
2 The Standard Model

The interactions of the Standard Model give rise to the phenomena of our day to day
experience. They explain virtually all the particles and interactions which have been
observed in accelerators. Yet the underlying laws can be summarized in a few lines. In this
chapter we describe the ingredients of this theory and some of its important features. Many
dynamical questions will be studied in subsequent chapters. For detailed comparisons of
theory and experiment there are a number of excellent texts, described in the suggested
reading at the end of the chapter.

2.1 Yang–Mills theory

By the early 1950s physicists were familiar with approximate global symmetries such
as isospin. Yang and Mills argued that the lesson of Einstein’s general theory was that
symmetries, if exact, should be local. In ordinary electrodynamics the gauge symmetry is a
local Abelian symmetry. Yang and Mills explained how to generalize this to a non-Abelian
symmetry group. Let’s first review the case of electrodynamics. The electron field ψ(x)
transforms under a gauge transformation as follows:

ψ(x)→ eiα(x)ψ(x) = gα(x)ψ(x). (2.1)

We can think of gα(x) = eiα(x) as a group element in the group U(1). The group is Abelian:
gαgβ = gβgα = gα+β . Quantities such as ψ̄ψ are gauge invariant, but derivative terms
such as iψ̄ �∂ψ , are not. In order to write down the derivative terms in an action or equation
of motion, one needs to introduce a gauge field Aμ transforming under the symmetry
transformation as

Aμ → Aμ + ∂μα
= Aμ + ig(x)∂μg−1(x). (2.2)

This second form allows more immediate generalization to the non-Abelian case. Given
Aμ and its transformation properties, we can define a covariant derivative,

Dμψ = (∂μ − iAμ)ψ . (2.3)

This derivative has the property that it transforms like ψ itself under the gauge symmetry:

Dμψ → g(x)Dμψ . (2.4)
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9 2.1 Yang–Mills theory

We can also form a gauge-invariant object from the gauge fields Aμ themselves. A simple
way to do this is to construct the commutator of two covariant derivatives,

Fμν = i[Dμ, Dν] = ∂μAν − ∂νAμ. (2.5)

This form of the gauge transformations may be somewhat unfamiliar. Note in particular
that the charge of the electron, e (the gauge coupling) does not appear in the transfor-
mation laws. Instead, the gauge coupling appears when we write down a gauge-invariant
Lagrangian:

L = iψ̄ �Dψ − mψ̄ψ − 1
4e2 F2

μν , (2.6)

where the “slash” notation is defined by /a = aμγμ. The more familiar formulation is
obtained if we make the replacement

Aμ → eAμ. (2.7)

In terms of this new field the gauge transformation law is

Aμ → Aμ + 1
e
∂μα (2.8)

and the covariant derivative is

Dμψ = (∂μ − ieAμ)ψ . (2.9)

We can generalize this to a non-Abelian group, G, by taking ψ to be a field (fermion or
boson) in some representation of the group; g(x) is then a matrix which describes a group
transformation acting in this representation. Formally, the transformation law is the same
as before,

ψ → g(x)ψ(x), (2.10)

but the group composition law is more complicated:

gαgβ �= gβgα . (2.11)

The gauge field Aμ is now a matrix-valued field, transforming in the adjoint representation
of the gauge group:

Aμ → gAμg−1 + ig(x)∂μg−1(x). (2.12)

Formally, the covariant derivative also looks exactly as before:

Dμψ = (∂μ − iAμ)ψ , Dμψ → g(x)Dμψ . (2.13)

Like Aμ, the field strength is a matrix-valued field:

Fμν = i[Dμ, Dν] = ∂μAν − ∂νAμ − i[Aμ, Aν]. (2.14)

Note that Fμν is not gauge invariant but, rather, covariant:

Fμν → gFμνg−1, (2.15)

i.e. it transforms like a field in the adjoint representation, with no inhomogeneous term.
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10 The Standard Model

The gauge-invariant action L is formally almost identical to that of the U(1) theory:

L = iψ̄ �Dψ − mψ̄ψ − 1
2g2 Tr F2

μν . (2.16)

Here we have changed the letter we use to denote the coupling constant: we will usually
reserve e for the electron charge and use g for a generic gauge coupling. Note also that it
is necessary to take the trace of F2 to obtain a gauge-invariant expression.

The matrix form for the fields may be unfamiliar, but it is very powerful. One can recover
expressions in terms of more conventional fields by defining

Aμ = Aa
μTa, (2.17)

where Ta are the group generators in the representation appropriate to ψ . Then, for SU(N),
for example, if the Tas are in the fundamental representation, we have

Tr(TaTb) = 1
2
δab, [T a, T b] = if abcT c, (2.18)

where f abc are the structure constants of the group and

Aa
μ = 2 Tr(TaAμ), F a

μν = ∂μAa
ν − ∂νAa

μ + fabcAa
μAb
ν . (2.19)

While they are formally almost identical, there are great differences between the Abelian
and non-Abelian theories. Perhaps the most striking is that the equations of motion for
the Aμs are non-linear in non-Abelian theories. This behavior means that, unlike the
case of Abelian gauge fields, a theory of non-Abelian fields without matter is a non-
trivial, interacting, theory with interesting properties. With and without matter fields,
this will lead to much richer behavior even classically. For example, we will see that
non-Abelian theories sometimes contain solitons, localized finite-energy solutions of the
classical equations. The most interesting of these are the magnetic monopoles. At the
quantum level these non-linearities lead to properties such as asymptotic freedom and
confinement.

Using the form in which we have written the action, the matter fieldsψ can appear in any
representation of the group; one just needs to choose appropriate matrices T a. We can also
consider scalars, as well as fermions. For a scalar field φ, we define the covariant derivative
Dμφ as before and add to the action a term |Dμφ|2 for a complex field or (Dμφ)2/2 for a
real field.

2.2 Realizations of symmetry in quantum field theory

The most primitive exercise we can do with the Yang–Mills Lagrangian is to set g = 0 and
examine the equations of motion for the fields Aμ. If we choose the gauge ∂μAμa = 0, all
the gauge fields obey

∂2Aa
μ = 0. (2.20)
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11 2.2 Realizations of symmetry in quantum field theory

So, like the photon, all the gauge fields Aa
μ of the Yang–Mills theory are massless. At first

sight there is no obvious place for these fields in either the strong or the weak interactions.
But it turns out that in non-Abelian theories the possible ways in which the symmetry
may be realized are quite rich. First, the symmetry can be realized in terms of massless
gauge bosons; this is known as the Coulomb phase. This possibility is not relevant to the
Standard Model but will appear in some of our more theoretical considerations later. A
second way is known as the Higgs phase. In this phase, the gauge bosons are massive. In
the third, the confinement phase, there are no physical states with the quantum numbers
of isolated quarks (particles in the fundamental representation), and the gauge bosons are
also massive. The second phase is relevant to the weak interactions; the third, confinement,
phase to the strong interactions.1

2.2.1 The Goldstone phenomenon

Before introducing the Higgs phase it is useful to discuss global symmetries. While we will
frequently argue, like Yang and Mills, that global symmetries are less fundamental than
local ones, they are important in nature. Examples are isospin, the chiral symmetries of the
strong interactions and baryon number. We can represent the action of such a symmetry
much as we represented the symmetry action in Yang–Mills theory:

� → gα�, (2.21)

where � is some set of fields and g is now a constant matrix, independent of spatial
position. Such symmetries are typically accidents of the low-energy theory. Isospin, for
example, as we will see arises because the masses of the u and d quarks are small compared
with other scales of quantum chromodynamics. Then g is the matrix

g�α = ei�α·�σ/2 (2.22)

acting on the u and d quark doublet. Note that �α is not a function of space but a continuous
parameter, so we will refer to such symmetries as continuous global symmetries. In the
case of isospin it is also important that the electromagnetic and weak interactions, which
violate this symmetry, are small perturbations on the strong interactions.

The simplest model of a continuous global symmetry is provided by a complex field φ
transforming under a U(1) symmetry,

φ → eiαφ. (2.23)

We can take for the Lagrangian for this system

L = |∂μφ|2 − m2|φ|2 − 1
2
λ|φ|4. (2.24)

If m2 > 0 and λ is small, this is simply a theory of a weakly interacting, complex scalar. The
states of the theory can be organized as states of definite U(1) charge. This is the unbroken

1 The differences between the confinement and Higgs phases are subtle, as was first stressed by Fradkin, Shenker
and ’t Hooft. But we now know that the Standard Model is well described by a weakly coupled field theory in
the Higgs phase.
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12 The Standard Model

V

φ

Fig. 2.1 Scalar potential with negative mass-squared. The stable minimum leads to broken symmetry.

phase. However, m2 is just a parameter and we can ask what happens if m2 = −μ2 < 0.
In this case the potential,

V(φ) = −μ2|φ|2 + λ|φ|4, (2.25)

looks as in Fig. 2.1. There is a set of degenerate minima,

〈φ〉α = μ√
2λ

eiα . (2.26)

These ground states are obtained from one another by symmetry transformations; in
somewhat more mathematical language, we say that there is a manifold of vacuum states.
Quantum mechanically it is necessary to choose a particular value of α. As will be
explained in the next section, if one chooses α then no local operator, e.g. no small
perturbation, will take the system into a state of different α. To simplify the writing, take
α = 0. Then we can parameterize the complex field φ in terms of real fields σ and π :

φ = 1√
2
[v + σ(x)]eiπ(x)/v ≈ 1√

2
[v + σ(x)+ iπ(x)]. (2.27)

Here v = μ/
√
λ is known as the vacuum expectation value (vev) of the field φ. In terms

of σ and π , the Lagrangian takes the form

L = 1
2
[(∂μσ)2 + (∂μπ)2 − 2μ2σ 2 + O(σ ,π)3]. (2.28)

So we see that σ is an ordinary real, scalar field of mass-squared 2μ2, while the π field is
massless. The fact that it is massless is not a surprise: the mass represents the energy cost
of turning on a zero-momentum excitation of π , but such an excitation is just a symmetry
transformation v → veiπ(0) of φ. So there is no energy cost.

The appearance of massless particles when a symmetry is broken is quite general and is
known as the Nambu–Goldstone phenomenon; π is called a Nambu–Goldstone boson. In
any theory with scalars, the choice of a minimum may break some symmetry. This means
that there is a manifold of vacuum states. The broken-symmetry generators are those which
transform the system from one point on this manifold to another. Because there is no energy
cost associated with such a transformation, there is a massless particle associated with each
broken-symmetry generator. This result is very general. Symmetries can be broken not only
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13 2.2 Realizations of symmetry in quantum field theory

by the expectation values of scalar fields but also by the expectation values of composite
operators, and the theorem holds. A proof of this result is provided in Appendix B. In nature
there are a number of excitations which can be identified as Goldstone or almost-Goldstone
(“pseudo-Goldstone”) bosons. These include spin waves in solids and the pi mesons. We
will have much more to say about pions later.

2.2.2 Aside: choosing a vacuum

In quantum mechanics there is no notion of a spontaneously broken symmetry. If one
has a set of degenerate classical configurations, the ground state will invariably involve
a superposition of these configurations. If we took σ and π in Eq. (2.27) to be functions
only of the time t then the σ–π system would just be an ordinary quantum mechanical
system with two degrees of freedom. Here σ would correspond to an anharmonic oscillator
of frequency ω = √

2μ. Placing this particle in its ground state, one would be left
with the coordinate π . Note that π , in Eq. (2.27), is an angle, like the azimuthal angle,
in ordinary quantum mechanics. We could call its conjugate variable Lz. The lowest
lying state would be the zero-angular-momentum state, a uniform superposition of all
values of π . In field theory at finite volume, the situation is similar. The zero-momentum
mode of π is again an angular variable, and the ground state is invariant under the
symmetry. At infinite volume, however, the situation is different. One is forced to choose
a value of π .

This issue is most easily understood by considering a different problem: rotational
invariance in a magnet. Consider Fig. 2.2, which shows a ferromagnet with spins aligned
at an angle θ . We can ask: what is the overlap of two states, one with θ = 0, one at θ , i.e.
what is 〈θ |0〉? For a single site the overlap between the state |+〉 with θ = 0 and the rotated
state is

〈 + ∣∣eiτ1θ/2
∣∣ + 〉 = cos(θ/2). (2.29)

Fig. 2.2 In a ferromagnet the spins are aligned but their direction is arbitrary.
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14 The Standard Model

If there are N such sites, the overlap behaves as follows:

〈θ |0〉 ∼ [cos(θ/2)]N, (2.30)

i.e. it vanishes exponentially rapidly with the “volume”, N.
For a continuum field theory, states with differing values of the order parameter v also

have no overlap in the infinite-volume limit. This is illustrated by the theory of a scalar
field φ with Lagrangian

L = 1
2
(∂μφ)

2. (2.31)

For this system there is no potential, so the expectation value φ = v is not fixed. The
Lagrangian has a symmetry, φ → φ + δ, for which the charge is just

Q =
∫

d3x�(�x) (2.32)

where � is the canonical momentum. So we want to study

〈v|0〉 = 〈0|eiQ|0〉. (2.33)

We must be careful how we take the infinite-volume limit. We will insist that this be done
in a smooth fashion, so we will define

Q =
∫

d3x ∂0

(
φe−�x2/V2/3

)
= − i

∫ d3k
(2π)3

√
ωk
2

(
V1/3
√
π

)3

e−�k2V2/3/4[a(�k)− a†(�k)]. (2.34)

Now one can evaluate the matrix element, using

e A+B = e AeBe−[A, B]/2

(provided that the commutator is a c-number), obtaining

〈0|eiQ|0〉 = e−cv2V2/3
, (2.35)

where c is a numerical constant. So the overlap vanishes with the volume. You can convince
yourself that the same holds for matrix elements of local operators. This result does not
hold in 0+1 and 1+1 dimensions, because of the severe infrared behavior of theories in low
dimensions. This is known to particle physicists as Coleman’s theorem, and to condensed
matter theorists as the Mermin–Wagner theorem. This theorem will make an intriguing
appearance in string theory, where it is the origin of energy–momentum conservation.

2.2.3 The Higgs mechanism

Suppose that the U(1) symmetry of the previous section is local. In that case, even a
spatially varying π(x) represents a symmetry transformation and, by a suitable gauge
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15 2.2 Realizations of symmetry in quantum field theory

choice, it can be eliminated. In other words, by a gauge transformation we can bring the
field φ to the form

φ = 1√
2
[v + σ(x)]. (2.36)

In this gauge, the gauge-invariant kinetic term for φ takes the form

|Dμφ|2 = 1
2
(∂μσ)

2 + 1
2

A2
μv2 + · · · . (2.37)

The second term is a mass term for the gauge field Aμ. To determine the actual value of the
mass, we need to examine the kinetic term for the gauge fields,

− 1
2g2 (∂μAν)2 + · · · . (2.38)

So the gauge field must have mass m2
A = g2v2.

This phenomenon, that the gauge boson becomes massive when the gauge symmetry
is spontaneously broken, is known as the Higgs mechanism. While formally quite similar
to the Goldstone phenomenon, it is also quite different. The fact that there is no massless
particle associated with motion along the manifold of ground states is not surprising – these
states are all physically equivalent. Symmetry breaking, in fact, is a paradoxical notion in
gauge theories, since gauge transformations describe entirely equivalent physics (gauge
symmetry is often referred to as a redundancy in the description of a system). Perhaps the
most important lesson here is that gauge invariance does not necessarily mean, as it does
in electrodynamics, that the gauge bosons are massless.

2.2.4 Goldstone and Higgs phenomena for non-Abelian symmetries

Both the Goldstone and Higgs phenomena generalize to non-Abelian symmetries. In the
case of global symmetries, for every generator of a broken global symmetry there is a
massless particle. For local symmetries, each broken generator gives rise to a massive
gauge boson.

As an example, relevant both to the strong and the weak interactions, consider a theory
with a symmetry SU(2)L × SU(2)R. Take M to be a Hermitian matrix field,

M = σ I + i�π · �σ . (2.39)

Under the above symmetry, which we first take to be global, M transforms as follows:

M → gLMgR (2.40)

with gL and gR SU(2) matrices. We can take the Lagrangian to be

L = Tr (∂μM†∂μM)− V(Tr(M†M)). (2.41)

This Lagrangian respects the symmetry. If the curvature of the potential at the origin is
negative, M will acquire an expectation value. If we take:

〈M〉 = 〈σ 〉I (2.42)
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16 The Standard Model

then some of the symmetry is broken. However, the expectation value of M is invariant
under the subgroup of the full symmetry group with gL = g†

R. In other words, the unbroken
symmetry is SU(2). Under this symmetry, the fields �π transform as a vector. In the case of
the strong interactions, this unbroken symmetry can be identified with isospin. In the case
of the weak interactions, there is an approximate global symmetry reflected in the masses
of the W and Z particles, as we will discuss later.

2.2.5 Confinement

There is still another possible realization of gauge symmetry: confinement. This is crucial
to our understanding of strong interactions. As we will see, Yang–Mills theories, in the
case where there is not too much matter, become weak at short distances and strong at
large distances. This is just what is required to understand the qualitative features of the
strong interactions: free-quark and free-gluon behavior at very large momentum transfers,
but strong forces at larger distances so that there are in fact no free quarks or gluons.
As is the case for the Higgs mechanism, there are no massless particles in the spectrum
of hadrons: QCD is said to have a “mass gap.” These features of strong interactions are
supported by extensive numerical calculations, but they are hard to understand through
simple analytical or qualitative arguments (indeed, if you can offer such an argument, you
could win a Clay prize of $1 million). We will have more to say about the phenomenon of
confinement when we discuss lattice gauge theories.

One might wonder: what is the difference between the Higgs mechanism and confine-
ment? This question was first raised by Fradkin and Shenker and by ’t Hooft, who also
gave an answer: there is often no qualitative difference. The qualitative features of a theory
without massless gauge fields as a result of the Higgs phenomenon can be reproduced by
a confined strongly interacting theory. However, the detailed predictions of the weakly
interacting Weinberg–Salaam theory are in close agreement with experiment but those of
the strongly interacting theory are not.

2.3 The quantization of Yang–Mills theories

In this book we will encounter a number of interesting classical phenomena in Yang–Mills
theory but, in most of the situations in nature on which we are focusing, we will
be concerned with the quantum behavior of the weak and strong interactions. Abelian
theories such as QED already present considerable challenges. One can perform canonical
quantization in a gauge, such as the Coulomb gauge or a light cone gauge, in which
unitarity is manifest – all the states have positive norm. But, in such a gauge the covariance
of the theory is hard to see. Or one can choose a gauge where Lorentz invariance is
manifest, but not unitarity. In QED it is not too difficult to show, at the level of Feynman
diagrams, that these gauge choices are equivalent. In non-Abelian theories, canonical
quantization is still more challenging. Path integral methods provide a much more powerful
approach to the quantization of these theories than the canonical methods mentioned above.
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17 2.3 The quantization of Yang–Mills theories

A brief review of path integration appears in Appendix C. Here we discuss gauge fixing
and derive the Feynman rules. We start with the gauge fields alone; adding the matter
fields – scalars or fermions – is not difficult. The basic path integral is∫

[dAμ]eiS. (2.43)

The problem is that this integral includes a huge redundancy: the gauge transformations.
To deal with this, we need to make a gauge choice, for example

Ga(Aa
μ

) = ∂μAμa = 0. (2.44)

We insert unity in the form

1 =
∫

[dg]δ(G(
Ag
μ

))
�[A]. (2.45)

Here we have reverted to our matrix notation: G is a general gauge-fixing condition; Ag
μ

denotes the gauge transform of Aμ by g. The quantity� is a functional determinant known
as the Faddeev–Popov determinant. Note that � is gauge invariant: �[Ah] = �[A]. This
follows from the definition∫

[dg]δ(G(
Ahg′
μ

)) =
∫

[dg]δ(G(
Ag′
μ

))
, (2.46)

where, in the last step, we have made the change of variables g → h−1g. We can write a
more explicit expression for � as a determinant. To do this, we first need an expression
for the variation of the As under an infinitesimal gauge transformation.Writing g = 1 + iω,
and using the matrix form for the gauge field, we have

δAμ = ∂μω + i[ω, Aμ]. (2.47)

This can be written elegantly as a covariant derivative of ω, where ω can be thought of as
a field in the adjoint representation:

δAμ = Dμω. (2.48)

If we make the specific choice G = ∂μAμ then to evaluate � we need to expand G about
the field Aμ for which G = 0:

G(A + δA) = ∂μDμω = ∂2ω + i[Aμ, ∂μω] (2.49)

or, in index form,

G
(
Aa
μ

) = (∂2δac + f abcAμ b∂μ)ω
c. (2.50)

So

�[A] = det(∂2δac + f abcAμ b∂μ)
−1/2. (2.51)

We will discuss strategies to evaluate this determinant shortly.
At this stage, we have reduced the path integral to

Z =
∫

[dAμ]δ(G(A))�[A]eiS (2.52)

https://doi.org/10.1017/9781009290883.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.007


18 The Standard Model

and we can write down the Feynman rules. The δ-function remains rather awkward to deal
with, though, and this expression can be simplified through the following trick. Introduce
a function ω (not to be confused with the ω of Eq. (2.48)) and average over ω with a
Gaussian weight factor:

Z =
∫

[dω]ei
∫

d4x(ω2/ξ)
∑∫

[dAμ]δ(G(A)− ω)�[A]eiS. (2.53)

We can do the integral over the δ-function. The quadratic terms in the exponent are now
given by ∫

d 4x Aμa
[
−∂2ημν + ∂μ∂ν

(
1 − 1

ξ

)]
Aνa. (2.54)

We can invert this to find the propagator. In momentum space,

Dμν = −ημν + (ξ − 1)kμkν/k2

k2 + iε
. (2.55)

To write down explicit Feynman rules, we need also to deal with the Faddeev–Popov
determinant. Feynman long ago guessed that the unitarity problems of Yang–Mills theories
could be dealt with by introducing fictitious scalar fields with the wrong statistics. Our
expression for � can be reproduced by a functional integral for such particles:

� =
∫

[dca][dca†]exp
(

i
∫

d 4x[ca†(∂2δab + f abcAμ c∂μ)cb]
)

. (2.56)

From this we can read off the Feynman rules for Yang–Mills theories, including matter
fields. They are summarized in Fig. 2.3.

2.3.1 Gauge fixing in theories with broken gauge symmetry

Gauge fixing in theories with broken gauge symmetries raises some new issues. We con-
sider first a U(1) gauge theory with a single charged scalar field φ. We suppose that the
potential is such that 〈φ〉 = v/

√
2. We call e the gauge coupling and take the conventional

scaling for the gauge kinetic terms. We can, again, parameterize the field φ as

φ = 1√
2
[v + σ(x)]eiπ/v. (2.57)

Then we can again choose a gauge in which π(x) = 0. This gauge is known as the unitary
gauge since, as we have seen, in this gauge we have exactly the degrees of freedom we
expect physically: a massive gauge boson and a single real scalar. But this gauge is not
convenient for calculations. The gauge boson propagator in this gauge is

〈AμAν〉 = − i
k2 − M 2

V

(
ημν − kμkν

M 2
V

)
. (2.58)

Because of the momentum factors in the second term, individual Feynman diagrams have
a bad high-energy behavior. A more convenient set of gauges, known as Rξ gauges,
avoids this difficulty at the price of keeping the π field (sometimes misleadingly called the
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19 2.3 The quantization of Yang–Mills theories

a b

k i j

p

δij

i

a

p
a

c

b

b, μ

p2
iδab

=

= igg μt a

= g f abc [g μν(k - p)ρ + gνρ( p - q)μ + gρμ( q - k)ν]k
p

q

a, μ

=

=

-g f abcpμ=

ig2 [ f abef cde (gμρgνσ - gμσgνρ)

     +  f acef bde (gμνgρσ - gμσg νρ)

     +  f adef bce (gμνgρσ - gμρgνσ)]

a, μ

b, ν

c, ρ

b, ν

d, σc, ρ

-igμv

k2 p/

Fig. 2.3 Feynman rules for Yang–Mills theory.

Goldstone particle) in the Feynman rules. We take, in the path integral, the gauge-fixing
function

G = 1√
ξ
[∂μAμξ − evπ(x)]. (2.59)

The extra term has been judiciously chosen so that when we exponentiate the gauge
condition, as in Eq. (2.53), the Aμ∂μπ terms in the action cancel. Explicitly, we have

L = − 1
2

Aμ
[
ημν∂2 −

(
1 − 1

ξ

)
∂μ∂ν − (e2v2)ημν

]
Aν

+ 1
2
(∂μσ)

2 − 1
2

m2
σ σ

2 + 1
2
(∂μπ)

2 − ξ

2
(ev)2π2 + O(φ3). (2.60)

If we choose ξ = 1 (corresponding to the ’t Hooft–Feynman gauge), the propagator for the
gauge boson is then simply

〈AμAν〉 = −i
k2 − M 2

V
ημν (2.61)

with M 2
V = e2v2, but we have also the field π explicitly in the Lagrangian, and it has the

propagator

〈ππ〉 = i
k2 − M 2

V
. (2.62)

The mass here is just the mass of the vector boson (for other choices of ξ , this is not true).
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20 The Standard Model

This gauge choice is readily extended to non-Abelian theories with similar results:
the gauge bosons have simple propagators, like those of massive scalars but multiplied
by ημν . The Goldstone bosons appear explicitly in perturbation theory, with propagators
appropriate to massive fields. The Faddeev–Popov ghosts have couplings to the scalar
fields.

2.4 The particles and fields of the Standard Model: gauge bosons
and fermions

We are now in a position to write down the Standard Model. It is amazing that, at a
microscopic level, almost everything we know about nature is described by such a simple
structure. The gauge group is SU(3)c × SU(2)L × U(1)Y. The subscript c denotes color,
L means left-handed and Y is the hypercharge. Corresponding to these different gauge
groups, there are gauge bosons: Aa

μ, a = 1, . . . , 8; Wi
μ, i = 1, 2, 3; and Bμ.

One of the most striking features of the weak interactions is the violation of parity. In
terms of four-component fields, this means that factors of 1−γ5 appear in the couplings of
fermions to the gauge bosons. In such a situation it is more natural to work with two-
component spinors. For the reader unfamiliar with such spinors, a simple introduction
appears in Appendix A. These spinors are the basic building blocks of the four-dimensional
spinor representations of the Lorentz group. All spinors can be described as two-component
quantities, with various quantum numbers. For example, quantum electrodynamics, which
is parity invariant and has a massive fermion, can be described in terms of two left-handed
fermions, e and ē, with electric charges −e and +e respectively. The Lagrangian takes the
form

L = ieσμDμe∗ + iēσμDμē∗ − mēe − mē∗e∗. (2.63)

The covariant derivatives are those appropriate to fields of charge e and −e. Parity is
symmetry under �x → −�x, e ↔ ē∗ and �A → − �A.

We can specify the fermion content of the Standard Model by giving the gauge quantum
numbers of the left-handed spinors. So, for example, there are quark doublets which are
in the 3 (fundamental) representation of color and doublets of SU(2) and which have
hypercharge 1/3: Q = (3, 2)1/3. The appropriate covariant derivative is:

DμQ =
(
∂μ − igsAa

μT a − igW i
μT i − i

g ′

2
1
3

Bμ
)

Q, (2.64)

where gs is the strong coupling constant. Here the T is are the generators of SU(2);
T i = σ i/2. These are normalized as follows:

Tr(T iT j) = 1
2
δij. (2.65)

The T a are the generators of SU(3); in terms of Gell-Mann’s SU(3) matrices, T a = λa/2.
They are normalized in the same way as the SU(2) matrices: Tr (T aT b) = (1/2)δab.
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21 2.4 The particles and fields of the Standard Model: gauge bosons and fermions

Table 2.1 Fermions of the Standard Model
and their quantum numbers

SU(3) SU(2) U(1)Y

Qf 3 2 1/3
ūf 3̄ 1 −4/3
d̄f 3̄ 1 2/3
Lf 1 2 −1
ēf 1 1 2

We have followed the customary definition in coupling Bμ to half the hypercharge
current. We have also scaled the fields so that the couplings appear in the covariant
derivative and have labeled the SU(3)c, SU(2)L, and U(1)Y coupling constants as gs, g,
and g′, respectively. Using matrix-valued fields, defined with the couplings in front of the
gauge kinetic terms, this covariant derivative can be written in a very compact manner:

DμQ =
(
∂μ − iAμ − iWμ − i

2
1
3

Bμ
)

Q. (2.66)

As another example, the Standard Model contains lepton fields L with no SU(3) quantum
numbers but which are SU(2) doublets with hypercharge −1. The covariant derivative is

DμL =
(
∂μ − igWi

μT i − ig ′

2
Bμ

)
L. (2.67)

We have summarized the fermion content in the Standard Model in Table 2.1. Here f
labels the quark or lepton flavor, i.e. the generation number: f = 1, 2, 3. For example,

L1 =
(
νe
e

)
, L2 =

(
νμ

μ

)
, L3 =

(
ντ

τ

)
. (2.68)

The reason why there is this repetitive structure, these three generations, is one of the great
puzzles of the Standard Model, to which we will return. In terms of these two-component
fields (indicated generically by ψi), the gauge-invariant kinetic terms have the form

Lf,k = −i
∑

i
ψiDμσμψ∗

i , (2.69)

where the covariant derivatives are those appropriate to the representation of the gauge
group.

Unlike QED (where, in two-component language, parity interchanges e and ē∗), the
model does not have a parity symmetry. The fields Q and ū, d̄ transform under different
representations of the gauge group. There is simply no discrete symmetry that one can find
which is the analog of the parity symmetry in QED.
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2.5 The particles and fields of the Standard Model: Higgs scalars and
the complete Standard Model

In order to account for the masses of the W and Z bosons and those of the quarks and
leptons, the simplest approach is to include a scalar, φ, which transforms as a (1, 2)1
representation of the Standard Model gauge group. This Higgs field possesses both self-
couplings and also Yukawa couplings to the fermions. Its kinetic term is simply

Lφ,k = |Dμφ|2. (2.70)

The Higgs potential is similar to that of our toy model (2.24):

V(φ) = μ2|φ|2 + λ|φ|4. (2.71)

This is completely gauge invariant. But if μ2 is negative, the gauge symmetry is broken as
before. We will describe this breaking, and the mass matrix of the gauge bosons, shortly.

We could consider a more complicated Higgs sector. For example, we could include
multiple Higgs doublets. Or, as we will see in Chapter 8, electroweak symmetry breaking
might be the result of some new strong dynamics. But the single Higgs doublet is truly
the simplest possibility, in the sense that it represents the smallest number of degrees
of freedom we can include that will give rise to the observed pattern of gauge boson
masses. As of this writing, at the level of precision of the two major LHC experiments,
there is evidence for one such doublet and no evidence for additional doublets. Any
additional scalars are likely to be heavy compared with the observed Higgs particle and
so, if discovered or required by some other theoretical considerations, they can properly be
referred to as Beyond the Standard Model physics.

At this point we have written down the most general renormalizable self-couplings of
the scalar fields. Renormalizability and gauge invariance permit one other set of couplings
in the Standard Model: Yukawa couplings of the scalars to the fermions. The most general
such couplings are given by

LYuk = yU
f, f ′Qf ūf ′σ2φ

∗ + y D
f, f ′Qf d̄f ′φ + y L

f, f ′Lf ēf ′φ. (2.72)

Here yU, y D and y L are general matrices in the space of flavors.
We can simplify the Yukawa coupling matrices significantly by redefining fields. Any

3 × 3 matrix can be diagonalized by separate left and right U(3) matrices. To see this,
suppose that one has some matrix M, not necessarily Hermitian. The matrices

A = MM†, B = M†M (2.73)

will be Hermitian; A can be diagonalized by a unitary transformation UL, say, and B by a
unitary transformation UR. In other words

ULMU†
R, URM†U†

L (2.74)

are diagonal. By redefining fields, we can take yU as diagonal and Md = VCKMM ′
d as

diagonal; VCKM is the Cabibbo–Kobayashi–Maskawa (CKM) matrix. This matrix is not
unique, and we will present various conventional forms in Section 3.3.
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23 2.6 The gauge boson masses

To summarize, the entire Lagrangian of the Standard Model consists of the following:

1. gauge-invariant kinetic terms for the gauge fields,

La = − 1
4g2

s
G 2
μν − 1

4g2 W 2
μν − 1

4g′ 2 F 2
μν (2.75)

(here we have returned to our scaling with the couplings in front and Gμν , Wμ,ν and Fμν
are the SU(3), SU(2) and U(1) field strengths);

2. gauge-invariant kinetic terms for the fermion and Higgs fields, Lf,k,Lφ,k;
3. Yukawa couplings of the fermions to the Higgs field, LYuk;
4. the potential for the Higgs field, V(φ).

If we require renormalizability, i.e. that all the terms in the Lagrangian be of dimension
four or less, then this is all that we can write down. It is extraordinary that this simple
structure incorporates over a century of investigation of elementary particles.

2.6 The gauge boson masses

The field φ has an expectation value, which we can take to be as follows:

〈φ〉 = 1√
2

(
0
v

)
, (2.76)

where v = μ/
√
λ. Expanding around this expectation value, the Higgs field can be

written as

φ = ei�π(x)·�σ/2v 1√
2

(
0

v + σ(x)
)

. (2.77)

By a gauge transformation we can set �π = 0. Not all the gauge symmetry is broken by
〈φ〉. It is invariant under the U(1) symmetry generated by

Q = T3 + Y
2

. (2.78)

This is the electric charge. If we write:

L =
(
ν

e

)
, Q =

(
u
d

)
(2.79)

then ν has charge 0 and e has charge −1; u has charge 2/3 and d has charge −1/3. The
charges of the singlets also work out correctly.

With this gauge choice we will examine the scalar kinetic terms in order to determine
the gauge boson masses. Keeping only terms quadratic in the fluctuating fields (σ and the
gauge fields), these now have the form

|Dμφ|2 = 1
2
(∂μσ

2)+ 1
2
(0 v)

(
igW i

μ

σ i

2
+ ig ′

2
Bμ

)(
−igWμj σ

j

2
− ig ′

2
Bμ

)(
0
v

)
.

(2.80)
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24 The Standard Model

It is convenient to define the complex fields

W ±
μ = 1√

2

(
W 1
μ ± iW 2

μ

)
(2.81)

These are states of definite charge, since they carry zero hypercharge and T3 = ±1. In
terms of these fields, the gauge boson mass and kinetic terms take the form

∂μW +
ν ∂

μW ν− + 1
2
∂μW 3

ν ∂
μW ν3 + 1

2
∂μBν∂μBν

+ 1
4

g 2v2W +
μ Wμ− + 1

8
v2(gW 3

μ − g ′Bμ
)2. (2.82)

Examining the terms involving the neutral fields, Bμ and W 3
μ, it is natural to redefine

Aμ = cos θw Bμ + sin θw W 3
μ, Zμ = sin θw Bμ + cos θw W 3

μ (2.83)

where

sin θw = g ′√
g2 + g ′ 2

(2.84)

is known as the Weinberg angle. The field Aμ is massless, while the Ws and Zs have the
following masses:

M 2
W = 1

4
g2v2, M 2

Z = 1
4
(g 2 + g ′ 2)v2 = M 2

W
cos2 θw

. (2.85)

We can immediately see that Aμ couples to the current

jμem = g ′ cos θw
1
2

jYμ + g sin θw j3μ

= e
(

1
2

jYμ + j3μ

)
, (2.86)

where

e = gg ′√
g2 + g ′ 2

(2.87)

is the electric charge. So Aμ couples precisely as we expect the photon to couple and Wμ±
couple to the charged currents of the four-fermion theory. The Z boson couples to:

j Z
μ = −g ′ sin θw

1
2

jYμ + g cos θw j3μ. (2.88)

2.7 Quark and lepton masses

On substituting the expectation value for the Higgs field into the expression for the quark
and lepton Yukawa couplings, Eq. (2.72) leads directly to masses for the quarks and
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25 2.8 The Higgs field and its couplings

leptons. The lepton masses and the masses for the u quarks follow immediately:

mef = yef
v√
2

, muf = yuf
v√
2

. (2.89)

So, for example, the Yukawa coupling of the electron is me
√

2/v.
The masses for the d quarks are somewhat more complicated. Because yD is not

diagonal, we have a matrix in flavor space for the d quark masses:

(md)ff ′ = (yd)ff ′
v√
2

. (2.90)

As we have seen, any matrix can be diagonalized by separate unitary transformations acting
on from left or the right. So we can diagonalize this matrix by separate rotations of the
d quarks (within the quark doublets) and of the d̄ quarks. The rotation of the d̄ quarks
corresponds to a simple redefinition of these fields. But the rotation of the d quarks is more
significant, since it does not commute with SU(2)L. In other words the quark masses are
not diagonal in a basis in which the W boson couplings are diagonal. The basis in which
the mass matrix is diagonal is known as the mass basis (the corresponding fields are often
called mass eigenstates).

The unitary matrix V acting on the d quarks is known as the Cabibbo–Kobayashi–
Maskawa, or CKM, matrix. In terms of this matrix the coupling of the quarks to the W ±
fields can be written as

W −
μ uf σ

μd ∗
f ′Vff ′ + W +

μ df σ
μu∗

f ′V∗
f ′f. (2.91)

There is a variety of parameterizations of V, which we will discuss shortly. One interesting
feature of the model is the Z couplings. Because V is unitary, these are diagonal in
flavor. This explains why Z bosons do not mediate processes which change flavor, such as
KL → μ+μ−. The suppression of these flavor-changing neutral currents was one of the
early, and critical, successes of the Standard Model.

2.8 The Higgs field and its couplings

In the simplest Higgs theory, the couplings of the Higgs are fixed. This includes the
couplings to gauge bosons, to fermions and to the Higgs field itself. At tree, or classical,
level these can be read off the Lagrangian, as follows.

1. There is a Higgs–ZZ coupling and a Higgs–W +W − coupling arising from the replace-
ment of φ by 1√

2
(v + σ) in the Higgs kinetic term.

2. There is a Yukawa coupling to all fermions, which is proportional to their masses.
3. There are cubic and quartic self-couplings of the Higgs.

We will discuss these couplings in the context of the Higgs search in the next chapter.
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Suggested reading

There are a number of textbooks with good discussions of the Standard Model, including
those of Peskin and Schroeder (1995), Weinberg (1995), Cottingham and Greenwood
(1998), Donoghue et al. (1992) and Seiden (2005). We cannot give a full bibliography
of the Standard Model here, but the reader may want to examine some original papers,
including the discovery of non-Abelian gauge theory by Yang and Mills (1954); the Higgs
mechanism by Englert and Brout (1964), Guralnik et al. (1964) and Higgs (1964); Salam
and Ward (1964), Weinberg (1967) and Glashow et al. (1970) on weak interaction theory;
’t Hooft (1971), Gross and Wilczek (1973) and Politzer (1973) on asymptotic freedom of
the strong interactions. For discussion of the various phases found in gauge theories, see
’t Hooft (1980) and Fradkin and Shenker (1979).

Exercises

(1) The Georgi–Glashow model Consider a gauge theory based on SU(2), with the Higgs
field �φ in the adjoint representation. Assuming that φ attains an expectation value,
determine the gauge boson masses. Identify the photon and the W ± bosons. Is there a
candidate for the Z boson?

(2) Consider the Standard Model with two generations. Show that there is no CP violation
and that the CKM matrices can be described in terms of a single angle, known as the
Cabibbo angle.
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