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TOPOLOGIES INDUCED BY METRICS
WITH DISCONNECTED RANGE

KEVIN BROUGHAN

In a metric space (X, d) a ball B(x, e) is separated if

d[B(x, e), X\B(x, e)) > 0 . If the separated balls form a sub-

base for the d-topology then Ind X = 0 . The metric is gap-

like at x if d {X) is not dense in any neighbourhood of 0

x

in [0, °°) . The usual metric on the irrational numbers, P ,

is the uniform limit of compatible metrics [a) , each a

being gap-like on P . In a completely metrizable space X if

each dense G* is an F then Ind X = 0 .

Introduction

Earlier results of the author concerning the relationship between the

range of a metric and the induced topological structure [7, 2, 3, 4] are

extended in this paper.

Let (X, d) be a metric space. It was shown in [3, Theorem 3.̂ » page

66] that if d{lC) is not dense in any neighbourhood of 0 in [0, °°)

then Ind X = 0 . The same is true if we assume that d (X) is not dense

in any neighbourhood of 0 for each x (. X where

dx(X) = {d(x, y) : y € X} [4, Theorem 1, page 77]• The results are

improved here by reducing the size of the set of points at which the metric

range has gaps.
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134 Kevin Broughan

Let a, 3 be in R with 0 < a < 6 . We say d has a gap [a, &]

at x in X i f d (X) n [a, 6] = 0 . We say d has a gap in [a, 3] at
cc

x if there exist r, s with a 5 r < e £ (3 such that d has a gap

[r, s] at x . We say the ball B(x, e) in X is separated if

d(B(x, e), X\B(x, E ) ) > 0 . We say that the set B(x, e) is a gap ball if

there is a 6 > e such that d has a gap [e, 6] at x . The metric d

is gap-like at x if d (X) is not dense in any neighbourhood of 0 in
CC

[o, °°) .
It is shown that Ind X = 0 if the separated or gap balls form a sub-

base for the d-topology (Theorem 1 or Corollary 2 respectively), or if

there is a countable fapiily of dense subsets of points at which the metric

range has a restricted gap nature (Theorem 3). An example is given to show

that this same conclusion is about as false as it can be when the metric is

gap like on a single dense set of points. It is then shown how gaps may be

introducted into a metric range in the case where d {X) is not a
• CC

neighbourhood of 0 in [0, °°) for all x in X . The metric d is the

uniform limit of a sequence of compatible metrics for which the set of all

points at which at least one is gap-like is dense (Theorem h). A better

result is obtained for P , the irrational numbers, by making an explicit

construction for which each metric in the convergent sequence is gap-like

on all of P (Theorem 6). Finally an application of the metric value idea

is given to prove that in a completely metrizable space X , Ind X = 0 if

each dense G~ is an F (Theorem 9).

Gaps in metric values

THEOREM 1. Let (X, d) be such that the separated balls form a sub-

base for the topology induced by d . Then Ind X = 0 .

Proof. Let e > 0 be given. Let x ~ y if there exists

xn, ..., x in X with x. = x , x = y and d[x. , , x. 1 < e for
0 ' n 0 ' n a K ^-l i'

1 5 i 5 n . Let the equivalence classes induced by this relation be

denoted by E(e) = (E(X, e) : x € x) where x € 2?(x, t) . Then each such

class is a clopen subset of X . If 0 < 6 < e then E(6) refines

E(e) •

The covers (E(l/w) : n € N) are clopen and discrete. Let x € X
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Topologies induced by metrics 135

and let e > 0 be given. By hypothesis there are separated balls

B(x.,6.) , 1 S i •S n , satisfying
"V 1

n
x € n B[x., &.) C B{X, e) .

Let

3 =

Then

n
E(x, 3) c (] B[xit 6j .

Therefore the sets [E{X, 3) : x € X, 3 > o) form a base for the topology

generated by d and so by [6, Theorem 5, page 291], Ind X = 0 . //

COROLLARY 2. If the set of gap balls forms a sub-base for the

topology then Ind X = 0 .

Proof. Each gap ball is separate. //

THEOREM 3. Let (X, d) be a metric space. Suppose there exist two

sequences (a ), (3 ) of strictly positive monotonically decreasing real

numbers with a < 3 for all n € M and limit 3 = 0 such that for
n n J n J

each n the set

D = {x € X : d has a gap in [a , 3 3}

is dense in X . Then Ind X = 0 .

Proof. Let x € X and £ > 0 be given. Let n € M such that

3 < e/2 . Then there is a y € D in B(x, a ) . Since d has a gap in

[a , 3 J at y there are real numbers r, s with a - r < s - 3 such

that d has a gap [r, s] at i/ . Then B(y, r) is a gap ball and

x € B(y, r) c 5(x, e) . This shows that the gap balls from a base for the

topology generated by d and so, by Corollary 2, Ind X = 0 . //

One might hope that the conclusion of Theorem 3 would follow if the

metric space had a dense subset D with -̂.(̂ ) n o t dense in any neigh-

bourhood of 0 in [0, <*>) for each x in D . The following example
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136 Kevin Broughan

shows that given any dimension (finite or transfinite) a metric space with

this property can be constructed containing a closed subset having the

given dimension. That is to say the hoped for result is very far from

being true.

EXAMPLE 4. Let {X, x) be any metrizable space with no isolated

points. Then there is a metric space (Y, d) with X homeomorphic to a

closed subspace of Y and an open dense subset D c Y with d (Y) not

dense in any neighbourhood of 0 for each y € D .

Let Z = X x X with the product topology and let d be any

compatible metric on Z . Let A = {(x, x) : x € X] be the diagonal and

let P = Z - A . Let D a P be a maximal subset satisfying

d(x, y) > kd{x, A) + hd{y, A)

for all x and y in D with x t y . Then by [9, page 111], 3P = A .

If Y = A u D , and we represent the restriction of d to Y by d , then

(Y, d) has the desired properties since, for x in D ,

dx(Y) n [0, d(x, A)/U] = {0} .

If {X, d) is such that d (J) is not a neighbourhood of 0 for

each x in some dense set D i t is possible to increase the size of the

metric gaps at the cost of introducing a denumerable family of compatible

metrics.

THEOREM 5. Let (X, d) be a metric space. Let D X be a dense

and such that for each x in D , d (X) is not a neighbourhood of 0 in

[0, <*>) . Then there exists a family {cf1 : n € N) of compatible metrics

on X with the property that for each non-empty open set P there is an

n in N such that d1 is gap-like at x for some x in P .

Proof. Let B = (8^) = (s^ : X € I n € |\|) be a O-discrete base

for the topology on X generated by d . For each B in 8 choose an
x = a : S € S n 0 ' a n e > 0 with B{xt 2 £ ) c S , and a sequence of d i s t i n c t

po in t s r. + 0 in R with r < e , r. k d (X) , and 2 r . < r. for

a l l i in N . For each i in X l e t
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fB(y) =

0 if y = x

r. if

0 if r < d(x, y) .

Then /„ is continuous on X and vanishes outside of B . Let n € N .
'B

Let

, i/) = <?(x,

n

Then each a is a compatible metric on X . For all y in X ,

2 r J for ̂  -2 •
Therefore the family [a ) has the desired properties.

It is easy to see, by taking completions, that no metric on any dense

subset of R can have any gaps in its metric values if it is uniformly

equivalent to the usual metric. The following theorem indicates that when

the subset is contained in the irrational numbers, the usual metric can be

expressed as the uniform limit of a sequence of compatible metrics having

gaps at each point.

LEMMA 6. Let P be the irrational numbers. Then there exists a

compatible metric p on P such that p is gap-like on P and such that

\p(x, y)-\x-y\\ < 1

for each x and y in P .

and n € N u {0> let , n) = k.2-n LetProof. For k (

D(k, n) = [E,(k, n), ?(fc+l, n)] n P . Then [D(k, n) : k € 2 , n € N u {0})

is a sieve for P ([2]) and generates the usual topology.

If x and y are in P let

0 if x = y ,

min{2 : x and y are both in D{k, n) for some k] ,

1 if x and y are in no common D(k, n) .

Then 3 is a compatible metric on P . Define another compatible metric
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p(x, y) = \x-y\ + SU, y) .

Then | p ( x , z/) — |a?—j/ j | 2 1 fo r a l l x and y i n P .

oo

Let y € P be fixed. Then y = n + £ e(i)2"t' where e(i) € {0, l}

i=l

for each £ and n € 7L . We will prove the following claim: there exists

an infinite subsequence (eCf(^)JJ such that for all i in N ,

e (/(£)) = 0 and e(/(i)+l) = 0 or an infinite subsequence (e(g'(£)))

such that e[g(i)) = 1 and e(^(i)+l) = 1 for all i in N . If not,

either e(2i) = 1 and e(2i+l) = 0 or e(2i) = 0 and e(2i+l) = 1 for

all i sufficiently large. In either case y € Q which is impossible.

Hence a subsequence of one or other of the different forms must exist.

Let n > 0 be given. Let i in N be such that i > 3 and

3.2~v < n • Let e(i) = 1 and e(i+l) = 1 . (The proof when z{i) = 0

and e(£+l) = 0 is similar and is omitted.)

There is a k in ZZ with £(fc, i-2) < y < E,(k+1, i-2) . Assume

e(£-l) = 0 and e(i+2) = 0 . The proof for the three other possibilities

is omitted. Then £(8?c+3, i+l) < y < 5(2fe+l, i-l) . Let

ff = P n [5(k, i-2), ̂ (fe+l, i-2)] . Divide J? into four disjoint intervals

A, B, C and D defined below:

•A = P n [C(2k+1, i-1), ?(/c+l, i-2)] ,

B = P n [g(k, i-2), ?(Ufc+l, i)] ,

C = P n [?(i»fc+l, i),

and

D = P n

If x € 4 then B(x, y) = U.2~t ; if x € S then 3(x, y) = 2.2~'L

if x € C then g(x, y) = 2~'t ; and if x i D then g(x, j/) 5 2~'r'+1 .

The following inequalities are true in the given subsets:

i f x € A , p(x, y) > y - (hk+l)2~V + 2 .2" 1 ;

i f x € S , p ( x , j / ) > j / - ( U ' t "1

i f x € /I , p ( x , y) S y - (
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if x € D , p(x, y) < y - (kk+l)2~'L + 2~V .

If x $ E then &{x, y) > 2~V+ and therefore

p(x, y) >

From these inequalities it follows that

p (P) n [y-(l+fe+l)2"t'+2"1', y-(hk+l)2~'L+2.2~'1''] = 0 .

Because j/ - (hk+l)2~ < 2~ the right hand end point of the above

missing interval is less than 3.2~ and 3.2~ < n be choice of i .

Hence p (P) is not dense in any neighbourhood of 0 . //

THEOREM 7. There exists a sequence [a ) of compatible metrics on

P such that, for each x in P and n in N , d"(P) is not dense in

any neighbourhood of 0 in [0, °°) , and such that a{x, y) •*• \x-y\

uniformly on P .

Proof. By Theorem k there is a compatible metric p on P with

|p(x, j/)-|a:-2/|| < 1 for x, y in P . Then, if n € M ,

|p(nx, ny)-\nx-ny\ \ £ 1 , and therefore \(l/n)p(nx, ny)-\x-y\\ 5 1/n .

Let a(.x, y) = (l/n)p(nx, ny) . Then the sequence [a ) has the desired

properties. //

G,. supersets of zero dimensional subsets

In the following lemma a new proof is presented of the result that

every subset having large inductive dimension n of less of a metrizable

space has a G*. superset also having dimension n or less [7, Theorem

l.k, page 2l*l].

LEMMA 8. Let {X, T ) be metrizable and let A c x have

Ind A 5 n . 27zew there is a G~ subset B of X with A c B and

Ind B < n .

Proof. If A # 0 and Ind 4 = 0 there is a compatible metric d on

4 with values in H = {l/n : n € N} u {0} , [/]. The metric d may be
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extended to a compatible metric d on a G. superset of A with

A c B <= cl(A) [70, Problem 2kH, page 185]. Necessarily d(B x B) c ff .

Therefore Ind B = 0 . If Ind 4 5 n there exist A . . . , A in AT

with 4 = A v . . . u ^ and Ind A. 5 0 for a l l £ . For each i l e t

5 . be a Gx superset of A. with Ind B. = 0 . Then B = B. u . . . u B
1 0 * % ^ O n

is a Gr superset of A and Ind B £ n . / /

The following result guarantees the existence of a reasonably large

zero dimensional subset in any metrizable space.

LEMMA 9. Let {X, x) be metrizable. Then there is a dense G&

subset B of X with Ind B = 0 .

Proof. Let d generate x . For each n in N le t D be a

maximal subset of X with D 3 D and d{x, y) t 1/n for each x and

z/ in D with x ? y . Then 4 = U D is a-discrete and hence

Ind A = 0 . Let B be a Gg superset of A with Ind B = 0 . Since A

is dense [5, page 168], so also is B . //

Using Lemma 9 we can prove a theorem similar in spirit to the

following result of Reed: if we assume Goedel's axiom of constructibility

(often abbreviated to V = L ) then any normal and first countable space in

which every subset is an F is necessarily a-discrete [8, page 1*6]. We

obtain the following result without making any special -set theoretical

assumptions.

THEOREM 10. Let {X, x) be completely metrizable and such that each

dense G? subset is an F . Then Ind X = 0 . .

Proof. Let P = \J{Q € x : Ind Q = 0} . Then by [7, Theorem U.12,

page 173], Ind P = 0 . If Y = X - P is non-empty then Y is completely

metrizable and has no non-empty open subsets having large inductive

dimension zero. Let B c Y be a dense (in Y ) G subset of Y having

00

Ind B = 0 . Then B is G* in X and hence, by hypothesis, B = U F.
i=l *
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for some family [F.) of closed subsets of Y . Since B i s G^ and

OO

dense in Y , Y - B = U H. for some family [H.) of closed subset of
3=1 3 3

Y having H°. = 0 for each j . Therefore, because Y = (U P.) u (U ff.)
3 i % 3 3

and is Baire there is an i in N with F. t 0 . But then, Ind F. = 0

since F. c 5 . This contradicts the assumption that Y has no non-empty

subsets with dimension zero and therefore the assumption that Y is non-

empty. Hence Ind X = 0 . //
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