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PRACTICAL CREDIBILITY THEORY WITH EMPHASIS ON
OPTIMAL PARAMETER ESTIMATION

F. D E VYLDER*

We develop Hachemeister's regression model in credibility theory (without
proofs) and indicate how the involved structural parameters can be estimated
from the observable variables (with proofs for the simple results and those
not yet published).

Large families of unbiased estimators are available. From the practical
viewpoint this is rather a handicap because it creates the problem to decide
what estimators actually to use. In order to fix optimal estimators, we adopt
the small-sample criterion of minimum-variance. But in the research for
general solutions three kinds of difficulties arise.

(i) The calculations become too lengthy.
(ii) The optimal estimators depend on some of the parameters to be esti-

mated. (Then we call them pseudo-estimators).
(iii) The optimal estimators depend on new structural parameters defined

in terms of fourth-order moments.

Only a compromise allows to cope with this reality. Situation (iii) creates
new estimation problems. They can only be avoided at the cost of the intro-
duction of special assumptions or approximations. Then problem (i) is more
or less automatically solved. By an obvious method of successive approxima-
tions pseudo-estimators can serve as true estimators. Thus (ii) is no real problem.

1. GENERAL NOTATIONS AND DEFINITIONS

1.1. Matrices

The same main symbol is used to denote a matrix c and its elements c\. Here
c\ is the element at the intersection of row i and column j . The row i is denoted
by Ci and the column j by cK When the number of rows is m and the number
of columns n, we say that the matrix has dimensions (%).

These conventions are most convenient for automatical calculation with
matrices. For instance, if

(1) a = b c d

then
at = bicd, aj = bcdj, a}

t = btcd}, a = "Lbrcrd, at= S br
tc

s
rds, . . .

* The author is thankful to the referee who improved this paper.
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116 F. DE VYLDER

Hence the following general rules in case of a matrix relation such as (l),
with any number of factors in the last member:

(i) The same lower index can be placed at the matrix in the first member
and at the first matrix in the last member,

(ii) The same upper index can be placed at the matrix in the first member
and the the last matrix in the last member.

(iii) In the last member, an upper index can be placed at any matrix
and the same lower index at the following matrix, provided that index
be summed out.

Of course, according to the same rules applied in the opposite direction,
indices can also be dropped.

We recall that the trace of a square matrix c is the sum of its diagonal
elements: tr c =Sc{. When a product, say abed,, of any number of any matrices
is a square matrix, then any cyclical permutation, say cdab, is also a square
matrix (of possibly different dimensions) and tr(abed) = tr (cdab).

1.2. Random matrices

The expectation EA of a matrix A with random elements A\ is the matrix
with elements EA\. The operators tr and E commute.

To the (̂ ) random column X is associated the (̂ ) covariance matrix Cov X
with elements

(Cov X){ = Cov(Xu Xj) = E(XiXj)-E(Xi)E(X}).

Using the accent for transposition, the last member can be displayed as
E(XiX'i) - E(Xt)E(X'i). Therefore

Cov X = E{XX') - E(X)E(X'), (I).

When X is (\), then Cov X is in fact Var X.
If t is (^) and X Q, then tX is Q and Cov(tX) = *(Cov X)t'

Similarly, for the conditional covariance matrix:

Cov(X/0) = E(XX'/&) - E(X/&)E(X'l&), (•).

The following relation is easy:

Cov X = E Cov(X/Q) + Cov E(X/&), (I).

We define the scalar variance of any random matrix A by

ScaVar^ = S Var A) = S E{A{A')) - 2 E(A)E(A'ij)
i,i i,f i.l

= 2 E(AiA'i) - 2 E(Ai)E(A'i) = tr E(AA') - tr(EA.EA').
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T OPTIMAL PARAMETER ESTIMATION 117

Thus, when A is the Q column X, then ScaVar X = tr Cov X.
To say that the Q random vector X is N(m, v) means that X is normally

distributed with E X = in, Cov X = v. This implies that m is (̂ ) and that v
is ("). Similarly, "the conditional vector X, given 0, is N(m(&), v(®) )" means
that this vector is normally distributed with E(X/Q) = m(Q), Cov(X/0) = v{@).

1.3. Miscellaneous

In case of multiple indices, the matrix rules are applied to the last indices
only. For instance, if the scalars xq

iP are defined for variable j , p, q, then, for
each fixed j , Xj is the matrix with elements xjp, xjp is the p-th row of that
matrix and xj is its g-th column. These notations are unambiguous if the
reader keeps in mind the number and positions of the subscripts on the initially
considered scalars. Thus, in case of the just considered X]V, Xp XjP, xj it must
be remembered that the scalars xjp have two subscripts and one superscript.

For any finite sequence x% of square matrices, we define

provided x^1 exists, for the last relation. The sequence x% is the pre-normed
sequence x%. In summations, all indices, matricial or not, must be completely
summed out, unless stated otherwise.

If A is a random matrix, we denote by A° the centered matrix A° = A —
E A. No confusions can arise between ° and a matrix index, because ° shall
never be used as a matrix index.

2. HACHEMEISTER'S REGRESSION MODEL. (HACHEMEISTER, 1975)

2.1. Definition of the model

We consider the array of observable random variables

Xu X21 . . .

The class j or risk j is the (J) column X3 in that array.
The index s in X}s is interpreted as a time index. To Xj is associated the

structure variable ®j (possibly multi-dimensional).
The possible values for i, j are always i, j = 1, 2, . . ., k. It is assumed that

all quantities further displayed actually exist and are finite.
The following assumptions are made.

(i) Independence of completed classes: the couples (Xi, ©1), (X2, ©2), . . .,
{Xic, ©#) are independent.

https://doi.org/10.1017/S0515036100007054 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100007054


118 F. DE VYLDER

(ii) Equidistribution of structure variables: the random variables 0i, 02, . . .,
0fc are identically distributed.

(iii) Regression assumption: E(Xj/@j) = yfi(®j), (J), where
y is a given (f) matrix of full rank g < t,
(3(.) is a Q) vector of unknown functions $p(. ).

(iv) Covariance assumption: Cov(X j/®j) — G2(®J)VJ, (I), where
<j2 (. ) is an unknown scalar function,
Vj is a given positive definite (*) matrix.

2.2. Interpretations and problem

The meaning of the observable random variables X}s and of the matrices y, Vj
is exemplified in Hachemeister (1975).

At a first stage, it is imagined that the distribution of Xj depends on a
parameter 0;. Because it is unknown, this parameter is interpreted as a
realization of some hidden random variable ®j.

The actuary is interested in E(Xj/@j) or equivalently, because of the re-
gression assumption, in $p(@j), [p— 1, 2, . . ., g). Usually however, (3P(.) is
unknown and 0y cannot be observed. Therefore, the actuary replaces his
problem by a simpler one. He approximates $p{®j) by a linear expression.

Bjp = a0 + 2 aig Xis
is

of the observable variables Xjs. The unknown coefficients a0, ats (depending
on j , p) are fixed in such a way that

becomes minimum. The so obtained (̂ ) vector Bj is the credibility estimator
for p(0,).

2.3. Solution of the problem (SEE HACHEMEISTER 1975 OR D E VYLDER 1976)

The credibility estimator Bj for (3(0 )̂ equals

(2)

where

(3)

(4)

and where

(5) a

Bj = |

Zj = a(a + s2w

bj =

= Covp(0,) (g

\i-Zj) b + Zj bj, g ,

.j)-i(e),Wj= (y'vpyyi (s),

\y j y) y j o* \g)

'), b = E${®j) Cg), s2 = £a 2 (0 ; ) .

With NORBERG (1979), we call a, b, s2 structural parameters of the model.
Briefly we shall call a, b, s2 the covariance matrix, the mean vector, the variance
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OPTIMAL PARAMETER ESTIMATION 110,

respectively. The matrix Zj is the credibility matrix for class j . When g — l,
all these quantities are scalars.

3. THE GENERAL PROBLEM OF STRUCTURAL PARAMETER ESTIMATION

3.1. Small-sample properties of the estimators

Unbiasedness and minimum-variance shall be considered as most wanted
properties of the estimators for the structural parameters. These are small-
sample properties.

Asymptotical properties of some estimators can also be proved. For instance
see NORBERG (1979, 1980).

Such properties become only interesting in case of large samples of observed
random variables. How large ? This certainly depends on the complexity
of the involved model. In case of Hachemeister's model, no precise answer
to the question can be expected soon.

3.2. Families of unbiased estimators

In D E VYLDER (1978), we proposed families of unbiased estimators for the
structural parameters. Here we shall propose the same families for b and s2

but a different one for a.

3.3. Minimum-variance estimators

The minimum-variance estimator in a family of estimators a (b, s2) for a (b, s2)
is that one making ScaVar a (ScaVar b, Var s2) minimum. When looking for
such minimum-variance estimators, one may have the sad surprise that the
estimators contain some of the structural parameters to be estimated. However,
that situation is far from hopeless as we shall see in 3.4.

3.4. Pseudo-statistics and pseudo-estimators

We call pseudo-statistic any known function of the observable random variables
and of the structural parameters. Similarly, pseudo-estimators may depend
on the parameters to be estimated. Such pseudo-estimators may nevertheless
work as true estimators. For instance, consider the pseudo-estimators

(6) a = f(Xu ,..., Xkt, a, b), b = g(Xn, . . ., Xkt, a, b)

for a, b. Suppose that the last members in (6) are not too sensitive to small
variations of a, b. Then rather arbitrary initial estimates a(o), b(o) for a, b
can be used in (6), furnishing first approximations a(i), b(i). The latter can
be used again in (6), furnishing second approximations a{2), 6(2) and so on.
When practical convergence of the sequences a(n), b(n) is observed, the practi-
cal limits can be considered as final estimates for a, b.

Of course it amounts to the same to solve the system of equations
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120 F. DE VYLDER

(7) a = f(Xlu . . ., Xu, a, b), b = g(Xlx, . . ., Xkt, a, b)

in the unknown quantities a, b.
Pseudo-estimators are used since several years by Dr. F. Bichsel in un-

published practical work.

4. ESTIMATION OF THE MEAN VECTOR b

4.1. Fixed-class estimator
A

From the regression assumption results: E Xj = yb. Then E bj = b by (4).
A

This means that bj is an unbiased estimator for b. In fact bj is the classical
least squares estimator, in class j , for b.

4.2. Family of unbiased pseudo-estimators

It follows that
(8) S = S x, bj Q), (XJ %), x s = 1)

is an unbiased estimator of b. Since we do not exclude that the Xj contain
some structural parameters, relation (8) defines in fact a family of pseudo-
estimators for b.

4.3. Minimum-variance pseudo-estimator

In D E VYLDER (1978), it is proved that the minimum-variance pseudo-
estimator in the family (8) is obtained when Xj is the credibility matrix Zj
pre-normed, i.e. Xj — Zj. This minimum-variance estimator is denoted by

(9) b = 2 ~Zj bj

It is noteworthy that TAYLOR (1977) and, in a particular case, BUHLMANN

and STRAUB (1970) obtained this optimal estimator automatically after the
introduction of suitable constraints.

5. ESTIMATION OF THE VARIANCE S2

5.1. Fixed-class estimator

The classical estimator for s2, in class j , is

(10) s*j =JTg(Xj- ybi) Vji{X} - ybj).

It is unbiased. See D E VYLDER (1978).

5.2. Family of unbiased estimators

It follows that

(11) s* = S ^ s | , ( * s = 1)

defines a family of unbiased estimators for s2. We shall not consider the case
where the scalars Xj depend on the structural parameters.
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OPTIMAL PARAMETER ESTIMATION 121

5.3. Minimum-variance estimator under normal assumptions

5.3.1. Normal assumption

We look for the minimum-variance estimator for s2 in the family defined by
(11). Unless new structural parameters are introduced, this problem is seen
to have no solution under the general assumptions made hitherto. But it has
a very simple one under the assumption that we introduce here.

Normal assumption

The conditional vector Xj, for 0 ; fixed, is normally distributed. Then it
results from the general assumptions that this vector is N(yP(0y), O2(®J)VJ).

The following simple lemma is needed in section 6.

Lemma.

Under the normal assumption, the conditional vector fy, for &j fixed, is
) , «»(©,)«>,).

Demonstration

By (4), bj = Uj Xj, with the obvious definition of Uj (£)
Then

Cov (bjl&j) = Uj (Cov(Xj/@j) ) u'j = cr2(0;)

Note also that the relation E(b]/®j) = (3(©i) results from the regression
assumption and (4).

Now the lemma results from the fact that a linearly transformed normal
vector remains normal.

5.3.2. Calculation of Var s2.

Theorem

Under the normal assumption,

(12) Var s2 = (S x)) (s(4) (1 + j^-) - s*),
o

where s2 is defined by (11) and where

(13) s4 = (s2)2, s(4) = £

Demonstration

By the independence of the classes and the unbiasedness of

(14) Var s* = 2 ** Var ŝ  = S x)(E s) - E* %))

= 2 x){E s$ - s4)
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122 F. DE VYLDER

By (4) and (10),

(t-gys* = X) r, Xh

where

r} = v]1 - v-}iy{y v^yj-iy v]1, {\).

Then

r^y = o, rj Vj = i° — v

tr{rj Vj) = t — tr(y' v~j
1y{y v'^y)'1) = t - tr i°° = t - g,

where 1° and i°° are respectively the (j) and (̂ ) unit matrices and where we
used the cyclical property of the trace.

Then, for 0 ; fixed, we have by (A4) of the Appendix:

(t-g) «£$/©,) = E(X'} r, X, X] riX

a^Qj) (tr"(riwi) + 2tr(r,w,)a) = o*(0y) ((t-g)* + 2(t-g)).

Applying E and using (14), relation (12) follows.

5.3.3. Minimum-variance-estimator

Theorem

Under the normal assumption, the minimum-variance estimator in the family

(11) is

(15) S * = i S s J .

Demonstration

2) because the minimum of S xResults from (12) because the minimum of S x* under the constraint x% = l is
obtained for xi = x% — . . . = x^ = l/k.

6. ESTIMATION OF THE COVARIANCE MATRIX

6.1. Fixed-class estimator

Theorem

(16) &i= {b}-b){h,-b)' - s*w,, («)

is an unbiased pseudo-estimator for the covariance matrix a.

Demonstration

The demonstration of the lemma in 5.3.1. shows that

(17) Cov(g,/0,) = oWAwi, Efal®,) = P(0y).

(The normal assumption is not used at that stage). Then, because E bj = b:

E((h-b) {h-b)') = Covbi = Cov Efal®)) + E
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OPTIMAL PARAMETER ESTIMATION 123

(18) = Cov (J(0j) + E G2(Qj)wj = a + s2wj.

The theorem is clear from this.

6.2. Family of unbiased pseudo-estimators

From the theorem results that

(19) d = -Lx} &,, (Xj (g), xL = 1)

defines a family of unbiased pseudo-estimators for the covariance matrix a.
The matrix a is symmetrical, whereas a furnished by (19) is not. Therefore

NORBERG (1979) replaces a by

(20) \{d + a)

(and also b, s2 by estimators for these structural parameters).
We shall not perform the symmetrization at this stage. Of course, in practical

work, any estimate for a must finally be symmetrized.

6.3. Minimum-variance pseudo-estimator under normal and other assumptions

6.3.1. Notation.
We define

Note that

a =

The notation s(4) already introduced in (13) is also used further.
a(2) and s(4) are fourth-order structural parameters.

6.3.2. Independence assumption

We shall use the assumption of independence of <T2(0;) and p(0j). Briefly,
we call it the independence assumption.

6.3.3. Calculation of ScaVar a.

Lemma

Under the normal assumption (5.3.1.):

(21) fy

4 a * j

; ' )tr(w,)
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124 F- D E VYLDER

Demonstration

By the lemma in 5.3.1, the conditional vector b), for fixed Qj is
a2(<d])u)j). Then (21) follows from (A4) in the Appendix with

a = x'jXj, b = l, m = $°{@j), v = O2{®J)WJ.

Theorem

Under the normal (5.3.1) and independence (6.3.2) assumptions, for a defined
by (19):

(22) ScaVar a. = ^s<-4)tr(x'jXjWj)tT(wj) + 2Hs<-4)tv(x'jXjWjWj)

+ 4 2s 2 tv(x'jXjWja) + 2 sHr(xjXja)tr(wj)

+ 2 s2 tr{x'}xjWj) tr a +

— 2 tv(x'jXj(a + S2WJ) (a +

Demonstration

Let T(9g) denote the pseudo-statistic

(23) T = 2 xjbfb}' = 2 x}$j-b) (bi-b)', %)

Then

(24) a = T — s2 2 XjWj.

Because the last term is non-random,

ScaVar a = ScaVar T = tr E(TT') - tr(ET.ET').

Using the independence of classes,

E(TT') = 2 Eixiblbibfy'xj)

(25) =XE(Xjh;%h'$x'}) + 2 ^ S S X

Similarly,

(26) ET.ET = Y,E

Thus, in the difference E(TT') — ET.ET', the sum in i #_/ cancels.
By the cyclical property of the trace and the general relation E(

EE{. l@j), the trace of the first sum in the last member of (25) equals

The positive terms in (22) result from this expression and from the lemma.
The negative sum in (22) comes from the first sum in (26) after an application
of (18).
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6.3.4. Minimum-variance pseudo-estimator.

Lemma

y = 1, 2, . . ., k and n= I, 2, . . ., r, let Xj be variable (£) matrices, let cnj be
fixed (£) matrices and let snj be fixed scalars. Then the extremum of

(27) 2 s ^ tv{x']XjCnj),

fo-

under the constraint # s = 1, is obtained for

(28) Xj = yh

where

(29) y, = (Lsnj(cn} + cnJ))-\
n

Demonstration

Applying Lagrange's method, we consider g2 multipliers — A* corresponding
to the constraints % = 1. Expanding (27), we have to put equal to zero the
partial derivatives in the variables of

L = S snjx%x^clh - S \%x«v.
/ 3 <

Derivation in xq
ip gives the equation

(•Y «G

or, in matrix form

(30) £ SnjXjCnj + £ SnjXjc'nj = X, Xj{L Snj{cnj + Cnj) ) = X, Xj = X Jj,
n re n

where jj is defined by (29). Summing over j , we obtain 1 = X jj. From this
relation results X. Substitution in (30) gives (28).

Theorem

Under the normal (5.3.1) and independence (6.3.2) assumptions, the minimum-
variance pseudo-estimator in the family (19) is

(31) a = HXJ dj,

where

(32) Xj = a2y\(sK ' — s4) (Wj)2— J ( 3 a a ) + [a + s2Wj)2] 1.

For g > 1, that result is based on the approximations (33).

Demonstration

By the lemma, the minimum of (22) is obtained for the matrices Xj, where

tr
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126 F. DE VYLDER

Using the approximations (if g > l)

( Wj tr Wj + 2 WjW] = 3 wjwj

(33) I a tr wj + 2 a Wj ?± 3 a wj
' wj tr a +2 wja & 3 Wj a

one obtains

x]1 =* 6(s(4)-s4) (w;)2-2(3a2 - a(2))+4(a +

From this results (32), except for a constant (not depending onj) pre-factor.
But such a pre-factor cancels in the formation of Xj.

Comments

1. In any practical case, the quality of the approximations (33) can be tested
on basis of the numerical data, at least with a replaced by its estimate.

2. Let qj (*) be defined by

(34) \{s^ - s4) (Wj)2 -1 (3« 2 - «(2)) + [a + s*Wj)2 = (a + s2Wj)2 qt.

Then, if qj — q, independent of j , we are rid of the fourth-order structural
parameters s(4) and a(2). Indeed, the inverse of the last member of (34) equals,
in that case, q'1 (a + s2Wj)~2 and the constant pre-factor q ~1 cancels in the pre-
norming of these matrices. Then we obtain the following unbiased pseudo-
estimator for a:

(35) a = ̂ -zPd},
where

(36) 42) = a^a + stWj)-*.

The irrelevant constant pre-factor a2 is introduced again, because so zj2) =
fa)*forg=i.

3. Les us now examine some cases where qj = q, constant.

(i) Of course qj = q in the trivial case Wj = w, constant.
(ii) Let P(0;) = b be degenerated. Then a = (a)2 = o and in (34) each

remaining term can be simplified by the factor (WJ) 2. Then qj = q,
constant.

(iii) Let a(2) = 3a2. For g= 1, this means that the random variable (3(0/)
has a coefficient of excess equal to zero. That is the case if it is normally
distributed. Furthermore, assume the degeneracy G2(@J) = s2. Then
s(4) = s4 and q} = 1.

4. We summarize the arguments collected in favour of the pseudo-estimator

« (35)
— It is unbiased, because z^ = 1.
— It does not depend on fourth-order structural parameters.
— It is optimal in degenerated situations. It will remain approximately

optimal in cases close to such situations.-It must be noted that it is
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precisely in case of the degeneracy described in (it) that the estimation
of a is most delicate.

— For g= l, the weights zj2) are simply the squared credibility weights.

6.4. Practical estimation of the covariance matrix

6.4.1. Problem.

The pseudo-estimator a (35) and more generally, the pseudo-estimators (19),
have a great inconvenience. Although they are unbiased when b receives its
true value in (16), they no longer have that interesting quality when b is
replaced, say by its optimal pseudo-estimator b (9). But that is precisely
what should be done in practice! The bias appears because b does not figure
linearly in the last member of (16). For s2, there is no problem. Its replacement
by s2 (15) causes no bias. For the structural parameters a, s2 appearing in
z^p (36) the situation is different. Even when they are replaced by wrong
estimates, a (35) is unbiased because z^ = 1.

Thus, we have only to correct the situation for b. We shall start now from
the pseudo-statistic

(37) f = S xMi-l) (bj-'b)' (g), (xj (*),
i

= 1)

A

A look at (23) shows that T is T wherein b has been replaced by its optimal

pseudo-estimator b.
In case of T, the research for optimal weights Xj is based on so lengthy

combinatorial calculations that it loses its interest.
In that respect, we shall simply transpose to the case of T, the results ob-

tained in section 6.3.4 m the case of 7". At least for g— 1, lengthy arguments
show that this is a good approximation.

6.4.2. A less "pseudo" family of unbiased pseudo-estimators for a.

Theorem

The relation

(38) a = f - s2 2 XjWj + 2s1 a, (x} [9
g), % = 1),

defines a family of unbiased pseudo-estimators for a.

Demonstration

We have

1
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because it follows from 2S = l that the replacement of %i by b\ is allowed. Then

f = Zxiblbl' + 2 tfi^SftVfc- S ^ ^ j S l ' - 2 x^b\b°h~zk.

Because 2x = 1, the #* can be summed out in the sum in ijk.
When we apply E, the dubble sums must be replaced by single sums and

the indices must be egalized, say replaced by j . This follows from the fact that
the bj have zero expectation and are independent. By (18) we then obtain

E T = 2 Xj(a +
i

The first term in the last member equals a + s2 2
From these consideration it is clear that

a = T — s2 2 XjWj — 2 Zj(a + S2WJ)ZJ

(39) + 2 XjZj{a + s2Wj) + 2 Xj(a + S*WJ)ZJ,

is an unbiased pseudo-estimator for a. From the relations

we obtain

% Zj(a + s2Wj)z'j = 2 z^-az'j = z^1 a

(showing in particular that z^1 a is symmetrical) and similar relations allowing
to simplify the last member of (39). Finally (38) is obtained.

6.4.3. Practical estimation of a.

Because a is symmetric, we adopt for it the pseudo-estimator (38) symmetrized
in the obvious way. As matrical weights xj in (38) we suggest to take the pre-
normed z^2) defined by (36), i.e. the same weights z^p as in (35).

7. SUMMARY OF ALL STEPS TO BE EXECUTED FOR THE CALCULATION OF THE

CREDIBILITY ESTIMATORS

Steps depending on j must be executed for j = 1, 2, . . ., k.
0) Given: Xj Q, v} (j), y (?)

1) Calculate Wj = {y'v'^y)'1 {9
g)

2) Calculate bj =

3) Calculate the scalar s2 = - ~ 2 (Xj — yf>j) 'v]1 (Xj —

4) Fix initial a — diag(c, c, . . ., c) (g
g), (c large)
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5) Calculate z, = ^ a + s ^ ) " 1 (J), zs (g
g), ~z} (*),

z^ = a^a + s^)-2 (*), /£><>), x} = z f %)

6) Calculate b = I, z} bj Q)

7) Calculate S = 2 xjfa-b) (Sy-6) ' -s2 £ tf^ + z^a (£)

8) Calculate New a = i(S + S') %)

9) Return to step 5) with a replaced by New a, as many times as necessary,
until a is stabilized.

10) Calculate Bj = (1 — Z))b +

APPENDIX

Expectation of products of quadratic forms in normal variables

Theorem

Let a, b, v be symmetrical (£) matrices, v positive definite. If the (J) vector X
is N(o, v), then

(Ai) E{X'aX) = tr(av),

(A2) E{X'aX X'bX) = tr(«w)tr(Jt;) + 2 tr{avbv)

If X is AT(w, v), then

(A3) E(X'aX) = tr(«w) + tr (amm),

(A4) £(X'«X Z'6Z) = tr(av)tr(6w) + 2 tr(aw6w) + 4 tr(avbmm)
+ tT(amm')tv(bv) + tr(bmm')tr(av) + tr{amm'bmm).

Demonstration

(Ai) E{X'aX) = L E{Xia\Xj) = S aiE(XiX}) = S ojwj = tr(aw)

(A2) Let the Q vector Y be N(o, 1). Then each component is normal with
zero mean and unit variance. Therefore

EYi=o, E Y\ = i, E Y\ =o, E Y\ = 3.

Moreover, Y\, Y2, . . ., Yt are independent. From these facts follows the
combinatorial formula

where 8^ is Kronecker's symbol.
Indeed, if m, n, p, q are 4 different indices, the possible patterns for i, j , k, I

are

m m n n n m m m m . . . m
m n m n n m n n m n
m n n m n n m n n . . . p
m n n n m n n m p . . . q
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and for each pattern, the verification of (A5) is immediate. Then

E{Y'aYY'bY) = 2 E{Yl4YjYkb
l
kYi) = 2 a\b\E(Y\Y)

ijkl ifkl

ijkl tk il ii

2 «| 2 ̂  + 2 « $ + 2 fl^f = tr. a . tr b + tr(ab) +tr(ab).
i u a

This proves (A2) for v= 1.
Now we prove (A2) for X supposed to be N(o, v). It is classical that for some

(') matrix s, we have X =sY with Y N(o, 1).
Then

v = Cov X = s(Cov Y)s' = ss

and

E(X'aXX'bX) = £(y's'aSyy's'&sY)

= tr(s'as)tr(s'bs) + 2 tr(s'ass'bs)

= tr(ass')tr(6ss') + 2 tr(ass'bss')

= tr(av)tr(bv) + 2 tr(a«6^),

by the cyclical property of the trace.

(A3) We decompose X = Y + m, where Y = X -m is 2V(o, v).

Then

(A6) X'aX - Y'aY + 2 Y'am + mam

and (A3) follows from (Ai) and the relations

E(Y'am) = 0, mam = tr(m'am) = Xxiamm).

(A4) For (A4) we use (A6) and the similar decomposition

(A7) X'bX = Y'bY + 2 mbY + m'bm.

The expectation of the product of (A6) and (A7) is best displayed in a table.
Making use of (Ai), (A2) we obtain the table

Y'aY

2 Y'am

m am

YbY
tx[av)\x{bv)
+ 2 tr(avbv)

0

m'amtr(bv)

2 mbY

0

4 tv(amm,bv)

0

m bm

tr(av)m'bm

0

m'amm'bm

After slight transformations (use cyclical property of trace, and also that
a matrix and its transposed matrix have the same trace), formula (A4) results
from this table. However, some supplementary explanations may be useful.
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First, the matrix amm'b is not necessarily symmetrical. The corresponding
term 4 tr(amm'bv) is the right one because (Ai) is valid even if a is not sym-
metrical (see demonstration). We have also to explain the zero's in the table.
For instance, let us justify the relation

E{Y'aYm'bY) = 0.

For some (') matrix s, Y can be expressed as Y = sZ where the (]) vector Z
is N(o, 1). Then the components Z% of Z are independent and have zero ex-
pectation. The development of Y'aYm'bY is an expression S c^k ZfZjZk.
Among the indices i,j, k, at least one must appear an odd number of times.
Therefore E(ZiZjZ]c) = 0.
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