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The flow of granular materials through a vertical channel is examined using the discrete
element method (DEM) and the recent continuum models of Henann & Kamrin (Proc.
Natl Acad. Sci. USA, vol. 110, 2013, pp. 6730–6735), Barker et al. (Proc. R. Soc.
Lond. A, vol. 473, 2017, p. 20160846), Schaeffer et al. (J. Fluid Mech., vol. 874, 2019,
pp. 926–951) and Dsouza & Nott (J. Fluid Mech., vol. 888, 2020, p. R3). The channel is
bounded by walls separated by a distance 2 W in the x-direction. For the DEM, periodic
boundary conditions are used in the z- and y- (vertical) directions with no exit at the
bottom of the channel. The governing equations reduce to ordinary differential equations
in the x-direction. There is a plug layer near the centre and a shear layer near the wall,
as observed in experiments. There is a decrease in the solids fraction φ in the shear
layer, except for the models of Barker et al. and Henann & Kamrin. A modification of
the latter gives more realistic φ profiles. The thickness of the shear layer depends on 2 W
and the bulk solids fraction φ̄. For all the models, solutions could not be obtained for some
parameter values. An example is the negative fluidity in the model of Henann & Kamrin.
The model of Dsouza & Nott predicts much higher normal stresses, possibly because of
large contributions from the non-local terms. None of the models specify a complete set
of boundary conditions (b.c.). The DEM results suggest that the slip velocity and the wall
friction b.c. lead to a slip length and an angle of wall friction that are independent of
2 W. The models are based on extensions of the equations for slow, rate-independent
flow. A model that includes collisional effects, such as kinetic theory, should be
combined with the present models. A preliminary analysis of the kinetic theory model of
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Berzi et al. (J. Fluid Mech., vol. 885, 2020, p. A27), shows that it may have undesirable
feature.

Key words: dry granular material

1. Introduction

The flow of granular materials occurs in a variety of natural and industrial settings
such as landslides, desert dunes, silos and rotary kilns. Unlike Newtonian fluids, the
mechanics of these flows is not well understood. For several decades, researchers
have attempted to develop models based on soil mechanics, metal plasticity, kinetic
theory of gases, activated processes, thermodynamics, etc. Owing to the unique
dynamical properties in different regimes, such as rate-independent stresses in slow
flow and rate-dependent stresses in intermediate and rapid flows, it is challenging
to develop a unified constitutive law which predicts the features of all the regimes
satisfactorily.

Based on experiments with soils and rocks, Coulomb (1776) (cited in Schofield & Wroth
1968) assumed that the material yields by sliding along rupture surfaces. The shear stress
T and the normal stress N acting on the rupture surface are related by the Coulomb yield
condition

T = μN + c, (1.1)

where μ and c are constants called the coefficient of friction or the friction coefficient
and the cohesion, respectively. Subsequently, other yield conditions were proposed, and
models for the kinematics were developed by assuming incompressibility and coaxiality.
The latter implies that the principal axes of the stress and the rate of deformation tensors
coincide.

The experiments of Reynolds (1885) showed that a dense granular material dilates
(reduction in the solids fraction φ) when it deforms under shear, and vice versa. A modified
version of the Coulomb model, known as critical state soil mechanics, incorporates
compressibility by modifying the yield condition (Schofield & Wroth 1968; Jackson
1983; Rao & Nott 2008) and specifying a flow rule that relates the stress to the rate of
deformation tensor. The flow rule is formulated so that it incorporates rate independence:
if all the components of the rate of deformation tensor are scaled by a common factor, the
stresses are unaffected.

In a modification of Coulomb’s model, an empirical incompressible model was
proposed wherein μ = μ(I) (Pouliquen & Forterre 2002; GDR-MiDi 2004; Jop, Forterre
& Pouliquen 2005). Here, I is called the inertial number, and is proportional to the shear
rate and inversely proportional to the square root of the pressure. In the limit I → 0, their
relation for μ(I) tends to a positive constant, thereby recovering the Coulomb model for
quasistatic flow of a cohesionless material. The friction coefficient varies monotonically
with I, saturating at large values of I. Later, density variation was incorporated
by assuming that φ = φ(I). This μ(I)− φ(I) model will be discussed in detail
later.

Goodman & Cowin (1971) introduced an ‘equilibrium’ stress derived from a free energy
function, and a dissipative stress given by the constitutive equation for a Newtonian fluid.
The total stress tensor is the sum of the equilibrium stress tensor which depends on
the solids fraction and its gradient, and the dissipative stress tensor which depends on
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Granular flow through a vertical channel: DEM and models

the rate of deformation tensor. Unfortunately, there are many undetermined coefficients.
The predictions for inclined chutes and vertical channels involve a length ratio that was
speculated to depend on the grain size.

The occurrence of shear bands or zones of intense shearing is another striking feature
of granular flow (Nedderman & Laohakul 1980; Pouliquen & Gutfraind 1996; Fenistein &
Van Hecke 2003). The inability of the classical plasticity (frictional) model to predict
these bands is attributed to the absence of a material length scale in the constitutive
equations (Mühlhaus & Vardoulakis 1987). Many models that incorporate a material
length scale have been proposed, such as the Cosserat model (Mohan, Nott & Rao 1999;
Mohan, Rao & Nott 2002), and various non-local models (Aranson & Tsimring 2001;
Pouliquen & Forterre 2009; Kamrin & Koval 2012). Some of these will be discussed
later.

The above models deal mainly with slow flow, where enduring contacts between
particles is the major mode of momentum transfer. However, the μ(I) and μ(I)− φ(I)
models account for inertial effects to a certain extent. In the regime of rapid flow, which
is characterized by moderate to low solids fractions and high shear rates, collisions
between particles and free flight of particles between collisions becomes important. Many
attempts have been made to develop the constitutive equations using extensions of the
kinetic theory of dense gases to account for the inelasticity of interparticle collisions and
particle roughness (Lun et al. 1984; Kumaran 1998; Garzó & Dufty 1999; Kumaran 2006,
2008).

Our study mainly focuses on solving and comparing the compressible μ(I) class of
models (Barker et al. 2017; Schaeffer et al. 2019) and non-local models (Henann &
Kamrin 2013; Dsouza & Nott 2020) with the results of discrete element method (DEM)
simulations. A preliminary analysis of a model based on kinetic theory is given in
Appendix A. A simple geometry where the shear rate spans the range from slow to rapid
flow is helpful in testing models. Examples include plane and cylindrical Couette cells,
vertical channels and inclined chutes. The present work is confined to vertical channels of
rectangular cross-section (figure 1a).

A granular material such as sand or glass beads is fed at the top of the channel and
discharges through the exit slot at the bottom. It is assumed that the flow is steady and
quantities do not vary in the z-direction (figure 1a). Further, it is assumed that the flow is
fully developed, so that quantities such as the velocity vary only in the x-direction. The
velocity field is given by

ux = 0 = uz, uy = uy(x). (1.2a,b)

Such a condition is expected to prevail at locations that are far from the upper free
surface and the exit slot. This deceptively simple problem has been examined for
several decades (Goodman & Cowin 1971; Savage 1979; Nedderman & Laohakul 1980;
Yalamanchili, Gudhe & Rajagopal 1994; Natarajan, Hunt & Taylor 1995; Mohan, Nott
& Rao 1997; Wang, Jackson & Sundaresan 1997; Mohan et al. 1999; Pouliquen,
Forterre & Le Dizes 2001; Ananda, Moka & Nott 2008), but a satisfactory model is
lacking.

The DEM is a powerful tool to examine the mechanics of flowing granular materials,
and has been used to study many systems such as hoppers (Zhao et al. 2018), bunkers (Yu
& Saxén 2010), vertical channels (González-Montellano, Ayuga & Ooi 2011), inclined
chutes (Bharathraj & Kumaran 2017, 2019) and circulating fluidized beds (Luo et al.
2017). Data obtained from DEM simulations can be used to generate density, velocity
and stress fields, which form vital benchmarks for comparison with the predictions
of continuum models. Unlike the case of simple fluids such as air and water, there
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Figure 1. (a) A vertical channel with an exit slot. In (b,c), the exit slot is removed, and the periodic boundary
conditions are applied in the y- and z-directions. The walls are flat and frictional in (b), and are roughened by
coating them with particles in a dense random packing in (c).

is no universally accepted constitutive equation for flowing granular materials. This
topic has been examined for several decades, but the end is not in sight. Against this
backdrop, it was felt that the proposed comparison of the predictions of continuum
models with the results of DEM simulations for flow in a relatively simple geometry
may serve to highlight the attractive features and defects of some of the recent
models.

2. Details of the DEM

Following Cundall & Strack (1979), the granular material is modelled as a collection
of spherical grains that can overlap slightly. Here, we use a linear elastic spring and a
viscous dashpot acting in parallel to determine the normal force Nf acting between two
particles in contact (Cundall & Strack 1979; Shäfer, Dippel & Wolf 1996). As the material
is cohesionless, Nf = 0 when there is no overlap between the particles. A similar model
is used for the tangential force Tf , but if |Tf |/Nf > μp, the coefficient of interparticle
friction, |Tf | is replaced by μpNf , with a suitably chosen direction for Tf . Thus the contact
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forces are given by

Nf = −knδnn − meξnvn

Tf =
⎧⎨
⎩ −ktδtt − meξtvt, if

|Tf |
Nf

< μp

−μpNf t, otherwise.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

In (2.1), n and t denote the normal and tangential directions, respectively, where the
former coincides with the direction of the line joining the centres of particles in contact,
kn and ξn are the spring constant and the damping constant in the normal direction,
respectively, δn is the overlap in the normal direction and vn is the normal component
of the velocity at the contact point. For two particles of masses m1 and m2 that are in
contact, the effective mass me is defined by

me = m1m2

m1 + m2
. (2.2)

This approach is termed the linear spring and dashpot (LSD) model, and has been widely
used (Silbert et al. 2001; GDR-MiDi 2004; Chialvo, Sun & Sundaresan 2012; Guo &
Curtis 2015). However, more sophisticated models for the contact force have also been
used. For example, the classical Hertz model (Hertz 1882; Johnson 1987) predicts that
Nf ∝ δ

3/2
n . For tangential loading, the relation between Tf and δt is more complicated

(Johnson 1987; Vu-Quoc, Zhang & Lesburg 2001). In some cases, results obtained with
these models and the LSD model do not differ significantly (Di Renzo & Di Maio 2004;
Kruggel-Emden et al. 2007). Here, the simple LSD model is chosen as the benchmark for
comparison, and computations are done using the open source code LAMMPS (Plimpton
1995).

There are six parameters in the model for the contact forces between particles: the
spring constants kn and kt, the damping constants ξn and ξt, the coefficient of interparticle
friction μp and the coefficient of particle–wall friction μw. Following Debnath, Rao
& Nott (2017), we choose kn = 106ρpgd2

p, kt/kn = 2/7, ξn = 180
√

g/dp, ξt/ξn = 1/2
and μp = μw = 0.5, where ρp and dp are the density and the diameter of the particle,
respectively, and g is the acceleration due to gravity. It is widely acknowledged that kn
should be a few orders of magnitude larger for materials such as aluminium, stainless steel,
brass and glass beads (see e.g. Mishra & Murty 2001; Silbert et al. 2001; Kruggel-Emden
et al. 2007), but this would result in a very small time step being used when the equations
of motion are integrated. The value chosen is believed to give reasonable results, and
reflects a compromise between realistic parameter values and excessive computation time.
The time step used is 1.2 × 10−4√dp/g. Debnath et al. (2017) estimated the lift on a
disc immersed in a rotating bed of granular material, and found that modest changes in
the value of kn by a factor of 10 do not affect the normal stresses exerted on the disc
significantly. The value of kt/kn is commonly used; it is obtained by considering an elastic
collision between a sphere and a flat surface, assuming that the time periods for normal
and tangential collisions are equal (Shäfer et al. 1996). The chosen values of kn and ξn
imply that the coefficient of restitution in the normal direction is 0.7, and the value chosen
for μp is typical of values for glass beads. The parameters for particle–wall interactions
are chosen to be the same as for interparticle interactions.

As is common practice in DEM, we use a slightly polydisperse granular material, with
sizes 0.9 dp, 1 dp and 1.1 dp, and having number fractions 0.3, 0.4 and 0.3, respectively.
This is done to prevent the formation of ordered or ‘crystalline’ layers near the wall.
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Some computations were also done for monodisperse materials, and the results did not
differ significantly. Only the results for polydisperse materials are presented here. As the
lengths are scaled by dp, velocities by

√
gdp, time by

√
dp/g and forces by ρpgd3

p, dp does
not occur explicitly in the scaled equations and hence its actual value need not be specified.
Without loss of generality, ρp, dp and g are set to 1 in DEM.

The simulation box is a rectangular parallelepiped, with a bottom and four flat frictional
walls, of dimensions 2 W, H and B in the x-, y- and z-directions, respectively (figure 1a).
Henceforth, such walls will be referred to as ‘smooth’ walls. The box is filled with particles
by uniformly pouring them from the top, and allowing them to settle under the action of
gravity. The mass flow rate of the material can be controlled by adjusting the width of
the exit slot at the bottom (figure 1a). However, for a channel of realistic dimensions, the
number of particles Np that can be handled by the code become excessive. As the flow is
expected to be fully developed far above the exit slot, the motion of a reasonable number
of particles, say 5 × 104–2 × 105, is simulated by applying periodic boundary conditions
in the y- and z-directions. Thus there are no solid walls in the y- and z-directions, and no
exit slot (figure 1b). Some approaches to incorporating the effect of the exit slot and the
walls in the z-direction will be indicated briefly later. If a particle leaves the simulation
box with a velocity v, it re-enters at the top y = H, with the same velocity and the same
values of x and z. As noted by Allen & Tildesley (2017), the use of periodic boundary
conditions suppresses spatial variations in the y- and z-directions on length scales that
are comparable to the dimensions of the box. Results are presented here for H = 30 dp,
B = 40 dp and values of 2 W in the range 30–80 dp. A few simulations were done with
different dimensions, say H = 30 dp and B = 20 dp, and the results did not vary with H
and B. The flow properties vary with x-direction, as discussed in § 4. An empty head
space volume (with rectangular cross-section of dimensions 2 W × B, similar to that of
the channel) is added at the top, and its height �H is adjusted such that a specified bulk
solids fraction φ̄ is attained during flow. Here, φ̄ is defined as the ratio of the total volume
of the material to the volume of the channel. For Np particles in the simulation box, the

total volume of the particles is
∑Np

i (π/6)d
3
pi

and 2 W × B × (H +�H) is the volume of
the simulation box. Some simulations are also done for the case of rough walls, where
the walls are coated with a layer of stationary particles of diameter dp (figure 1c). The
dimension 2 W excludes the wall particles.

A preliminary study of Debnath, Kumaran & Rao (2019) for flat frictional walls
shows that there is no flow for φ̄ > 0.62. Steady flow occurs for 0.62 � φ̄ � φ̄cr and an
oscillatory flow for φ̄cr > φ̄ � φ̄m. Free fall under gravity occurs for φ̄ < φ̄m. Here, φ̄cr

and φ̄m are parameters that depend on 2 W/dp. The present work is confined to steady
flow. A study on the transition to oscillatory flow and free fall will be discussed in a future
work.

The simulation box is divided into bins of thickness 1 dp in x-direction spanning over
(H +�H) and B. The velocity and stresses in a bin are calculated by averaging the
properties of particles whose centres are in that bin. The solids fraction φ is calculated
as the ratio of the total volume of the material in a bin to the volume of the bin. The
values of the properties are assigned to the centres of the bins. After 2 × 107 time steps,
when a steady and fully developed state is attained, the DEM results are time averaged
over 5 × 105 time steps. Except at the wall, the maximum distance Dp between the centres
of the particles in a bin is 1 dp. For the bin adjacent to the wall, if the bin width is 1 dp,
Dp is (1/2) dp. To avoid this problem, the width of the bin adjacent to the wall is chosen
as 1.5 dp. The standard deviation is very small compared with the sizes of the symbols
representing the DEM results, and hence the error bars are not shown.
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3. Continuum models

The classical frictional model for plane flow predicts a flat velocity profile, i.e. plug flow,
with an indeterminate value for the velocity (Mohan et al. 1997). This is at variance with
both experimental observations (Nedderman & Laohakul 1980; Natarajan et al. 1995;
Pouliquen & Gutfraind 1996; GDR-MiDi 2004; Ananda et al. 2008) and the DEM results
to be discussed in this paper. These show shear layers near the channel walls and a plug
layer near the centreline, and a lower value of the solids fraction φ in the shear layer.

The model based on the kinetic theory of Lun et al. (1984) predicts results in good
agreement with the measured velocity profiles when the centreline velocities are matched
(Mohan et al. 1997), but φ ≈ φdrp in the plug layer, where the subscript drp denotes
dense random packing. Hence the underlying assumptions of kinetic theory, such as
instantaneous collisions and molecular chaos, are likely to break down in this region. The
frictional-kinetic model overcomes this defect by including frictional effects in the plug
layer. However, the thickness of the shear layer is much less than that observed (Mohan
et al. 1997).

An alternative approach is provided by the Cosserat plasticity model of Mohan et al.
(1999), wherein the symmetry of the stress tensor is relaxed and a balance for the
couple stress is solved along with the other balances. The scaled velocity profile (velocity
scaled by the centreline velocity) agrees fairly well with data. Thus this model appears
to provide an elegant solution, but suffers from the defect that the profile of φ is flat.
Similarly, Pouliquen & Gutfraind (1996) developed a model based on stress fluctuations
that fitted their data for the velocity profiles well, but φ was assumed to be constant. The
qualitative observations of Natarajan et al. (1995) and experiments on two-dimensional
flows comprised of circular cylindrical rods (Pouliquen & Gutfraind 1996) suggest that
the solids fraction φ is lower in the shear layer than near the centre.

Pouliquen (1999) studied the flow of glass beads down an inclined chute with a rough
base. He proposed a relation between the stress ratio μ (the ratio of the shear stress to the
normal stress), the mean velocity u and the thickness h of the flowing layer. Note that μ is
a constant across the layer in this geometry. This relation is valid only for h > hstop, where
hstop is a critical thickness below which the flow stops abruptly. Pouliquen & Forterre
(2002) examined the spreading of an initially hemispherical mass of glass beads down an
inclined chute. The friction law of Pouliquen (1999) was used, with some modifications
for small values of h to numerically solve depth-averaged equations. The predicted shape
of the heap as a function of position and time matched their data well, except when the
base had a static layer of material initially. Forterre & Pouliquen (2003) used both glass
beads and sand, and fitted their data to the friction law

u√
gh

= −γ1 + γ2
h

hstop(θ)
, (3.1)

where γ1 and γ2 are constants, g is the acceleration due to gravity and θ is the inclination
of the chute to the horizontal. In particular, γ1 = 0 for glass beads, but not for sand.

The group GDR-MiDi (2004) collated data and the results of DEM simulations from
various geometries such as plane shear between horizontal plates in the absence of gravity,
cylindrical Couette, inclined chute, vertical channel and rotating drum and from various
papers. They found it helpful to introduce the inertial number I, defined by

I = |S| dp√
N/ρp

, (3.2)
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where S is a suitable shear rate, N is a suitable normal stress and dp and ρp are the particle
diameter and the particle density, respectively. The inertial number (or more precisely the
square of I) is a rough measure of the ratio of the collisional stress to the total stress. Let T
denote a suitable shear stress. GDR-MiDi (2004) found that plane shear could be modelled
by the relation

μ = μ(I), (3.3)

where the friction coefficient or stress ratio is defined by

μ ≡ |T|
N
. (3.4)

Equation (3.3) holds provided I is not too large. However, for inclined chutes, (3.3) was
valid only for glass beads, but not for sand. This result follows from (3.1), with a non-zero
value for γ1. For rotating drums and heaps, the velocity profiles were not consistent with
(3.3). Jop, Forterre & Pouliquen (2005) specified an explicit form for (3.3), and used it in
their work (Jop, Forterre & Pouliquen 2006) to solve the incompressible three-dimensional
equations for flow down an inclined chute with rough sidewalls. For glass beads, good
agreement was obtained between data and model predictions for the profile of the velocity
at the free surface of the flowing layer.

Simulations reported in GDR-MiDi (2004) and Da Cruz et al. (2005) show that

φ = φ(I), (3.5)

where φ is the solids fraction.
Another defect of (3.3) must be noted. Consider plane shear between horizontal plates,

in the presence of gravity. If the upper plate is moved and the lower plate is stationary, this
model predicts a shear layer near the moving plate, and a static bed of material near the
lower plate. Pouliquen et al. (2006) state that the thickness of the shear layer tends to zero
in the limit of quasistatic flows (I → 0), whereas simulations show that it is of the order
of 5–10 dp.

For plane flow, it has been shown that the incompressible μ(I)model of Jop, Forterre &
Pouliquen (2006) is linearly ill posed for small and large values of I (Barker et al. 2015).
Here, ‘ill posed’ means that perturbations to the linearized unsteady equations grow at
an unbounded rate as the wavelength of the perturbation tends to zero. By modifying the
functional form ofμ(I), Barker & Gray (2017) showed that the model is linearly well posed
for I < Imax, where Imax is a constant. Goddard & Lee (2017) showed that the use of a
higher gradient model (involving the fourth-order spatial derivatives of the velocity vector
in the momentum balance) stabilizes the incompressible μ(I) model. We note in passing
that the classical frictional model is ill posed for both incompressible flow (Schaeffer 1987)
and compressible flow (Pitman & Schaeffer 1987).

Consider the μ(I)− φ(I) class of models next. It has been shown (Heyman et al. 2017)
that these are also ill posed for some flow conditions, but can be regularized by adding a
term involving a quantity analogous to the bulk viscosity in the expression for the stress
tensor. Let 𝞼 denote the stress tensor, defined in the compressive sense, and D the rate of
deformation tensor, with components

Dij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (3.6)

Goddard & Lee (2018) have shown that the stress power Φ̇ = −𝞼 : D is not always
non-negative. Hence, this model is not pursued further. In any case, the bulk viscosity term
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vanishes for the velocity field considered here, and their model reduces to the μ(I)− φ(I)
model.

Another class of models is the higher gradient or ‘non-local’ models. The stresses
at a point depend on the rate of deformation in a spatial region containing that point.
There are many types of non-local models (Aranson & Tsimring 2001; Pouliquen et al.
2001; Pouliquen & Forterre 2009; Wójcik & Tejchman 2009; Henann & Kamrin 2013;
Bouzid et al. 2015; Dsouza & Nott 2020) and no single definition fits all of them. For
example, Pouliquen et al. (2001) and Pouliquen & Forterre (2009) assume that the shear
rate at a point depends on the shear rates at other points, whereas Aranson & Tsimring
(2001) use an order parameter in the expression for the stress tensor. The order parameter
is governed by a differential equation which describes the transition from solid-like to
fluid-like behaviour. The model of Wójcik & Tejchman (2009) resembles that of Pouliquen
& Forterre (2009), as the shear rate at a point is assumed to be a function of the weighted
shear rates at neighbouring points. The models of Henann & Kamrin (2013) and Bouzid
et al. (2015) are similar to the model of Aranson & Tsimring (2001). Recently, Li &
Henann (2019) have shown that the incompressible model of Henann & Kamrin (2013)
is well posed. However, the incompressible model of Bouzid et al. (2015) is not well posed
even though higher gradients are included.

In this paper, the predictions of some of the recent well-posed models are compared with
the results of simulations based on the DEM. Ill-posed behaviour is seen only when the
models are used to solve the unsteady equations. The present work is an attempt to solve
the steady state equations. For the models considered here, even the steady state aspects
have not been studied in detail earlier in the context of flow through a vertical channel. It
is hoped that the unsteady equations will be examined in the future.

3.1. Governing equations
The momentum balances for steady, fully developed flow are given by

dσxx

dx
= 0; dσxy

dx
= −ρpφg, (3.7a,b)

where σxx and σxy are the normal and shear stresses, defined in the compressive sense, ρp
is the particle density, φ is the solids fraction and g is the acceleration due to gravity.

Expressing the stress components in terms of the principal stresses σ1 and σ2, we obtain
(Sokolovskii 1965; Rao & Nott 2008)

σxx = σ + τ cos(2ψ); σyy = σ − τ cos(2ψ); σxy = −τ sin(2ψ), (3.8a–c)

where

σ = σ1 + σ2

2
; τ = σ1 − σ2

2
. (3.9a,b)

Here, σ1 is the major principal stress, and ψ is the inclination of the σ1-axis relative to the
x-axis (figure 1).

Thus (3.7a,b) and (3.8a–c) contain one more unknown than the number of equations.
Before discussing closure of these equations, it is helpful to consider the more general case
of flow parallel to the x–y plane. In classical frictional models (see, for example, Mohan
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et al. (1997)), the additional equations are provided by a yield condition

τ = τ(σ, φ), (3.10)

a flow rule

cos(2ψ)
(
∂uy

∂y
+ ∂ux

∂x

)
−
(
∂τ

∂σ

)(
∂uy

∂y
− ∂ux

∂x

)
= 0 (3.11)

and the coaxiality condition, which enforces the alignment of the principal axes of the
stress and rate of deformation tensors

cos(2ψ)
(
∂ux

∂y
+ ∂uy

∂x

)
− sin(2ψ)

(
∂uy

∂y
− ∂ux

∂x

)
= 0. (3.12)

In particular, (3.11) represents an associated flow rule.

3.2. The model of Barker et al. (2017)
Recently, Barker et al. (2017) have formulated a model for plane flow that is well posed
by incorporating the inertial number I into the frictional equations described above. The
coaxiality condition (3.12) is retained, but the yield condition and the flow rule are replaced
by

τ = Y(σ, φ, I);
(
∂ux

∂x
+ ∂uy

∂y

)
= f (σ, φ, I)S′, (3.13a,b)

where S′ is an equivalent shear rate, defined by

S′ =
√

2D′
ijD

′
ji, (3.14)

and

D′
ij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 1

2
∂uk

∂xk
δij. (3.15)

Here, repeated indices imply summation, and δij is the Kronecker delta. The form of the
coaxiality condition given in Barker et al. (2017) differs from (3.12), but can be shown to
be equivalent after some manipulations. The alternative form is also discussed in § 3 of
Barker et al. (2017).

Because of the incorporation of I, (3.13a,b) does not represent classical frictional
behaviour. However, for ease of exposition, we retain the terms ‘yield condition’ and ‘flow
rule’.

For the equations to be well posed, the yield function Y and flow rule function f are
required to satisfy certain conditions. To relate these equations to the μ(I) model, Barker
et al. (2017) proposed the forms

τ = Y(σ, φ, I) = α(I)σ − σ 2

C(φ)

f (σ, φ, I) = β(I)− 2σ
C(φ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (3.16)
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where σ is the mean stress defined by (3.9a,b) and

α(I) = 4
5
μ(I)+ 12

25
I−2/5

∫ I

0
j−3/5μ(j) dj

β(I) = −2
5
μ(I)+ 24

25
I−2/5

∫ I

0
j−3/5μ(j) dj

C(φ) = Λ
φ − φmin

φmax − φ
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

whereΛ, φmin and φmax > φmin are material constants. The form suggested by Barker et al.
(2017) for C(φ) is only representative of a function that increases monotonically with φ,
and has not been deduced from experimental data. It is identical in form to the expression
proposed by Savage & Sayed (1979) for the mean stress at a critical state or a state of
isochoric deformation.

For the problem at hand, the coaxiality condition (3.12) reduces to

duy

dx
cos(2ψ) = 0, (3.18)

and (3.2) to

I =
dp

duy

dx√
σxx/ρp

, (3.19)

where the shear rate S and the normal stress N in (3.2) have been identified with duy/dx
and σxx, respectively. Similarly, (3.4) is replaced by

μ(I) = |σxy|
σxx

. (3.20)

As noted by Mohan et al. (1997), either (i) duy/dx = 0, or (ii) ψ = +π/4. If (i) holds,
the material moves as a plug, and there are no shear layers near the walls of the channel.
This is at variance with experimental observations and the results of DEM simulations.
Hence, this root must be discarded, except possibly for a plug layer near the centre of the
channel.

Considering the other roots (ii), the choice ψ = −π/4 is ruled out as it implies that
σxy = τ � 0. Hence, if τ /= 0 at the wall x = W, the material flowing downward will exert
an upward shear stress on the wall. This behaviour is unrealistic and must be avoided.

The other choice is ψ = π/4, which along with (3.8a–c) implies that

σxx = σyy = σ ; σxy = −τ. (3.21a,b)

At the centre x = 0, the velocity profile must be symmetric, and hence duy/dx = 0.
Similarly, the shear stress −σxy(x = 0) = τ(x = 0) = 0. Equation (3.19) implies that
I(0) = 0, and the data of Jop, Forterre & Pouliquen (2005) show that μ(0) = μs > 0.
It follows from (3.20) that τ(0) = μsσ(0) = 0, or σ(0) = 0. However, the momentum
balance (3.7a,b) and this result imply that σxx = σ = 0 even at the wall, which is
unrealistic. Hence, neither of the roots duy/dx = 0 and ψ = π/4 apply throughout the
domain 0 < x < W.

One approach to resolve this problem is to postulate a plug layer of thickness xp near
the centre, where duy/dx = 0, and a shear layer of thickness (W − xp) near the wall. In the
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shear layer,ψ = π/4 and appropriate matching conditions are used at the interface x = xp.
A similar approach was used by Mohan et al. (1997) for the frictional-kinetic equations.

In the plug layer (0 � x � xp), the material does not deform and the solids fraction φ is
assumed to be a constant ≡ φp. The momentum balances imply that

σxx = const. = σ + τ cos(2ψ) ≡ N

−σxy = τ sin(2ψ) = (ρpgφp)x

}
. (3.22)

In the shear layer (xp < x � W), ψ = π/4 and the momentum balances reduce to

σxx = const. = σ = N

dτ
dx

= ρpφg

⎫⎬
⎭ , (3.23)

where (3.21a,b) has been used. As ∂uk/∂xk = 0, the flow rule (3.13b) reduces to f = 0, or
using (3.16)

σ = N = β(I)C(φ)/2. (3.24)
Applying the above conditions and using (3.16)

τ = Y(σ, φ, I) = μ(I)σ = μ(I)N. (3.25)

An explicit expression is needed for μ(I); here, we use the expression of Jop, Forterre &
Pouliquen (2005), which is given by

μ(I) = μs + �μ

(I0/I)+ 1
, (3.26)

where μs, �μ, and I0 are positive constants. Equation (3.24) is linear in φ, and can be
solved to obtain

φ = β(I)Λφmin + 2Nφmax

β(I)Λ+ 2N
. (3.27)

Using (3.27), (3.17) and (3.26), (3.23) is integrated from x = xp to x = W with the initial
condition I(x = xp) = 0. The MATLAB routine ODE45 is used for numerical integration,
and the integral in the expression for β(I) in (3.17) is evaluated using Gauss–Legendre
four point quadrature. In the limit I → 0, the integral can be evaluated analytically, giving
β(I) = 2μs.

To obtain the thickness xp of the plug layer, the stresses and the velocity gradient at x−
p

must be matched to the corresponding values at x+
p . At x = xp, I(xp) = 0 and

−σxy(x = x−
p ) = (ρpφpg)xp = −σxy(x = x+

p )

= τ = μ(I(x = xp))σ = μ(I(x = xp))N. (3.28)

As I(x−
p ) = 0, (3.26) and (3.28) imply that μ(x = xp) = μs. Substituting I = 0, φp can be

obtained from (3.27), and hence

xp = μsN
ρpφpg

. (3.29)

Equation (3.19) implies that the velocity profile is governed by

duy

dx
= I

dp

√
N
ρp
. (3.30)

As there is one unknown parameter, namely, the normal stress N, and one condition
is needed to integrate (3.30), two conditions have to be specified. Here, the bulk solids
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fraction

φ̄ ≡ 1
W

∫ W

0
φ dx, (3.31)

and the mass flow rate

Ṁ ≡ 2ρpB
∫ W

0
(−uy)φ dx, (3.32)

where B is the thickness of the channel in the z-direction (figure 1), are matched to the
DEM results.

In the DEM, Ṁ is fixed by specifying φ̄ for a fixed value of 2 W, but it appears that for the
continuum models, both the parameters can be specified independently. In the latter case,
the additional degree of freedom arises because we are unaware of a suitable velocity or
stress boundary condition (b.c.) that can be specified at the wall.

For example, a modified form of the b.c. proposed by Mohan et al. (1999) is given by

uy(x = W)− uwall = −lu
duy

dx
, (3.33)

where uwall is the velocity of the wall and lu is a material parameter called the slip length. In
our case, uwall = 0. Equation (3.33) is due to Tejchman & Gudehus (1993) and Tejchman &
Wu (1993), who expressed it in terms of displacement and rotation. Subsequently, Mohan
et al. (1999, 2002) rewrote it in terms of the velocity and the angular velocity ω. As noted
by Batchelor (1967), ω is equal to half the vorticity duy/dx for a classical continuum.
However, the value of lu is not known a priori. Hence it is calculated using (3.33) after the
velocity field has been obtained. We shall see later that lu varies with φ̄ and the channel
width 2 W for the models used here, and hence (3.33) is not a realistic b.c. for most of the
models.

There are similar reservations about the wall friction b.c.

μ(x = W) = μw = −σxy(x = W)
N

= τ(x = W)
N

= tan δ, (3.34)

where (3.21a,b) has been used and δ is called the angle of wall friction. Equation (3.34)
has been commonly used in the in the literature on slow flow (Brennen & Pearce 1978;
Nedderman et al. 1982; Dsouza & Nott 2020) but may not be appropriate when the inertial
effects are important near the wall. Integrating the second of (3.7a,b) from x = 0 to x = W
using an initial condition σxy(x = 0) = 0, and using (3.31) and (3.34)

tan δ = φ̄

Ñ
, (3.35)

where Ñ = N/(ρpgW).
The model of Barker et al. (2017) differs from μ(I)− φ(I) model as it is shown to be

well posed, and (3.27) implies that φ depends on I and the normal stress N.

3.3. The model of Schaeffer et al. (2019)
This builds on the work of Barker et al. (2017), by proposing an ad hoc expression for the
yield function Y and deducing the expression for the flow rule function f . It is shown that
the resulting equations are well posed. Thus this model involves fewer assumptions than
that of Barker et al. (2017), as the latter proposes ad hoc expressions for both Y and f .
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Schaeffer et al. (2019) conducted gravity-free DEM simulations of the plane shear of
discs, and found that μ = μ(I). They fitted the data to (3.26), thereby determining the
values of μs, �μ and I0. They also found that

I = Ψ (φ) ≡ φc − φ

a
, (3.36)

where φc and a are constants. We shall use different data for parameter estimation as our
grains are assumed to be spherical.

Retaining the coaxiality condition (3.12), a new yield condition dependent on I, σ and
Ψ is chosen as

τ = Y(σ, I, φ) = μ(Ψ (φ))σ
I

Ψ (φ)
. (3.37)

Note that I /=Ψ (φ) in general. The μ(I)− φ(I) model is recovered in cases where
I = Ψ (φ). To make the system well posed, it turns out that (Barker et al. 2017)

f (σ, I, φ) = f (I, φ) = 1
4
μ(Ψ (φ))

(
I

Ψ (φ)
− Ψ (φ)

I

)
. (3.38)

For steady, fully developed flow ∂uk/∂xk = 0. Hence, (3.13b) and (3.38) imply that

I = Ψ (φ). (3.39)

Using (3.36), we obtain
φ = φc − aI. (3.40)

For this special case, the model of Schaeffer et al. (2019) is identical to the μ(I)− φ(I)
model. However, they have shown that for unsteady one-dimensional flow, the model leads
to well-posed behaviour of the numerical solutions, in contrast to the μ(I)− φ(I) model.

To the best of our knowledge, the only other papers that have applied the μ(I)− φ(I)
model to channel flow are those of Pouliquen et al. (2001) and Pouliquen et al. (2006). The
present work differs from theirs in the following respects: (i) they use a no-slip condition at
the wall, whereas we permit slip, (ii) they state that the shear stress τ and hence the friction
coefficient μ = τ/N vary linearly with x, whereas we find that this is not an exact result
but holds to a good approximation, (iii) results are presented here for a range of channel
widths 2 W and bulk solids fractions φ̄, but only for one value of φ̄ and an unspecified value
of 2 W in their work, (iv) as experimental data and DEM results were not available at that
time, model predictions could not be compared with these in their work, whereas extensive
comparisons with DEM results are presented here. However, we greatly appreciate their
efforts to solve this problem.

Using (3.26) and (3.40), and noting that τ = μ(I)N, the momentum balance (3.23) is
integrated from xp to W with the initial condition I(x = xp) = 0. The solids fraction in the
plug layer is given by φp = φc as I = 0 (see (3.36) and the thickness of the plug layer is
given by (3.29). This implicitly assumes that the DEM results used to deduce the forms
of μ(I) and φ(I) are valid in the limit I → 0, even though the smallest value of I for
the results is about 0.002. The form (3.40) permits the momentum balance (3.23) to be
integrated analytically, resulting in

1
(I0 + (φc/a))2

ln
∣∣∣∣ I0 + I
(φc/a)− I

∣∣∣∣− 1
(I0 + (φc/a))(I0 + I)

= a
I0�μ

ρpgx
N

+ k, (3.41)

where the integration constant k is evaluated by using the initial condition I(xp) = 0. The
solids fraction is obtained using (3.40), and N by matching φ̄ to the DEM result. To obtain
the velocity profile, (3.30) is integrated using (3.41) similarly, as discussed in § 3.2.
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3.4. The model of Henann & Kamrin (2013)
For three-dimensional flow, Henann & Kamrin (2013) define an equivalent shear stress by

τ ′ = (σ ′
ijσ

′
ji/2)

1/2, (3.42)

where

σ ′
ij ≡ σij − pδij; p ≡ σkk/3, (3.43a,b)

and p is the mean stress or the pressure. Their constitutive equation is given by

σij = pδij − 2
p
f

Dij, (3.44)

where the stresses are defined in the compressive sense and the quantity f is called the
granular fluidity. It is defined by

f ≡ S′/μ, (3.45)

where the shear rate S′ is defined by (3.14), with (3.15) replaced by

D′
ij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 1

3
∂uk

∂xk
δij, (3.46)

and

μ ≡ τ ′/p. (3.47)

Here, τ ′ is given by (3.42).
Because f is governed by a differential equation, this model is called a non-local model

in the sense of GDR-MiDi (2004). At a steady state, this equation is assumed to be given
by (Kamrin & Henann 2015; Zhang & Kamrin 2017)

A2d2
p∇2f = �μ

(
μs − μ

μs +�μ− μ

)
f + �μ

I0

√
ρpd2

p

p
μf 2, (3.48)

where I0, �μ, μs and A are constants.
Equation (3.48) differs from the equation used by Kamrin & Koval (2012) and Henann

& Kamrin (2013), who linearized the term involving f 2 about a local value of the fluidity
floc. The latter was assumed to be a function of the inertial number I. As suggested by
one of the referees, we use the more complete form (3.48). Thus the present analysis deals
with a modified version of the model of Henann & Kamrin (2013). They assume that
φ = const., which is a drawback of the model. They suggested that φ could be treated as
a function of I, thereby relaxing this constraint. However, it was not implemented in their
paper. Some results obtained with φ = φ(I) are presented here.
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Let us now consider the case of steady, fully developed flow. Equation (3.44) implies
that

σxx = σyy = σzz = p; σxy = σyx = −p
f

duy

dx
. (3.49a,b)

Using (3.49a,b), the momentum balances reduce to

p = const. ≡ N; d
dx

(
p
f

duy

dx

)
= ρpφg. (3.50a,b)

Integrating (3.50b) with φ = const. = φp and using the b.c. of vanishing shear stress at
x = 0, we obtain

N
f

duy

dx
= ρp φpgx. (3.51)

Henceforth, φp is set equal to the bulk solids fraction φ̄ obtained from the DEM results.
Using (3.42), (3.47), (3.49a,b) and (3.51), we obtain

μ = |σxy|
p

=
∣∣∣∣1f duy

dx

∣∣∣∣ = 1
f

duy

dx
= ρpφpg

N
x, (3.52)

as duy/dx is expected to be �0 for downward flow, and f should be non-negative (see
(3.45)).

The equation for the fluidity (3.48) reduces to

d2f
dx2 = �μ

A2d2
p

(
μs − μ

μs +�μ− μ

)
f + �μ

I0A2d2
p

√
ρpd2

p

N
μf 2. (3.53)

Two b.c.s are needed for (3.53). Henann & Kamrin (2013) assume that the gradient of
f in the direction normal to a boundary vanishes. Here, it implies that df /dx = 0 at the
walls x = +W. As (3.53) is solved only in the region 0 � x � W, let us consider the b.c.
at x = 0 first. The vertical velocity uy is expected to be an even function of x. Expanding
uy in a Taylor series about x = 0, we obtain

uy = a + bx2 + O(x4); x → 0, (3.54)

where a and b are constants. Hence the shear rate S′ is given by S′ = 2bx + O(x3). Using
this result along with (3.45) and (3.52), we obtain

f = 2b
c

+ O(x2); x → 0, (3.55)

where c is a constant. Hence one b.c. is given by
df
dx
(0) = 0. (3.56)

As a physically appealing b.c. is lacking at x = W, we follow Zhang & Kamrin (2017) and
set

f (x = W) ≡ fw = fdem, (3.57)
where fdem is the value of f obtained from the DEM results. By analogy with the slip b.c.
(3.33), a possible alternative b.c. for fw may be

fw = lf

∣∣∣∣ df
dx

∣∣∣∣ , (3.58)

where lf is a slip length associated with the fluidity. Values of lf are obtained from the
DEM results and the model predictions, as discussed in § 4.4.
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The MATLAB routines ODE45 and FSOLVE are used to integrate (3.53) and for
iterative matching of the b.c.s, respectively. Here, φp is chosen as φ̄, which is consistent
with the selection for comparisons with the DEM and the other models. To obtain the
velocity profile, (3.51) has to be integrated, and two more conditions are needed as the
normal stress N is not known a priori. Because of the lack of appropriate b.c., N and the
mass flow rate Ṁ are matched to the DEM results. The structure of (3.53) and the b.c.
permits an approximate solution, as discussed in § 4.4.2.

To relax the assumption that φ = const., some results are also presented with φ = φ(I),
where the functional form (3.40) is used. The equations will be solved in similarly, as
discussed in § 3.2, and N will be predicted by matching φ̄ to the DEM results.

As noted by one of the referees, (3.53) has been solved earlier by Zhang & Kamrin
(2017). However, the friction coefficient μ has been taken from the DEM results (K.
Kamrin, private communication 2021), and hence it is not a complete solution of the
model equations (3.49a,b), (3.50a,b), (3.52) and (3.53). There is no mention of the φ
and uy profiles in their paper, a gap that has been filled in the present work. Some other
aspects of this model are discussed in § 4.4.

3.5. The model of Dsouza & Nott (2020)
Dsouza & Nott (2020) start with the classical frictional model that involves a yield
condition and a flow rule (Srivastava & Sundaresan 2003; Rao & Nott 2008). Integrating
the flow rule over a representative volume with an effective radius �, and ignoring terms
of O(�4) and higher in the stresses, the constitutive equations are given by

σij = pδij − 2μ∗
S′ (pcD′

ij − �2Π∇2D′
ij)

pc = Π − �2 dΠ
dφ

∇2φ

p = pc

(
1 − μb

S′ ∇ · u
)

+ �2Π
μb

S′ ∇2 ∇ · u

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (3.59)

where μ∗ and μb are constants, S′ is defined by (3.14), D′
ij by (3.46), u is the velocity vector

and p = σkk/3 is the mean stress or the pressure. The variable pc in (3.59) is the mean
stress at a critical state or a state of isochoric motion, and Π(φ) is its ‘local’ contribution.
A suitable form must be specified for Π(φ), and it is chosen as (Savage & Sayed 1979)

Π(φ) = Λ∗ φ − φmin

φmax − φ
, φ � φmin; Π = 0, φ � φmin, (3.60)

where Λ∗, φmin and φmax > φmin are material constants. Dsouza & Nott (2020) use the
expression proposed by Johnson, Nott & Jackson (1990)

Π(φ) = Λ′ (φ − φmin)
2

(φmax − φ)5
, φ � φmin; Π = 0, φ � φmin, (3.61)

where Λ′ is a material constant. The latter form diverges faster as φ → φmax than the
former. Here, we use (3.60) to solve this model. The effect of (3.61) on the predictions is
discussed in § 4.

Because of the integration of the flow rule over a volume, (3.59) may be regarded as a
non-local model. The authors state, but do not prove, that the model is linearly well posed.

937 A33-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.119


B. Debnath, V. Kumaran and K.K. Rao

As ∇ · u = 0 for the velocity field (1.2a,b), (3.59) reduces to

σxx = σyy = σzz = p = pc = Π − �2 dΠ
dφ

d2φ

dx2

σxy = σyx = −μ∗
S′

(
pc

duy

dx
− �2Π

d3uy

dx3

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (3.62)

where

S′ = duy

dx
. (3.63)

Using (3.62), the momentum balances reduce to

p = pc = Π − �2 dΠ
dφ

d2φ

dx2 = const. ≡ N

dσxy

dx
= − d

dx

(
μ∗
S′

(
pc

duy

dx
− �2Π

d3uy

dx3

))
= −ρpφg

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (3.64)

To solve (3.64), seven conditions are needed as the normal stress N is unknown a priori.
The first of (3.64) depends only on φ, and hence is solved separately using the MATLAB
routine ODE45. Due to the lack of appropriate b.c. for φ, we match the bulk solids fraction
φ̄ and φ(0) to the DEM results. As the φ profile is expected to be symmetric about x = 0,
we have dφ/dx(0) = 0.

Four b.c.s are needed to solve the second of (3.64). The velocity profile is expected to be
symmetric about x = 0, and hence duy/dx(0) = 0. As the shear stress σxy(0) = 0, (3.62)
and the condition duy/dx(0) = 0 imply that

Π
d3uy

dx3 (0) = 0, (3.65)

where Π is given by the last of (3.59). Thus either (i) Π(φ) = 0, or (ii) d3uy/dx3 = 0.
The root (i) implies that φ has a minimum at x = 0, a condition that is at variance with
our DEM results and qualitative experimental observations of low φ values near the wall.
Hence, root (ii) is chosen and

d3uy

dx3 (0) = 0. (3.66)

The two additional b.c.s required are obtained by matching the mass flow rate Ṁ and uy(0)
to the DEM results.

Integrating the second of (3.64) once, we obtain

μ∗
S′

(
pc

duy

dx
− �2Π

d3uy

dx3

)∣∣∣∣∣
x

= ρpg
∫ x

0
φ dx′. (3.67)

With the profile of φ at hand, we use a three-point central difference scheme for q =
duy/dx on the left-hand side and numerical integration (trapezoidal rule) for the integral
on the right-hand side to solve (3.67). Once q is known, uy is evaluated using a two-point
central difference scheme.

There is a flaw in this argument, as (3.63) and the b.c. duy/dx(0) = 0 imply that S′(0) =
0. Hence the b.c. (3.66) implies that σxy(0) becomes indeterminate. As an ad hoc measure,
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we replace the dimensionless shear rate S̃ = S′√W/g by S̃ + ε̃, where ε̃ is a small positive
constant. The actual value used, and sensitivity to changes in its value, will be discussed
in § 4. This issue merits further attention.

The structure of (3.64) and the b.c. permits an approximate solution, as discussed in
§ 4.5.2.

3.6. Comparison of the models
The constitutive equations and model parameters are listed in table 1. The stresses depend
on φ and the velocity gradients for the first two models. They incorporate the effect of φ,
unlike the models of Jop, Forterre & Pouliquen (2006) and Henann & Kamrin (2013), and
well-posed models are derived without including higher gradients of the velocity. All the
models involve a material length scale, either through the inertial number I, the fluidity
f or the radius of the averaging volume �. Hence, they are able to predict the occurrence
of shear layers. The model of Henann & Kamrin (2013) assumes that φ is a constant, and
involves the second derivatives of the fluidity f . In the model of Dsouza & Nott (2020), the
stresses depend on the second derivatives of φ, and the third derivatives of the velocity.
Such models require the specification of additional b.c.s, which is an open problem at
present. The b.c.s listed in table 1 are used in conjunction with the DEM results to check
whether lu, δ, and lf are material parameters.

3.7. Parameter values
In the model of Barker et al. (2017), the parameters used are φmax, φmin,Λ, μs,�μ and I0.
The values of φmax and φmin used by Johnson et al. (1990) are 0.65 and 0.50, respectively,
but the functional form is different. We set φmax = φdrp = 0.64, where φdrp denotes the
solids fraction corresponding to dense random packing. This value has been deduced
from measurements on steel balls (Scott 1960; Scott & Kilgour 1969) and simulations
of frictionless hard-sphere fluids (Berryman 1983). Similarly, φmin is chosen as φf = 0.49,
the freezing solids fraction (Hoover & Ree 1968) obtained from simulations of hard-sphere
fluids. Below φmin, it is assumed that there are no sustained frictional contacts. Chialvo
et al. (2012) performed DEM simulations of the gravity-free plane shear of spheres for
inertial numbers in the range 10−5−100. Fitting (3.26) to their data (figure 2a), we obtain
μs = 0.38, �μ = 0.55 and I0 = 0.29.

Let us now discuss the estimation of the parameter Λ which occurs in (3.17). As
∂uk/∂xk = 0, the quantity σ in (3.24) is the mean stress at a critical state, which may be
denoted by σc. Thus σc = β(I)C(φ)/2. In the limit of quasistatic flow (I → 0), β(I) = 2μs
as discussed earlier. Hence C(φ) = σc/μs in this limit. Using (3.17), Λ can be estimated
if data is available for the variation of σc with φ for quasistatic flow. Fickie, Mehrabi &
Jackson (1989) measured φ along the centreline of a wedge-shaped hopper through which
glass beads were flowing. Jyotsna & Rao (1997) used an approximate expression for φ to
fit the data and hence estimated the parameters in their expression for σc(φ). The results
are shown by the circles in figure 2(b), and are assumed to be valid for quasistatic flow.
Fitting (3.17) to this ‘data’, Λ is found to be 555 N m−2. The fit, shown by the dashed
curve in figure 2(b), is reasonable but not very good. Unfortunately, the range of φ values
for which the data are available is very narrow.

The model of Dsouza & Nott (2020) involves the local value of the mean stress at
a critical state Π(φ). The quantities Π = (σxx + σyy + σzz)c/3 and σc = (σxx + σyy)c/2
differ in general, even though both are defined for a critical state, which is denoted by the
subscript c. For the model of Barker et al. (2017), σxx = σyy, but σzz is undefined. On the
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Model Constitutive equations Parameters Wall b.c.

τ = α(I)σ − σ 2

C(φ)
μs, �μ, I0 —

f (σ, φ, I) = β(I)− 2σ
C(φ)

Λ, φmin, φmax —

Barker et al. (2017) α(I) = 4
5
μ(I) uy(x = W) = −lu

duy

dx

+ 12
25

I−2/5
∫ I

0
j−3/5μ(j) dj — μw = τ(x = W)

N
= tan δ

β(I) = −2
5
μ(I)

+24
25

I−2/5
∫ I

0
j−3/5μ(j) dj — —

C(φ) = Λ
φ − φmin

φmax − φ
, — —

μ(I) = μs + �μ

(I0/I)+ 1
— —

Ψ (φ) ≡ φc − φ

a
μs, �μ, I0 —

Schaeffer et al. (2019) τ = μ(Ψ (φ))σ
I

Ψ (φ)
φc, a —

f (σ, I, φ) uy(x = W) = −lu
duy

dx
= 1

4
μ(Ψ (φ))

(
I

Ψ (φ)
− Ψ (φ)

I

)
— μw = τ(x = W)

N
= tan δ

μ(Ψ (φ)) = μs + �μ

(I0/Ψ (φ))+ 1
— —

Henann & Kamrin (2013) σij = pδij − 2
p
f

Dij μs, �μ, I0 uy(x = W) = −lu
duy

dx

A2d2
p∇2f = �μ

(
μs − μ

μs +�μ− 144μ

)
f A fw = lf

∣∣∣∣ df
dx

∣∣∣∣
+�μ

I0

√
ρpd2

p

p
μf 2 — μw = τ(x = W)

N
= tan δ

σij = pδij μ∗, μb —

−2μ∗
S′ (pcD′

ij − �2Π∇2D′
ij) — —

Dsouza & Nott (2020) pc = Π − �2 dΠ
dφ

∇2φ Λ∗, φmin, φmax —

p = pc

(
1 − μb

S′ ∇ · u
)

� —

+�2Π
μb

S′ ∇2 ∇ · u uy(x = W) = −lu
duy

dx
Π(φ) = Λ∗ φ − φmin

φmax − φ
, φ � φmin — μw = τ(x = W)

N
= tan δ

Π = 0, φ � φmin — —

Table 1. Models, parameters and b.c.s at the wall (x = W).

other hand, the model of Dsouza & Nott (2020) implies that σxx = σyy = σzz. Ignoring
this complication, Π is fitted to the circles in figure 2(b) using (3.60) and (3.61). The
result isΛ∗ = 211 N m−2 andΛ′ = 0.0988 N m−2. Equation (3.61) fits the data better but
(3.60) will be used here. The effect of using (3.61) is discussed in § 4.5. For the model of
Schaeffer et al. (2019), φc and a are obtained by fitting (3.40) to our DEM data for I in the
range 0.002–0.2 (figure 2c). The result is φc = 0.613 and a = 0.31.
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Figure 2. Estimation of parameters: (a) ◦, data of Chialvo et al. (2012); —, (3.26), (b) ◦, ‘data’ estimated by
Jyotsna & Rao (1997) as explained in the text; black dashed line (3.60); black dotted line, (3.61), (c) ◦, DEM
data obtained from the present work, —, (3.40).

For the model of Henann & Kamrin (2013), the parameters μs, �μ and I0 are taken
to be the same as those estimated earlier for the model of Barker et al. (2017). The value
of A is set to 0.48 (Henann & Kamrin 2013). For the model of Dsouza & Nott (2020),
μ∗ = sin θ (Prakash & Rao 1988) where θ is the angle of internal friction at a critical
state. It is assumed that θ = 25◦, a typical value for glass beads. The value of � in the
model of Dsouza & Nott (2020) is estimated as discussed in § 4.5.

4. Results

4.1. DEM
We first consider the trends shown by the DEM, and then compare them with the model
predictions. For smooth walls, the magnitude of the scaled vertical velocity −uy/

√
gW,

where g is the acceleration due to gravity and W is the half-width of the channel in the
x-direction, decreases as x increases (see the symbols in figure 3). This is in accord with
expectation and experimental observations that the walls retard the flow of the material.
For a fixed value of 2 W/dp, the flow is expected to become faster as the bulk solids fraction
φ̄ decreases. Hence −uy increases. Similarly, as 2 W/dp increases, the confining effect of
the walls decreases and hence the flow is faster. Rough walls retard the flow and hence the
velocities are smaller in magnitude than for the smooth walls (the insets in figure 3). Even
though it is often assumed that rough walls imply no slip, this is not true for the parameter
values used here.

The thickness Δ of the shear layer is chosen as W − x∗, where uy(x∗)− uy(W) =
0.95 (uy(0)− uy(W)). For smooth walls, the dimensionless thickness Δ/dp is in the
range 4–9 (the open black symbols in figure 4a). If Δ scales with dp, Δ/dp should be
independent of W, but it appears to increase with W. Computations should be done over a
larger range of W values to check whether this is a general trend. The main obstacle here
is that the DEM calculations become very time consuming when the number of particles
increases. As expected, rough walls lead to thicker shear layers (the filled black symbols
in figure 4a). As φ̄ decreases, the thickness increases for both smooth and rough walls.
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Figure 3. Variation of the scaled vertical velocity −uy/
√

gW with x/W for smooth (main figures) and
rough (insets) walls, where g is the acceleration due to gravity, W is the half-width of the channel and x
is the horizontal coordinate. The first row (a–d) and second row (e–h) correspond to 2 W/dp = 40 and 80,
respectively, where dp is the particle diameter: φ̄ = 0.62, (a,e); 0.61, (b, f ); 0.60, (c,g); 0.59, (d,h). Here, φ̄
is the bulk solids fraction. The symbols correspond to the DEM results, and the curves to the predictions
of the models: Barker et al. (2017) (brown solid line); Schaeffer et al. (2019) (red dashed line); Henann &
Kamrin (2013) (green dotted line); Dsouza & Nott (2020) (magenta dash-dotted line – numerical solution, blue
– approximate solution).

It is of interest to compare the mass flow rate Ṁ obtained from the DEM with that
predicted by the correlation of Beverloo, Leniger & Van de Velde (1961) (Ṁb). The latter
has been deduced from data for flow through bins with circular exit slots, and can be
modified as suggested by Nedderman et al. (1982) for rectangular exit slots. The solids
fraction φ used in the correlation is taken as 0.6, which is within the range of φ̄ values
used in the present work. The comparison of Ṁ with Ṁb is not strictly valid, as the actual
bin has impermeable walls in the z-direction, whereas the present work is based on the use
of periodic b.c.s in this direction. For smooth walls, Ṁ/Ṁb is in the range 1–18 (figure 4c).
Thus the DEM overestimates Ṁ, probably because the bin width 2 W and the slot width D
are equal in the former case (figure 1b,c) but 2 W > D in the latter case (figure 1a). The
discrepancy increases when φ̄ decreases, in keeping with the trends shown by the DEM for
the scaled centreline velocity −uy(x = 0)/

√
gW (figure 3). (The mass flow rate Ṁ depends

on uy and φ, but the dependence on uy is stronger as φ varies only slightly except close to
the wall (figure 5).) For a fixed value of φ̄, Ṁ/Ṁb increases as 2 W/dp increases. This is
because Ṁb is independent of W but Ṁ increases as W increases.

For rough walls, Ṁ is lower than that for smooth walls (figure 4c). However, Ṁb
corresponds to a situation where there is a core of rapidly flowing material near the
exit slot, adjacent to static or quasistatic ‘shoulders’ of material. Thus the material flows
through a channel with curved, rough walls, and there is no explicit dependence on wall
roughness in the correlation of Beverloo et al. (1961). For φ̄ = 0.62, Ṁ/Ṁb < 1, unlike
the case for smooth walls. As mentioned earlier, there is no flow for φ̄ > 0.62, and hence
the material slows down considerably as this limit of φ̄ is approached. The effect may be
more pronounced for rough walls, leading to Ṁ/Ṁb < 1.
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Figure 4. Variation of the dimensionless thickness of the shear layer Δ/dp (a,b); (a) DEM results, (b) model
results; mass flow rate Ṁ/Ṁb (c) and slip length lu/dp (d) with φ̄: 2 W/dp = 30 (�); 40 (�); 50 (◦); 80 (�).
The open and filled symbols correspond to the smooth and rough walls, respectively, and the black symbols
to the DEM results. The model predictions are shown by the coloured symbols and the curves joining them:
Barker et al. (2017) (brown solid line); Schaeffer et al. (2019) (red dashed line); Henann & Kamrin (2013)
(green dotted line); Dsouza & Nott (2020) (magenta – numerical solution).

In the actual bin, φ̄ is not within the control of the experimenter for a fixed slot
width. As there is no exit slot in the present work, the magnitude of the centreline
velocity −uy(x = 0) is several multiples of

√
gW, where g is the acceleration due

to gravity. Bhateja & Khakhar (2020) have simulated slow flow in a bin with slot
widths in the range 6–8 dp, and with D/(2 W) in the range 0.2–0.27 (figure 1a);
they obtained smaller centreline velocities (≈0.13

√
gW–0.25

√
gW). In their study, the

periodic b.c. in the flow direction was relaxed, but particles leaving the bin were
re-introduced at the top and allowed to fall from rest at random horizontal positions.
The effect of the walls was removed by applying periodic b.c.s in the other two
directions, and hence the properties varied in the flow direction only. Alternatively, the
emptying of a bin can be examined. At some height between the free surface and the
exit slot, a quasi-steady state may be expected to prevail for a time interval before
the bin is fully empty. For example, the emptying of seeds from an axisymmetric
bunker was studied by Danczyk et al. (2020) using experiments and DEM simulations.
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Figure 5. Variation of the solids fraction φ with x/W: φ̄ = 0.62 (a,e); 0.61, (b, f ); 0.60, (c,g); 0.59, (d,h).
Panels (a–d) and (e–h) correspond to 2 W/dp = 40 and 80, respectively. The symbols correspond to the DEM
results for smooth (◦) and rough (�) walls, and the curves to the model predictions of Barker et al. (2017)
(brown solid line); Schaeffer et al. (2019) (red dashed line); Henann & Kamrin (2013) (green dotted line);
Dsouza & Nott (2020) (magenta dash dot line – numerical solution, blue – approximate solution). The variation
of φ in a static column is shown by black filled symbols in (a,e).

In the simulations, the velocity profile ‘reached steady state flow after about 1 s.
Steady flow continued until approximately 18 s, at which point all the seeds had drained
from the hopper’. Some of these strategies will be examined in future work to permit a
comparison with experiments.

The slip length lu in (3.33) is evaluated in the DEM as lu/dp = (uy(x = W − 0.75 dp)−
uy(x = W − 2 dp))/(1.25 dpuy(x = W − 0.75 dp)), where (x = W − 0.75 dp) and (x =
W − 2 dp) are the centres of two bins adjacent to the wall. The distance between the
centres of these bins is 1.25 dp. The slip length is approximately independent of W and
φ̄ for both smooth and rough walls (figure 4d). This is an encouraging result, as it suggests
that lu may indeed be a material parameter that is related to the wall roughness. Further
studies are needed to confirm this conjecture. The slip length is approximately 4 times
higher for smooth walls than for rough walls. It may be expected that the magnitude of
the velocity decreases and the magnitude of the velocity gradient increases as the wall
roughness increases, leading to a lower value of lu.

For the static column, the φ profile is approximately flat except near the wall, where it
decreases (the black filled symbols in figure 5a,e). Because the material is sheared near
the wall but not near the centre, the solids fraction φ is expected to be lower at the wall
(figure 5). For smooth walls, there is a sharp decrease near the wall, and the values are
less than φmin. Thus frictional effects are expected to be small compared with collisional
effects in this region. For a fixed value of 2 W/dp, as φ̄ decreases, the φ profiles shift
downward, except near the centre. This is expected as φ̄ represents the average value of
φ. However, the value of φ(x = 0) is largely independent of the value of φ̄, for reasons
that are not clear. For a fixed value of φ̄, the φ profiles are not affected much by changes
in 2 W/dp, except near the wall. For rough walls, the decrease is less pronounced, and the
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Figure 6. Variation of the inertial number I with x/W. The first row (a–d) and second row (e–h) correspond to
2 W/dp = 40 and 80, respectively: φ̄ = 0.62 (a,e); 0.61 (b, f ); 0.60 (c,g); 0.59 (d,h). The symbols correspond
to the DEM results for smooth (◦) and rough (�) walls, and the curves to the model predictions of Barker et al.
(2017) (brown solid line); Schaeffer et al. (2019) (red dashed line); Henann & Kamrin (2013) (green dotted
line); Dsouza & Nott (2020) (magenta dash-dotted line – numerical solution, blue – approximate solution).

curves for smooth and rough walls cross near the wall. We do not have a simple qualitative
explanation for this behaviour, even though it would be very desirable.

Consider the variation of the inertial number I, defined by (3.2). In the literature,
the characteristic normal stress N is chosen as N = p ≡ (σxx + σyy + σzz)/3, where p is
the pressure. As mentioned in the previous section, two of the models do not provide
estimates of σzz, and other two models do not predict normal stress differences. To facilitate
comparison with these models, N is calculated as N = σxx. It is found that there is only
a slight difference in the values of I calculated using p and σxx (not shown). The inertial
number varies from very small values of order 10−5 (approximately zero) at the centre to
large values of order 1 at the wall (figure 6). Thus the flow is quasistatic near the centre
and inertial near the wall. The situation is unlike the case of steady flow down an inclined
plane, where I is a constant and the velocity varies in the cross-stream direction (Pouliquen
et al. 2006). Here, both I and uy vary with x. For a fixed value of 2 W/dp, I increases as
the bulk solids fraction φ̄ decreases (figure 6). This is in accord with intuition, as inertial
effects are expected to become more important in systems that are less dense. The value of
I for rough walls is greater than that for smooth walls over most of the channel, probably
because the shear rate is expected to be higher in the former case. However, close to the
wall, the trend is reversed. As the width 2 W/dp increases, the confining effect of the walls
decreases. Hence it may be expected that the flow will be faster, and the shear rate will be
higher near the wall. This leads to a larger value of I. This is not a rigorous argument, but
merely one based on intuition.

The y-component of the momentum balance shows that the shear stress τ varies linearly
with x if φ is a constant. This condition holds in the plug region, but is violated in the shear
layer. The DEM results show an approximately linear variation, with slight deviations
apparent in the shear layer (figure 7a,b).

937 A33-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.119


B. Debnath, V. Kumaran and K.K. Rao

0.58 0.59 0.60 0.61 0.62 0.63
10–1

100

101

102

0

0.2

0.4

0.6

0 0.25 0.50 0.75 1.00
–0.50

–0.25

0

0.25

0.50

0

0.2

0.4

0.6

0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

–0.50

–0.25

0

0.25

0.50

0.58 0.59 0.60 0.61 0.62 0.63
15

25

35

x/W

σ̃
xx

 =
 Ñ
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Figure 7. Variation of the scaled shear stress τ̃ = τ/(ρpgW) with x/W for smooth (a) and rough (b) walls.
In (c,d), the markers above and below the horizontal dashed line correspond to the scaled first (σxx − σyy)/σxx
and second (σyy − σzz)/σxx normal stress differences, respectively, for smooth (c) and rough (d) walls. The data
shown in (a–d) represent the DEM results for φ̄ = 0.60. (e) Variation of the scaled normal stress σ̃xx = Ñ =
σ/(ρpgW) with φ̄. Its inset shows the DEM results for the angle of wall friction δ (in degrees) (see (3.34)).
In (a–e), �, �, ◦ and � are for 2 W/dp = 30, 40, 50 and 80, respectively. In (e), the open and filled symbols
correspond to smooth and rough walls, respectively, the black symbols to the DEM results, and the curves to
the models predictions of Barker et al. (2017) (brown symbols solid line); Schaeffer et al. (2019) (red symbols
dashed line); Dsouza & Nott (2020) (magenta symbols – numerical solution, blue symbols dash-dotted line –
approximate solution).

For smooth walls, the scaled first normal stress difference (σxx − σyy)/σxx is positive,
and varies from approximately 10 % at the centre to approximately 30 % near the wall
(figure 7c). The scaled second normal stress difference (σyy − σzz)/σxx is largely negative,
and is almost zero at the centre and approximately 30 % near the wall. Such differences
do not appear to have been reported earlier for fully developed flow through a channel.
As discussed later, they provide a stringent test of constitutive equations. Unfortunately,
we do not have a simple physical explanation for their occurrence. Silbert et al. (2001)
observed the normal stress difference of approximately 15 %–20 % in inclined chute flow,
but they too did not provide a simple explanation. For rough walls, the trends are similar
(figure 7d), except that the values are slightly smaller in magnitude near the wall.

Values of the scaled normal stress Ñ ≡ N/(ρpg,W) are of O(1) for the DEM results
(figure 7e). For a fixed value of 2 W/dp, Ñ decreases as φ̄ decreases. The stress tensor is
evaluated as the sum of two contributions, one arising from contacts (including collisions),
and one arising from streaming (Silbert et al. 2001). Our calculations show that the latter is
small compared with the former. Small changes in φ̄ cause much larger changes in Ñ. For
systems with high values of φ̄, this may be anticipated as the frictional or contact stresses
are known to be sensitive to small changes in φ. Further, the material is expected to lose
sustained contact with the wall as φ̄ decreases. Hence Ñ is likely to decrease. As mentioned
by one of the referees, the stress depends on both the strength of the contact forces and
the number of contacts. If the latter dominates, Ñ will decrease as φ̄ decreases. However,
we do not have a convincing argument to prove this assertion at present. It is hoped that
a more satisfactory argument may be advanced in the future. For a fixed value of φ̄, Ñ is
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Figure 8. Variation of the friction coefficient μ with the inertial number I. The first row (a–d) and second row
(e–h) correspond to 2 W/dp = 40 and 80, respectively: (a,e), φ̄ = 0.62; (b, f ), φ̄ = 0.61; (c,g), φ̄ = 0.60; (d,h),
φ̄ = 0.59. The markers (◦ – smooth walls, � – rough walls) correspond to the DEM results and the curves
to the model predictions of Barker et al. (2017) (brown solid line); Schaeffer et al. (2019) (red dashed line);
Henann & Kamrin (2013) (green dotted line).

a very weak function of 2W/dp. Thus the scaling Ñ = N/(ρpgW) is reasonable but not
exact. The normal stress for the smooth wall is approximately 12 %–20 % higher than that
for the rough wall (figure 7e). Intuitively, as the angle of wall friction δ is expected to
be higher for the rough wall, (3.35) explains the decrease of Ñ with the increase in wall
roughness for a fixed value of φ̄.

The value of the angle of wall friction δ, calculated from (3.34) decreases by
approximately 50 % of the larger value as φ̄ increases, for both smooth and rough walls
(see the inset of figure 7e). For a fixed value of φ̄, δ is approximately 15 %–20 % higher
for rough walls than for smooth walls. Compared with the slip b.c. (3.33), the wall friction
b.c. (3.34) appears to be more robust. This issue merits further investigation.

As the shear rate and the shear stress increase with x/W and the normal stress N is a
constant, both μ ≡ τ/N and I increase, leading to the behaviour shown in figure 8. For
very small values of I, μ appears to tend to a non-zero value. For intermediate values of I,
the curves for smooth and rough walls are almost identical except for φ̄ = 0.62. For large
values of I, μ is larger for rough walls than for smooth walls (figure 8). As the curves for
I (figure 6) intersect near the wall, the value of I in the wall region is lower for the rough
wall . Hence, for a fixed value of I, the corresponding value of x/W is larger for the rough
wall, leading to a larger value of τ . As the normal stress N is also smaller for the rough
wall (figure 7e), μ is higher near the wall.

As I increases, the shear rate increases. Hence the material is expected to dilate more
leading to a lower value of φ, or a higher value of φdrp − φ (figure 9). Except for φ̄ = 0.62,
the results for smooth and rough walls almost coincide, indicating that φ vs I relation is
independent of the wall roughness. For φ̄ = 0.62, φ is slightly lower for rough walls.
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Figure 9. Variation of φdrp − φ with I. The first row (a–d) and second row (e–h) correspond to 2 W/dp =
40 and 80, respectively: (a,e), φ̄ = 0.62; (b, f ), φ̄ = 0.61; (c,g), φ̄ = 0.60; (d,h), φ̄ = 0.59. The markers (◦
– smooth walls, � – rough walls) correspond to the DEM results; Barker et al. (2017) (brown solid line);
Schaeffer et al. (2019) (red dashed line).

For 2 W/dp = 80, there are two distinct regimes, except for φ̄ = 0.62, (i) where φdrp − φ

increases gradually with I, and (ii) where φdrp − φ increases more rapidly for I > 10−1.

4.2. Barker et al. (2017)
For reasons explained in § 4.2.1, this model could not be solved for the entire range of
parameter values used here. Using (3.23), (3.25), (3.27) and (3.31), φ, I and N can be
obtained independently of the wall roughness. This result is a consequence of matching φ̄
to the DEM results, and not using the alternative b.c. (3.34). Hence the velocity gradient
(3.30) is the same for both smooth and rough walls, and the velocity profile corresponds
to a shift along the velocity axis when the wall roughness changes. Thus the form of the
velocity profile in unaffected by the wall roughness, as shown in figure 3(c,d) (the brown
curves). The same conclusion holds for the model of Schaeffer et al. (2019).

For 2 W/dp = 40, the magnitude of the scaled velocity is qualitatively similar to the
DEM results (the brown curves in figure 3c,d). The values are underestimated near the
centre and overestimated near the wall for both smooth and rough walls.

For 2 W/dp = 80 and φ̄ = 0.62, the profile agrees fairly well with the DEM results for
smooth walls (the brown curve in figure 3e). However, the values are overestimated near
the centre and underestimated near the wall for φ̄ = 0.61 and smooth walls, unlike the
case for 2 W/dp = 40 (the brown curve in figure 3f ). For rough walls, the scaled velocity
changes sign near the wall because of the shift, and hence leads to unrealistic profiles (not
shown in figure 3e, f ).

The scaled thickness of the shear layer Δ/dp varies with φ̄ and 2 W/dp like the DEM
results (the brown symbols in figure 4b). It is of the same order of magnitude, but the
range is larger than the latter. For reasons explained earlier, this model predicts that Δ/dp
is independent of the wall roughness, in contrast to the DEM results.
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The values of the slip length lu calculated from (3.33) vary widely (the brown symbols
in figure 4d). In some cases, they exceed the half-width of the channel. Thus this b.c. is not
reasonable for this model. Conversely, if lu is treated as a material parameter, the predicted
mass flow rates will differ significantly from the DEM results.

The solids fraction profiles are approximately flat, as shown by the insets of figure 5(c–f )
(the brown curves). It behaves like an incompressible model, at least in the present
problem, and hence does not match the DEM results well. As discussed earlier, the profiles
are independent of the wall roughness for a fixed value of φ̄.

The vertical asymptotes in the I profiles correspond to the boundary between the plug
and the shear layers (the brown curves in figure 6c–f ), whereas the DEM results show a
more gradual variation. The profiles agree reasonably well with the latter near the wall.

The scaled shear stress τ̃ almost coincides with the DEM results for all the models, and
hence the profiles are not shown. The first normal stress difference σxx − σyy is zero, and
the second normal stress difference σyy − σzz cannot be evaluated as σzz is unknown. This
is at variance with the DEM results, particularly near the wall (figure 7c,d). The scaled
normal stress Ñ = N/(ρpgW) underestimates the DEM results, and is independent of wall
roughness as mentioned earlier (the brown symbols in figure 7e). Unlike the latter, Ñ varies
more strongly with 2 W/dp and φ̄.

Hence the angle of wall friction δ cannot be treated as a material parameter (see
(3.35)). Further, as Ñ is independent of wall roughness, the model predicts that δ is also
independent of the wall roughness, contrary to expectation. This problem arises because
φ̄ has been matched to the DEM value. On the other hand, if δ is determined from
independent experiments, then the predicted value of φ̄ for a fixed value of 2 W/dp may
not match the value used to generate the DEM results.

From (3.26), as I → 0, μ → μs = 0.38, which is much larger than the DEM results (the
brown curves in figure 8c–f ). At large values of I, the trends are similar to the DEM results
for rough walls, but the values of μ are overestimated. For smooth walls, the latter show a
different curvature. Thus a single function μ(I) cannot fit data for both smooth and rough
walls. The brown curves in figure 8(c–f ) are obtained by fitting (3.26) to the DEM results
of Chialvo et al. (2012) for homogeneous shear between parallel plates (figure 2a). As this
function does not fit our DEM results well, it follows that μ(I) is not a true constitutive
equation, but one that depends on the geometry. As φ does not vary much with x/W (the
insets in figure 5c–f ), plots of φ vs I are effectively horizontal lines, and hence they do not
capture the variation shown by the DEM results (the brown curves in figure 9).

4.2.1. Reasons for the lack of solutions for some parameter values
Introducing the dimensionless quantities x̃p ≡ xp/W and Ñ ≡ N/(ρpgW), (3.29) reduces
to x̃p = (μsÑ)/φp. As x̃p � 1, we have

μsÑ � φp. (4.1)

As β(I → 0) = 2μs, (3.27) implies that

φp = μsΛ̃φmin + Ñφmax

μsΛ̃+ Ñ
, (4.2)

where Λ̃ ≡ Λ/(ρpgW). Using (4.1) and (4.2), we obtain

μsÑ2 + (μ2
s Λ̃− φmax)Ñ − μsΛ̃φmin � 0. (4.3)
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Figure 10. Variation of the dimensionless normal stress Ñ with the solids fraction φp in the plug layer for the
model of Barker et al. (2017): solid curves, plots of (4.2) for specified values of Λ̃ = Λ/(ρpgW), where ρp is
the particle density, g is the acceleration due to gravity and W is the half-width of the channel in the x-direction;
upper dash-dot line, equality in (4.1); lower dashed line, equality in (4.6).

For (4.3) to hold, Ñ must be less than a critical value Ñc, which is the positive root
obtained by equating the left-hand side of (4.3) to zero. For a chosen value of Λ̃, the root
corresponds to the point of intersection of the curve (4.2) and the line given by equality
in (4.1) in the φp–Ñ plane (figure 10). For a value of 2 W/dp, or Λ̃, if the curve (4.2)
corresponding to that Λ̃ crosses the line (4.1) at a φp = φu, the model cannot be solved for
φ̄ > φu.

An approximate solution provides an additional insight. As seen from our DEM results,
the model predicts a very small variation of φ (the insets in figure 5c–f ). Treating φ as
a constant (=φp), and using (3.25) and (3.26), the second of (3.23) can be integrated to
obtain

I
I0 + I

= φp

Ñ�μ
(x̃ − x̃p), (4.4)

where x̃ ≡ x/W and x̃p ≡ xp/W. Simplifying, we obtain

I = I0(x̃ − x̃p)(
Ñμd

φp
− x̃

) ; μd ≡ μs +�μ. (4.5a,b)

Equation (4.5a,b) shows that I → ∞ as x̃ increases if

Ñμd

φp
� 1. (4.6)

For a chosen value of Λ̃, the limiting condition corresponds to the intersection of the curve
(4.2) with the line given by the equality in (4.6) (figure 10). This gives a limiting value of
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φp = φl such that there is no solution for φ̄ < φl. Thus the model cannot be solved for
both small and large values of φ̄, but the limits depend on the value of Λ̃. The lower limit
should be used with care as it is based on an approximate solution.

For typical values of a particle density ρp = 2650 kg m−3, Λ = 555 N m−2, a particle
diameter dp = 1 mm and 2 W/dp = 30, 40, 50 and 80, the values of Λ̃ = Λ/(ρpgW) are
1.4, 1.1, 0.8 and 0.5, respectively. For these values of Λ̃, figure 10 shows that solutions can
be obtained for φ̄ = (0.6, 0.59) for 2 W/dp = 30 and 40, (0.61, 0.6, 0.59) for 2 W/dp = 50
and (0.62, 0.61) for 2 W/dp = 80.

4.3. Schaeffer et al. (2019)
As φ̄ is matched to the DEM results and φc = 0.613 in (3.40), a solution could not be
obtained for φ̄ = 0.62. As φ(x = 0) ≈ 0.63 for the DEM results and φ(x = 0) � φc for
the model, we expect the predictions to overestimate φ near the wall for φ̄ � 0.61 (the
red curves in figure 5). The scaled velocity profiles are qualitatively similar to the DEM
results, except that the values are higher near the wall and lower near the centre (the red
curves in figure 3). This holds for both smooth and rough walls. The scaled thickness of
the shear layer Δ/dp overestimates the DEM results for most of the parameter values (the
red symbols in figure 4b), but is of the same order of magnitude. It varies with 2 W/dp
and φ̄, but does not vary with the wall roughness, similar to that of Barker et al. (2017).
The range of lu/dp values is comparable to that of Barker et al. (2017) (the red symbols in
figure 4d). As in the case of the latter, lu is not a material parameter.

The φ profiles (the red curves in figure 5) are better than the flat profiles predicted by
Barker et al. (2017). However, there is no improvement in the profiles of I, which are
similar to those of Barker et al. (2017), except near the wall (the red curves in figure 6).
For a fixed value of φ̄, the I profiles are independent of 2 W/dp unlike the profiles of
Barker et al. (2017). This is because the right-hand side of (3.41) involves the ratio of x/W
to the scaled normal stress Ñ = N/(ρpgW), and W does not occur explicitly. Hence φ is
independent of 2 W/dp (see (3.40)), leading to a similar behaviour for Ñ (the red symbols
in figure 7e). Equation (3.35) shows that δ is also independent of 2 W/dp, and varies only
with φ̄. The values Ñ are underestimated. The first normal stress difference is zero, and
the second normal stress difference is undetermined. As explained in § 4.2, the profiles of
φ, I, and Ñ are unaffected by the wall roughness, and hence the remarks about the use of
the friction b.c. (3.35) apply here also.

The profiles of μ vs I are identical to those of Barker et al. (2017), as (3.26) has been
used in both cases (the red curves in figure 8). For I in the range 0.002–0.2, (3.40) has
been fitted to the DEM results. Hence the agreement is good (the red curves in figure 9).
For smaller values of I, deviations are apparent.

4.4. Henann & Kamrin (2013)
For smooth walls, the scaled velocity profiles are qualitatively similar to those for the DEM
results (the green curves in figure 3), but the values are underestimated near the centre
and overestimated near the wall. For rough walls, the solution could not be obtained as
discussed in § 4.4.1. For smooth walls, the scaled thickness of the shear layer is comparable
to the DEM results (the green symbols in figure 4b).

The value of the slip length lu is approximately independent of φ̄ and 2 W/dp, and
comparable to the DEM results (the green symbols in figure 4d). Hence it appears that the
slip velocity b.c. (3.33) can be used for this model, with lu as a material parameter.
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Figure 11. Variation of lf (a) and x̃s = μsÑ/φp (b) with φ̄, f̃ = f /fw (c) and T1 and T2 (d) with x̃ = x/W for the
model of Henann & Kamrin (2013). Here, lf is calculated from (3.58), T1 and T2 are defined by (4.9a,b). The
value of Ñ is matched to the DEM results. In (a,b), open and filled symbols correspond to smooth and rough
walls, and �, �, ◦, and � are for 2 W/dp = 30, 40, 50 and 80, respectively. In (a), the solid lines correspond to
the DEM results, and the dotted lines to the model predictions. In (c,d), 2 W/dp = 40; black dash-dotted line,
φ̄ = 0.62 (smooth wall, x̃s > 1); black solid line, φ̄ = 0.6 (smooth wall, x̃s slightly < 1); black dashed line,
φ̄ = 0.6 (rough wall, x̃s much < 1). The numerical (blue) and approximate (red) solutions for f̃ are shown in
(c). Using the numerical solution, the profiles of T1 (black) and T2 (magenta) are shown in (d).

The slip length for the fluidity lf is calculated using (3.58), and is shown in figure 11(a).
The DEM results of lf for smooth walls do not vary with 2 W/dp and φ̄, which is not
true for rough walls. For smooth walls, the value of lf obtained from the model is much
smaller than that for the DEM results, and shows a very weak dependence on 2 W/dp and
φ̄. Thus (3.58) can possibly be used as a b.c., but the discrepancy in the lf values shown in
figure 11(a) suggests that it may not give good predictions of various quantities.

As φ is assumed to be a constant, the profiles are flat, in contrast to the DEM results
(the green curves in figure 5). The variation of I with x/W is predicted fairly well by the
model (the green curves in figure 6). The normal stress differences are zero (see (3.44)),
in contrast to the DEM results. The scaled normal stress Ñ has been matched to the DEM
values, and hence there is no discrepancy in the values of Ñ and δ. Conversely, if the value
δ is taken from independent experiments, the predicted value of Ñ may not match the DEM
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results. For smooth walls, μ vs I profiles are predicted much better than the other models
(the green curves in figure 8). In particular, the change in curvature of the profiles near
the wall for some of the parameter values is captured by the model. Solutions could not be
obtained for some parameter values (e.g. for rough walls), for reasons discussed below.

4.4.1. Reasons for the lack of solutions
Introducing the dimensionless variables x̃ = x/W, W̃ = W/dp, ũy = uy/

√
gW, Ñ =

N/(ρpgW), f̃ = f /fw, f̃w = fw/
√

g/W, where fw = f (x = W), and substituting μ from
(3.52), (3.53) can be rewritten as

d2 f̃
dx̃2 = �μ

A2

(
x̃s − x̃
x̃d − x̃

)
W̃2 f̃ + �μ

I0A2
φp

Ñ3/2
W̃f̃wx̃f̃ 2, (4.7)

or

d2 f̃
dx̃2 = T1 + T2, (4.8)

where x̃s ≡ μsÑ/φp and x̃d ≡ (μs +�μ)Ñ/φp, and

T1 ≡ �μ

A2

(
x̃s − x̃
x̃d − x̃

)
W̃2 f̃ ; T2 ≡ �μ

I0A2
φp

Ñ3/2
W̃f̃wx̃f̃ 2. (4.9a,b)

The values of μs and�μ are such that x̃d > x̃s and x̃d > 1 for the ranges of Ñ and φp(= φ̄)

used here. However, x̃s may be > 1 for some cases (figure 11b). If x̃s > 1, the right-hand
side of (4.7) is non-negative. Using the b.c. (3.56), if f̃ (x̃ = 0) > 0, then (4.7) implies that
f̃ increases monotonically throughout the domain. Hence a solution can be obtained that
matches the b.c. (3.57) for smooth walls (the blue dash-dot curve in figure 11c).

If x̃s is slightly <1, T1 is <0 near the wall, whereas T2 is >0 (see (4.9a,b)). If the latter
dominates, a solution can be obtained (the solid blue curve in figure 11c). If x̃s is much<1,
T1 is <0 for x̃s < x̃ � 1, and may dominate T2 in magnitude. Hence the right-hand side
of (4.7) may be negative for some values of x̃. This causes the slope df̃ /dx to decrease.
If the slope decreases, f̃ may eventually become < 0, as in the case of the blue dashed
curve in figure 11(c). This is an unrealistic result as (3.45) implies that f̃ must be � 0. For
rough walls, x̃s is significantly <1 (figure 11b), and hence a realistic solution could not be
obtained.

4.4.2. An approximate solution by the method of matched asymptotic expansion
An insight into the behaviour of solutions to (4.7) may be obtained by omitting T2 as
discussed below, even though the numerical solution shows that |T1|  T2 near the wall
(figure 11d). Introducing a small parameter ε = 1/W̃ = dp/W, f̃ may be expanded in
powers of ε as

f̃ = f̃0(x̃)+ εf̃1(x̃)+ ε2 f̃2(x̃)+ . . . . (4.10)

Substituting (4.10) in (4.7), omitting T2 and matching the terms of O(ε0), we obtain f̃0 = 0.
This does not satisfy the b.c. (3.57) at x̃ = 1. Regarding this as the outer solution f̃outer = 0
which is not valid near the wall, we seek an inner solution f̃inner by introducing a new

937 A33-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.119


B. Debnath, V. Kumaran and K.K. Rao

coordinate
X = (1 − x̃)/ε. (4.11)

Expanding f̃ = f̃inner ≡ F in powers of ε, we obtain

F = F0(X)+ εF1(X)+ ε2F2(X)+ . . . . (4.12)

Substituting (4.11) and (4.12) in (4.7), we obtain

d2F
dX2 = �μ

A2
x̃s − (1 − εX)
x̃d − (1 − εX)

F. (4.13)

The b.c.s required to solve (4.13) are F(X = 0) = 1 and F → f̃outer = 0 as X → ∞.
Substituting (4.12) in (4.13), and matching the terms of O(ε0), we obtain

d2F0

dX2 = m2F0, (4.14)

where m2 = (�μ/A2)((x̃s − 1)/(x̃d − 1)), and the leading-order terms in the b.c. are
F0(X = 0) = 1 and F0 → f̃outer as X → ∞.

Case 1: for x̃s > 1, m2 is > 0 and the inner solution is

f̃inner = F = F0 + O(ε) = exp(−mX)+ O(ε) = exp
(
−m
ε
(1 − x̃)

)
+ O(ε), (4.15)

which ensures the solution f̃ is � 0 in the whole domain. The exponentially decaying trend
of (4.15) from the wall towards the centre agrees qualitatively with the numerical results
(the blue dash-dot curve and the blue solid curve in figure 11c).

Case 2: for x̃s < 1, m2 is < 0 and the inner solution is

f̃inner = F(X) = F0(X)+ O(ε) = c1 cos(mX)+ c2 sin(mX)+ O(ε), (4.16)

where c1 and c2 are constants. Using the b.c. F0(X = 0) = 1, c1 = 1. The b.c. F0 → f̃outer
as X → ∞ cannot be satisfied. Hence the solution (4.16) does not ensure f̃ � 0 in the
whole domain for the instances x̃s < 1.

The above argument very crudely suggests that there is a possibility of obtaining a
solution with f̃ < 0 in a part of the domain if |T1| > T2. The numerical solution shows
that T2 is �|T1| near the wall, although both the terms are comparable in a zone far from
the wall (figure 11d). This leads us to seek an approximate solution by omitting T1.

Introducing a small parameter ε∗ = 1/(W̃f̃w)1/2 (the DEM results show that f̃w is of the
same order as W̃), (4.7) can be rewritten as

d2 f̃
dx̃2 = ε2

∗
�μ

I0A2
φp

Ñ3/2
x̃f̃ 2. (4.17)

Expanding f̃ in powers of ε∗

f̃ = f̃0 + ε∗ f̃1 + ε2
∗ f̃2 + . . . . (4.18)

Substituting (4.18) in (4.17), and matching the terms of O(ε0∗), we obtain

f̃0 = 0. (4.19)

The solution (4.19) satisfies the b.c. df̃ /dx̃(x̃ = 0) = 0, but not the b.c. f̃ (x̃ = 1) = 1.
Hence we regard (4.19) as the outer solution f̃outer.
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To obtain the inner solution, let

χ = 1 − x̃
ε∗

. (4.20)

Expanding f̃ = f̃inner ≡ ϕ in powers of ε∗, we obtain

ϕ = ϕ0(χ)+ ε∗ϕ1(χ)+ ε2
∗ϕ2(χ)+ . . . . (4.21)

Substituting (4.21) in (4.17), we obtain

d2ϕ

dχ2 = �μ

I0A2
φp

Ñ3/2
(1 − ε∗χ)ϕ2. (4.22)

The b.c.s for (4.22) are ϕ(χ = 0) = 1 and ϕ → f̃outer = 0 as χ → ∞. Substituting (4.21)
in (4.22), and matching the terms of O(ε0∗), we obtain

d2ϕ0

dχ2 = αϕ2
0, (4.23)

where α = (�μφp)/(I0A2Ñ3/2). Multiplying both sides of (4.23) by dϕ0/dχ , and using
the b.c.s ϕ0(χ = 1) = 1 and ϕ0 → 0 at χ → ∞, the inner solution is given by (Zaitsev &
Polyanin 2002)

f̃inner = ϕ = 1(√
α

6
χ + 1

)2 + O(ε∗). (4.24)

The approximate solution (the red curves in figure 11c) agrees reasonably well with the
numerical solution (the blue curves), except when the fluidity is negative.

4.4.3. Use of φ = φ(I) to improve the model
To permit variation of φ with x, we assume that φ = φ(I), and use the form (3.40).
Equations (3.30), (3.50a,b) and (3.53) are solved using the b.c.s (3.56) and (3.57). As
in the other models, φ̄ and Ṁ are matched to the DEM results. For φ̄ = 0.61, the φ profiles
(the blue and red solid curves in figure 12b) agree better with the DEM results than the
incompressible model (the dashed line). Because φ(x = 0) = φc = 0.613 at the centre,
which is slightly >φp = φ̄ for the incompressible model, we expect the scaled velocity to
be smaller near the centre (the blue and red solid curves in figure 12a). The profiles of I
for both the models are qualitatively similar (figure 12c). These remarks also apply to the
case φ̄ = 0.60 (figure 12d–f ).

4.5. Dsouza & Nott (2020)
The value of the parameter � is estimated by minimizing the root mean square error Nrms
between the normal stresses Ndem and Nmodel, with

Nrms ≡
√√√√ 1

np

np∑
i=1

(
Nmodel − Ndem

Ndem

)2

, (4.25)

where np is the number of bins used for the DEM. For the models, Nmodel = σxx is
independent of x, but Ndem varies slightly. Here, Nrms increases with �/dp (figure 13a),
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Figure 12. Variation of the scaled vertical velocity −uy/
√

gW (a), the solids fraction φ (b) and the inertial
number I (c) with x/W for the model of Henann & Kamrin (2013): ◦, the DEM results; blue and red dashed
line, φ = const. = φp; blue and red solid line, φ = φ(I); 2 W/dp = 40, red curves; 2 W/dp = 80, blue curves.
Here, φ̄ = 0.61 (a–c), and 0.60 (d–f ).

and hence there is no obvious choice for �/dp. Clearly, � should be small compared with
the half-width W of the channel and large enough so that the averaging volume used to
average the flow rule contains a reasonable number of particles. The smallest value of �/dp
used here is 3. Choosing a value of Nrms that is 5 % larger than the value for �/dp = 3,
and averaging the results for 2 W/dp = 30, 40 and 50, we obtain �/dp = 5. A sphere of
radius 5 dp contains ≈75 particles. The value used by Dsouza & Nott (2020) is �/dp = 10
but the reason behind this choice is not clear. It leads to a larger discrepancy compared
with the DEM results (figure 13a). As mentioned in § 3.5, the dimensionless shear rate
S̃ = S′√W/g is replaced by S̃ + ε̃, where ε̃ is chosen as 10−4. The results are unaffected
for ε̃ in the range 10−6−10−2, and the relative error in the results with respect to ε̃ = 10−4

is in the range 10−4 %−10−2 %.
The results are sensitive to the choice of the functional form of Π(φ), the local value

of the mean stress at a critical state. The two forms used here (3.60) and (3.61) lead to
very different profiles of φ in the shear layer and also different estimates of the normal
stresses (figure 13b). The local contribution of the critical state pressure Π(φ) diverges
faster for (3.61) than (3.60). The ratio of Π(φ) calculated from (3.61) and (3.60) for, say,
φ(x = 0) = 0.63 is ≈103, which explains the much higher prediction of the scaled normal
stress Ñ for (3.61). There is a dire need for data on Π(φ) at stress levels comparable to
those that occur in laboratory-scale experiments.

Equation (3.64) could not be solved except for φ̄ = 0.62. The reason for this behaviour
is discussed in § 4.5.1. As the centreline velocity is forced to match the DEM value,
the prediction is good near the centre (the magenta curves in figure 3a,e). However, the
DEM results are significantly underestimated except close to the wall. Consequently, the
predicted thickness of the shear layer is much higher (the magenta symbols in figure 4b).
The value of lu calculated from (3.33) varies from 1 to 20 as 2 W/dp increases from 30
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Figure 13. Variation of the root mean square error for the normal stress Nrms (see (4.25)) with �/dp (a),
solids fraction φ with x/W (b) and the lower limit φ̄l for φ̄ with 2 W/dp and φ0 ≡ φ(x = 0) (c) for the model
of Dsouza & Nott (2020). Here, � is the effective radius of averaging volume (see (3.59)). In (b), the symbols
represent the DEM results for smooth (◦) and rough (�) walls, and the curves represent the numerical solutions
based on (3.60) (black dashed line) and (3.61) (black solid line) for 2 W/dp = 40 and φ̄ = 0.62. The scaled
normal stresses Ñ predicted by (3.60) and (3.61) are 6.26 and 4.16 ×104 , respectively. In (c), φ̄l corresponds to
φ(x = W) = φmin (see (3.60)).

to 80 (figure 4d). Hence (3.33) is not a suitable b.c. For rough walls, the magnitude of
the scaled velocity changes sign near the wall, which is unrealistic. The reason for this
behaviour is discussed in § 4.2.

For smooth walls, the φ profiles agree well with the DEM results (the magenta curves
in figure 5a,e). For rough walls, discrepancies are evident for intermediate values of x/W.
For a fixed value of φ̄, φ profiles depend on φ(x = 0), which is matched to the DEM
results. As φ(0) is found to be insensitive to the wall roughness (figure 5a,e), the predicted
φ profiles are independent of the wall roughness, in contrast to the DEM results.

The normal stress differences are zero (the first of (3.62)). The scaled normal stress
Ñ is much higher than the DEM results (the magenta symbols in figure 7e). The local
model, obtained by setting � = 0 in (3.62)–(3.64), implies that the momentum balance
(3.64) cannot be satisfied, and hence it does not predict the variation of φ in the current
geometry. However, the local contribution to the normal stress may be readily evaluated
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using the values of φ. For example, if 2 W/dp = 40 and φ̄ = 0.61, Ñlocal/Ñ ≈ 0.25 at
x = 0. Thus large normal stresses arise mainly from the non-local term involving �2 in the
first of (3.64). As 2 W/dp increases, Ñ decreases, in contrast to the behaviour of the DEM
and the other models. Some insight can be gained from an approximate solution discussed
in § 4.5.2.

4.5.1. Reasons for the lack of solutions for φ̄ = 0.59 − 0.61
The integration of the first of (3.64) from x/W = 0 stops when φ = φmin for x/W � 1.
This is because Π = 0 for φ < φmin (see (3.60)), and hence the normal stress N vanishes
(see the first of (3.64)). Thus there is a lower limit φ̄ ≡ φ̄l such that φ(x = W) = φmin.
To obtain φ̄l, we integrate the first of (3.64) using φ(x = 0) = φ0 and dφ/dx(x = 0) = 0,
and iterate the value of N such that φ(x = W) = φmin. Curves of constant φ0 are shown
in figure 13(c). For fixed values of 2 W/dp and φ0, solutions can be obtained for φ̄ > φ̄l.
Our DEM results predict φ0 ≈ 0.63, which is one of the b.c. used to solve the first of
(3.64). The curve corresponding to this value shows that solutions cannot be obtained for
φ̄ � 0.61 (figure 13c).

4.5.2. Approximate solution
The structure of (3.64) and the b.c. permits the construction of a Taylor series solution.
Expanding φ in a Taylor series about x = 0, and using the symmetry condition dφ/dx(x =
0) = 0

φ = φ0 + 1
2

d2φ

dx2

∣∣∣∣∣
0

x2 + O(x4). (4.26)

Using the first of (3.64)

d2φ

dx2

∣∣∣∣∣
0

= Π − N

�2 dΠ
dφ

∣∣∣∣∣∣∣∣
0

. (4.27)

Integrating (4.26) with respect to x from 0 to W, we obtain

φ̄ = φ0 + 1
6

d2φ

dx2

∣∣∣∣∣
0

W2. (4.28)

Using (4.26) and (4.28), the approximate solution for φ is

φ = φ0 + 3
(
φ̄ − φ0

) ( x
W

)2
. (4.29)

To obtain the normal stress N, we use (4.27) and (4.28)

N = Πφ=φ0 − 6
(
�

W

)2 (
φ̄ − φ0

) dΠ
dφ

∣∣∣∣
φ=φ0

. (4.30)

Setting q = duy/dx, (3.67) reduces to

μ∗
q

(
Nq − �2Π

d2q
dx2

)∣∣∣∣∣
x

= ρpg
∫ x

0
φ dx′. (4.31)
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Granular flow through a vertical channel: DEM and models

Expanding q in a Taylor series about x = 0, and using the conditions q(x = 0) = 0 and
d2q/dx2(x = 0) = 0 (see (3.66))

duy

dx
= q = dq

dx

∣∣∣∣
0

x + 1
3!

d3q
dx3

∣∣∣∣∣
0

x3 + O(x5). (4.32)

Now, applying limit x → 0 to (4.31), L’Hopital’s rule implies that

N
dq
dx

∣∣∣∣
0
− �2Πφ=φ0

d3q
dx3

∣∣∣∣∣
0

dq
dx

∣∣∣∣
0

= 0. (4.33)

Assuming that dq/dx|0 /= 0, (4.33) reduces to

N
dq
dx

∣∣∣∣
0
− �2Πφ=φ0

d3q
dx3

∣∣∣∣∣
0

= 0. (4.34)

Solving for d3q/dx3|0 from (4.34), integrating (4.32) and using uy(x = 0) ≡ u0
y , we obtain

uy = u0
y +

(
1
2

x2 + 1
24�2

N
Πφ=φ0

x4

)
dq
dx

∣∣∣∣
0
. (4.35)

Using (3.32), (4.29) and (4.35), we obtain

dq
dx

∣∣∣∣
0

=
(

2ρpB(−u0
y)φ̄W

)
− Ṁ

2ρpB

(
3
10
φ̄W3 + 1

56�2
N

Πφ=φ0
φ̄W5 + 1

60
φ0W3 − 1

105�2
N

Πφ=φ0
φ0W5

) .
(4.36)

The functions (4.29), (4.30), (4.35) and (4.36) provide an approximate solution. The
approximate solution for the velocity is close to the numerical solution, except near the
wall (figure 3a,e). Owing to the Taylor series expansion, the approximate solution can be
constructed for φ̄ � 0.62, whereas the numerical solution cannot be obtained for φ̄ < 0.62
(see § 4.5.1). For fixed values of φ̄ and x/W, (4.29) shows that φ(x/W) is independent of
W (the blue curves in figure 5). The numerical solution (the magenta curves in figure 5a,e)
reflects this behaviour except very close to the wall. This is in keeping with the trends
shown by the DEM results.

In the absence of the non-local term involving (�/W)2 in (4.30), N is approximately a
constant as φ0 does not vary much with changes in φ̄ and 2 W/dp for the DEM results.
When the non-local term is included, (4.30) shows that N increases as W decreases
provided φ̄ < φ0, in contrast to the DEM results (the blue symbols in figure 7e). The
numerical solution (magenta) is close to the approximate solution. The slope dN/dφ̄ of
(4.30) is negative, in contrast to the DEM results. Thus higher order terms may be required
to get a more accurate solution.

5. Discussion

The problem of the gravity flow of granular material through a vertical channel is
examined using the DEM and some continuum models for a wide range 2 W/dp = 30−80

937 A33-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.119


B. Debnath, V. Kumaran and K.K. Rao

and φ̄ = 0.62−0.59. In the DEM simulation, there is no exit slot in the channel, and
periodic b.c.s are applied in the flow y- and the vorticity z-directions. The range of φ̄
appears narrow, but is not as earlier work suggests that the material does not flow for
φ̄ > 0.62. There is a lower limit φ̄ = φ̄cr such that steady flow does not occur for φ̄ < φ̄cr.
For smooth walls with 2 W/dp = 80, φ̄cr = 0.59. The value of φ̄cr depends on 2 W/dp,
and ongoing work suggests that it also depends on the wall roughness.

Let us summarize the DEM results first. They predict a plug at the centre and a shear
layer near the wall, in accord with experimental observations. The solids fraction φ is
approximately constant in the plug and reduces significantly in the shear layer because
of dilation. The value of φ ≈ 0.63 in the plug is approximately independent of the width
2 W/dp, the bulk solids fraction φ̄, and the wall roughness. However, in the shear layer,
the profiles of φ vary with φ̄ and the wall roughness for a fixed value of 2 W/dp. The
scaled thickness of the shear layer Δ/dp increases with 2 W/dp, in accord with the data of
Ananda et al. (2008). It increases as φ̄ decreases, and varies with the wall roughness. The
mass flow rate Ṁ increases as 2 W/dp increases and φ̄ decreases. When φ̄ decreases, −uy
increases more than the corresponding decrease in φ near the wall. Hence Ṁ increases.
For smooth walls, the values of Ṁ are higher than those for rough walls, as expected.
The slip length lu/dp is approximately independent of 2 W/dp and φ̄, but the values are
nearly 4 times higher for smooth walls than those for rough walls. Thus it may be possible
to use the slip b.c. (3.33) for solving flow problems. The inertial number I varies from
very small values near the centre to large values of O(1) near the wall. It increases as φ̄
decreases, and the values are higher near the wall for rough walls than those for smooth
walls. The normal stress differences are non-zero. In granular statics, it is well known
that the stress field is anisotropic (Nedderman 1992; Rao & Nott 2008). This is believed
to be caused by the occurrence of stress chains, which are preferred directions along
which stresses are transmitted under the influence of gravity (see e.g. Vanel et al. 1999).
In flowing media, the shear rate may also induce anisotropy (Sun & Sundaresan 2011).
None of the models examined here capture this feature. It is known that some kinetic
theories predict this effect (Goldhirsch & Sela 1996; Kumaran 2006, 2008; Saha & Alam
2016; Jenkins, Alam & Berzi 2020). Some of these theories attribute the normal stress
differences to the anisotropy in the second moment of the velocity fluctuations in the dilute
limit, and velocity correlations arising from inelasticity in the dense limit (Saha & Alam
2016; Jenkins et al. 2020). The scaled normal stress Ñ = N/(ρpgW) is almost independent
of 2 W/dp. It increases with φ̄, and its values are higher for smooth walls. The angle of
wall friction δ is approximately independent of 2 W/dp, but it decreases as φ̄ increases.
The value of δ is slightly higher for the rough walls. Further work is required to develop
a suitable friction b.c. (3.34). Many of the results such as the profiles of φ (for spheres),
Δ, I, lu, δ, Ñ and normal stress differences have not been reported in detail earlier for the
present problem.

The model of Barker et al. (2017) captures the trends of the velocity and normal stress
qualitatively. A vertical asymptote in the I vs x profiles as I → 0, and almost flat φ profiles
are the major drawbacks. Even though μ(I) has been obtained by fitting (3.26) to the DEM
data of Chialvo et al. (2012) in a different geometry, it does not fit our data well. Hence
(3.26) is not a true constitutive equation, as mentioned earlier. The profiles of φ and I,
and the values of Δ/dp and Ñ depend on 2 W/dp and φ̄, but they do not vary with wall
roughness. Solutions cannot be obtained for some of the parameter values used, and an
approximate analysis for this behaviour has been discussed in § 4.2.1. Note that this model
differs from the μ(I)− φ(I) model as φ depends on I and Ñ (see (3.27)).
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The model of Schaeffer et al. (2019) reduces to the μ(I)− φ(I) model only for the case
of steady, fully developed flow. It is easier to use than the model of Barker et al. (2017). An
analytical solution for I has been obtained based on the assumed linear relation between
φ and I. The φ profiles agree much better with the DEM results than the model of Barker
et al. (2017). As the form of μ(I) is the same for both the models, the undesirable feature
of the I vs x profiles persists. There is not much improvement in the prediction of the
velocity and the normal stress. Similar to Barker et al. (2017), the predictions of φ, I and
Ñ are independent of wall roughness. Because of the functional form assumed for φ(I),
the profiles of I vs x/W, φ vs x/W and Ñ vs. φ̄ are independent of 2 W/dp, unlike the
model of Barker et al. (2017). However, the linear function of φ(I) may not hold for much
lower and higher values of I (Chialvo et al. 2012). Our DEM data for φ vs I also show a
more complex behaviour.

The non-local model of Henann & Kamrin (2013) introduces a new variable called the
fluidity f , and the governing equation for f incorporates the higher gradient of shear rate.
It predicts the velocity and I profiles fairly well, but fails to account for the variation in
φ near the wall, as φ is assumed to be a constant. Henann & Kamrin (2013) found an
excellent agreement between their velocity profiles at the free surface of a split-bottom
Couette cell and measurements. Thus it is important to test constitutive equations in
various geometries and examine profiles of several variables. Because φ is treated as a
constant, Ñ is indeterminate. Hence we have matched Ñ to the DEM results, in contrast to
the other models. For some values of parameters, the model predicts negative values of f ,
which is unrealistic. Some insight into this behaviour is provided by the analysis discussed
in § 4.4.2. The assumption that φ = φ(I) leads to more realistic φ profiles.

Dsouza & Nott (2020) obtain the value of φ at a point by averaging its local value,
which is assumed to depend on the mean stress at a critical state, over a representative
volume. In the present problem, this causes the φ profiles to be independent of the shear
rate, unlike the μ(I)− φ(I) model. It is supposed to be valid only in the limit I → 0, but
it has been used here even though I is of O(1) near the wall. The trends of the velocity and
φ are predicted reasonably well, but Ñ is much higher than the DEM results. It predicts a
thin plug zone, in contrast to the DEM results and the other models. The model could be
solved only for φ̄ = 0.62, for reasons explained in § 4.5.1. For smaller values of φ̄, φ attains
a value φmin at some value of x, and hence Ñ = 0. An approximate solution obtained by
a Taylor series expansion agrees reasonably well with the numerical solution. Though the
non-local terms are supposed to be small in magnitude compared with the local terms,
this is not true in the present problem, in contrast to the underlying assumption that they
represent small corrections. Either the inclusion of higher-order terms or terms involving
rate-dependent effects may remedy the situation. This may be a fertile area for research.
However, this poses serious problems with the regard to the specification of suitable b.c.s.

As the inertial number I varies from zero at the centre to large values at the wall, none of
the four continuum models examined here agree well with the DEM results. Some predict
the velocity profiles reasonably well but not the solids fraction profiles, even after matching
the bulk solids fraction and the mass flow rate with the DEM results. The converse is
true for the other models. The models examined here are loosely based on extensions
of the equations for slow, rate-independent flow. It appears that a model which includes
collisional effects more explicitly, such as kinetic theory, should be combined in some
manner with the present models to obtain more realistic models.

For smooth walls, the DEM results show sharp changes near the wall for many of the
variables such as the velocity and the solids fraction. Perhaps continuum models are not
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applicable in the region very close to the wall. Hence this may motivate researchers to
develop suitable models for the wall region.

Except for the model of Henann & Kamrin (2013), the slip length lu (see (3.33)) depends
on φ̄ and 2 W/dp, and hence is not a material parameter. The angle of wall friction
δ (see (3.35)) depends on φ̄ and 2 W/dp, except the model of Schaeffer et al. (2019)
where it depends on φ̄. On the other hand, the DEM results suggest that lu depends
only on the wall roughness, and δ depends on both the wall roughness and φ̄. Further
effort is needed to develop suitable b.c. for all the models. As N. R. Amundson used
to say, ‘Boundary conditions must come from nature’. We must turn to experiments,
micromechanical models, and simulations in our quest for b.c.s.

The contact forces in the DEM involve a spring (elastic effects), a dashpot (viscous
or rate-dependent effects) and a slider (frictional or rate-independent effects). None of
the models used in the present work involve elastic effects. The models of Berzi &
Jenkins (2015) and Berzi, Jenkins & Richard (2020) explicitly include the stiffness kn
in the constitutive equations based on kinetic theory to allow for the non-zero duration of
particle interactions. In the paper of Berzi et al. (2020), kn has been included even though
p dp/kn ≈ 7 × 10−5 at the base of an inclined chute. However, the results have not been
compared with the case kn → ∞. Berzi & Jenkins (2015) show that the results obtained
for a range of kn values (typically used in DEM simulations) differ from those for the rigid
particle limit. A preliminary analysis of a difficulty encountered in using the model of
Berzi et al. (2020) is given in Appendix A.
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Appendix A. Remarks on the extended kinetic theory of Berzi et al. (2020)

The model has two sets of constitutive equations, set S1 for φ > φi, and set S2 for φ < φi.
Based on the work of Chialvo et al. (2012), Berzi et al. (2020) used φi = 0.587. In the
present problem, (3.7a,b) and (3.21a,b) have to be solved along with the pseudo-thermal
energy balance

τ
duy

dx
= dQ

dx
+ Γ. (A1)

Omitting the adjective ‘pseudo-thermal’ for brevity, Q and Γ are the heat flux and the rate
of dissipation of energy per unit volume due to collisions, respectively. Let xi be defined by
φ(xi) = φi. Consider an interface at x = xi where φ = φi. It is assumed that the velocity
uy, the solids fraction φ and the granular temperature T , which is a measure of velocity
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f1 = φ(1 + 2G(1 + en))

fc =
[

1 + 12
5

G
T1/2

∗
k1/2

n∗

]−1

G = φfφ

for 0.4 � φ < φi, fφ =
[

1 −
(
φ − 0.4
φi − 0.4

)2
]

2 − φ

2(1 − φ)3
+
(
φ − 0.4
φi − 0.4

)2 2
φi − φ

for φ < 0.4, fφ = 2 − φ

2(1 − φ)3

f4 = 4MφG
π1/2

f5 = 25π1/2V
128φ

M = 1 + en

2
+ 9π

144(1 + en)G2
[5 + 3G(2en − 1)(1 + en)

2][5 + 6G(1 + en)]
16 − 7(1 − en)

as φ → φi, M → M∞ = 1 + en

2
+ 9π

8(1 + en)

(2en − 1)(1 + en)
3

16 − 7(1 − en)

V = 96φ(1 − en)

25G(1 + en)

5 + 6G(1 + en)

16 + 3(1 − en)

[
20[5 + 3G(2en − 1)(1 + en)

2]
48 − 21(1 − en)

φ

G
dG
dφ

− (en + e2
n)

(
G + φ

dG
dφ

)]

J∞ = 1 + en

2
+ π

4
(1 + en)

2(3en − 1)
[24 − 6(1 − en)2 − 5(1 − e2

n)]

Lc = 1 + 26(1 − eeff )

15
φi − 0.49
0.64 − φi

Table 2. Functions used in Berzi et al. (2020).

fluctuations, are continuous at x = xi. The normal stress N, the shear stress τ and the heat
flux Q must be continuous at x = xi. It can be shown that N and τ are continuous, and
the latter implies that the shear rate is continuous. The condition for the continuity of Q is
discussed below.

Scaling the distance x, velocity uy, temperature T , spring stiffness kn, stresses (N, τ )
and heat flux Q by dp,

√
gdp, gdp, ρpgd2

p, ρpgdp and ρp(gdp)
3/2, respectively, and using *

to denote dimensionless variables, the constitutive equations for the heat flux Q∗ are given
by

Q∗ = −fcf4T1/2
∗

dT∗
dx∗

− fcf5T3/2
∗

dφ
dx∗

for φ < φi (A2)

Q∗ = −5M∞φ
3π1/2 k1/2

n∗
dT∗
dx∗

for φ > φi, (A3)

where fc, f4, f5 and M∞ are given in table 2. Here, kn∗ and en are the scaled spring stiffness
and the coefficient of restitution in the normal direction, respectively. Berzi et al. (2020)
have neglected the term involving dφ/dx∗ in (A3). They state that inclusion of this term
does not significantly affect their results for chute flow. However, this may not be true in
other problems.

Equation (A2) may be rewritten as

Q∗ = b1 + b2 (A4)

where

b1 = −fcf4T1/2
∗

dT∗
dx∗

; b2 = −fcf5T3/2
∗

dφ
dx∗

. (A5a,b)
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0 1 2 3
x∗

4
0.58

0.59

0.60

φ

0.61

0.62

0.63

Figure 14. Variation of φ with x∗ = x/dp using the constitutive equations of Berzi et al. (2020) in the region
0 � x∗ � x∗i, where φ(x∗ = x∗i) = φi = 0.587. Parameter values: 2 W/dp = 50, φ̄ = 0.61, φ(x∗ = 0) = 0.63,
N∗ = 42, uy∗(x∗ = 0) = −26, en = 0.7 and kn∗ = 106.

The equation for N∗ for φ > φi is given by (Berzi et al. 2020)

N∗ = 5
6(1 + en)k

1/2
n∗ T1/2

∗ + 0.0006(φ − φi)kn∗. (A6)

Considering the limit φ → φ+
i

N∗ → 5
6(1 + en)k

1/2
n∗ T1/2

∗ . (A7)

Hence T∗ must be non-zero in this limit as N∗ > 0 and the quantity GT1/2
∗ in the expression

for fc → ∞ (see table 2). Then

b1 → − 5
3π1/2 k1/2

n∗ M∞φi
dT∗
dx∗

as φ → φ−
i . (A8)

The right-hand side of (A8) is identical to the expression for Q∗ at φ = φ+
i (see (A3)),

provided the slope of T∗ is continuous at x∗.
As φ → φ−

i , fc ∝ (φi − φ), and V ∝ (φi − φ)−2 (see table 2). Hence |fcf5| → ∞ in this
limit. It is reasonable to expect that the heat flux Q∗ is bounded at x∗ = x∗i, or equivalently,
φ = φi. This requirement and the non-zero value of T∗(x∗), together with (A4) implies that

dφ
dx∗

→ 0 as φ → φ−
i . (A9)

It is not clear that the slope of φ is continuous at x∗ = x∗i. To understand this behaviour,
a preliminary attempt to solve the equations (set S1) for 0 � x∗ < x∗i is described below.
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Set S1 consists of (A3) for Q∗, (A6) for N∗, (A10) for τ∗ and (A11) for Γ , where

τ∗ = b3
N∗

T1/2
∗

duy∗
dx∗

for φ > φi (A10)

Γ =
5(1 − e2

eff )φ√
πLc

k1/2
n∗ T∗. (A11)

Here, b3 = (4J∞)/(5π1/2(1 + en)), eeff = 0.645 and J∞ and Lc are given in table 2. Using
(3.21a,b), (A3), (A6) and (A10), the balance equations (3.7a,b) and (A1) are integrated
from x∗ = 0 to x∗ = x∗i, where φ = φi. Three conditions, namely, φ(x∗ = 0), N∗ and
uy∗(x∗ = 0) are taken from the DEM results, and T∗(x∗ = 0) is calculated from (A6).
In addition, the symmetry conditions τ∗(x∗ = 0) = 0 and Q∗(x∗ = 0) = 0 are used. For
2 W/dp = 50 and φ̄ = 0.61, the φ profile shows that dφ/dx∗ < 0 as x∗ → x−

∗i (figure 14).
As dφ/dx∗ → 0 as x∗ → x+

∗i, the slope of the φ profile is discontinuous at x∗ = x∗i,
in contrast to the DEM results (figure 5). As noted by one of the referees, there is no
physical requirement for the slopes of the T∗ and φ profiles to be continuous at x∗. If the
DEM results are accepted as a reasonable description of reality, then the model shows an
undesirable feature at the interface. More work is needed to decide whether the constitutive
equations for the model, or the DEM or both, should be modified. As R. von Mises said,
‘The leitmotif, the ever-recurring melody, is that two things are essential in any description
of a segment of reality: to submit to experience and face the language used with unceasing
logical criticism’.
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