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ON A UNIQUENESS THEOREM
MIKIO NIIMURA

The classical uniqueness theorems of Riesz and Koebe show an important
characteristic of boundary behavior of analytic functions in the unit disc. The
purpose of this note is to discuss these uniqueness theorems on hyperbolic
Riemann surfaces. It will be necessary to give additional hypotheses because
Riemann surfaces can be very nasty. So, in this note the Wiener compactifica-
tion will be used as ideal boundary of Riemann surfaces. The Theorem,
Corollaries 1, 2 and 3 are of Riesz type, Riesz-Nevanlinna type, Koebe type
and Koebe-Nevanlinna type respectively. Corollaries 4 and 5 are general forms
of Corollaries 2 and 3 respectively.

Let f be a mapping from an open Riemann surface R into a Riemann surface
R'. For a positive superharmonic function s on a hyperbolic subdomain G of
R or R and for a closed subset F C G, let sz denote the lower envelope of the
family {s'} of all positive superharmonic functions on G with s’ = s quasi-
everywhere on F. Let {R,} be a regular exhaustion of R, and let L: « = L(t),
0 =t < 1, be a Jordan arc in R such that for every #n there exists some 1'(n)

with L(t) C R — R, forallt = T (n), where the bar denotes closure. The cluster
set of f along L is defined by

C(f, L) = Nrf(Ly),

where L, = {L()| T =t < 1,0 £ T < 1} and where the closure is taken on
an arbitrary compactification of R’.

Henceforth let R be a hyperbolic Riemann surface, let R* denote the Wiener
compactification of R and let R’* denote an arbitrary compactification of R’.

THEOREM. Let f be a nonconstant analytic mapping from R into a hyperbolic
Riemann surface R'. If there exists a family B of L such that A’ = \U pep C(f, L)
is a polar set, then A = Uren L M A is of harmonic measure zero, where A =
R*¥ — R.

Proof. Let s; be a positive superharmonic function on R’ with
lim,HAr Sl(b) = 00.
Let V; be an open set such that 4" C Vy and s;(0) > kon D, = V;, "\ R,
E=1,23,....
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For each L € B, there exists some 7T(k) with f(Lzy) C Dy Indeed if
f(Ly) @ Viforevery T: 0 £ T < 1, then for any finite number

(THlj=1,2,...,m}
of T it holds that
N Gry) = Vi) = fLrw) = Vi #9,
where T'(J) = maxi<;<n, 1(j). It hence follows that
Nz (f(Lr) — Vi) #80.

This contradicts C(f, L) C V;.

We have a sequence {L 7}; such that Lygey C Lrg and f(Lrg) C Dy.
For simplicity we put E(k) = Ures Lrw, F(k) = E(R) N\ R and A (k) =
E(E) N A. Let f44 denote the characteristic function of 4 (k) on A.

Let B’ be the family of every bounded continuous function f* on A with
faw = f', and put

inff’GB'f f'dw = «,
A

where w denotes the harmonic measure on A. It then holds that

f fA(k)dw = .
A

Indeed if

j; fA(k)dw < a,

then we take a sequence { f,*} such that f,* € B’,f*,;1 < f,*and lim, [4 f,*dw =
a. We put lim,, f,* = f*. We then have

f f¥do = a
A
d

f f¥dow > 0.
A=A (k)

Therefore from the definitions of integrals and measures, there exists a com-
pact set K C A — A (k) with fo*dw > 0. Let fx be a continuous function
such that fx is 1 on 4 (k) and is 0 on K, and which satisfies 0 < fx < 1 on A.
We put f*x , = min {f.*, fx}. It then follows that f*x , € B and

an

inf!'gg'f f'dw < a.
A

This is a contradiction.
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We take a sequence {f,’} such thatf,” € B, f",41 = f, and

limnf f,_;'dw=ff,1(k)dw.
A A

For any point p € A — A (k), let f,” be a continuous function such that f, is
1 on A (k) and is 0 at p, and which satisfies 0 < f,’ < 1 on A. We put f,, =
min {f,, f,'}. Since R* is a resolutive compactification, it follows that

f fndw = fp.Hv
A

where lim, f, , = f, and where f, i denotes the solution of the Dirichlet prob-
lem on R with f, as boundary function. Let w4 denote the harmonic measure
of A (k). It then follows that

fp.H = j:fo(k)dw = Uak)

and

oy

Since all the points of the harmonic boundary T of R* are regular, it follows

that for every point p € (A — 4 (k)) N T,

lim gyasp ttaw (@) S limps,, f'p u(a) = 0,
and hence

lim infrasp (Irw®(a) — usw(@)) 2 0.
On the other hand, since each connected component of F(k) is a nondegenerate
continuum and since 1z % can be extended continuously onto A, it follows
that for every point p € A4 (k),

lim infeyayy (Lew®(@) — taw(a)) = 0.

Therefore it follows from the minimum principle that

Ua (k) =< lp'(k)k on K.

Further since

R R’
lrw® = 1pw™ of on R,

where I"(k) = f(F(k)) N R, it follows that
Uay = lp™ of on R.

Next since s; is quasi-continuous on R’, from [2, p. 51] we can find a positive
superharmonic function s, such that the restriction of s; to the closed set
{b € R'| s2(b) = k} iscontinuous. It hence holds that

¥ =51+ s =kon D, N R,
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Since A(k 4+ 1) C A (k), we have
Uas1) = Uaq ON R.
Hence # = limy 4, is harmonic on R. Further,
J(F(k)) CJE®R) VR CDN R,
that is,
F'(k) CDi N\ R
Therefore
lpw® of < (1/k)s* of on R.
It follows that
u(c) = limyusp(c) = limg (1/k)s* of(c) =0

at a point ¢ on R except for the polar set of s* o f. Therefore N; 4 (k) is of
harmonic measure zero.
Thus since 4 C A (k), A is of harmonic measure zero.

COROLLARY 1. Let f be a Lindeldfian mapping from R into a closed Riemann
surface R’'. If there exists a family B of L such that \J Lep C(f, L) is a single point
bo, then \J Lex L M A is of harmonic measure zero.

Proof. Let by be a point of R’ distinct from b,. There exists a function % which
is harmonic on R’ save at by and by, and which has a positive normalized
logarithmic singularity at by and a negative normalized logarithmic singularity
at by’ (see[3, p. 213]). Further there exist two positive superharmonic functions
51’ and s¢’ on R such that

hof = 51/ — 52/

(see [2, p. 113]). Let D)’ be a parametric disc about b¢ with 2 > %k on D}/,
k=1,2,3,....

It is now easy to see from the proof of the theorem that the assertion of
Corollary 1 is proved. Indeed by using the notations in the proof of the
theorem, we have

kE=<hof=s/'+s)onF(k).
Therefore
Uswy = 1rw® = (si' + s2')/kon R.

It hence follows that
u(c') = limy (s)"(c") + s2'(c"))/k =0

at a point ¢’ on R except for the polar set of s, + so’. Thus U cp LM Ais of
harmonic measure zero.
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Let {C,} be a sequence of Jordan arcs such that each C, is compact on R.
We say that {C,} converges to A, if for every compact set K C R there exists
ann(K) such that C, C R — Kforalln = n(K). We put E*(k) = U,z C,and
F*(k) = E*(k) M R. Since 1z« ® can be extended continuously onto A, it is
easy to see from the proofs of the theorem and Corollary 1 that the assertions
of the following Corollaries 2 and 3 are proved.

COROLLARY 2. Let f be a nonconstant analytic mapping from R into a hyper-
bolic Riemann surfuce R'. If {C,} converges to A and if Ny f(Unzx Cr) 15 a polar
set, then \J C, M\ A1s of harmonic measure zero.

COROLLARY 3. Let f be a Lindeléfian mapping from R into a closed Riemann
surface R'. If {C,} converges to A and if Ny f(Unsk Co) 1s a single point, then
JC, M Ads of harmonic measure zero.

Let £y be a subset of R with £y M A 5 @ and let {R,’} be an exhaustion of R.
We put Eg(k) = EoN (R — R}) and

A* = N f(Eo(k)).

A* does not depend on the choice of exhaustions of R. It is easy to see that the
assertions of the following Corollaries 4 and 5 are proved.

COROLLARY 4. Let f be a nonconstant analytic mapping from R into a hyper-
bolic Riemann surface R'. If A* is a polar set, then Eq (M A is of harmonic mea-
sure gero.

COROLLARY 5. Let f be a Lindelofiun mapping from R into a closed Riemann
surface R'. If A* is a single point, then Eo (M A is of harmonic measure zero.
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