity matrix, then the estimator
for 6 obtained by minimizing F(6) will be consistent (see theorem 1 below),
but its sampling distribution will be hard to obtain. The best choice for this
weighting matrix is the sample size times the covariances of the observed
moments because this allows for a simple application of theorem 2, which
describes the conditions for asymptotically normal estimates with a known
sampling distribution. The sample size times the covariances of the observed
moments are Wj k = ICo\{dj, dk), a)JkJ = lCo\(dj, dkl), and <i>Jklm = ICo\(djk,
dlm). These elements can be arranged in £1 to conform to the order of the
moments y ; and yjk in D and T(6). The covariances are multiplied by the
sample size, /, to insure that the elements of Cl remain the same size as the
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Traits versus Issues 103

sample size increases. Because the true covariances are unknown, they must
be estimated to form the matrix Cl. The elements of this matrix are denoted by
d^k, otj kl, and Wjktm. Appendix 2 describes how these quantities can be
calculated.

Minimizing equation 8 is a relatively simple task. Once the weighting
matrix Cl has been computed, it only has to be inverted once, and then its
Choleski decomposition, C't = ft-', can be obtained. After this has been
done, the residual vectors T(0) = C[D - T(0)] can be formed for each
potential & vector. With this transformation, F(0) is a simple inner product,
T(6) 'T(0) , which can be minimized using a standard algorithm.

One of the computational problems is the inversion and reduction of Cl
when./ is large. This matrix has dimension N = J + [J(J — \)/2] so that when
J is 20, Cl is 210 by 210. This is a large matrix, but its inversion presents no
problem for even a microcomputer, because it only has to be inverted and
reduced once.

Most important, as I show in section 5, this estimator generates two
important types of test statistics: a x2 t e s t f° r dimensionality computed from
the final F(d) value, and a variance-covariance matrix E[0 - 6)(6 - 6)'] for
the estimated parameters approximated by the inverse of the Hessian of
F(0)/2 evaluated at the final 8 value. In addition, within the class of those
estimators based upon just means and covariances of the observed data, this
estimator will provide asymptotically efficient estimates.

4. A Generalized Estimator

Problems Estimating the Poole Model

It is not too hard to see why this simple approach fails with the Poole model.
Consider the basic, one-dimensional Poole model:

Yj = aj - \ X - / 3 , | + 8j.

and take its expectation:

E(Yj) = ctj - E(\X - Pj\).

The difficulty is the term E(\X — f3j\), which depends upon the exact nature
of the distribution of X as well as the value of fy. With the Hinich model, this
expectation could be written in terms of a few parameters, namely fj.t, /x2,
and Pj. There does not appear to be any simple way to do this for the Poole
model.
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104 Political Analysis

Evaluating Complicated Expectations

However, a slightly more complicated estimator will do the trick. Consider the
following generalization of the ideal point models described by equation 2:

Yj = gj(X. a,p) + Sj, (9)

where gj(X, a, /3) is some known, nonlinear function in the random vector X
= (X|, . . . , X, XT) and a and /3 are parameter vectors.

For this general model, the true means and covariances are:

y, = E[gj{X, a, p)\ (10)

and

yjk = E{gj(X. a, p) + Sj - yj)[gk(X, a, p) + 6k - yk]}.

Or,

yjk = E[8j(X. a, p)gk(X. a, /3)] - 7jyk + E(SjSk). (11)

The only difficulty in the calculations of -y, and yJk is the evaluation of two
expectations:

€j = E[gj(X. a, fi)],

and

£jk = E[g](X, a, p)gk(X. a, 0)] .

If we knew the density function f{X; p) of X up to a set of known
nuisance parameters p' = (p,, . . . , pM), then we could compute these ex-
pectations as:

§ = f gj(X, a, P)f(X; p)dX, (12)

and

$k = / 8j(X. a, /3) gk(X, a, P)f(X; p)dX, (13)

where the integral is over the entire range of X. If there is only a finite
number of these nuisance parameters, then ignorance about them is no great
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problem. We simply include them in the 6 vector and estimate them as we
go along.

For example, in the Hinich model, the expectations have the simple
forms:

f= JJ (X? - 2J3,,X, + tfj)f(X;p)dX,

and

$* = 111 (X?- 2£,}X, + p*)] \ 2 (Xf - 2plkX, + pi)] f(X;p)dX.

These can be evaluated in terms of first-, second-, third-, and fourth-order
moments and cross-moments that constitute the nuisance parameters p. I dealt
with the one-dimensional version of this model in section 3. In that case, there
were only three nuisance parameters, p = (p.2, /A3, M4). which were simply
folded into 0.

No matter what the model, once we have the fitted quantities in equations
10 and 11, we can try to estimate 6 by using the estimator described in the first
section that fits the estimated vector T(0) of means and covariances to the
observed vector D. This estimator is theoretically feasible as long as the
means and covariances of the Sj exist, and the density f(X; p) and the func-
tions fj(X, a, /3) are well-enough behaved so that the expectations in equa-
tions 12 and 13 exist.

The Density for Unobserved Variables

The major problem is choosing a form for/(X; p) that satisfies these theoreti-
cal requirements while remaining empirically reasonable and computationally
tractable. Empirical suitability depends upon one's notion of the distribution
of the ideal points X. This distribution might have a variety of characteristics
such as asymmetry or bimodality. This suggests the need for some fairly
flexible distributions. Computational tractability depends primarily upon the
dimensionality T of the common space and the number of nuisance parameters
that must be estimated. The expectations in equations 12 and 13 must be
calculated using numerical quadrature, which becomes difficult for integrals
with more than three or four dimensions. Luckily, most studies find that the
common space has one, two, or three dimensions. The nuisance parameters,
whose number usually increase with more flexible distributional forms, have
the disadvantage of eating up degrees of freedom and creating computational
difficulties.
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If the dimensionality of the integrals is greater than three or four, then
there is another way of thinking about this problem that seems quite promis-
ing. In two recent papers, Ariel Pakes and David Pollard (1989) and Daniel
McFadden (1989) have proposed "simulation" estimators for evaluating com-
plicated integrals like those in equations 12 and 13. The basic idea relies upon
the fact that these integrals are expectations of nonlinear functions gj(X, a, /3)
with respect to a multivariate density f(X; p), which is known up to a set of
parameters p. One way to get an approximate value for these integrals given
estimates a, /3, and p of the parameters is to take a random draw of X values
from the multivariate density/(X; p), calculate the quantity Ytj = gj(X(, a, /§)
for each "simulated" X, denoted by X,, and then take the average and the
cross-product of these simulated Ytj values. By making the sample extremely
large, it is possible to attain as much precision as desired, but this is computa-
tionally difficult and ultimately unnecessary.

Pakes and Pollard and McFadden have shown that, for least-squares
methods, estimation can proceed with relatively small simulated samples of
Xj. Moreover, the additional error introduced by the simulation only has the
effect of inflating the standard errors of the estimates. These authors show
how the adjusted standard errors can be computed, and they suggest that, for a
simulation sample about the size of the original sample, the standard errors for
the parameters are usually approximately double what they would be if the
integrals were calculated directly. The availability of this technique along with
the ability to simulate quite complicated multivariate distributions (Johnson,
1987), suggests that our approach to nonlinear errors-in-variables models is
computationally feasible for situations with many unobserved independent
variables.

5. Properties of the Estimators

I have asserted that the GLS estimation method proposed in this article has
reasonable statistical properties. In this section, I discuss these properties in
more detail and I provide references to articles which provide the details of the
proofs. Those readers not interested in these details should skip to the next
section. I rely upon two theorems presented in Brady 1989a. These theorems,
in turn, rest upon work by Shapiro (1983), and, ultimately, the basic papers of
Chiang (1956) and Ferguson (1958).

In the following, s—* s means that s converges in probability to s and 6°
refers to the true value of 6. The first theorem is:

THEOREM 1—CONSISTENCY. Consider the quadratic form:

Q(6) = [§ - s(0)]'ns - s(0)], (14)
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where I is a vector of observed quantities, ^ is a vector of observed quan-
tities, and s{6) is a known function of d. If the following conditions hold:

(a) Convergence of observed quantities: j —* s(6) and ^ —* y°,
(b) Regularity: The admissible parameter space © is compact and the

functions s(6) are continuous in 6, and
(c) Identification: Given S > 0, there is some e > 0 such that:

Inf , e _ e«| > 6 Is" ~ s(e)]'V[so - s(0)] > e. (15)

Then:

1. For each sample size /, there is a non-empty set 0 , of minimizers 8, of
Q(B).
2. A sequence of d, from the 0[ converges in probability to 6°.

This theorem is tailor-made for our kind of problem. The s vector corre-
sponds to vector D with elements dj and dJk, the matrix 4* is ft ~' , 6 = (a, j3,
i|i, p) (where p is the vector of nuisance parameters describing the distribution
of ideal points), and s(9) is the vector F(0) with elements yy and yjk.

I shall not prove it here, but under the usual sampling schemes, various
laws of large numbers can be used to prove that D converges to T(d) and that
Cl~l converges to a constant ^ ° = fl~' to meet condition a of the theorem.
The compactness of the parameter space required in the second condition can
be insured by choosing some closed and bounded set for the possible parame-
ter values. If the bounds are set large enough so that no reasonable parameter
value could exceed them, then compactness poses no real limitation.

The continuity of the -y, and yJk is a somewhat more subtle problem
because it involves the properties of the functions gj(X. a, fi) and the dis-
tribution f(X; p) which appear in equations 12 and 13. However, even for a
relatively badly behaved gj (X, a, /3), taking its expectation helps to smooth
things out. For example, consider the one-dimensional Poole model with
gj(X, a, ft) = -\X — Pj\. This function is notorious for its failure to have
any derivatives at X = /3y. Yet, its moments are quite smooth with respect to
Pj. Consider, for example, its expectation:

$(/3,,p) = - | \X - pj\f(X-p)dX

= ft - 2/3,.F(/3,.,p) + \ J Xf{X\p)dX - \ Xf{X;p)dX,

where F((3jp) is the cumulative distribution function off(X; p) evaluated at
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fij. Clearly the regularity of § with respect to /3y and p depends entirely upon
the properties off(X; p) and F(X; p). If X has a standard normal distribution
with cumulative distribution function <t> and density # , then:

which has derivatives of all orders for any finite value of /3,. Taking expecta-
tions seems to cure the ills of some sickly functions such as absolute values,
but it is not a panacea. There must be some structure on gj(X. a, /3) and/(X;
p)—although it can probably be relatively slight.

The convergence of observed quantities insures that for 6 = 6°, F(6) will
be zero in probability limit. The identification assumption further requires that
F(6) will not equal zero in probability limit for any other points in some
neighborhood of 6°. As appendix 1 demonstrates for the Hinich ideal-point
model, this assumption can be tedious to verify, but with some practice one
can become knowledgeable about where the difficulties lie for these types of
models. Moreover, the behavior of the minimization routine and the condi-
tioning of the variance-covariance matrix of the parameter estimates are usu-
ally good indicators of whether or not this condition holds.

The second theorem insures asymptotic normality:
THEOREM 2—ASYMPTOTIC NORMALITY. Consider the quadratic form in

equation 14 and assume that the observed quantities converge as in assump-
tion a in theorem 1. Also assume the following:

(d) Regularity: The admissible parameter space 0 is compact; the deriv-
atives ds'/dO are twice continuously differentiable; and the function
Q{6) attains its minimum at an interior point of the parameter space.

(e) Invertibility of Quadratic Forms: The quadratic form in 9, H(6) =
{d-i)'ldB)-V°(drildff), where TJ = [S - s(6)], is invertible at (6°).

(/) Asymptotic Normality of Residuals: The square-root of the vector of
residuals, (170)"2 = Iu2[s — s(0°)], is asymptotically normal with
mean zero and covariance matrix ( V ) " 1 .

Then:

1. lia0 — 6°] is asymptotically normal with mean zero and covariance
matrix [//(0°)]-' = [L( f i ° )* 0 L(0 ' ] - 1 where L(6°) equals drj'/de
evaluated at 6".

2. 1Q(6) is asymptotically x2 with N - K degrees of freedom where A' is
the rank of ^ ° and K is the number of free parameters.

Most of these conditions are straightforward. Compactness can be han-
dled as before. The function Q(6) will usually attain its minimum at an
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interior point of the parameter space, and this can be checked once a result has
been obtained. The invertibility of the quadratic form is a stronger form of the
identification condition, and it will usually hold as long as some attention is
paid to the indeterminancies in the model. Moreover, as with the earlier
identification condition, the behavior of the minimization routine is usually a
good indicator of whether or not this condition holds. One part of condition/,
the asymptotic normality of the residuals, follows from the sampling scheme
and central limit theorems such as the multivariate Lindeberg-Levy theorem
(Billingsley 1979, 336-37). The covariance matrix for the vector of residuals
(TJ°)I/2 as defined in condition/will be / times the covariance of each element
of s with each other element. Since the vector s corresponds to the vector D,
0P°)~' should be Cl. Indeed, that is exactly what has been assumed above.

These results make it relatively easy to obtain the standard errors for the
parameters. Consider the second derivatives of F(6)I2:

= _ _ _W_ dT d£
( ' d6d6" d6 dO'

The first term will get smaller and smaller as the sample size increases so that
for a fairly large sample size these second derivatives are approximately equal
to H(6) defined in condition e. The first result of theorem 2 indicates that the
inverse of H(8) evaluated at the true parameter value is the asymptotic
covariance matrix for the parameters. Hence, the inverse of the second deriva-
tives of F(6)I2 evaluated at 9 is a good approximation to the covariance
matrix for the parameters.

The most problematic of these conditions is the smoothness of the deriv-
atives of s(8). This depends, as did the continuity of s(0), on the form ofg/X,
a, /?) and/(X, p). Once again, the expectation operator will usually do a lot to
smooth things out and insure that this condition will hold.

In summary, the researcher must:

• check whether the sampling scheme for the data insures the con-
vergence of observed quantities and the asymptotic normality of
residuals,

• check on the identification of the model by trying various combinations
of parameters and by monitoring the behavior of the minimization
routine, and

• check on the regularity of the model as we did for the one-dimensional
Euclidian model.

Although they may pose some algebraic drudgery, these tasks will pose no
real problems for most sampling schemes and most models. It is worth noting,
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however, that virtually none of the standard scaling literature in political
science discusses these issues.

6. Application to the Hinich Model

The Basic Equations

To use the estimator described above for a 7-dimensional Hinich ideal point
we must calculate yy and yjk. Remembering that £(XS) = 0 for all s as an
identification condition, some simple algebra yields for the means:

T

Jj = o , - 2 [£<*?) + fil\- (16)

We must endure some rather tedious algebra for the covariances:

yjk = E \ { a, - 2 (X? -

x f dk - 2 (Xj - 2plkX, + fa) + Sk - ak + 2 [£(*?) + P2
tk]

- 2 (̂ ,2 - 2A,X,) + 5,. + 2 E{XJ

I - 2 (X? - 2ft*X,) + 5, + 2 £(X?) 1 ]

Now using the fact that every Sj is independent of every X,, we can write this
as:

yJk = E {\ 2 (*? - 2ft,x,) ] [ 2 (X? - 2A**,)

r l r T T ~\
E(X}) 2 (Xf - 2p,kX,) - 2 (X? - 2p,jX,)

r T

[ 2 (£(X
T

+
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With some more algebra and letting £(5,5*) = il/Jk:

T T T T

yjk = *jt - 2 S E(X2X2) + 2 E(X2) 2 E(X})

T T

[2psjE{XsX}) + 2p[kE(X,X2) ~ ^,j^skE{XsX,)\. (17)

The terms E(Xj) are variances, the E(X*X?) are kurtoses when i = / and
cross-kurtoses when s¥" t, the E(XSX}) are skews when s = / and cross-skews
when s?*(, and the E ^ X , ) are variances when s = t and covariances when 5
5* f. A solution to the model is a set of these parameters plus a set of «/>jy and
ifrjk that satisfy equations 16 and 17.

Can equations 16 and 17 be estimated using the method described in the
preceding section? The method can only be used if the regularity, con-
vergence, and identification conditions of theorems 1 and 2 are satisfied. It is
easy to prove that equations 16 and 17 have the regularity required by condi-
tions b and d of theorems 1 and 2. The convergence conditions a and/will be
satisfied for any standard survey such as the American National Election
Study. This leaves the identification conditions c and e.

Identifying the Parameters

As we might expect, many of these parameters are not identified when we use
just the first two moments of the observed distributions. The problem occurs
when, for any solution to equations 16 and 17, there is always another solu-
tion within any arbitrarily small "neighborhood." This is called a failure of
"local" identification. An equivalent version of this problem is the existence
of some continuous transformation other than the identity transformation
which transforms one solution into another set of parameters which is also a
solution to equations 16 and 17. If such a transformation exists, it is easy to
see that the identification condition, equation 15, will not hold.

Although there is no formulaic approach to insuring identification for
nonlinear models like this one, one can proceed by trying out various con-
tinuous transformations and seeing whether or not they transform one solution
into another solution. In appendix 1, I investigate a variety of transforma-
tions, and I impose restrictions on the parameters to limit these transforma-
tions to the identity. This goes a long way toward insuring identification, but
the final test of identification occurs when we estimate the model. If the model
is not identified, then the variance-covariance matrix of the parameter esti-
mates will be singular or nearly singular.
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Appendix 1 develops these identification conditions for all s and t:

• Cross-Kurtoses A Function of Variances—E(X)X^) = E{X))E(X%
• Kurtoses A Function of Variances—E(X*) = 3[E(X;)]2,
• Cross-Skews Zero—E(XsXj) = 0,
• Skews Zero—E(X]) = 0,
• Covariances Zero—£(XSX,) = 0,
• Variances Equal to One Another—E(X]) = £(A"(

2), and
• Means Zero—E(X,) = 0.

These produce the following equation:

yJk - <fo = 2T[E(XW + 4£(*2) 2 &,&*• (18)

This could have been obtained more directly had 1 just imposed the (very
strong) requirement that the X, have a multivariate normal distribution with
zero means, zero covariances, and equal variances. For all practical purposes,
our identification requirements amount to this assumption, but they are theo-
retically much weaker because they make no assumptions about moments
beyond the fourth of the distribution of ideal points.

Do these results mean that, in principle, it is impossible to know any-
thing about the distribution of ideal points beyond a common measure of
variance? Not at all. If I wanted to use higher order moments of the observed
data such as yJkl = £{[K, - E(Yj))[Yk - E(Yk)][(Y, - E{Y,)]}, then we could
probably obtain this kind of information. However, using third- and higher
order empirical moments typically leads to very tricky estimation problems.

There is one final identification problem. As in standard factor analysis
models, the values of fisk are only unique up to a rotation. Consequently, for
models with more than one dimension, the fisk values must be restricted to
preclude rotations. For solutions with three or fewer dimensions, the easiest
way to do this is to set enough of the "diagonal" values of (3sj equal to zero to
"pin down" the solution. For a two-dimensional solution, /3M is set to zero,
and for a three-dimensional solution, /3M , ̂ 22>

 anc* ft3 are set to zero. This
approach does not work for four-dimensional solutions.

In general, 7X7" — l)/2 independent conditions must be imposed on the
matrix of /$sk values. The easiest way to do this is to set the first T — I values
of f}Xj equal to zero, to set the first 7—2 values of fiy equal to zero, and so on
down to set /3j-_, , equal to zero. This imposes T(T — l)/2 independent
conditions on the /3,y-, which is just enough to "pin down" the solution.

This discussion and appendix 1 makes it clear that identification is not a
trivial problem with these models. It is somewhat surprising, then, to find that
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none of the standard treatments discuss the problem. One explanation is that
the estimation methods used by other authors avoid it. This may be true, but it
seems highly unlikely. It seems more likely that other methods either make
hidden assumptions to insure identification or they estimate unidentified mod-
els. In any case, a clear discussion of the issue would be useful.

Comparison with Factor Analysis Models

One of the most interesting characteristics of equation 18 is its relationship to
the standard linear factor analysis model. It is well known (Joreskog and
Sorbom 1979, 18) that the covariances for this model are:

Jjk = E(X2) 2 PjPH + *jk, (19)

with $jk equal to zero when j ¥= k and with E(X2) equal to some constant for
identification. In the next section, I estimate the factor analysis model using
this equation and the GLS method described above.

Of more interest at the moment, however, is the fact that this equation for
yjk is nearly identical to equation 18 except for the addition of the term
2T[E{X2)]2 and the estimation of E(X2) instead of setting it equal to an
arbitrary constant. A moment's reflection suggests that these two differences
are related, and that the addition of the term 2T[E(X2)]2 makes it possible to
estimate E(X2). In general, equations 18 and 19 are subcases of the following
equation:

yjk = 2Tr2 + 4A 2 /3,,-ft* + i\>jk. (20)

Estimating equation 20 would seem to provide a simple test of one model
versus the other, but this equation cannot be estimated directly because the
transformation psJ = <£/?*, A = X*l<j>2, and T= T* provides another solution.
One approach to this identification problem is to require that T = A in general,
so that we must have T* = A* for the asterisked solution. Because T = T* by
the transformation, we must have A = A*, which implies that </> = 1. In short,
it is always possible to set T = A by making suitable adjustments in the psj.

Consequently, we might as well set A = '/* and estimate equation 20 with
this identifying constraint. Then there are two subcases:

1. If T = 0, then we have the standard T-dimensional factor analysis
model with 4A = EiX2) so that EQP) = 1, and
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2. If T f6 0, then the 7-dimensional factor model is rejected in favor of
some alternative model which might be the ideal-point model.

Thus one test for the 7-dimensional linear factor model is to estimate equation
20 for 7 dimensions with A fixed. If r is significantly different from zero, then
the 7-dimensional linear factor model must be rejected. From this perspective,
when we use just the first two moments of the empirical distribution to fit
these models, the factor analysis model can be treated as just a special case of
a larger set of models which includes the 7-dimensional Hinich model. This
test has the advantage of testing the factor analysis model against a very wide
range of alternatives, but it does not provide much insight into which alterna-
tive might provide a suitable fit.

Another test does this more directly. Because the 7-dimensional linear
factor model is a subcase of the 7-dimensional Hinich ideal-point model, we
can directly compare the two models by comparing the the x2 statistic for a
factor analysis model estimated by GLS with the x2 statistic for a Hinich
ideal-point model estimated in the same way. It seems remarkable that the
relatively slight restriction imposed by the factor analysis model would make
a large difference in the results, but, in the next section, I show that it does.

There is still another way to think of equation 20. For a (7 — 1)
dimensional Hinich model, equation 20 with A equal to 'A is:

r-i

yJk = 2(7 - 1)T* + S &,&* + **•

This can be written as:

T

yjk = X PsjPsk + 4>jk

J - l

if we require that pTJ = fJTk for all j and k so that we can choose T to satisfy:
0JJ = [2(7 - 1)7*]««.

This implies that for the estimation method described in this article which uses
the first two moments of the observed data, the (7 — l)-dimensional Hinich
model can be thought of as a constrained 7-dimensional factor model. This
should make it possible to estimate the model using LISREL (Joreskog and
Sorbom 1979). In addition, it helps to explain the standard finding that linear
factor models in 7 dimensions provide at least as good a fit as ideal-point
models in one fewer dimension.
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1 2 3

Dimensions Dimensions

Ideal Point — • — GLS —

Fig. 1. Plot of chi-squares

MLE

7. Application to 1980 NES Data

The method described in this article has been tested using data from the 1980
American National Election Study, a cross-sectional survey of the U.S. elec-
torate. The National Election Studies routinely ask people to rate political
figures on 100-point feeling thermometers. In 1980, over one thousand
respondents—1,015 to be exact—provided ratings for eight different political
figures and the two political parties. The political figures were John Anderson,
Jerry Brown, George Bush, Jimmy Carter, Gerald Ford, Edward Kennedy,
Walter Mondale, and Ronald Reagan. This list includes four Democrats
(Brown, Carter, Kennedy, and Mondale), three Republicans, and one Re-
publican/Independent (Anderson). A GAUSS program was written to imple-
ment the estimation method for the Hinich model.

The Best Fitting Model

Figure 1 plots x2 values for the goodness-of-fit versus the number of dimen-
sions for three different models: the Hinich ideal point model estimated by the
GLS method described in this article, the linear factor analysis model esti-
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mated by the same GLS method using GAUSS, and the linear factor analysis
model estimated using maximum likelihood on SPSS. Four things are clear.

First, the maximum likelihood factor analysis method always yields very
large x2 values compared to the values for the GLS linear factor analysis
technique. This may be surprising until it is remembered that the maximum
likelihood estimation method makes much stronger assumptions than the GLS
method. Consequently, these x2 statistics can be interpreted to mean that
maximum likelihood's additional assumptions, such as multivariate nor-
mality, are not acceptable for these data. If the linear factor analysis model is
correct, then it can only be correct under some weaker assumptions.

Second, with just one additional parameter, the 7-dimensional Hinich
ideal-point model always yields a significantly smaller x2 statistic than the
7*-dimensional linear factor model. For example, the x2 difference for the four
dimensional GLS factor and Hinich models is 6.12 with one degree of free-
dom which has a probability value of .0128. It is unlikely that this difference
occurred by chance if the GLS model is correct. Another test of the adequacy
of the GLS linear factor model can be obtained by estimating equation 20 with
A fixed, and testing whether T is significantly different from zero. This yields a
studentized value of 54.56, which decisively rejects the factor analysis model.
These tests strongly suggest that we must reject the linear factor model in
favor of some other model—perhaps the Hinich ideal-point model.

Third, the 7 + 1-dimensional GLS factor model always produces a
better fit than the 7-dimensional Hinich model. This should be true because
the 7-dimensional Hinich model is a special case of the 7 + 1-dimensional
factor model. What is surprising is that the extra dimension does not help that
much. For example, the four-dimensional GLS factor model has a x2 of 32.80
with 11 degrees of freedom compared to 42.82 for the three-dimensional
Hinich model with 17 degrees of freedom. Hence the x2 improvement is only
9.98 for six degrees of freedom for a large probability value of .1807. If the
three dimensional Hinich model is correct, then 18 percent of the time the
four-dimensional linear factor model with six extra free parameters would
produce up to this much improvement in the x2 value by sheer chance. This
suggests that the Hinich ideal-point model has some substantial virtues.

Fourth, none of the models produces a statistically insignificant*2. From
a strict hypothesis testing perspective, all of the models are rejected—even
the four-dimensional Hinich model with a x2 °f 26.7 with 10 degrees of
freedom which has a probability value of .0014—but the Hinich models are
not rejected with the same finality as the GLS or MLE factor analysis models.
The four-dimensional factor model, for example, yields a x2 of 32.80 with
eleven degrees of freedom which has a probability value of .00013.

Although the Hinich models do the best among the models we have
considered, there must be still other models that could do even better. Yet the
Hinich model does fairly well, and it would be nice to be able to go on and to
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make some decision about the dimensionality of the thermometer ratings.
How can we do this?

The first step is to realize that it is expecting too much to hope that a
model will fit well enough to satisfy an overall x2 t e s t f° r goodness of fit.
These tests are omnibus tests against all sorts of specification errors. There are
many ways that a model might fail. In the Hinich model, I have made assump-
tions about functional form, the number of dimensions, the diagonality of the
unique factor covariance matrix, and the orthogonality of the common and
unique factors. Any one of these assumptions might be false. It might be true,
as McDonald and Marsh (1989, 26) have argued, "that no restrictive model
fits the population, and per impossible, the investigator given the population
covariance matrix would still have to choose a restrictive model that approxi-
mates the population well enough." Even if one rejects McDonald and
Marsh's strong statement about the relationship between models and reality, it
is probably best to treat the results of the x2 test as a sober caution against
getting carried away with all aspects of a model, rather than as a rejection of
the entire enterprise.

How should we proceed? Although McDonald and Marsh (1989, 30) end
their discussion of "Choosing a Multivariate Model" with the observation that
the conflicting needs of parsimony and goodness of approximation require an
"essentially nonstatistical resolution," they still recommend using some in-
dices of fit and parsimony. They obviously believe that the theoretical knowl-
edge of the researcher is aided by the crutch of summary measures that can be
used to compare models and methods.

Carmines and Mclver (1981) have suggested using cutoff levels of two or
three for the ratio of x2 with its degrees of freedom (the C2 statistic). Using
this criterion, a three-dimensional Hinich model yields a C2 of 2.52 and a
four-dimensional Hinich model yields a C2 of 2.67, while the lowest C2 for
the GLS factor model is 2.98 for the four-dimensional case. Others have
suggested choosing that model for which C2 is lowest. This is the three-
dimensional Hinich model.

Akaike (1987) and others (Cudek and Browne 1983) have recommended
using the minimum of the Akaike Information Criterion (AIC). For the methods
of this paper, the AIC is the x2 value plus twice the number of parameters in the
model. The AIC values for the GLS factor models, starting with the one-
dimensional model, are 483.18, 313.26, 188.23, and 142.80. The correspond-
ing values for the Hinich models are 331.06, 186.74, 138.85 and 136.88.
Strictly speaking, this leads to the four-dimensional Hinich solution, but the
three-dimensional version certainly seems close enough. Taken together, these
criteria suggest that a three-dimensional Hinich solution is quite adequate.
These criteria also strongly imply that one- and two-dimensional ideal-point
solutions are inadequate. The x2 statistics strongly reject these solutions and the
AIC and many other criteria lead to the same result.
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Other articles that have analyzed thermometer data (e.g., Poole and
Rosenthal 1984; Rabinowitz 1978; Weisberg and Rusk 1970) have empha-
sized two-dimensional solutions. Weisberg and Rusk argue that nonmetric,
multidimensional scaling yields "a 'good1 solution in two dimensions with a
stress of .050" (1970, 1174). Rabinowitz analyzes 1968 and 1972 data and
reports that "Stress using Kruskal's formula 2 is .139 and . 108 for these two-
dimensional configurations, both of which fall in the good range (1978, 795).
Unfortunately, there is no statistical basis for the stress measure, and the
appelation "good" for stress measures of this size was simply made up by
Joseph Kruskal (1964). Kruskal tells his reader that "since [stress] will turn
out to be a 'residual sum of squares,' it is positive, and the smaller the better"
(1964, 3). He then introduces the terms poor, fair, good, excellent, and
perfect with the following explanation: "Our experience with experimental
and synthetic data suggests the following verbal evaluation" (1964, 3). In
short, there is absolutely no statistical justification for these two-dimensional
solutions.3

Poole and Rosenthal also emphasize two-dimensional solutions, but they
note that "most of the variation of the thermometers is accounted for by three
dimensions" (1984, 288). The only measure of fit they provide is a "squared
Pearson correlation coefficient between the actual and reproduced thermome-
ter" (1984, 285), and they provide no justification for choosing the two-
dimensional fit based upon this measure. Indeed, a glance at their table of
unfolding results indicates that the third dimension typically improves their
measure of fit by about 20 percent. Is this not enough improvement to suggest
that a three-dimensional fit is necessary? It is hard to know for sure. In fact, an
R2 by itself is of little use in choosing the correct dimensionality. I have shown
elsewhere (Brady 1989b; Brady 1990) that/?2 statistics like that used by Poole
and Rosenthal can be very large when the underlying model fits the data very
poorly.

The sad truth is that the scaling literature almost invariably fails to
provide any tests of the dimensionality of the space, the adequacy of func-
tional forms, or the relative merits of one model versus another. This article
provides those kinds of tests.

The Pattern of Candidate Positions

Table 1 lists the values of the parameters and their standard errors for the
three-dimensional ideal-point model. The identification conditions for the ptJ

placed Carter at zero on the first and second dimensions and Reagan at zero on

3. Brady 198S presents some statistical models and methods for nonmetric, multidimen-
sional scaling.
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TABLE 1. Parameter Estimates for Three-Dimensional Hinich Ideal-Point Model

Candidate

Anderson

Brown

Bush

Carter

Ford

Kennedy

Mondale

Reagan

Democratic
party

Republican
party

a j

75.951
(2.27)
58.404
(1.06)
70.952
(1.01)
95.206
(2.36)
77.045
(1.28)
85.469
(8.44)
73.832
(1.25)
95.945
(2.17)

92.177
(1.83)
81.847
(1.44)

*J

14.659
(0.97)
16.764
(0.49)
13.322
(0.49)
16.503
(0.72)
18.779
(0.51)
18.657
(2.92)
13.936
(0.51)
13.190
(0.81)

12.326
(0.68)
13.801
(0.54)

fit,

0.066
(0.54)
1.045

(0.35)
-0.777
(0.36)
0.0

Fixed
-0.603
(0.36)
4.958

(0.90)
-0.280
(0.30)
0.0

Fixed

1.414
(0.32)

-0.737
(0.26)

fiv

-3.545
(0.32)

-1.533
(0.27)

-0.123
(0.28)
0.0

Fixed
0.632

(0.30)
-1.188
(0.55)

-1.185
(0.20)
3.460

(0.35)

0.075
(0.26)
2.234

(0.30)

fiv

0.819
(0.27)

-0.200
(0.22)
2.164

(0.20)
5.483

(0.23)
2.552

(0.24)
-1.718
(0.34)

-2.859
(0.22)
4.201

(0.25)

-4.517
(0.21)
2.905

(0.24)

Percentage
Explained

54.16

30.47

48.35

64.15

34.83

57.64

54.03

72.85

70.96

58.72

Distance from
Median Voter

3.639

1.866

2.302

5.483

2.697

5.380

3.108

5.442

4.734

3.738

Note: Standard errors in parentheses.

the second. The standard errors are all relatively small, although they are
especially small for the a, and tf,Jk values. Table 1 also indicates the percentage
of the variance in the thermometers explained by the model. This R2 measure
is defined as R2 = 1 - (ij/2/djJ). In all cases, the model seems to explain a
substantial fraction of the variance although this measure, as noted previously,
should not be taken too seriously.

Table 1 also includes the unique factor means, a,. Ideally, we might like
all of these to equal one another so that any variation in preference for the
candidates would be entirely explained by the variation in j30- instead of the
much more nebulous values of the a,. However, it is obvious that the a, are
substantially different from one another. Probably the best way to interpret
these is as the amalgamation of some very basic trait or performance variables
about which there is virtually complete agreement in the population.

Table 1 does not include the value of E(X2), or its square-root, the
standard deviation of the ideal points. This standard deviation is 1.83 with a
miniscule standard error of .034. This means that about 68 percent of the
voters have ideal points inside a three-dimensional sphere with a radius of
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1.83 drawn around the median voter, and about 95 percent have their ideal
points within double this radius.

The distance from the median voter is also included in table 1. Because
the identification conditions for the ideal points are similar to assuming a
three-dimensional normal distribution, we can reasonably assume that the
median voter is at the vector mean of this distribution, which is (0,0,0) by
assumption. The distance reported in the table is the simple Euclidian distance
of the candidate from the median voter. A glance at these distances indicates
that none of the candidates, with the possible exception of Jerry Brown, is
within a standard deviation of the median voter. Other authors (e.g., Poole
and Rosenthal 1984), have noted the surprising dispersion of candidates with
respect to the median voter. The convergence of candidates and parties pre-
dicted by spatial models of party competition does not seem to hold.

Jerry Brown's location near the center of the distribution might seem
somewhat surprising. One possible explanation is that more respondents may
guess at their candidate evaluation when they know little about the candidate.
A guess would probably typically lead to a value of 50 degrees on the ther-
mometer, with little more than random variation around the center of the
distribution of voters. This would lead to an apparently central location for the
candidate, but it would also lead to a value near 50 for a, and a comparatively
low R2 value, suggesting a poor fit. All of these things are true for Jerry
Brown. Unfortunately, there is no way to know whether respondents have
been guessing, and the method described in this article, like all the other
methods used in the literature, cannot adjust for this difficulty.

B3

31l£F

RR
RPT

JC

I I I i i ^ i i iB2
1 2 3 4 5

JA
JB
GB
JC
GF
EK
WM
RR
DP
RP

John Anderson
Jerry Brown
George Bush
Jimmy Carter
Gerald Ford
Edward Kennedy
Walter Mondale
Ronald Reagan
Democratic Party
Republican Party

* Location in the B1-B2 plane
• Location in Three Dimensions

Fig. 2. Three-dimensional solution
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Figure 2 displays the eight candidates, two parties, and the location of
the median voter (at zero) in the three-dimensional space. Each candidate or
party is represented by a vertical line with a solid circle at one end and a solid
square at the other end. The circles are the two-dimensional projections of the
locations in the first and second dimensions. The squares are the locations in
the three-dimensional space.

There are several obvious features of this picture. First, there seems to be
a strong "liberal-conservative" dimension with Ronald Reagan at one end and
Ted Kennedy at the other. Second, the median voter is approximately at the
center of the candidates, although some of the candidates, such as Ronald
Reagan, are surprisingly far away from the median voter. Third, the parties
are substantial distances from the median voter even though, with the rather
interesting exception of John Anderson, both parties are close to candidates
who bear their label. Fourth, the presidential candidates for 1980 (Carter and
Reagan) are quite far away from the median voter.

8. Discussion

The estimation method described here is computationally feasible and statis-
tically defensible. Unlike other methods for estimating ideal-point models,
the method described in this article is statistically identified, the conditions for
identification are clearly stated, and the method provides a comprehensive set
of statistical tests for the dimensionality, functional form, and specific param-
eters of the model. For example, in the analysis of the NES data, the method
makes it possible to reject the linear factor analysis model in favor of the
ideal-point model and to make some statistically informed decisions about
the dimensionality of the data. Other methods, such as those that rely upon the
"stress" or other ad hoc measures of fit, do not allow for this.

The method does, of course, rely upon a variety of assumptions. The
most important are:

• the functional form of the ideal point model,
• the independence of the unique factors 8 and the ideal points X, and
• the distribution of the ideal points/(X; p).

There is no obvious a priori reason for choosing one form of the ideal-point
model over another so that the simplest model, say the Hinich form, might
serve, as it has here, as a convenient starting place. If other forms seem likely,
they can be considered using the framework described in this article, and
goodness-of-fit statistics can be used to choose the best model. Indeed, there
is nothing stopping some brave soul from including the values of the expo-
nents v and 7j in equation 2 in the parameter vector. Consequently, the func-
tional form assumption can be tested, and it is not very restrictive.
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The independence of S and X may be the most inflexible and worrisome
assumption. If independence is not assumed, then some distributional form
for S must be chosen as well, and the computational problem becomes much
more severe. There are some reasons, suggested by the psychological litera-
ture, for believing that the perceptual errors in each 5, might depend upon the
distance between X and ftj. On the other hand, there may be even better
reasons for believing that the major component of 5, involves unique con-
siderations about each candidate that do not depend upon X.

The form off(X; p) could be a problem if a very restrictive distribution is
chosen. But there is no reason to do this. For relatively low dimensional
problems, very flexible distributional forms can be estimated as long as the
vector of nuisance parameters does not get too large. For higher dimensional
problems, the simulation methods described here appear very promising.

The application of the method to the Hinich ideal-point model is very
promising and even surprising. The results strongly suggest that the standard
factor analysis method, although it provides a spatial pattern somewhat like
the ideal-point model, does not fit the data at all, whereas the ideal-point
model provides a strikingly good fit. From a substantive perspective, this
suggests that the dimensions underlying preferences are ideal-point dimen-
sions like liberalism-conservatism and not traits like competence, intelli-
gence, and leadership ability.
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A P P E N D I X 1 .

Identification of the Hinich Model

Only the covariance terms present identification problems. The yt are consistent with
any values for the E(X2) and the fy, because the a, can always be adjusted to
compensate for changes in these other parameters.

Turning to the covariance terms, I shall proceed by first considering the identi-
fication of separate terms of equation 17, and then deal with identification of the whole
model. Consider the terms for kurtoses and cross-kurtoses in 17:

T T

A = 2 I E(X2X2).

If we set E(X2X2) = E(X2X2)' + <f>s, and if 2 , 2, </>„ = 0, then the value of A will be
unchanged and E(X2X2)' will be an admissible set of parameters because:

T T

A = X X E(X2Xf)'.
I - 1 r - l

Thus, there is a continuous transformation of the original parameters into the "as-
terisked" parameters, which are also a solution. This means these parameters are not
locally identified, so we must place some restrictions on them.

If the dimensions were independent of one another, then the cross-kurtoses could
be written as follows:

E(X2X2) = E(X2)E(X2,)

for all s T* t, so that the cross-kurtoses would be written in terms of variances. Hence,
although I do not assume independence, I will assume that for s # t:

E(X)X2) = E(X2)E(X2).

This means that:

A = X X E(X2)E(X?) + 2 E(X?).
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Another set of terms in equation 17 is:

T T

B = - 2 2 £(X2)£(X,2)

T T T

= - 2 2 £(X2)£(X,2) - 2 £(X,2)£(X2).

A piece of equation 17, then, is:
T T

A + B = 2 £(X?) - 2 [£(X,2)p.

The first term is still not identified because all that is required is that 2^,, E(X*)
remain constant. This means, as before, that we can define another solution by £(X*)
= £(X*)* + <j>, as long as 2,<£, is zero.

One way to provide some identification is to require that each £(X*), up to a
proportionality constant 5, equal the value of the kurtosis for normally distributed
dimensions. For a normal distribution, the kurtosis can be written in terms of the
variances. Thus, I assume that £(X*) equals 35[£(Xf)p where 5 is chosen so that
362J_il£(Xf))2 equals 2^,£(X?). This implies that:

T T

A + B = 35 2 [£(X2)P - 2 l£(X?)P
i - 1 r - l

T

= ( 3 5 - 1) 2 [£(X,2)P.
i -1

Now consider the terms in equation 17 with skews and cross-skews:

T T

C = -2 2 2 [frjEWtf) + P,kE(X,X2,)]
S-l 1—1

T

= "2 2 (ft; + A») 2 E(XtX?).
J-1

For each s, all that is required for a solution is that X, E(XSX*) equal a constant.
Consequently, these cross-skews and skews are not identified. If the X, were indepen-
dent or had a symmetric distribution, then all of the cross-skews, all £(X,X2) for i / / ,
would be equal to zero. Hence, as an identification condition, we will assume that
E(X,Xj) = 0 for 5 5* t. This implies that:

T

c = -2 2 (A, + A*) £(*?)•
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This is not quite enough, however, because there are many sets of E(X*) that will
produce a constant value of C. Moreover, these skews only occur in this term, so they
are only identified if this term is identified. Therefore, I impose the additional identi-
fication condition that E{X)) = E(X]) for all s and t. Hence:

T

C = -2£(X') 2 (ft, + ft,),
J-I

where E(X3) is the common value of the skews.
The last major term involves covariances and variances:

For the same reason that we usually assume uncorrelated factors in standard factor
analysis, the covariances, which only appear in this term, are unidentified here.
Consequently, I assumed that E(XSX,) = 0 for all s T4 t:

T

D = 4 2 /3,y/3rt£(X?)

Note that the expressions for the means are unaffected by all that has been done so far
because the cross-kurtoses, cross-skews, skews, and covariances do not appear in that
expression.

Putting all of this together, we have:

y J k - <l>Jk= A + B + C + D

T T

= (35 - 1) 2 lE(Xf)]2 - 2£(X3) 2 (ft, + A*)
/-I I"I

T

+4 2 A/&*£(*?>- <2')
t-\

Now consider this transformation of the parameters for all s. j , and k:

S = 3 * - - ' + * 4 (22)
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Substituting these in equation 21, we obtain:

T T

yjk ~ <l>jt = (35* - 1) I [E(X2)']2 - 2E(X3)' 2 (£ , + ft)

r
+ 4 X ftjfoEtfy.

This is identical to equation 21 except for the asterisks.
The basic problem here is that we can use a rather complicated transformation of

5 to make up for the transformation by <f> of the variances of the ideal-point dimensions
and of the locations of the candidates. A simple approach to this identification problem
is to require that S have some specific value. The obvious choice is that S always
equals one. Hence, 6 = 5 * = 1. With this choice, equation 22 implies that rf>4 equals
one.

This means that we have:

T T

yJk - +jk = 2 2 [E(X?)]2 - 2£(X3) 2 (ft; + ft*)
r - l J - 1

T

+ 4 2 ft,ft»E(X,2). (23)
J-I

Consider this transfonnation of the parameters for all s, j , and t

E(X2
S) = E(,X2)'/<t>2,

It is not at all obvious, but substituting these into equation 23 yields an asterisked
version of the equation. This is an excellent example of the nonobvious transforma-
tions that create identification problems in nonlinear models.

A major part of the problem is that the variances can be transformed by 4>,. The
obvious identification condition is to require that E(X2) equal E(X2) for all s and (.
Then, E(X2)* must equal E(X2)* as well. By the transformation of the variances,
E(X)) must equal E{X2

s)*l<t>2 so that E(X2) must equal ^(X2) as well as 82E(X2).
This implies that 4>s equals 4>,. I shall call their common value 4>.

With this result, the transfonnation for £ (X 3 ) becomes:

~ \)TE(X2)' + EjXmPl + ft)
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It seems reasonable to place a restriction on E(X3) to restrict <f> to the identity transfor-
mation. This can be done very simply by requiring zero skew, so that E(X3) = E(X3)*
= 0. Then a little algebra indicates that <£* must equal one.

The final version of equation 17 is as follows:

J-I

This could have been more directly obtained had I just imposed the (very strong)
requirement that the X, have a multivariate normal distribution with zero means, zero
covariances, and equal variances.

APPENDIX 2 .

Calculation of Covariances

We wish to calculate the covariances among the dr dk, d)k. and the dlm in order to form
ft. In this appendix I illustrate the calculation for one case, and I present the results for
the other cases. I then discuss how these quantities can be estimated to obtain Cl.

One of the elements of fl is u>jk = ICov(dj, dk). We assume that each observation
Y,j is independently and identically distributed:

- yk))wJk

= E(YjYk) + (/ - 1)E(K,)£(KJ - lytyk

= E(YjYk) - yjyk.

where the first line is simply the definition of covariance (remembering that E\dj\ =
7,), the second line uses equation 4 from the text, the third line uses the fact that all YtJ

are I1D so that the subscript /' can be dropped from them, and the fourth line uses the
fact that E(Yj) = yr

The corresponding formulas for <o kl and oiJk lm are:

toJM = E(YjYkY,) - ykE(YjY,) - ytE(YjYk)

+ 2yjykl + yjEiXJ,)

o>jum = E(YjYkY,Ym) - yiE(YjYkYm) -ymEWjYkY,)

- ykE{YjY,Ym) - yjE(YkY,Ym) + 2y,ymE{.YjYk)

+ yky,E{YjYm) + ykymE(YjY} + yjyiE(YkYm)

+ yjymE(YkY,) + 2yjykE{.Y,Ym) -

- E(YjYk)EWtYJ
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With these theoretical expressions for the elements of ft, the problem is to estimate
them. One straightforward approach is to estimate each theoretical quantity by its
method of moments estimator. Hence, we have:

-, = %., Y0
rJ 7

' \ y.' Y Y
E{Y/k) = - l

t
 >J lk

EiYjYJ,) = -!Z
v Y

E(YjYkY,Ym) = ^ ' Y«**Y»Y'»

These formulas can be substituted into the preceding equations to get consistent
estimates of the elements of ft.
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