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MULTIPLICATION INVARIANT SUBSPACES
OF HARDY SPACES

T. L. LANCE AND M. I. STESSIN

ABSTRACT. This paper studies closed subspaces L of the Hardy spaces Hp which
are g-invariant (i.e., gÐL � L) where g is inner, g Â≥ 1. If p ≥ 2, the Wold decomposition
theorem implies that there is a countable “g-basis” f1, f2, . . . of L in the sense that L is a
direct sum of spaces fj Ð H2[g] where H2[g] ≥ ff Ž g j f 2 H2g. The basis elements fj
satisfy the additional property that

R
T jfj j

2gk ≥ 0, k ≥ 1, 2, . . . . We call such functions
g-2-inner. It also follows that any f 2 H2 can be factored f ≥ hf ,2 Ð (F2 Ž g) where
hf ,2 is g-2-inner and F is outer, generalizing the classical Riesz factorization. Using Lp

estimates for the canonical decomposition of H2, we find a factorization f ≥ hf ,pÐ(FpŽg)
for f 2 Hp. If p ½ 1 and g is a finite Blaschke product we obtain, for any g-invariant
L � Hp, a finite g-basis of g-p-inner functions.

1. Introduction. Let X be a Hilbert space and V: X ! X be an isometry. The well-
known Wold decomposition theorem states that

(1) X ≥ X0

1M
n≥0

VnX1

where X1 ≥ X 	 VX is a wandering subspace and X0 ≥
T1

n≥0 VnX ([6], [4, p. 3]). If
X ≥ H2 and V is the operator of multiplication by an inner function g the decomposition
(1) implies that any function f 2 H2 can be written as

(2) f (z) ≥
1X

n≥0
si(z)fi

�
g(z)

�

where fi 2 H2, and s1, s2, . . . form an orthonormal basis of H2 	 gH2 (in this case X0 ≥

f0g). In the case when g is a finite Blaschke product, H2	gH2 is finite dimensional with
dimension equal to the order of g.

Any closed subspace M ² H2 which is invariant under multiplication by g could be
considered as X. Then (1) implies that any f 2 M can be written in the way similar to
(2):

(3) f (z) ≥
1X

i≥0
ti(z)fi

�
g(z)

�

where ti form an orthonormal basis of M 	 gM. It is easily seen that functions ti(z) (and
si(z)) satisfy

(4)
Z

T
jti(z)j2gk(z) dm(z) ≥ 0
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MULTIPLICATION INVARIANT SUBSPACES OF HARDY SPACES 101

where T stands for the unit circle and dm(z) is the normalized Lebesgue measure on T.
We call a function that satisfies (4) g-2-inner. Thus, any g-invariant subspace of H2 has
a g-basis consisting of g-2-inner functions.

It is natural to ask which of these results could be extended to the case p Â≥ 2. Of
course, if we are interested in a generating system such that its linear combinations are
dense in the subspace, then the existence of such a system is easily obtainable from
Hilbert space results. But in this paper we shall deal with the following question.

Let M ² Hp be a g-invariant subspace. By analogy with (4) we call a function ß(z)
g-p-inner if

(5)
Z

T
jß(z)jpgk(z) dm(z) ≥ 0, k ≥ 1, 2, . . . .

We investigate whether M has a g-basis consisting of g-p-inner functions. Our main result
is

THEOREM. If g is a finite Blaschke product of order n and p ½ 1 then any g-invariant
subspace M has a g-basis consisting of g-p-inner functions. That is, any ß 2 M can be
written as

ß(z) ≥
kX

i≥1
hi,p(z)ßi

�
g(z)

�

where the functions hi,p are g-p-inner, i ≥ 1, . . . , k k � n and ßi 2 Hp.

The proof of this theorem is based on g-p-factorization of Hp functions which gener-
alizes the classical canonical factorization (if g(z) ≥ z they are the same) and on some
estimates which give additional information about the decomposition (2).

The paper is organized as follows. In Section 2 we consider properties of g-2-inner
functions and obtain g-2-factorization. Section 3 is devoted to Lp estimates, which are
used in Section 4 to prove the basis theorem. R. Douglas noted that the estimates of
Section 3 should lead to another proof of the result of V. Mascioni [8] about operators
similar to a contraction. We sketch these ideas in Section 5.

ACKNOWLEDGEMENT. We would like to thank J. A. Cima, R. G. Douglas and B. Ko-
renblum for useful discussions. We would also like to thank the referee for very helpful
comments about the early version of the paper.

2. g-2-factorization. Let g be an inner function, g Â≥ 1. We denote by H2[g] the
subspace of H2 given by

H2[g] ≥ fh(z) ≥ † Ž g(z) : † 2 H2g

and P [g] the (non-closed) subspace of all polynomials in g. Note that if g(0) ≥ 0, then
k† Ž gkH2 ≥ k†kH2 . Therefore, if g(0) ≥ 0 then H2[g] is closed in H2. Since H2[g] ≥
H2[ g�g(0)

1�g(0)g
] we conclude that H2[g] is closed in H2 for any inner function g.

For any subset A ² H2 we denote by [A]g the minimal closed g-invariant subspace of
H2 which contains A. If L is a g-invariant subspace of H2 then we define L	gL ≥ (gL)?L
to be the orthogonal complement in L of gL (note that gL is closed).
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102 T. L. LANCE AND M. I. STESSIN

Let B be a Blaschke product with zeros a0, a1, . . . , whose multiplicities are k0, k1, . . .
respectively. Denote by M the following subspace of H2.

M ≥ span
(

z‡�1

(1� āiz)‡
;
(

i ≥ 0, 1, 2, . . .
‡ ≥ 1, 2, . . . , ki

))
.

We arrange the generators of M in the following order

(6)

ß0 ≥
1

(1� ā0z)
,ß1 ≥

z
(1� ā0z)2

, . . . ,ßk0�1 ≥
zk0�1

(1 � ā0z)k0
,

ßk0 ≥
1

1� ā1z
,ßk0+1 ≥

z
(1� ā1z)2

, . . . ,ßk0+k1�1 ≥
zk1�1

(1� ā1z)k1

ßk0+k1 ≥
1

1� a2z
, . . . .

There is an orthonormal basis of M, s0, s1, . . . , such that s0, . . . , sm form an orthonor-
mal basis of spanfß0, . . . ,ßmg (such a basis might be obtained by the Gram-Schmidt
process).

Then each of s0, . . . , sm, . . . is a finite linear combination of the generators (6).

PROPOSITION 1. The functions s0, s1, . . . form an orthonormal B-basis of H2, that is
any function f 2 H2 is uniquely represented as an orthogonal sum

f (z) ≥
1X

i≥0
si(z)fi

�
B(z)

�

where fi 2 H2, i ≥ 1, . . . and if

f (z) ≥
1X

i≥0
si(z)fi

�
B(z)

�
and h(z) ≥

1X
i≥0

si(z)hi

�
B(z)

�
,

then

(7) hf , hiH2 ≥
1X

i≥0
hfi, hiiH2 ≥

1X
i≥0

Z
T

fi(z)hi(z) dm(z).

PROOF. The basis property is straightforward since any function which is orthogonal
to M is in BH2. This implies that any function orthogonal to spanfsj(z)Bl(z) : j, l ≥
0, . . . , g is divisible by all powers of B and, therefore, vanishes identically.

To prove (7) it suffices to prove it in the case f ≥ siBk, h ≥ sjBl but in this case it is
obvious.

COROLLARY 1. Let g be any inner function. Then there is a g-basis of H2, s0, . . . ,
consisting of rational functions holomorphic in the closed disk and such that sigk ? sjgl

if i Â≥ j, for i, j, k, l ≥ 0, 1, . . . .

PROOF. By Frostman’s Theorem [5, p. 79] there is ¢ 2 ∆ such that

B ≥
g� ¢

1� ¢̄g

https://doi.org/10.4153/CJM-1997-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-005-9


MULTIPLICATION INVARIANT SUBSPACES OF HARDY SPACES 103

is a Blaschke product. Since H2[B] ≥ H2[g], the result follows from Proposition 1.

DEFINITION. A function ß 2 Hp(p Ù 0) is called g-p-inner if kßkp ≥ 1 andR
T jß(z)jpg(z)k dm(z) ≥ 0, k ≥ 1, 2, . . . .

REMARK. We use the terminology similar to the classical one because, first, in case
g(z) ≥ z, z-p-inner functions are classical inner functions and, second, we shall see soon
that a g-p-inner function satisfies some properties similar to a classical one.

REMARK. It follows directly from the definition that if ß(z) is inner and †(z) is g-p-
inner, then ü ≥ ß† is g-p-inner.

COROLLARY 2. Let f (z) ≥
1X

k≥0
sk(z)fk

�
g(z)

�
2 H2. Then f is g-2-inner if and only if

(8)
1X

i≥0
jfi(z)j2

þþþ
T
≥ 1

where the equality (8) for boundary values of ffig holds almost everywhere on T.

PROOF. We have by (7)

0 ≥
Z

T
jf (z)j2g(z)k dm(z) ≥ hf (z) Ð g(z)k, f (z)iH2

≥
1X

i≥0
hfi(z) Ð zk, fi(z)iH2 ≥

1X
i≥0

Z
T
jfi(z)j2zk dm(z)

≥
Z

T

�1X
i≥0
jfi(z)j2

�
zk dm(z).

This equality holds for k ≥ š1, š2, . . . . The Uniqueness Theorem implies thatP1
i≥0 jfi(z)j2

þþþ
T
≥
a.e.

constant. Since kfk2 ≥ 1, (8) holds a.e.

REMARK. If g is a finite Blaschke product of order n then all the basis functions
s0, s1, s2, . . . , sn�1 are analytic in the closed disk ∆̄, and Corollary 2 implies that any g-2-
inner function is in H1. In the general case, this is not true. For example, let an ≥ 1� 1

n3Û2 .
Then fang

1
n≥1 satisfies the Blaschke condition. Put

g(z) ≥ B(z) ≥
1Y

n≥1

an � z
1� anz

.

Then it is easy to verify that

s0 ≥ 1, sm(z) ≥
� mY

k≥1

z � ak

1� akz

�q1� jam+1j2

1� am+1z
, m Ù 0.

By Corollary 2,

f (z) ≥ ï
1X

n≥1

1

n5Û8
sn(z), where ï ≥

� 1X
n≥1

1

n5Û4

��1Û2

is g-2-inner. It is easily seen that f (z) is unbounded as z ! 1.
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104 T. L. LANCE AND M. I. STESSIN

PROPOSITION 2. Every function f 2 H2 is uniquely (up to unimodular factor) repre-
sented as a product

(9) f (z) ≥ hf ,2(z) Ð F2

�
g(z)

�
where hf ,2 is g-2-inner and F2(z) 2 H2 is outer.

REMARK. If g(z) ≥ z then the factorization (9) coincides with the classical canonical
factorization.

REMARK. In the proof that follows we use Proposition 8 from Section IV which
considers norm properties of products involving g-p-inner functions for arbitrary p. This
result, which does not depend on any intervening work, is placed there for convenience.

PROOF OF PROPOSITION 2. Let f 2 H2. Denote by M2
f the g-invariant subspace

generated by f :
M2

f ≥ f Ð P [g].

(Recall that P [g] stands for the set of polynomials in g). Since

dim(M2
f 	 gM2

f ) ≥ 1,

M2
f 	 gM2

f is generated by a g-2-inner function h. We have M2
f ≥ h Ð P [g]. By Proposi-

tion 8, h Ð P [g] ≥ h Ð P [g] ≥ h Ð H2[g]. In particular,

f ≥ h Ð ß
�
g(z)

�
for some ß 2 H2. If ß(z) ≥ ß̂(z) Ð F(z), where ß̂(z) is inner and F is outer, we write

hf ,2(z) ≥ h(z) Ð ß̂
�
g(z)

�
.

To prove the uniqueness let us suppose that there are two g-2-factorizations of f 2 H2,
f ≥ h1 (F1Žg) ≥ h2 (F2Žg), where hi is g-2-inner, Fi is outer, i ≥ 1, 2. If Pn is a sequence
of polynomials such that F1Pn�!

H2
1 then by Proposition 8

kh1 � f Ð Pn(g)k2 ≥
h1

�
1� F1(g) Pn(g)

�
2
≥ k1� F1 Pnk2 ! 0

as n !1. This shows that the sequencefh2(F2Žg)(PnŽg)g1n≥1 converges to h1 in H2. By
the same Proposition 8, fF2Png converges in H2 to some function ß and h2(z)ß

�
g(z)

�
≥

h1(z). Write ß(z) ≥
P1

k≥0 ckzk. Since both h1 and h2 are g-2-inner we have

0 ≥
Z

T
jh1(z)j2 g(z)k dm(z) ≥

Z
T
jh2(z)j2

þþþß�g(z)
�þþþ2 g(z)k dm(z)

≥
� 1X

m≥0
cmc̄m+k

� Z
T
jh2(z)j2 dm(z) ≥

Z
T
jß(z)j2 zk dm(z).

This implies that jß(z)j ≥ 1 almost everywhere on T, that is ß is inner. Since both F1

and F2 are outer, the z-invariant subspaces of H2 generated by h1 and h2 are the same as
the z-invariant subspace of H2 generated by f . This yields ß is a unimodular constant.
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3. Lp-estimates.

PROPOSITION 3. Let g be an inner function and f 2 H1, f (z) ≥
1X

k≥0
sk(z)fk

�
g(z)

�
,

where si are rational functions holomorphic in ∆̄ satisfying Corollary 1 and 1 � p � 1.
Then there are constants Ck,p such that

(10) kfkkp � Ck,pkfkp.

PROOF. Let us denote by Pg the orthogonal projection Pg: H2 ! spanfgk, k ≥

0, 1, 2, . . .g. This projection coincides with the restriction to H2 of the conditional expec-
tation operator associated with the õ-algebra determined by g. Therefore, ([3, p. 184])

(11) kfkp ½ kPgfkp

holds for all p ½ 1. This implies that Pg may be extended to Hp as a linear operator
Hp ! Hp with norm 1. We use the same notation, Pg, for this extension. Obviously Pg

maps Hp into the closure in Hp of spanfgk, k ½ 0g. It is easily seen that

(12) fk Ž g ≥ Pg(Ts̄k f )

where Ts̄k stands for the Toeplitz operator with symbol s̄k. Write

sk ≥
mX

l≥1

nlX
r≥1

ïlrzr�1

(1� alz)r
.

It is easy to verify that

(13)
Ts̄k f (z) ≥

mX
l≥1

nlX
r≥1

ïlr

(z � al)r

²
z
�

f (z) �
r�2X
t≥0

1
t!

f (t)(al)(z � al)
t
�

�
1

(r � 1)!
alf

(r�1)(al)(z � al)
r�1

¦
.

Since jz� alj, l ≥ 1, . . . , m are separated from zero when jzj ≥ 1, (13) implies that there
are constants Ck,p such that

kTs̄k fkp � Ck,pkfkp.

Now, (10) follows from (11).
Let f 2 H1, f (z) ≥

P1
k≥0 sk(z)fk

�
g(z)

�
. Denote by Qk

g the operator

(14) Qk
g(f ) ≥ fk.

The following results are immediate corollaries of the previous proposition.
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106 T. L. LANCE AND M. I. STESSIN

COROLLARY 3. The operator Qk
g may be extended to Hp as a bounded linear oper-

ator Qk
g: Hp ! Hp.

COROLLARY 4. If g is a finite Blaschke product of order n then for all 1 � p � 1

and f 2 Hp we have the unique representation

(15) f (z) ≥
nX

k≥0
sk(z)fk

�
g(z)

�

where fk 2 Hp.

PROPOSITION 4. Let g be a finite Blaschke product of order n, f 2 H1 and f (z) ≥
hf ,2(z) Ð F2

�
g(z)

�
be the g-2-factorization (9). Then F2 2 H1.

PROOF. Let g ≥ z�a0
1�a0z Ð Ð Ð

z�an�1
1�ān�1z , where a1, . . . , an 2 ∆. Write

s0 ≥

q
1� ja0j2

1� a0z
, s1 ≥

z � a0

1� a0z
Ð

q
1� ja1j2

1� a1z
, . . . ,

sk ≥
z � a0

1� a0z
Ð Ð Ð

z � ak�1

1� āk�1z
Ð

q
1� jakj2

1� ākz
, . . . .

(This is the orthonormal basis associated to (6) in this case). Let

hf ,2(z) ≥
n�1X
k≥0

sk(z) Ð ĥk

�
g(z)

�
and f (z) ≥

n�1X
k≥0

sk(z)fk
�
g(z)

�
.

Then
fk
�
g(z)

�
≥ ĥk

�
g(z)

�
Ð F2

�
g(z)

�
and, by (8),

jF2(w)j2 ≥
n�1X
k≥0

jfk(w)j2

for almost all w 2 T. Now the result follows from Proposition 3.
The following result establishes the estimate similar to (10) for an arbitrary g-basis in

the case when g is a finite Blaschke product.

PROPOSITION 5. Let g be a finite Blaschke product of order n, and letß1, . . . ,ßk(k �
n) be g-2-inner functions such that

(16) ßig
‡ ? ßjg

m i, j ≥ 1, . . . , k, i Â≥ j, m, ‡ ≥ 0, 1, 2, . . . .

Then there are constants D‡,p(1 � p � 1), ‡ ≥ 1, 2, . . . , k such that for any f 2 H1,

f (z) ≥
kX

i≥1
ßi(z)fi

�
g(z)

�

we have the estimate

(17) kfikp � Di,pkfkp, i ≥ 1, . . . , k.
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PROOF. Write

ßi(z) ≥
n�1X
m≥0

sm(z)ß̂i
m

�
g(z)

�
.

By Corollary 2 we have

(18)
n�1X
m≥0

jß̂i
m(w)j2

þþþ
T
≥
a.e.

1.

The orthogonality condition (16) yields

(19) ü(z) ≥
Z

T

ßi(w)ßj(w)
1� zw̄

dm(w) 2 (H2
0[g])?, i Â≥ j.

A proof similar to the one of Corollary 2 and (16) show that (19) yields

(20)
n�1X
m≥0

ß̂i
m(w)ß̂j

m(w)
þþþ
T
≥
a.e.

0, i Â≥ j.

Denote by A(w) the following nð k matrix

A(w) ≥

2
64 ß̂1

0(w) Ð Ð Ð ß̂k
0(w)

Ð Ð Ð Ð Ð Ð Ð Ð Ð

ß̂1
n�1(w) Ð Ð Ð ß̂k

n�1(w)

3
75 .

Then (18), (20) imply

(21) AŁ(w)A(w) ≥ I

a.e. on T (where AŁ(w) ≥ A(w)T is the adjoined matrix). If we denote by Aj1ÐÐÐjk (w) the
kð k minor of A(w) which is formed by rows j1, . . . , jk of A(w), then (21) and the Binet-
Cauchy formula [7, p. 35] imply

X
(j1,...,jk)

j det
�
Aj1,...,jk(w)

�
j2 ≥ 1

a.e. on T. Hence, for almost every w 2 T

(22) max
(j1,...,jk)

þþþ det
�
Aj1,...,jk (w)

�þþþ ½ 1q
( n

k )
≥

vutk! (n� k)!
n!

.

Denote by Bj1,...,jk the following subset of the circle T.

Bj1ÐÐÐjk ≥

(
w 2 T :

þþþdet
�
Aj1...jk (w)

�þþþ ½
vutk! (n� k)!

n!

)
.

Then (22) implies that

(23) m(T) ≥ m
� [

(j1ÐÐÐjk)
Bj1ÐÐÐjk

�
.
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108 T. L. LANCE AND M. I. STESSIN

where m stands for the normalized Lebesgue measure on T. But (22) and (23) imply the
existence of at least one measurable step-function N , which maps the unit circle T into
the set of k-tuples (j1, . . . jk), 0 � j‡ � n� 1, ‡ ≥ 1, . . . , k, j‡ Â≥ jm if ‡ Â≥ m,

N : w 7!
�
j1(w), . . . , jk(w)

�
,

such that

(24)
þþþ det

�
AN (w)(w)

�þþþ ½
vutk! (n� k)!

n!

a.e. on T.
Let

f (z) ≥
n�1X
m≥0

sm(z)f̂m
�
g(z)

�
≥

kX
i≥1
ßi(z)fi

�
g(z)

�
.

Then

f (z) ≥
n�1X
m≥0

sm(z)f̂m
�
g(z)

�
≥

kX
i≥1

n�1X
m≥1

sm(z)ß̂i
m

�
g(z)

�
fi
�
g(z)

�

≥
n�1X
m≥0

sm(z)
kX

i≥1
ß̂i

m

�
g(z)

�
fi
�
g(z)

�
.

This yields
kX

i≥1
ß̂i

m(w)fi(w) ≥ f̂m(w), m ≥ 0, . . . , n � 1, w 2 T.

In particular,
kX

i≥1
ß̂i

m(w)fi(w) ≥ f̂m(w), m ≥ j1(w), . . . , jk(w).

By Cramer’s rule,

fi(w) ≥

det

þþþþþþþþ
ß̂1

j1(w)(w) Ð Ð Ð f̂j1(w)(w) Ð Ð Ð ß̂k
j1(w)(w)

...
...

...
ß̂1

jk(w)(w) Ð Ð Ð f̂jk(w)(w) Ð Ð Ð ß̂k
jk(w)(w)

þþþþþþþþ
det

�
AN (w)(w)

�
≥ ï1(w)f̂j1(w)(w) + ï2(w)f̂j2(w)(w) + Ð Ð Ð + ïk(w)f̂jk(w)(w).

By (18), kß̂l
jk1 � 1, so we conclude by (24) that ïj(w) 2 L1(T) and kïj(w)k1 �

(k�1)!
p

n!p
k!
p

(n�k)!
. Now (17) follows from (10).

4. The Case p Ù 1. In this section we extend previous results to the case p Â≥ 2.

PROPOSITION 6. Let p Ù 0. Any Hp-function f is uniquely (up to a unimodular factor)
written as a product

(25) f (z) ≥ hf ,p(z)Fp

�
g(z)

�
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where hf ,p is g-p-inner and Fp is an outer Hp-function.

PROOF. Let f (z) ≥ ß(z) Ð F(z) be the classical factorization of f , where ß is inner
and F is outer. Then FpÛ2 2 H2 and by (9)

FpÛ2(z) ≥ h(z) Ð F2

�
g(z)

�

where h is g-2-inner and F2 is outer. Then h is zero free in the unit disk and, therefore,
h2Ûp is g-p-inner.

Now we define hf ,p and Fp by

hf ,p(z) ≥ ß(z) Ð h(z)2Ûp,

Fp

�
g(z)

�
≥
�

F2

�
g(z)

��2Ûp
.

To prove uniqueness of factorization (25) let us suppose that

h1
f ,p(z) Ð F1

p

�
g(z)

�
≥ f (z) ≥ ß(z) Ð F(z) ≥ h2

f ,p(z) Ð F2
p

�
g(z)

�

are two factorizations. Since both F1
p and F2

p are outer we have

h1
f ,p(z) ≥ ß(z) Ð ĥ1

f ,p(z)

h2
f ,p(z) ≥ ß(z) Ð ĥ2

f ,p(z)

and both ĥ1
f ,p, ĥ2

f ,p are g-p-inner and zero-free in ∆. Then

�
ĥ1

f ,p(z)
�pÛ2

�
F1

p

�
g(z)

��pÛ2
≥ F(z)pÛ2 ≥

�
ĥ2

f ,p(z)
�pÛ2

�
F2

p

�
g(z)

��pÛ2

are two factorization of the H2-function F2Ûp. By Proposition 2 they are the same up to
unimodular factors.

COROLLARY 5. Let g be a finite Blaschke product, f 2 H1 and

f (z) ≥ hf ,p(z)Fp

�
g(z)

�

the g-p-factorization of f . Then Fp 2 H1.

PROOF. Write the canonical factorization f ≥ h Ð F where h is inner, F is outer. As
we saw in the Proof of Proposition 6.

Fp ≥ (F̂2)2Ûp

where
F(z)pÛ2 ≥ ĥ(z) Ð F̂2

�
g(z)

�
is the g-2-factorization of FpÛ2. Since FpÛ2 2 H1 we conclude by Proposition 4 that F̂2

is bounded.
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Like classical inner functions, g-p-inner functions have some extremal properties. Let
f be an Hp0 -function which annihilates gHp (we use the usual notation 1

p + 1
p0 ≥ 1). For

a subspace M ² Hp we define the number S f
k(M) (k ½ 0 is an integer) by

(26) S f
k (M) ≥ sup

²
j‡f

k(h)j ≥
þþþþ ZT

h(z)f (z)
�
g(z)

�k
dm(z)

þþþþ : h 2 M, khkp � 1
¦

.

We say that M has f -rank k if S f
k(M) Â≥ 0, but S f

m(M) ≥ 0 for all 0 � m Ú k.
If M has f -rank k, then we call the extremal function of the problem (26) an f -extremal

function of M. If p Ù 1 and M is closed, the existence and uniqueness (up to unimodular
factor) of the extremal element of the problem (26) follows from the following standard
argument. Given a maximizing sequence hn 2 M we find a subsequence hnm that is weak-
Ł convergent (the unit ball of Hp is weak-Ł compact). Let † be the weak-Ł limit. Then
† 2 M, ‡f

k(†) ≥ limm!1 ‡f
k(hnm ) and k†k � 1. This implies that j‡f

k(†)j ≥ S f
k (M). The

uniqueness follows from the strict convexity of the Hp-sphere.
Obviously, any f -extremal function has norm 1.
Note that if M has f -rank k, then for any h 2 M, ‡f

k(hgm) ≥ 0 for all m ½ 1. Indeed,
if m � k, then ‡f

k(hgm) ≥ ‡f
k�m(h) ≥ 0 by definition of f -rank. If m Ù k, then

‡f
k(hgm) ≥

Z
T

h(z)gm�k(z)f (z) dm(z) ≥ 0

since f annihilates the ideal generated by g.

PROPOSITION 7. Let M ² Hp be a closed g-invariant supspace of f -rank k, where
f 2 (gHp)?. Then an f -extremal function of M is g-p-inner.

PROOF. Let h be the extremal function for (26). Without loss of generality we may
assume that ‡f

k(h) Ù 0. Let r ½ 1. Consider the function

F (¢) ≥
‡f

k

�
h(1 + ¢gr)

�
kh(1 + ¢gr)kp

≥
‡f

k(h)

kh(1 + ¢gr)kp

(the second equality follows from the above note) where ¢ 2 C. The extremality of h
implies that F has local maximum at the origin. A direct computation shows that

∂F
∂¢

þþþþ¢≥0
≥
� 1

2‡
f
k(h)

R
T jh(z)jp

�
g(z)

�r
dm(z)

khk2
p

.

Now the condition ∂F
∂¢

þþþþ¢≥0
≥ 0 yields

Z
T
jh(z)jpgr(z) dm(z) ≥ 0.

PROPOSITION 8. A function h is g-p-inner if and only if for every polynomial Q the
following equality holds

kh(z) ÐQ
�
g(z)

�
kp ≥ kh(z)kp Ð kQ(z)kp ≥ kQ(z)kp.

https://doi.org/10.4153/CJM-1997-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-005-9


MULTIPLICATION INVARIANT SUBSPACES OF HARDY SPACES 111

PROOF. Let h ≥ h1ĥ be the canonical factorization of h, where h1 is inner, ĥ is outer.
If h is g-p-inner then the same is true for ĥ and, therefore, ĥpÛ2 is g-2-inner. Write the
representation of ĥpÛ2

ĥpÛ2(z) ≥
1X

k≥0
sk(z)ĥk

�
g(z)

�
.

By Corollary 2 we have � 1X
k≥0

jĥk(z)j2
�þþþþ

T
≥
a.e

1.

Then by (7)
khkp

p ≥ kĥkp
p ≥ kĥpÛ2k2

2 ≥ 1.

Let Q ≥ q Ð Q̂ be the Riesz factorization of Q, where q is inner, Q̂ is outer. Now the
relation (7) yields

h(z)Q
�
g(z)

�p

p
≥
ĥ(z)Q̂

�
g(z)

�p

p
≥
ĥ(z)pÛ2Q̂

�
g(z)

�pÛ22

2

≥ kQ̂(z)pÛ2k2
2 ≥ kQ̂kp

p ≥ kQkp
p.

Conversely, let khkp ≥ 1 and
h(z)Q

�
g(z)

�
p
≥ kQ(z)kp,

for all Q. In particular,

(27)
h(z)

�
1 + ¢gk(z)

�p

p
≥ k1 + ¢zkkp

p

for all k ½ 1, ¢ 2 C. Differentiate both sides of (27) with respect to ¢ at ¢ ≥ 0. We obtain

p
2

Z
T
jh(z)jpg(z)k dm(z) ≥

∂
∂¢

�Z
T
j1 + ¢zkjp dm(z)

�þþþþè≥0
≥ 0.

As in the case p Â≥ 2, we denote by Mp
f the closed g-invariant subspace of Hp generated

by f :
Mp

f ≥ spanff Ð gk, k ½ 0g.

COROLLARY 6. Let† 2 (gHp)? and f (z) ≥ hf ,p(z). Fp

�
g(z)

�
be the g-p-factorization

(25) of an Hp-function f . Then hf ,p is the †-extremal function of Mp
f .

PROOF. Suppose that the †-rank of Mp
f is k. Since Fp is outer, we have

Mp
f ≥ Mp

hf ,p
.

Now, if ß(z) ≥ hf ,p(z) Ð Q
�
g(z)

�
2 Mp

f , kßkp ≥ 1 then, by Proposition 8,

kQ(z)kp ≥ 1
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and, therefore,
jQ(0)j � 1.

Write Q(z) ≥
P1

i≥0 cizi. The note preceding Proposition 8 implies

‡†k
�

hf ,p(z)Q
�
g(z)

��
≥ c0‡

†
k (hf ,p) ≥ Q(0)‡†k (hf ,p).

Therefore,
j‡†k (ß)j � j‡†k (hf ,p)j.

As in the case p ≥ 2 for a subset A ² Hp we denote by [A]g the minimal closed
g-invariant subspace of Hp which contains A.

COROLLARY 7. If M ² Hp is g-invariant and MI is the collection of all g-p-inner
functions of M, then

M ≥ [MI]g.

PROOF. Let f 2 M. By Proposition 6

f (z) ≥ hf ,p(z) Ð Fp

�
g(z)

�

where hf ,p is g-p-inner and Fp is outer in Hp. Let Pn be a sequence of polynomials such
that Fp Ð Pn converges to 1 in Hp. By Proposition 8

hf ,p(z) � hf ,p(z)Fp

�
g(z)

�
Ð Pn

�
g(z)

�
p
≥ k1� Fp(z)Pn(z)kp ! 0

as n !1. This implies
hf ,p(z) 2 MI.

THEOREM. If g is a finite Blaschke product of order n and p Ù 0 then any g-p-
invariant subspace M has a set of g-p-inner generators consisting of at most n elements.
If p ½ 1 then these generators form a g-basis: that is, every ß 2 M is uniquely written
as

ß(z) ≥
kX

i≥1
hi,p(z)ßi

�
g(z)

�

where the g-p-inner functions hi,p, i ≥ 1, . . . , k, k � n are the generators and ßi 2 Hp.

PROOF. First, we note that if g is a finite Blaschke product then any g-p-inner func-
tion is in H1. Indeed, if f is g-p-inner, f ≥ ßF, where ß is inner, F is outer, then F is
g-p-inner and FpÛ2 is g-2-inner. By Corollary 2, FpÛ2 2 H1 and so is F. By Corollary 7,
M̃ ≥ M\H1 is dense in M. Obviously, M̃ is g-invariant. Let M̂ be the closure of M̃ in H2.
Then M̂ is a g-invariant subspace of H2 and by (3) and (4) there are g-2-inner functions
ß̃1, . . . , ß̃k, k � n which form a g-basis of M̂. Let

(28) ß̃i(z) ≥ hi,p(z) Ð Fi,p

�
g(z)

�
, i ≥ 1, . . . , k
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be the factorization (25). Then hi,p 2 H1, i ≥ 1, . . . , k. By Corollary 7, hi,p 2 M and hi,p,
i ≥ 1, . . . , k, generate M̃. Let f 2 M and

kX
i≥1

hi,p(z)Rn
i

�
g(z)

� Hp

�!
n�!1

f (z).

We must prove that Rn
i converges in Hp as n !1, i ≥ 1, . . . , n. By the Wold decompo-

sition theorem we might choose ß̃i, i ≥ 1, . . . , k such that

(29) ß̃ig
‡ ? ß̃jg

m, i Â≥ j, ‡, m ≥ 0, 1, . . . .

Since ß̃1, . . . , ß̃k form a g-basis of M̂, (29) implies

(30) hi,p(z) ≥ ß̃i(z)Φi,p

�
g(z)

�
.

Since hi,p 2 H1, Proposition 5 yields

Φi,p 2 H1

Fi,pΦi,p � 1.

Since both Fi,p and Φi,p are bounded, this implies

(31) ess inf
z2∆̄

(jFi,pj) Ù 0, and ess inf
z2∆̄

(jΦi,pj) Ù 0.

We have

fn(z) ≥
kX

i≥1
hi,p(z)Rn

i

�
g(z)

�
≥

kX
i≥1
ß̃i(z)Φi,p

�
g(z)

�
Rn

i

�
g(z)

�
.

By (29) ß̃1, . . . , ß̃k satisfy Proposition 5 and, since fn ! f in Hp as n !1, we conclude
by this Proposition that Φi,pRn

i converge in Hp as n ! 1. Because of (31) this implies
that Rn

i converges in Hp, i ≥ 1, . . . , k.

5. Application to operators similar to a contraction. Let A: X ! X be a bounded
operator in a Hilbert space X. In accordance with the standard notation we denote by
Sp(A) the spectrum of A. Let f be a holomorphic function in an open neighborhood U of
Sp(A), and V be another open neighborhood of Sp(A), which is compact in U. If ∂V ≥ Γ
is a smooth manifold in R2, then, as usual,

(32) f (A) ≥
1

2ôi

Z
Γ

f (z)(z � A)�1 dz.

In particular, if g is an inner function, g ≥ B Ð S, where

B(z) ≥ z‡
1Y

k≥1

āk

jakj

ak � z
1� ākz

is a Blaschke product and

S(z) ≥ exp
²
�
Z 2ô

0

eií + z
eií � z

dñ(í)
¦

, ñ ½ 0

https://doi.org/10.4153/CJM-1997-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-005-9


114 T. L. LANCE AND M. I. STESSIN

is a singular function, and (supp(ñ) [ f 1
āk
g1k≥1) \ Sp(A) ≥ û, then the relation (32) de-

termines g(A) ≥ B(A)S(A). It is easy to show that

B(A) ≥ A‡
1Y

k≥1

āk

jakj
(ak � A)(1 � ākA)�1.

Consider the following problem:
Let g ≥ B Ð S be an inner function satisfying the above condition

(33)
�

supp(ñ) [
² 1

āk

¦1
k≥1

�
\ Sp(A) ≥ û.

Given that g(A) is similar to a contraction, does this imply that A is similar to a contrac-
tion?

The answer in general is unknown. To the best of our knowledge the only published
result related to this problem is the following theorem by V. Mascioni [8].

THEOREM (V. MASCIONI). If B is a finite Blaschke product satisfying (33), and B(A)
is similar to a contraction, then A is similar to a contraction.

As we mentioned before, R. Douglas suggested that there must be a proof of this
theorem different from the one of [8] and based on the estimate (10). Below we sketch
this proof.

We denote by Hp,2
n the space of n-dimensional vector-functions F(z) ≥�

f1(z), . . . , fn(z)
�
, z 2 ∆, fi 2 Hp, with the norm

(34)
kFkn,p,2 ≥

 Z
T

� nX
i≥1
jfi(z)j2

�pÛ2
dm(z)

!1Ûp

, 1 � p Ú 1

kFkn,1,2 ≥ sup
z2∆

� nX
i≥1
jfi(z)j2

�1Û2
.

It is clear that Hp,2
n is a Banach space and if 1 Ú p Ú 1 its dual consists of n-dimensional

vector-functions Φ ≥ (ß1, . . . ,ßn) 2 Hp0 ,2
n (of course, the dual norm is different from

the Hp0 ,2
n -norm) with the duality given by

hF, Φi ≥
Z

T

nX
i≥1

fi(z)ßi(z) dm(z).

Let g be an inner function. We denote by Hp,2
n [g] the subspace of Hp,2

n consisting of
vector-functions whose components are in Hp[g]. As in the case n ≥ 1, we use the
similar notation Pn

g for the operator

Pn
g: Hp,2

n ! Hp,2
n [g],

Pn
gF ≥ (Pgf1, . . . , Pgfn)

where Pg is the projection used in Proposition 3.
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PROPOSITION 9. The projection Pn
g has norm 1 as an operator Pn

g: Hp,2
n ! Hp,2

n for
all 1 Ú p � 1.

REMARK. Unfortunately the definition (34) of the norm in Hp,2
n does not allow us to

use conditional expectation (as in Proposition 3) to prove this result. Instead we use the
technique based on invariant minimal interpolation ([10]).

PROOF OF PROPOSITION 9. Let 1 Ú p Ú 1, F 2 Hp,2
n . Consider the following

extremal problem. Find

(35) éF,p ≥ inffkGkn,p,2 : hG, Φi ≥ hF, Φi for all Φ 2 Hp0,2
n [g]g.

The following standard argument shows that there is a unique extremal function of this
problem. Let fΦkg

1
k≥1 be a minimizing sequence. It is bounded in Hp,2

n and, therefore, it

is weak-Ł compact, so without loss of generality we may assume that Φk
wŁ

!FŁ 2 Hp,2
n .

Then for any Φ 2 Hp,2
n [g]

hFŁ, Φi ≥ lim
k!1

hΦk, Φi ≥ hF, Φi

and kFŁkn,p,2 � limk!1 kΦkkn,p,2 ≥ éF,p. This implies kFŁkn,p,2 ≥ éF,p. The uniqueness
follows from strict convexity.

Further, the application of the variational principle similar to [2] shows that FŁp ≥

(f Ł1,p, . . . , f Łn,p) is the extremal function of the problem (35) if and only if

(i) hFŁ
p, Φi ≥ hF, Φi for all Φ 2 Hp0 ,2

n [g]

(ii) For any Ψ 2 Hp,2
n such that hΨ, Φi ≥ 0 for all Φ 2 Hp0 ,2

n the following equality
holds

(36)
Z

T

� nX
i≥1
jfi,p(z)j2

� p
2�1 nX

i≥1
f Łi,p(z)†i(z) dm(z) ≥ 0.

The rest of the proof is based on the following result.

LEMMA. Let F 2 H1,2
n . Then the extremal function FŁp of the problem (35) is the

same for all 1 Ú p Ú 1.

PROOF. Let (Hp0[g])? be the annihilator of Hp0 [g], and ü 2 (Hp0 [g])?. Then for any
polynomial P ≥ c0 + c1z + Ð Ð Ð + ckzk ≥ c0 + zP1(z) we have

Z
T

g(z)ü
�
(z)
�
P
�
g(z)

�
dm(z) ≥ c0

Z
T

g(z)ü
�
(z)
�

dm(z) +
Z

T
ü(z)P1

�
g(z)

�
dm(z)

≥ c0g(0)ü
�
(0)
�
≥ 0,

since ü is orthogonal to 1 and, therefore, vanishes at the origin. Thus, ü 2 (Hp0 [g])? )
gü 2 (Hp0 [g])? and, therefore, for any † 2 H1 we have

(37) ü 2 (Hp0 [g])? ≥) († Ž g) Ð ü 2 (Hp0 [g])?.
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Further, it is obvious that the annihilator of Hp0 ,2
n [g] consists of all vector-functions

Ψ ≥ (†1, . . . ,†n), where †j 2 (Hp0 [g])?.

Now, let Φ 2 H1,2
n [g], Φ ≥ (ß1, . . . ,ßn). Without loss of generality we may assume

that sup
z2∆

nX
i≥1
jßi(z)j2 Ú 1. Fix Ψ 2 (Hp0 ,2

n [g])? and consider the function

F (ã) ≥
Z

T

� nX
i≥1
jßi(z)j2

�ã nX
i≥1
ßi(z)†i(z) dm(z).

This function is analytic and bounded in the halfplane fReã Ù �1g. If ã ≥ k (a positive
integer), we have by (37)

F (k) ≥
nX

i≥1

X
‡1+ÐÐÐ+‡n≥k

Z
T
jß1(z)j2‡1 Ð Ð Ð jßn(z)j2‡nßi(z)†i(z) dm(z)

≥
nX

i≥1

X
‡1+ÐÐÐ+‡n≥k

hß‡1
1 Ð Ð Ð ß‡n+1

n Ð Ð Ð ß‡n
n , (ß‡1

1 Ð Ð Ð ß‡n
n )†ii ≥ 0.

Since the sequence of positive integers does not satisfy the Blaschke condition, this im-
plies F (ã) � 0 in fReã Ù �1g. Since Ψ was an arbitrary element of (Hp0 ,2

n [g])? we
conclude by (36) that for any pair Φ 2 H1,2

n [g], Ψ 2 H1,2
n \ (Hp0 ,2

n [g])?, we have

(38) (Φ + Ψ)Łp ≥ Φ, for 1 Ú p Ú 1.

It is easy to show that H1,2
n [g]ý

�
H1,2

n \ (Hp0 ,2
n [g])?

�
is dense on Hp,2

n and then to deduce
the result of the Lemma from this and (38).

Now we are ready to finish the Proof of Proposition 9. Since for p ≥ 2 we obviously
have

FŁ2 ≥ Pn
gF,

we conclude by the Lemma that

(39) FŁp ≥ Pn
gF, 1 Ú p Ú 1.

In particular, (39) implies

kPn
gFkn,p,2 � kFkn,p,2 � kFkn,1,2

and
kPn

gFkn,1,2 ≥ sup
pÙ1

kPn
gFkn,p,2 � kFkn,1,2.

The proof is complete.
Now, let A(z) be a holomorphic polynomial (nð n)-matrix function in ∆. Put

kA(z)k1 ≥ sup
jzjÚ1

�
sup
jòjÚ1

jA(z)(ò)j)
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where ò ≥ (ò1, . . . , òn) 2 Cn (as usual j(b1, . . . , bn)j ≥
�P

jbij
2)1Û2

�
. Write

A(z) ≥ [aij(z)]n
i,j≥1

where aij(z) are polynomials.
For an inner function g let s0, s1, . . . be a rational g-basis of H2 which satisfies the

condition of Corollary 1. Write each entry aij(z) in the form

aij(z) ≥
1X

k≥0
sk(z)ak

ij

�
g(z)

�
.

This decomposition leads to the following decomposition of A(z)

(40) A(z) ≥
X
k≥0

sk(z)Ak

�
g(z)

�
,

where, by Proposition 3,

Ak(z) ≥
h
ak

ij

�
(z)
�in

i,j≥1
, k ≥ 0, 1, . . .

are H1-matrix functions in ∆.
The following result is the matrix-function version of the estimate (10).

PROPOSITION 10. There are constants Dk, k ≥ 0, 1, . . . , depending only on g such
that for any H1-matrix function

A(z) ≥
1X

k≥1
sk(z)Ak

�
g(z)

�

the estimate kAkk1 � DkkAk1 holds.

PROOF. Let as above Ts̄k stands for the Toeplitz operator with symbol s̄k. We extend
the action of Ts̄k to H1,2

n by componentwise action. Now (13) and the usual estimate
which uses the Cauchy formula shows that there are constants Dk, depending only on g
such that for any F 2 H1,2

n

(41) kTs̄kFkn,1,2 � DkkFkn,1,2.

For any z 2 ∆, ò 2 Cn we have by Proposition 9 and (41)

jAk(z)òj ≥ jPn
gTs̄k A(z)òj � kPn

gTs̄k A(z)òkn,1,2

� kTs̄kA(z)òkn,1,2

� DkkA(z)òkn,1,2 � DkkA(z)k1 Ð jòj.

Let B be a Blaschke product of order m and G an operator on a Hilbert space X whose
spectrum is off the poles of B and such that

B(G) ≥ C�1RC,
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where kRk � 1. For any holomorphic polynomial n ð n-matrix function, F (G), in G
write the representation (40) for F (G)

F (G) ≥ s0(G)F 0
�
B(G)

�
+ Ð Ð Ð + sm�1(G)F m�1

�
B(G)

�
≥ s0(G)C�1F 0(R)C + Ð Ð Ð + sm�1(G)C�1F m�1(R)C.

Since G is bounded, s0(G), . . . , sm�1(G) are bounded (recall that the spectrum G is off
the poles of B). Say

ksi(G)k � M, i ≥ 0, . . . , m � 1.

Further, we have
kF j(R)k � kF j(z)k1, j ≥ 0, . . . , m� 1

([1, Proposition 3.6.1]). Finally, Proposition 10 yields

kF (G)k �
m�1X
i≥0

ksi(G)k Ð kCk Ð kC�1k Ð kF i(R)k

� M Ð kCk Ð kC�1k
m�1X
i≥0

kF i(z)k1

� M Ð kCk Ð kC�1k
�m�1X

i≥0
Di

�
kF (z)k1.

Thus, G is completely polynomialy bounded. The theorem of Mascioni now follows
from the theorem of V. Paulsen [9].
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