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SELF-DIVISIBLE ULTRAFILTERS AND CONGRUENCES IN �Z

MAURO DI NASSO , LORENZO LUPERI BAGLINI , ROSARIO MENNUNI , MORENO
PIEROBON, AND MARIACLARA RAGOSTA

Abstract. We introduce self-divisible ultrafilters, which we prove to be precisely those w such that the
weak congruence relation ≡w introduced by Šobot is an equivalence relation on �Z. We provide several
examples and additional characterisations; notably we show that w is self-divisible if and only if ≡w
coincides with the strong congruence relation ≡s

w , if and only if the quotient (�Z,⊕)/≡s
w is a profinite

group. We also construct an ultrafilter w such that ≡w fails to be symmetric, and describe the interaction
between the aforementioned quotient and the profinite completion Ẑ of the integers.

§1. Introduction. In [11], Šobot investigated generalisations of the congruence
relation a ≡n b from Z to its Stone–Čech compactification �Z, equipped with the
usual extensions ⊕, � of the sum and product of integers. For each w ∈ �N, he
introduced a congruence relation ≡w and a strong congruence relation ≡s

w . In this
paper we investigate these notions and prove that, for some w, the former fails to
be an equivalence relation, thereby answering [11, Question 7.1] in the negative. In
fact, we fully characterise those w for which this happens, and compute the relative
quotient when it does not.

Almost by definition, u ≡s
w v holds if and only if, whenever (d, a, b) is an ordered

triple of nonstandard integers which generate w ⊗ u ⊗ v, we have d | a – b. It was
proven in [11] that ≡s

w is always an equivalence relation, and in fact a congruence
with respect to ⊕ and � but, perhaps counterintuitively for a notion of congruence,
there are some ultrafilters w for which w �≡s

w 0. On the other hand, the relation ≡w
does always satisfy w ≡w 0 but, as we said above, it may fail to be an equivalence
relation. So, in a sense, these two relations have complementary drawbacks, and it is
natural to ask for which ultrafilters w these drawbacks disappear. Our main result
says that ≡w is well-behaved if and only if ≡s

w is, if and only if the two relations
collapse onto each other. This is moreover equivalent to the quotient (�Z,⊕)/≡s

w

being a profinite group, which in fact can be explicitly computed. More precisely, if
we denote by P the set of prime natural numbers and by Zp the additive group of
p-adic integers, our main results can be summarised as follows.

Main Theorem (Theorems 4.10 and 7.7). For every w ∈ �N the following are
equivalent.
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2 MAURO DI NASSO ET AL.

(1) We have w ≡s
w 0.

(2) The relation ≡w is an equivalence relation.
(3) The relations ≡w and ≡s

w coincide.
(4) The quotient (�Z,⊕)/≡s

w is isomorphic to
∏
p∈P
Gp,w , where

Gp,w =

{
Z/pnZ, if n = max{k ∈ N ∪ {0} : pkZ ∈ w} exists
Zp, otherwise.

(5) The quotient (�Z,⊕)/≡s
w , when equipped with the quotient topology, is a

profinite group.

In fact, many more characterisations of those w satisfying the above equivalent
conditions are possible (Theorem 7.7). We believe this to be an indication that these
ultrafilters, which we dub self-divisible, are objects of interest, and we study them at
length throughout the paper.

In more detail, after briefly recalling the context in Section 2, we prove in Section 3
that≡w is an equivalence relation if and only if it is transitive and provide an example
of an ultrafilterw such that ≡w is not symmetric. Section 4 is devoted to proving the
equivalence of (1) to (3) in the Main Theorem. In Section 5 we provide examples
of self-divisible ultrafilters, and study the topological properties of their space in
Section 6. In Section 7 we study the quotients �Z/≡s

w , and show that each of them
may be identified with a quotient of the profinite completion Ẑ of the integers which
embeds in the ultraproduct

∏
w Z/nZ. In the same section, we obtain several further

equivalent definitions of self-divisibility, completing the proof of the Main Theorem.
We conclude in Section 8 with some final remarks, further directions, and an open
problem.

§2. Preliminaries. The letters u, v, w, t will usually denote elements of �Z, while
p, q, r will typically stand for prime natural numbers. We identify each integer with
the corresponding principal ultrafilter. If u ∈ �Z we write – u for {– A : A ∈ u} and
u 	 v for u ⊕ (– v). We extend the usual conventions about usage of +, – to ⊕, 	,
e.g., whenever we write – u ⊕ v we mean (– u) ⊕ v, and u 	 v 	 w is to be parsed
as u ⊕ (– v) ⊕ (– w). IfA ⊆ Z, thenAc denotes Z \ A, andA denotes the closure of
A in �Z, that is, {u ∈ �Z : A ∈ u}. We convene that 0 /∈ N, and use � for N ∪ {0}.

We adopt some conventions and notations of model-theoretic flavour; some
standard references are [3, 8, 13]. Namely, we work in a κ-saturated elementary
extension ∗Z ofZ, where the latter is equipped with a symbol for every subset of every
cartesian powerZk , and where κ is a large enough cardinal, for instance, κ = (2ℵ0 )+.
The results obtained do not depend on the particular elementary extension chosen.
Moreover, we write a |= u, or u = tp(a/Z), and say that a is a realisation of u, or
that a generates u, to mean that u = {A ⊆ Z : a ∈ ∗A}. In other words, we identify
ultrafilters in �Z with 1-types over Z in the language mentioned above.

In this setting, every type over Z is definable, and the product ⊗ of ultrafilters
coincides with the product ⊗ of definable types, provided compatible conventions
are adopted. Specifically, we have A ∈ u ⊗ v ⇔ {x : {y : (x, y) ∈ A} ∈ v} ∈ u. In
terms of realisations, this means that the order in which we resolve tensor products
is reversed with respect to the majority of model-theoretic literature; namely, in this
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SELF-DIVISIBLE ULTRAFILTERS AND CONGRUENCES IN �Z 3

paper (a, b) |= u ⊗ v iff a |= u and b |= v | Za.1 In this case, we call (a, b) a tensor
pair. Tensor pairs in ∗N have been characterised by Puritz in [9, Theorem 3.4]; we
recall here the extension of Puritz’ characterisation to ∗Z, and we refer to [2, Section
11.5] or [5] for a proof of this fact.

Fact 2.1. An ordered pair (a, b) ∈ ∗Z2 is a tensor pair if and only if for every
f : Z → Z either ∗f(b) ∈ Z or |a| ≤ |∗f(b)|.

The iterated hyper-extensions framework of nonstandard analysis allows for an
even simpler characterisation of tensor products and related notions: if a, b ∈ ∗Z
are such that a |= u and b |= v, then (a, ∗b) |= u ⊗ v. As a trivial consequence, in
the same hypotheses we have that a + ∗b |= u ⊕ v and a · ∗b |= u � v. A detailed
study of many properties and characterisations of tensor k-tuples in this iterated
nonstandard context can be found in [5].

Let us recall (some equivalent forms of) the definitions of divisibility and
congruence of ultrafilters. We will frequently use that, when dealing with generators
of ultrafilters, some existential quantifiers may be replaced by universal ones. For
example, (∃a |= u) (∃b |= v) a | b if and only if (∀a |= u) (∃b |= v) a | b, if and
only if (∀b |= v) (∃a |= u) a | b. This follows from saturation of ∗Z (see [5, Corollary
5.13]). By this, and [11, Proposition 3.2 and Theorem 4.5], we may take as definitions
of |̃ and ≡w the ones below.2 Similarly, our definition of ≡s

w is not the original one,
but it is equivalent to it by [11, Lemma 6.5].

Definition 2.2. Let u, v, w ∈ �Z, with w �= 0.

(1) We write u |̃ v iff there are a |= u and b |= v such that a | b.
(2) We write u ≡w v iff there are d |= w and (a, b) |= u ⊗ v such that d | a – b.
(3) We write u |s v iff there is (a, b) |= u ⊗ v such that a | b.
(4) We write u ≡s

w v iff there is (d, a, b) |= w ⊗ u ⊗ v such that d | a – b.

We stress that the existential quantifier in the definition of |s may be replaced with
a universal one: the property being checked is true of some realisation of the tensor
product if and only if it is true of every realisation of the tensor product. The same
holds for ≡s

w , but not for |̃, nor for ≡w : in the latter two cases, we can replace one
(any) existential quantifier with an universal one, provided the universal quantifier
is the leftmost one, as above, but not both simultaneously.

Remark 2.3. The following properties hold.

(1) The relation |̃ is a preorder.
(2) The relation |s is transitive, but not reflexive (see later, or [11, Lemma 6.4]).
(3) We have u ≡w v if and only if w |̃ u 	 v.
(4) We have u ≡s

w v if and only if w |s u 	 v.
(5) If w = n �= 0 is principal, then both ≡w and ≡s

w coincide with the usual
congruence relation modulo n.

1Here, v | Za denotes the unique type over Za extending v and definable over Z.
2In [11] the relation ≡w is only defined for w ∈ �N. Clearly there is no harm in using the same

definition for w ∈ �Z \ {0}, but at any rate it is immediate that ≡w coincides with ≡–w , and similarly
for ≡s

w .
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4 MAURO DI NASSO ET AL.

From Definition 2.2, it is easy to obtain nonstandard characterisations; for
example, u ≡s

w v if and only if whenever d, a, b ∈ ∗Z are such that d |= w,
a |= u, b |= v, then d | ∗a – ∗∗b. Below, we provide some further equivalent
definitions of the divisibility relations.3 Denote by U the family of all |-upward
closed subsets of Z.

Remark 2.4. For every u, v ∈ �Z, the following hold.

(1) We have u |̃ v if and only if u ∩ U ⊆ v.
(2) We have u |s v if and only if {n ∈ Z : nZ ∈ v} ∈ u.

Fact 2.5 [11, Lemma 5.6 and Theorem 5.7]. For everyw ∈ �Z \ {0}, the relation
≡s
w is an equivalence relation compatible with ⊕ and �.

An important role in our analysis of these notions will be played by those
ultrafilters which are maximal with respect to divisibility amongst nonzero
ultrafilters.

Definition 2.6. We denote by MAX the set of ultrafilters that are |̃-divisible by
all elements of �Z \ {0}.

The following characterisation may be proven by taking suitable tensor products
(see also [11, Lemma 5.8(a)]).

Fact 2.7. The following are equivalent for w ∈ �Z \ {0}.

(1) For every u ∈ �Z \ {0} we have u |̃ w (that is, w ∈ MAX).
(2) For every u ∈ �Z \ {0} we have u |s w.
(3) For every n ∈ N we have n |̃ w (that is, w ≡n 0, or equivalently nZ ∈ w).

In the case of �N, the following is [12, Lemma 4.3]. Its version for �Z is proven
in the same way. Recall that K(�Z,�) denotes the smallest bilateral ideal of the
semigroup (�Z,�), and K(�Z,�) denotes its closure.

Fact 2.8. The set MAX is topologically closed in �Z. Moreover, it is a �-bilateral
ideal and it is closed under ⊕. In particular, K(�Z,�) ⊆ MAX.

Throughout, an important role will be played by the profinite completion lim←−Z/nZ

of (Z,+), which may be thought of as the additive group of consistent choices of
remainder classes modulo each n ∈ N, and is usually denoted by Ẑ. Explicitly,
we may identify an element of Ẑ with a sequence (an)n∈N such that an ∈ {0, ... ,
n – 1} and, if n | m, then am ≡n an, with pointwise addition modulo n. There is an
isomorphism (Ẑ,+) ∼=

∏
p∈P

(Zp,+), where Zp denotes the p-adic integers. Again

up to isomorphism, we may view Ẑ as the quotient of (∗Z,+) by the equivalence
relation that identifies a and b whenever, for every n ∈ N, we have a ≡n b.

It is well-known that Ẑ is a profinite group, that is, a topological group which
is a Stone space, when equipped with the group topology where a basis of
neighbourhoods of the identity is given by the clopen subgroups nẐ. In other
words, the basic (cl)open sets are given by fixing finitely many remainder classes.
The isomorphism Ẑ ∼=

∏
p∈P

Zp is in fact an isomorphism of topological groups,

3For |̃, this is in fact the original definition.
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SELF-DIVISIBLE ULTRAFILTERS AND CONGRUENCES IN �Z 5

that can be used to obtain a nice characterisation of the closed subgroups of (Ẑ,+).
This may be proven directly, but it also follows from, e.g., Theorem 1.2.5 in [14],
to which we also refer the reader interested in an introduction to profinite groups.
Below, we adopt the convention that, if α is an infinite ordinal, then pαZp = {0}.

Fact 2.9. View Ẑ as
∏
p∈P

Zp. Then, the closed subgroups of (Ẑ,+) are precisely
those of the form

∏
p∈P
pϕ(p)Zp, where ϕ : P → � + 1.

In particular, each closed subgroup may be written as {x ∈ Ẑ : ∀n ∈ D n | x}, where

D is a |-downward-closed subset of Z of the form
⋂
p∈P

(
pϕ(p)+1Z

)c

.

§3. Congruences that are not equivalences. We begin this section by proving that
≡w is not always an equivalence relation, thereby answering negatively a question
of Šobot.

Example 3.1. Let w ∈ �Z \ Z be such that, for every n ∈ N, we have w ≡n 1.
Then ≡w is not transitive.

Proof. For every w we have w |̃ (– w), hence 0 ≡w w. On the other hand,
for every w as above, w 	 1 ∈ MAX, so w ≡w 1, and by transitivity 0 ≡w 1,
contradicting that w is non-principal. �

Since any w of the form u ⊕ 1, with u ∈ MAX nonzero, satisfies the assumptions
of Example 3.1, this settles [11, Question 7.1]. In the rest of this section, we study
in more detail how ≡w may fail to be an equivalence relation. We easily observe that
reflexivity is always guaranteed.

Proposition 3.2. For all w ∈ �Z \ {0}, the relation ≡w is reflexive.

Proof. Given any u ∈ �Z, observe that (a, a′) |= u ⊗ u implies that, for every
n ∈ N, we have a ≡n a′, hence that nZ ∈ u 	 u. By Fact 2.7 u 	 u ∈ MAX, and we
conclude by Remark 2.3. �

As observed in Example 3.1, transitivity of ≡w is not guaranteed in general.
Remarkably, failure of transitivity is the only obstruction to≡w being an equivalence
relation.

Theorem 3.3. For every w ∈ �Z \ {0}, the relation ≡w is an equivalence relation
if and only if it is transitive.

Proof. By Proposition 3.2 we only need to show that if ≡w is transitive, then
it is symmetric. Assume symmetry fails, as witnessed by u, v such that u ≡w v but
v �≡w u. Let t := u 	 v and t′ :=– v ⊕ u. By construction t ≡w 0 and t′ �≡w 0. On
the other hand t′ 	 t is easily checked to be in MAX, hence t′ ≡w t. It follows that
t′ ≡w t ≡w 0, but t′ �≡w 0, so transitivity fails. �

Symmetry of≡w can also fail for reasons that have little to do with transitivity.4 We
will prove this by using upper Banach density, denoted by BD. For definitions and
basic properties around densities, see, e.g., [6] and the references therein. Specifically,

4At least prima facie, since we do not know whether a symmetric ≡w must be automatically transitive,
see Problem 8.1.
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6 MAURO DI NASSO ET AL.

we will use the following consequence of [1, Theorem 2.1] (see [6, Corollary 2.4] for
more details).

Fact 3.4. Suppose that {Bn}n∈N is a family of subsets of Z, that Φ is a sequence
of intervals of increasing length, and denote by dΦ the associated density. If there is
ε > 0 such that, for every n ∈ N, the density dΦ(Bn) exists and is larger than ε, then
there is an infinite X ⊆ N such that the family {Bx : x ∈ X} can be extended to a
nonprincipal ultrafilter.

Theorem 3.5. Let A ⊆ Z be such that BD(A) > 0 and Ac is thick. Then there are
u, v ∈ �Z \ Z such that A ∈ u ⊕ v and Ac ∈ v ⊕ u.

Proof. Recall that a subset of Z is thick iff it contains arbitrarily long intervals.
Hence, by assumption we can find, for every n ∈ N, an interval Jn = [an, bn] such
that |Jn| = 2n + 1 and Jn ⊂ Ac. Denote by Φ the sequence of intervals along which
BD(A) = dΦ(A) and observe that, for every m ∈ Z, we have dΦ(A – m) = dΦ(A).

Set cn := (an + bn)/2 and apply Fact 3.4 with Bn := A – cn, finding Y ⊆
{cn}n∈N ⊆ Ac such that {A – y : y ∈ Y} is contained in a nonprincipal ultrafilter v.

Fix any nonprincipal ultrafilter u containing Y. By construction, A ∈ u ⊕ v, and
we are left to show that Ac ∈ v ⊕ u. Because Y ⊆ {cn}n∈N, for every a ∈ ∗Y \ Y ,
hence in particular for every a |= u, and for every n ∈ Z we have n + a ∈ ∗Ac.
Therefore, if (b, a) |= v ⊗ u, we have b + a ∈ ∗Ac, concluding the proof. �

Corollary 3.6. There is w ∈ �Z \ {0} such that ≡w is not symmetric.

Proof. It is well-known that the set of squarefree integers has positive density,
see, e.g., [4] for a short proof. Moreover, an easy application of the Chinese
Remainder Theorem shows that its complement is thick: if pk is the kth prime,
it suffices to find an integer n such that n ≡p2

k
– k for sufficiently many k. By

Theorem 3.5, and the fact that squarefree integers form a symmetric subset of Z,
there exist u, v ∈ �Z \ Z such that u 	 v is squarefree (that is, it contains the set of
squarefree integers; equivalently, its realisations are squarefree) and v 	 u is not.
Since v 	 u is not squarefree, it is divided by some square w > 1, which cannot
divide the squarefree u 	 v. �

Remark 3.7. The proof of Corollary 3.6 also works if we fix an arbitrary α : P →
� + 1 such that α(p) > 1 for every p ∈ P and (recalling that we convene p�Z =
{0}), replace the squarefree integers by A :=

(⋃
p∈P
pα(p)Z

)c
, the squarefree case

corresponding to α being constantly 2. The set A has positive density because it
contains the squarefree integers, and its complement is again proven to be thick by
using the Chinese Remainder Theorem.

§4. Self-divisible ultrafilters. In the previous section, we have seen examples of
ultrafilters w such that ≡w is not an equivalence relation, namely, all those in
MAX ⊕ 1 except 1. On the other hand, there are ultrafilters w such that ≡w is
an equivalence relation, for instance, all principal ones.5 It is natural to look for
a characterisation of when this happens; in this section, we provide a complete
solution to this problem.

5Keep reading for less trivial examples.
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SELF-DIVISIBLE ULTRAFILTERS AND CONGRUENCES IN �Z 7

Definition 4.1. Let w ∈ �Z.

(1) We denote the set of integers dividing w by D(w) := {n ∈ Z : nZ ∈ w}.
(2) We call w ∈ �Z \ {0} self-divisible iff D(w) ∈ w.

Remark 4.2. By Remark 2.4, w |s u if and only if D(u) ∈ w if and only if for
some (equivalently, every) (a, b) |= w ⊗ u we have a | b. In particular, w is self-
divisible if and only if w |s w. In nonstandard terms, this means that, whenever
a ∈ ∗Z generates w, we have a | ∗a.

As anticipated in the introduction, the relations ≡w and ≡s
w have complementary

shortcomings: the former is not, in general, an equivalence relation; as for the latter,
there are ultrafiltersw such thatw �≡s

w 0, equivalently, such thatw � | s w, for example,
any w which is divided by no n > 1. By definition, the self-divisible ultrafilters are
those such that ≡s

w is well-behaved in this respect. Perhaps unexpectedly, we will
prove below that the self-divisible w are also precisely those for which the weak
congruence ≡w is well-behaved, that is, is an equivalence relation.

We will do this via a small detour in the realm of profinite integers Ẑ. This is no
coincidence, since we will later show in Remark 7.1 that (�Z,⊕)/≡s

w is isomorphic
to a quotient of Ẑ. The connection between �Z and Ẑ arises naturally from the
fact that every u ∈ �Z induces a consistent choice of remainder classes modulo the
standard integers, that is, an element of Ẑ. Let us give a name to the corresponding
function.

Definition 4.3. Define � : �Z → Ẑ as the map sending each ultrafilter to the
sequence of its remainder classes.

Our detour will lead us to talk about the following sets.

Definition 4.4. We denote by Zw := {u ∈ �Z : w |̃ u} the set of ultrafilters
divisible by w.

Remark 4.5. By Remark 2.4 the set Zw is a closed subset of �Z, corresponding
to the filter of |-upward-closed elements of w.

The remark above has a converse. Since we will never use it, we leave the (standard)
proof to the reader.

Remark 4.6. If F ⊆ U is a family of |-upward-closed subsets of Z, then there is
w ∈ �Z such that F = w ∩ U if and only if F is a prime filter on the distributive
lattice U .

Lemma 4.7. The following statements hold.

(1) The map � is continuous, surjective, and a homomorphism of semigroups
(�Z,⊕) → (Ẑ,+).

(2) The quotient topology induced by � coincides with the usual topology of Ẑ.
(3) If Zw is closed under ⊕, then �(Zw) is a closed subgroup of (Ẑ,+).

Proof. The first point is an easy exercise, and the second one follows from the
facts that every continuous surjective map from a compact space to a Hausdorff
one is closed, and that every continuous, surjective, closed map is automatically a
quotient map. As for the last point, (for everyw) the setZw contains 0 and is closed
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8 MAURO DI NASSO ET AL.

under –. Grouphood of �(Zw) then follows easily from the assumption, and we
conclude by observing that both spaces are compact Hausdorff. �

Lemma 4.8. For every w ∈ �Z \ {0} and every u, u′ ∈ �Z, if �(u) = �(u′), then
u ≡s

w u
′.

Proof. If �(u) = �(u′), then u 	 u′ ∈ MAX, and we conclude by Fact 2.7 and
Remark 2.3. �

Lemma 4.9. If ≡w is an equivalence relation, then it is a congruence with respect
to ⊕.

Proof. Assume that u ≡w v, and let us show that for all t ∈ �Zwe have u ⊕ t ≡w
v ⊕ t. By definition, u 	 v ≡w 0, and it is easy to see that �(u 	 v) = �(u ⊕ t 	
v 	 t). By Lemma 4.8 we have u 	 v ≡s

w u ⊕ t 	 v 	 t. Whenever ≡w is an
equivalence relation, it is automatically a coarser one than ≡s

w by definition,
so u ⊕ t 	 v 	 t ≡w 0, hence u ⊕ t ≡w v ⊕ t. The proof that t ⊕ u ≡w t ⊕ v is
analogous. �

We are now ready to prove the first part of our main result. Later, in Theorem 7.7,
we will see several more properties equivalent to self-divisibility.

Theorem 4.10. For every w ∈ �Z \ {0}, the following are equivalent.
(1) The ultrafilter w is self-divisible.
(2) The relations ≡w and ≡s

w coincide.
(3) The relation ≡w is an equivalence relation.
(4) For every u, we have w |̃ u if and only if D(w) ⊆ D(u).
(5) For every a, b |= w there is c |= w such that c | gcd(a, b).

Proof. In order to prove (1) ⇒ (2), we need to show that if u ≡w v then u ≡s
w v,

since the converse is always true. Let d |= w and (a, b) |= u ⊗ v be such that
d | a – b. Let t := tp(d, a, b/Z) and find, using saturation, some d ′ such that
(d ′, (d, a, b)) |= w ⊗ t. In particular, (d ′, (a, b)) is a tensor pair, hence by associativ-
ity of ⊗, we have (d ′, a, b) |= w ⊗ u ⊗ v, therefore u ≡s

w v if and only if d ′ | a – b.
But (d ′, d ) |= w ⊗ w, hence d ′ | d by assumption and Remark 4.2.

The implication (2) ⇒ (3) is obvious because ≡s
w is an equivalence relation by

Fact 2.5.
To prove (3)⇒(4), assume that ≡w is an equivalence relation. It is easy to see,

for instance, by using Remark 2.4, that w |̃ u ⇒ D(w) ⊆ D(u) always holds, so
let us assume that D(w) ⊆ D(u). We need to prove that w |̃ u or, in other words,
that u ∈ Zw . We begin by observing that, for every v, v′, if �(v) = �(v′), then
v ≡s

w v
′ by Lemma 4.8, hence, since we are assuming ≡w is an equivalence relation,

v ∈ Zw ⇔ v′ ∈ Zw , so it suffices to show that �(u) ∈ �(Zw). By Lemma 4.9, ≡w is
a congruence with respect to ⊕, thus Zw is closed under ⊕. By Lemma 4.7, �(Zw)
is a closed subgroup of (Ẑ,+), therefore, by Fact 2.9, there is a |-downward closed
D ⊆ Z such that �(Zw) = {x ∈ Ẑ : ∀n ∈ D n | x}. In other words, for every v, we
have �(v) ∈ �(Zw) ⇔ D ⊆ D(v). Trivially, �(w) ∈ �(Zw), hence D ⊆ D(w), and
we conclude by using the assumption that D(w) ⊆ D(u).

For (4)⇒(5), observe that ifn |̃ w then automaticallyn | gcd(a, b). HenceD(w) ⊆
D(tp(gcd(a, b)/Z)), and the conclusion follows.
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To prove (5)⇒(1), let (a, b) |= w ⊗ w. By assumption, there is c |= w such that
c | gcd(a, b). This implies that |c| ≤ |a|, hence by Fact 2.1 we have (c, b) |= w ⊗ w,
witnessing self-divisibility. �

§5. Examples. In this section we look at some examples and non-examples of self-
divisible ultrafilters and see how this notion interacts with other fundamental classes
of ultrafilters, such as the idempotent or the minimal elements of the semigroups
(�N,⊕) and (�N,�). We also define a special kind of self-divisible ultrafilters,
the division-linear ones, and look at the relation between the shape of D(w) and
self-divisibility of w.

Example 5.1.

(1) Clearly, every nonzero principal ultrafilter is self-divisible.
(2) Every ultrafilter in MAX is easily checked to be self-divisible.
(3) Every ultrafilter of the form tp(a/Z), wherea > Z is prime, is not self-divisible.
(4) If p1, ... , pn ∈ P, and a1, ... , an, b ∈ ∗N, then tp(pa1

1 · ... · pann · b/Z) is self-
divisible if and only if tp(b/Z) is. This can be easily seen by using point (5)
of Theorem 4.10.

(5) In particular, every ultrafilter of the form tp(pa1
1 · ... · pann /Z) is self-divisible.

(6) Self-divisible ultrafilters form a semigroup with respect to �.
(7) By (2) above and Fact 2.8, all �-minimal ultrafilters are self-divisible.
(8) By (2) above, all ⊕-idempotent ultrafilters are self-divisible.
(9) If u �= 0 is a minimal ⊕-idempotent, then u ⊕ 1 is ⊕-minimal, but not self-

divisible, since D(u ⊕ 1) = {1, – 1}.

We will see in Example 5.4 that, in (9) above, the reverse inclusion does not hold
either. In fact, ⊕-minimality is not even implied by the following strengthening of
self-divisibility.

Definition 5.2. An ultrafilter w ∈ �Z is division-linear iff w �= 0 and for every
pair d, d ′ of realisations of w we have that d | d ′ if and only if |d | ≤ |d ′|.

Remark 5.3. By point (5) of Theorem 4.10, every division-linear ultrafilter is
self-divisible.

We already said that every nonzero principal ultrafilter is self-divisible; in fact,
every such ultrafilter is division-linear. We now look at another example, then
characterise division-linearity. For a similar characterisation of self-divisibility, see
Theorem 7.7.

Example 5.4. Every ultrafilter u containing the setF := {n! : n ∈ N} of factorials
is division-linear. Because F is not a multiplicative IP set, u is not �-idempotent
and, because F is not piecewise syndetic, u is not in K(�Z,⊕).

Proposition 5.5. A nonzero w ∈ �Z is division-linear if and only if it contains a
set linearly preordered by divisibility.

Proof. IfA ∈ w is linearly preordered by divisibility, then the conclusion follows
by observing that whenever d, d ′ |= w then d, d ′ ∈ ∗A. Conversely, if we think of
w as a type, then w is division-linear, by definition, if and only if w(x) ∪ w(y) �
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(|x| ≤ |y|) → (x | y). By compactness, there are A,B ∈ w such that (x ∈ ∗A) ∧
(y ∈ ∗B) � (|x| ≤ |y|) → (x | y). It follows that A ∩ B is linearly preordered by
divisibility. �

Proposition 5.6. There is an ultrafilter in MAX (in particular, a self-divisible
ultrafilter) which is not division-linear.

Proof. Let L be the family of subsets of Z \ {0} which are linearly preordered
by divisibility. By Proposition 5.5, it suffices to prove that the family F := {nZ :
n > 1} ∪ {Lc : L ∈ L} has the finite intersection property. But this is clear, because
{nZ : n > 1} is closed under finite intersections and every nZ contains an infinite
|-antichain, hence cannot be contained in a finite union of elements of L. �

The reverse inclusion also fails:

Example 5.7. If u is the type of a nonstandard power of 2, then it is division-
linear, hence self-divisible, but not in MAX.

Example 5.8. Self-divisibility is not preserved upwards nor downwards by |̃.
For instance, if v ∈ MAX, then for any non-self-divisible w we have both w |̃ v
and w |s v (Fact 2.7). In the other direction, fix infinite a, b with b prime and take
w := tp(2a/Z) and v := tp(2ab/Z). It is easy to show thatw(x) ⊗ v(y) � x | y, from
which we deducew |s v, and in particularw |̃ v. By Example 5.7w is division-linear,
hence self-divisible, but v is not.

We saw in point (7) of Example 5.1 and in Example 5.4 that�-minimal ultrafilters
are self-divisible, and that division-linearity does not imply �-idempotency.
Moreover, it is easily seen that every nonprincipal ultrafilter containing the set of
primes is neither self-divisible, nor�-idempotent. Proposition 5.9 and Corollary 5.12
complete the picture.

Proposition 5.9. There exist �-idempotent non-self-divisible ultrafilters.

Proof. Recall that an ultrafilter isN-free iff it is not divisible by anyn > 1 (see [11]
and the references therein). Denote the set ofN-free ultrafilters by Free :=

⋂
n>1 nZ

c.
Let us show that this set is closed under �. Indeed, w ∈ Free if and only if for
every a |= w and for every n > 1 we have n � a. If (a, b) |= w ⊗ v and n | a · b,
then every prime divisor of n must divide either a or b, which is a contradiction
because n > 1. From this it follows easily that Free \ {1, – 1} is a closed subset of
�Z closed under �. It is therefore a compact right topological semigroup, and by
Ellis’ Lemma it must contain a �-idempotent. To conclude, note that Free does
not contain any nonprincipal self-divisible ultrafilters, since every w ∈ Free has
D(w) = {1, – 1}. �

Lemma 5.10. If A ⊆ N is linearly ordered by divisibility, then A contains no
arithmetic progression of length 3.

Proof. A counterexample a, a + b, a + 2b ∈ A should satisfy (a + b) |
(a + b) + b, hence (a + b) | b, a contradiction. �

The following fact is well-known, easy to prove, and a special case of the much
more general [5, Example 5.6].
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Fact 5.11. The set of ultrafilters u such that every element of u contains an
arithmetic progression of length 3 is a closed bilateral ideal of (�N,�).

Corollary 5.12. There is no nonzero, division-linear ultrafilter in K(�N,�).

We thank the referee for catching a mistake in a previous version of the proof
below.

Proof. If u ∈ �N is a counterexample, by Proposition 5.5 and the fact that we are
working over N, someA ∈ u is linearly ordered by divisibility, hence by Lemma 5.10
it contains no arithmetic progression of length 3. This contradicts u ∈ K(�N,�) by
Fact 5.11. �

Self-divisible ultrafilters are not closed under ⊕: it suffices to sum any u ∈ MAX
with v = 1. In fact, it is possible to construct a counterexample with both u, v
nonprincipal.

Proposition 5.13. There are division-linear, nonprincipal ultrafilters u, v such that
u ⊕ v is not self-divisible.

Proof. Let f : N → P be the increasing enumeration of all primes, and fix
a ∈ ∗Z such that a > Z. Let u := tp(

∏
0<b≤a

∗f(2b)/Z) and v := tp(
∏

0<b≤a
∗f(2b – 1)/Z). It is easy to see that u, v are division-linear. Because every p ∈ P
divides precisely one between u and v, we have D(u ⊕ v) = {1, – 1}. Since u ⊕ v is
nonprincipal, it cannot be self-divisible. �

Point (4) of Theorem 4.10 might suggest that self-divisibility of w could be
deduced just by looking at D(w). Rather surprisingly, this is false, except in some
trivial cases. To prove this, it will be convenient to replace D(w) by the following
function on the set P of prime natural numbers. The reader familiar with algebra
may recognise that such functions are exactly the same as supernatural numbers in
the sense of Steinitz.

Definition 5.14. Given u ∈ �Z, we define ϕu : P → � + 1 as the function
sending p to max{k ∈ � : pkZ ∈ u} if this exists, and to � otherwise.

Remark 5.15.

(1) By definition, for every u ∈ �Z, the set D(u) determines ϕu , and conversely.
More explicitly, recalling our convention that p�+1Z = {0}, we have

D(u) =
⋂
p∈P

(pϕu (p)+1Z)c.

(2) The set

D(u)c = {k : kZ �∈ u} =
⋃
p∈P

pϕu(p)+1Z (†)

is |-upward closed.

Definition 5.16. Let ϕ : P → � + 1.
We say that ϕ is finite iff ϕ–1({�}) = ∅ and ϕ–1(N) is finite.
We say that ϕ is cofinite iff ϕ–1({0}) ∪ ϕ–1(N) is finite, that is, ϕ–1({�}) is cofinite.
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Intuitively, ϕu is finite whenever u is only divisible by finitely many integers, and
ϕu is cofinite whenever, for all but finitely many p ∈ P, the ultrafilter u is divisible
by every power of p.

Proposition 5.17. Let ϕ : P → � + 1.

(1) If ϕ is finite, then every w ∈ �Z such that ϕw = ϕ is either principal or not
self-divisible.

(2) If ϕ is cofinite, then every w ∈ �Z such that ϕw = ϕ is self-divisible.
(3) In every other case, namely whenever ϕ is not finite neither cofinite, there exist
u, v ∈ �Z such that ϕu = ϕv = ϕ with u self-divisible and v not self-divisible.

Proof. The first point is immediate from the fact that, if ϕw is finite, then D(w)
is finite. As for the second point, if ϕw is cofinite then, by definition, for every p
outside of a certain finite P0 ⊆ P we have pϕ(p)+1Z = {0}. In other words, the union
in (†) is actually a finite union, namely,

D(w)c =
⋃
p∈P0

pϕ(p)+1Z.

By definition of ϕ, this is a finite union of sets not inw, hence does not belong tow.
Towards the last point, define

F := {pϕ(p)Z ∩ (pϕ(p)+1Z)c : p ∈ ϕ–1(N)}
∪ {(pZ)c : p ∈ ϕ–1({0})}
∪ {pkZ : k ∈ N, p ∈ ϕ–1({�})}.

Every ultrafilter w extending F will have D(w) = (
⋃
p∈P
pϕ(p)+1Z)c, so we need

to prove that, if ϕ is not finite nor cofinite, then the families below have the finite
intersection property

F ∪
{ ⋃
p∈P

pϕ(p)+1Z
}

; F ∪
{( ⋃
p∈P

pϕ(p)+1Z
)c}
.

If I ⊆ F is finite, then its intersection may be written as follows, for some
p1, ... , pk ∈ ϕ–1(N), some q1, ... , qs ∈ ϕ–1({0}), some r1, ... , r	 ∈ ϕ–1({�}), and
some n1, ... , n	 ∈ N:⋂

I = pϕ(p1)
1 Z ∩ ··· ∩ pϕ(pk )

k Z ∩ (pϕ(p1)+1
1 Z)c ∩ ··· ∩ (pϕ(pk )+1

k Z)c

∩ (q1Z)c ∩ ··· ∩ (qsZ)c

∩ rn1
1 Z ∩ ··· ∩ rn		 Z.

Define a := pϕ(p1)
1 · ... · pϕ(pk )

k · rn1
1 · ... · rn		 and observe that it belongs to

⋂
I.

By definition, if ϕ–1(N) is infinite, then automatically ϕ is neither finite nor
cofinite. Infinity of ϕ–1(N) gives us some p† ∈ ϕ–1(N) \ {p1, ... , pk}, so we get that

a · pϕ(p†)+1
† ∈

⋂
I ∩

⋃
p∈P
pϕ(p)+1Z, and that a · p† ∈

⋂
I ∩

(⋃
p∈P
pϕ(p)+1Z

)c

.

If instead ϕ–1(N) is finite then, because we are assuming that ϕ is not cofinite, the
set ϕ–1({0}) is infinite. Let a be as above. If q ∈ ϕ–1({0}) \ {q1, ... , qs}, then a · q ∈⋂

I ∩
⋃
p∈P
pϕ(p)+1Z. Moreover, a ∈ I ∩

(⋃
p∈P
pϕ(p)+1Z

)c

, and we are done. �
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§6. A bit of topology. In this section we study the topological properties of the
subspaces of self-divisible and of division-linear ultrafilters. We begin with an easy
remark.

Remark 6.1. For every u ∈ �Z we have the following.

(1) [10, Lemma 1.3] The set {w : w |̃ u} is closed: it coincides with⋂
{B : B ∈ u, B is |-downward closed}.

This follows from Remark 2.4 and the fact that A is |-upward closed if and
only if Ac is |-downward closed.

(2) The set {w : w |s u} is clopen: it coincides with D(u).

The set of division-linear ultrafilters contains all the nonzero principal ultrafilters,
and it follows that its closure is �Z \ {0}. Therefore, we look at the topological
properties of self-divisible and division-linear ultrafilters in the subspace of
nonprincipal ultrafilters.

Definition 6.2. Let SD denote the set of self-divisible nonprincipal ultrafilters.
Similarly, denote by DL the set of division-linear nonprincipal ultrafilters. Let
SD,DL be their topological closures in �Z \ Z.

Proposition 6.3. We have SD = DL = {w ∈ �Z: ∀A ∈w ∃X ⊆ A (X is an infinite
|-chain)}.

Proof. Let 
(w):= ∀A ∈ w ∃X ⊆ A (X is an infinite |-chain). First of all, we
show that Ψ(w) holds for everyw ∈ SD. For such aw, by definitionD(w) ∈ w. Fix
A ∈ w and let x1 ∈ A ∩D(w) ∈ w. Since x1 ∈ D(w), we have x1Z ∈ w. If we take
x2 ∈ x1Z ∩ A ∩D(w) ∈ w such that |x2| > |x1|, then x2Z ∈ w, and by induction
we obtain the desired infinite chain X = {x1 | x2 | ...} ⊆ A.

If Ψ(w) holds, and A ∈ w, then every nonprincipal u containing an infinite
linearly ordered X ⊆ A must be division-linear. Therefore, in every open neigh-
bourhood of w we can find an element of DL, hence Ψ(w) implies that w ∈ DL.
Conversely, assume w ∈ DL. Then for every A ∈ w there exists u ∈ DL such that
A ∈ u. IfX ∈ uwitnesses division-linearity of u, thenX ∩ A ∈ u is a linearly ordered
infinite subset of A, hence Ψ(w) holds.

We conclude by observing that DL ⊆ SD ⊆ DL implies SD = DL. �
We call additive (multiplicative, respectively) Hindman ultrafilters those in the

closure of the nonprincipal ⊕-idempotents (�-idempotents, respectively). Because
⊕-idempotents are in MAX, which is topologically closed, every additive Hindman
ultrafilter belongs to (MAX \ {0}) ⊆ SD.

Corollary 6.4. Every multiplicative Hindman ultrafilter is in SD.

Proof. An ultrafilterw is multiplicatively Hindman if and only if for everyA ∈ w
there exists an increasing sequence (xi)i∈� of integers such that FP((xi)i∈�) := {xi0 ·
... · xik : i0 < ··· < ik ∈ �} is a subset of A. Now, notice that {x0 · ... · xk : k ∈ �} is
a proper subset of FP((xi)i∈�) ⊆ A linearly ordered by divisibility. By Proposition
6.3 we conclude that w ∈ SD. �

Combining Corollary 6.4 and Propositions 5.9 and 6.3, we obtain the following.
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Corollary 6.5. The sets SD and DL are not closed in �Z \ Z.

Proof. Every ultrafilter provided by Proposition 5.9 lies in SD \ SD by
Corollary 6.4, and SD \ SD = DL \ SD ⊆ DL \ DL. �

§7. A bit of (topological) algebra. We study the quotients �Z/≡s
w and prove some

additional characterisations of self-divisibility.
Recall that every relation ≡s

w is a congruence with respect to ⊕ (Fact 2.5).

Remark 7.1.

(1) Since, by Lemma 4.8, the ≡s
w-class of u ∈ �Z only depends on its image

in Ẑ, the quotient map �w : �Z → �Z/≡s
w factors through a well-defined

map �w : Ẑ → �Z/≡s
w , which sends �(u) to u/≡s

w . Note that �w is a
homomorphism of groups.

(2) Let w ∈ �Z be such that w > 1, and view Ẑ as a subgroup of
∏
n≥2 Z/nZ.

Let Ẑ/w be the image of Ẑ under the projection from
∏
n≥2 Z/nZ onto the

ultraproduct
∏
w Z/nZ. The obvious map �Z/≡s

w → Ẑ/w is (well-defined
and) an isomorphism making the diagram in Figure 1 commute. By using
commutativity of the diagram, together with the fact that � is a closed map,
it is easy to check that �w is continuous with respect to the quotient topology
on �Z/≡s

w , and in fact induces the same quotient topology, that is, �–1
w (C ) is

closed if and only if C is closed (if and only if �–1
w (C ) is closed).

(3) In particular, if w is self-divisible then, by Theorem 4.10 and Lemma 4.7,
the sequences (kn)n≥2 such that kn = 0 for w-almost every n form a closed
subgroup of Ẑ, namely, �(Zw), which then coincides with the kernel of the
projection Ẑ → Ẑ/w. By a standard fact about profinite groups (see, e.g., [14,
Theorem 1.2.5]), Ẑ/w with the quotient topology induced by this projection
is profinite. We will see in Theorem 7.7 that the converse is also true, namely,
that ker(�w) is closed if and only if w is self-divisible.

Corollary 7.2. The quotient �Z/≡s
w may be identified with a subgroup of the

ultraproduct
∏
w Z/nZ, which is isomorphic to a quotient (as abstract groups) of Ẑ.

If w is self-divisible, then it is isomorphic to
∏
p∈P
Gp, where Gp = Zp if ϕw(p) = �,

and Gp = Z/pϕw (p)Z otherwise.

Proof. This follows at once from Remark 7.1, Fact 2.9, and the fact that Ẑ ∼=∏
p∈P

Zp. �

�Z Ẑ

�Z/≡s
w Ẑ/w

�

∼=

�w

�w

Figure 1. Diagram from Remark 7.1.
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Proposition 7.3. The map �w is injective if and only if it is an isomorphism, if and
only if w ∈ MAX \ {0}.

Proof. If w = 0 the map �w is not defined, so let w �= 0. Assume w ∈ MAX,
and observe that �–1({0}) = MAX. So if �(v) �= 0 then v /∈ MAX, hence w � | s v
by Fact 2.7. This shows that, if �(v) �= 0, then �w(�(v)) �= 0, so �w is injective.
Conversely, if w /∈ MAX, there must be n > 1 such that (nZ)c ∈ w. If n = pk0

0 · ... ·
p
k	
	 , then (nZ)c = (pk0

0 Z)c ∪ ··· ∪ (pk		 Z)c. Without loss of generality (pk0
0 Z)c ∈ w.

Take any v congruent to pk0–1
0 modulo every power of p0 and divided by every other

prime power; in other words, take v with ϕv(p0) = k0 – 1 and ϕv(p′) = � for p′ �=
p0. Then �(v) �= 0, but �w(�(v)) = �w(v) = 0 because D(v) ⊇ (pk0

0 Z)c ∈ w. �
Remark 7.4. The equivalence relation ≡s

w is a congruence with respect to � by
[11, Theorem 5.7(a)]. We leave it to the reader to check that everything above in this
section works for (�Z,⊕,�), with Ẑ viewed as a ring, where closed subgroups are
replaced by closed ideals, etc.

We already saw several different characterisations of self-divisibility. In order to
provide more, we recall a fact from the theory of profinite groups and make an easy
observation.

Fact 7.5. If G is a profinite group and � : Ẑ → G is a surjective homomorphism
(of abstract groups), then it is automatically continuous.

Proof sketch. It is enough to show that if U is an open subgroup of G, then
�–1(U ) is open in Ẑ. By compactness, open subgroups have finite index, hence, it
suffices to show that every finite index subgroup of Ẑ is open. This is in fact true of
every topologically finitely generated profinite group by a deep result of Nikolov and
Segal [7], but this special case has a quick proof, which we provide for the sake of
completeness. Namely, if H has index n in Ẑ, then nẐ ⊆ H , so H can be partitioned
into cosets of nẐ, hence it suffices to show that nẐ is open. But nẐ is easily checked
to be closed and of finite index, which is equivalent to being open. �

Proposition 7.6. If u |̃ v and v |s t, then u |s t.

Proof. Assume u |̃ v and v |s t. Let (b, c) |= v ⊗ t and let a |= u be such that
a | b. Then b | c and thus a | c, but |a| ≤ |b| and thus u |s t by Fact 2.1. �

Theorem 7.7. The following are equivalent for w ∈ �Z \ {0}.
(1) The ultrafilter w is self-divisible.
(2) For all B ∈ w there is A ∈ w such that for all a, a′ ∈ A there is b ∈ B with
b | gcd(a, a′).

(3) For all B ∈ w there are A ∈ w and b ∈ B such that A ⊆ bZ.
(4) For all B ∈ w there is b ∈ B such that bZ ∈ w.
(5) For all B ∈ w we have {b ∈ B : bZ ∈ w} ∈ w.
(6) For all k ∈ Z \ {0} we have that kw is self-divisible.
(7) There are n �= m such that w⊕n ≡s

w w
⊕m.6

6The notation is probably self-explicative, but: w⊕n :=
n times︷ ︸︸ ︷

w ⊕ ··· ⊕ w.
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(8) For all v, if w ≡v 0 then w ≡s
v 0.

(9) If ∗Z � a |= w, then {b ∈ ∗Z : b | a} ⊆ ∗D(w).
(10) Zw is closed under ⊕ and, whenever v ∈ MAX, if u ⊕ v ⊕ t ∈ Zw then u ⊕

t ∈ Zw.
(11) Zw is closed under ⊕ and Zw = �–1(�(Zw)).
(12) Zw is closed under ⊕ and whether w |̃ u only depends on the remainder classes

of u modulo standard n.
(13) The kernel ker(�w) is closed in Ẑ.
(14) �Z/≡s

w is a procyclic group with respect to the quotient topology.7

(15) �Z/≡s
w is a profinite group with respect to some topology.

(16) We have (�Z,⊕)/≡s
w
∼=

∏
p∈P
Gp, where Gp = Zp if ϕw(p) = �, and Gp =

Z/pϕw (p)Z otherwise.

Proof. The implication (1)⇒(5) is proven by observing that w is self-divisible
if and only if for every B ∈ w we have D(w) ∩ B �= ∅, and (5)⇒(4)⇒(3)⇒(2) are
immediate.

We now prove (2)⇒(1). By assumption and the transfer principle, for every
B ∈ w there existsA ∈ w such that, for every a, a′ ∈ ∗A, there exists b ∈ ∗B dividing
gcd(a, a′). Fix two realisations a, a′ |= w. Since for everyA ∈ w we have a, a′ ∈ ∗A,
by assumption for every B ∈ w there exists b ∈ ∗B such that b | gcd(a, a′). By
compactness and saturation we can therefore find b |= w such that b | gcd(a, a′)
and, by Theorem 4.10, this gives (1).

Also (1)⇔(6) follows from the fact that, for every k ∈ Z, we have (a, a′) |= w ⊗ w
if and only if (ka, ka′) |= kw ⊗ kw. Observe also that, for every k ∈ N, we have
kw ≡s

w w
⊕k . Since (6) implies, by Proposition 7.6, that kw ≡s

w 0, we conclude that
(6)⇒(7) by transitivity of ≡s

w .
We prove (7)⇒(1). Assume there are (a, b) |= w ⊗ w such that a � b. By the

transfer principle, there exist p ∈ ∗P and α ∈ ∗N such that pα | a but pα � b. Notice
that p cannot be finite, since a power of a finite prime dividing a must also divide b.
But then pα � kb for every k ∈ Z, and in particular kw �≡s

w 0. Since by (7) there
exist n < m such that w⊕n ≡s

w w
⊕m, and as we already observed kw ≡s

w w
⊕k , we

conclude that 0 ≡s
w w

⊕(m–n) ≡s
w (m – n)w, a contradiction.

Taking v = w yields (8)⇒(1). Conversely, assuming (1), if w ≡v 0, by Proposi-
tion 7.6 and self-divisibility of w we obtain w ≡s

v 0, obtaining (8).
To see (1)⇔(9), notice thatD(w) = {n ∈ Z : n | a}, so {b ∈ ∗Z : b | a} ⊆ ∗D(w)

if and only if a | ∗a, which is the nonstandard characterisation of being self-divisible
(see Remark 4.2).

We now prove that (1)⇒(12)⇒(11)⇒(10)⇒(1). The equivalence (12)⇔(11) is
immediate from the definitions of Zw and �. By Theorem 4.10 and Fact 2.5, if
w is self-divisible then Zw is closed under ⊕, and moreover w |̃ u ⇔ D(u) ∈ w.
Therefore, whether w |̃ u only depends on the finite integers dividing u, and this
yields (1)⇒(12).

In order to prove (11)⇒(10), recall that, by Lemma 4.8, � is a homomorphism
and thus, for every u, v, t ∈ �Z, we have �(u ⊕ v ⊕ t) = �(u) + �(v) + �(t).

7A procyclic group is a profinite group with a dense cyclic subgroup. Equivalently, up to isomorphism,
it is a quotient of Ẑ by a closed subgroup.
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If v ∈ MAX, then by Fact 2.7 �(v) is the null sequence, so �(u ⊕ v ⊕ t) =
�(u) + �(t) = �(u ⊕ t) and the conclusion follows.

In order to prove that (10)⇒(1), by Theorem 4.10 it is enough to show that if
(10) holds then ≡w is transitive. Let u ≡w v and v ≡w t, i.e., u 	 v, v 	 t ∈ Zw .
Since by assumption Zw is closed under ⊕, the ultrafilter (u 	 v) ⊕ (v 	 t) = u ⊕
(– v ⊕ v) 	 t belongs toZw . But – v ⊕ v ∈ MAX, hence by assumption u 	 t ∈ Zw ,
or equivalently u ≡w t.

The implication (1)⇒(13) was proven in Remark 7.1. To prove (13)⇒(1) assume
that ker �w is closed. By the characterisation of closed subgroups of Ẑ (Fact 2.9),

there is D ⊆ Z of the form
⋂ (
pϕ(p)+1Z

)c

such that for all u ∈ �Z we have �(u) ∈
ker(�w) if and only if D ⊆ D(u). By Proposition 5.17 there is a (possibly principal)
self-divisible v such thatD = D(v). Since v is self-divisible, by Theorem 4.10, for all
u ∈ �Z we have D(u) ∈ v ⇔ v |s u ⇔ v |̃ u ⇔ D(v) ⊆ D(u) ⇔ D ⊆ D(u) ⇔ w |s
u ⇔ D(u) ∈ w, hence w and v contain the same sets of the form D(u). Therefore,
w and v contain the sameD(u)c, hence, in particular, the same pkZ, that is,D(v) =
D(w). But, since v is self-divisible, D(w) = D(v) ∈ v, hence D(w) ∈ w.

Recall that, by Remark 7.1, the topology induced by�w coincides with the quotient
topology (i.e., the one induced by �w). Then, that (13)⇒(14) follows from the
fact that quotients of procyclic groups by closed subgroups are procyclic (see also
the characterisation in Footnote 7), and that (14)⇒(15) is obvious. Moreover, if
�Z/≡s

w is profinite with respect to some group topology, by Fact 7.5 the map �w is
automatically continuous, hence its kernel is closed, proving (15)⇒(13).

Finally, (16)⇒(15) is clear, and (1)⇒(16) is Corollary 7.2. �

We take the opportunity to observe that the equivalence of (2) above with point
(5) of Theorem 4.10 is a special case of [5, Theorem 5.23].

§8. Concluding remarks and an open problem. Recall that, by Proposition 3.2, ≡w
is always reflexive. In Theorem 3.3 we saw that, whenever ≡w is transitive, then it
is automatically symmetric. We were not able to determine whether the converse
holds.

Problem 8.1. Are there ultrafilters w ∈ �Z \ {0} such that ≡w is symmetric, but
not transitive?

Our investigation of Šobot’s congruence relations ≡w and ≡s
w led us to introduce

self-divisible ultrafilters. The abundance of equivalent forms of self-divisibility
(cf. Theorems 4.10 and 7.7) seems to suggest that this and related notions
should be investigated further. For instance, one may define u/v as {A : {n ∈ Z :
nA ∈ v} ∈ u}, and observe that w is self-divisible if and only if w/w is nonempty, if
and only if it is an ultrafilter. We leave it to future work to explore generalisations,
for instance, by replacing divisibility with other relations, and applications to areas
such as additive combinatorics or Ramsey theory.
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