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Abstract

In this paper we consider the asymptotics of extinction for the nonlinear diffusion
reaction equation

2(um)du_ = - A _ i - « , m>l,0<p<l,

with non-negative initial data possessing finite support. For ( > 0 , both solution
and support vanish as t —* T and x —> x0 . With T as the extinction time we
construct the asymptotic solution as T = T — t —• 0 near the extinction point x0

using matched expansions. Taking x0 = 0 , we first form an outer expansion valid

when r\ - A r r
( m~p ) / 2 ( 1~p ) = 0(1). This is nonuniformly valid for large \r\\ and

has to be replaced by an intermediate expansion valid for \x\ = O(T~1^0) where
l0 is an even integer greater than unity. If p + m > 2 this expansion is uniformly
valid while for p + m < 2 , there are regions near the edge of the support where
diffusion becomes important. The zero order solution in these inner regions is
discussed numerically.

1. Introduction

In this paper we consider solutions of the initial value problem with positive
initial data for the equation

^ . , / ( 1 1 )

d t - dxl *> ( L 1 )

which become identically zero in finite time, a phenomenon known as extinc-
tion of the solution. For initial data with finite support, an essential feature
of the solutions to (1.1) is the appearance of interfaces which separate regions
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[2] Asymptotics of extinction 415

where u = 0 from those where u is positive. In this paper, we confine our-
selves to the extinction of solutions which have such support and, recalling
the results of Kalashnikov [3], [4] that extinction takes place in finite time
if m > 1 and 0 < p < 1, we restrict ourselves to this region of parameter
space throughout this paper.

The phenomenon of extinction for initial data with finite support is well
illustrated by an exact solution for the case p + m = 2 due to Kersner [5].
This can be written as

u(x,t) = (m-

, (1-2)

whenever the quantity in the large brackets is positive, and u(x, t) = 0 where
it is negative. This solution therefore has the initial data

u(x 0) = u(x) = l{m-l)~Vm~i{l-x2)Um~'> w < 1 n.3)

with ^ P continuous everywhere. The solution is symmetric about x = 0 ,
and the interfaces where u = 0 are located at

which is positive for 0 < t < T, with |.x(*)| -> 0 as t -> T, where

T= (W"1} J 4mJ 1+
2m(m+l) | [ (m-l)4

is called the extinction time and x = 0 the extinction point. Thus as t —> T
the interfaces contract around the single isolated extinction point at the ori-
gin. We shall return to this exact solution later in the paper. More generally,
if u(x ,t) = 0 for t > T > 0, we call T the extinction time and an extinc-
tion point is denned as one for which a neighbourhood always exists where
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416 R. E. Grundy [3]

u(x, t) > 0 as t -* T. The aim of this paper is to describe, in general, the
structure of the solution and behaviour of the interfaces as t -» T near an
extinction point. We are guided in this task by the exact solution (1.2) of
Kersner and by previous work on the m = 1 case by Herraro and Friedman
[2] and by Galaktionov, Herraro and Velazquez [1].

The case m = 1 is important to us, since the results which have been
obtained for this value of m give us an indication of what may happen in
the case m > 1. For m = 1, 0 < p < 1, Herrero and Friedman [2] showed
that for certain initial data the extinction points are isolated, and that near
such a point, say x0 ,

u(x, t) ~ (1 - P)^~P (T - t)^P (1.5)

as «-» 7\ \x-xo\ <C(T-t)l/2.
In order to study extinction, therefore, this result suggests we write (1.1),

with m — 1, in terms of the similarity variable r\ = (x - xo)/(T - t)x^2 and
a new independent variable v where

I
x), x = T-t.

If we make this change of variable, then (1.1), with m = 1, becomes

dv -i f d2v ndv v

For small T , the behaviour (1.5) is given by the constant solution to

d2v ndv v p_n

I
namely v = (1 — P)X~P .

To get an idea of what can happen for m > 1, we can go through a similar
procedure to obtain the counterpart of (1.5). For if we now put

ti = (x-xo)/T
S and u(x, t) = Tav(ri, T),

then choosing a = 1/(1 —p), 8 = (m -p)/2(l -p) > 0 , we get an equation
of the form

dv - i jV(O m-p dv v p\ .

Equating the term in brackets to zero, the constant solution again gives v =

(1 — p) X~P . This result guides us towards the fundamental assumption that
for m > 1, 0 < p < 1,
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[4] Asymptotics of extinction 417

v ~ (i-p)^(T-t)^ as r - r , i; = (x-
(1.7)

which is the ansatz on which we base our asymptotic theory. We note in
passing that the exact solution of Kersner has the asymptotic form (1.7). We
delay further details on this until Section 2.

The plan of the paper is as follows. In Section 2.1, we construct the outer
expansion for u(x, t) as t -•• T and x - 0(T(m~p)l2(l~p)). In Section 2.2, we
indicate how this expansion breaks down for large values of the outer variable,
and at the same time form the intermediate expansion which replaces it. In
Section 2.3, the nonuniformity of the intermediate expansion near the edges
of the support is discussed. For p + m < 2, an inner expansion is constructed
near each interface, and a numerical procedure for solving the subsequent
ordinary boundary value problem is presented. By way of a conclusion, we
summarise the results in Section 3, and in an Appendix we discuss the non-
existence of logarithmic type error terms in the outer expansion. This is
important since Galaktionov, Herraro and Velasquez (1990) show that such
terms do occur for the linear diffusion (m = 1) case; in the Appendix we
discount this possibility.

2. The asymptotic solution

2.1. The outer expansion
We consider the initial value problem for the equation

— = — ^ - v ^ - i r , 0<p <l, m> I, (2.1)
ot dx2

and suppose that the solution becomes extinct at t — T > 0. Without loss of
generality, we take the extinction point to be at x — 0 . Making the change
of variable indicated in the introduction, namely

I

and
V — X/T , (2.3)

we then have
a (v ) dv (m — p) dv v p „

For convenience we now put

. - ( 1 - , ) * . and , = { _ _ ^ ^ } C (2.5,
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to give

d2(wm) dw 2m(\-p) dw 2m . „, n ,„ „
— ^ - ^ - mx-zr + —r^ T Z T - S - + 7 r(w-wp) = 0. (2.6)

dC dC, {m-p) Ox (m-py '

Thus
w = {l-p)-in-px-l/l-pu(x,t), (2.7)

and the fundamental assumption (1.7) can now be recast as

w ~ 1 (2.8)

as t -» T, C = O(l). Thus we expand

w = 1 + £ M , . ( O T " ' , ReUif) > 0, (2.9)

as T -+ 0, C = 0(1) . We call (2.9) the outer expansion. We note that,
in contrast to the case m = 1 (Galaktionov e/ a/. [1]) (2.9) asserts that
logarithmic terms are specifically excluded in the leading-order perturbation.
In fact, logarithmic terms could only conceivably be present if 2(1 - p)/
(m-p) is an integer, which, for 0 < p < 1 and m > 1, could only be so
for the case m + p = 2. We discuss this possibility in the Appendix, where
we show that leading-order logarithmic terms cannot occur.

If we now substitute (2.9) into (2.6) and equate coefficients of TA' , we find
that the functions Mt(Q satisfy

We are now required to find solutions of (2.10) in which exponential
growth as £ -+ ±oo is suppressed. This results in an eigenvalue problem
for fij, and a straightforward calculation reveals that the Mt are either odd
or even. For the even functions,

{j^j 1=1,2,3,...,

while for the odd functions,

(2n-l)(m-p)
* ' " 2(1-p)

and
Mi(Q = BiH2n_l(C/V2) /i = 2 , 3 , 4 , . . . ,

where in the latter case n — 1 can be included for m + p > 2. Here the
HN(x) are the Hermite polynomials of degree TV and argument x. We
call the M((Q the eigenfunctions of (2.10) and the n( the eigenvalues. We
presume that the arbitrary constants At and Bi depend in some way on the
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[6] Asymptotics of extinction 419

initial conditions, and of course any number may be zero. Let us suppose that
the first nonzero M{(Q be denoted by a0L0(£), and the associated value of
/ij is XQ; subsequent functions by the sequence (a.L.(C)} and subsequent
values of ni by {X } . Clearly the X. will be given by

f-Sjn-P)
X< = W^7-1 (2-n)

with
j tj (2.12)

where t= is a positive integer. Thus the expansion (2.9) can be written as

w = 1 +a0/°LQ(O + Y/<x/iLj(Q. (2.13)

Of course, interactive terms will appear in (2.13), due to the nonlinearity of
the original equation, in addition to the terms we have already identified.
These will be of the form

where kx and k2 are positive integers and N(Q is a polynomial obtained
by solving an inhomogeneous ordinary differential equation. It may happen
that some of these terms will 'force' the eigenfunctions when klXj+k1Xk — Xq

for i, j , k and integers /c, and k2. The leading term of (2.13) will always
however be an eigenfunction.

Finally in this section it is instructive to construct here the outer expansion
for Kersner's exact solution. For simplicity we take m = 3/2 and p = 1/2,
and expand (1.2) as T - » 0 and f = 2 X / T V 3 = 0(1) to get

which confirms the outer expansion (2.13) and the limiting form (1.7) in this
case with /0 = 2 , Ao = 1, Lo = #2(C/>/2) a n d "o = ~ 3 / ( 1 + 3 0 r ) •

2.2. The intermediate expansion
We first examine the uniformity of the outer expansion (2.13) as |C| —• oo.

To be specific, let us take £ -• +oo, noting that a similar analysis can be
undertaken for £ < 0. Now we know from the definition of the Hermite
polynomials that

21' (c/>/2)'y
C - oo.

Thus the outer expansion (2.12) is not uniformly valid when £ =
which suggests we introduce an intermediate variable

(2.14)
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on (-00, 00). Making the change of variable in (2.6) gives

*o\ d2(wm) 2(1 -p) dw 2(l-p) xdw , 2(w-w")_n

m\eoj d? (m-p) dt (m-p)V a « (m -p)
(2.15)

and writing the outer expansion in terms of £ in the limit C —* +°° . yields

w ~ 1+ a o 2 V Y ° + 0 ( T 2 V ' ° ) + ] T af2
ti/2x{Xit°-xafi)/totfi + . . . } . (2.16)

i

This indicates that we seek an intermediate expansion

w = W0(i) + T2K° WX (£) + T"1 W2(Z) + ... (2.17)

in the limit t - > 0 , £, = 0(1), where from (2.16) K0 = Ao/£o and i/, =
(A,/o - X0£{)/£0 . Substituting (2.17) into (2.15) and equating the coefficient
of the leading power of T to zero gives

e0 dt,
the solution of which can be written

'"" (2.18)

whenever 1 + C£e° > 0 , and zero otherwise, with C an arbitrary constant.
Expanding (2.18) for £, —» 0 and matching with the outer expansion (2.16)
gives C = (1 -p)aQ2e°/2 , where for decay with two interfaces we must have
£Q even and a0 < 2 . Recalling that

£ = CT
K° = xtK°~s = x(T - t)~l/t°, (2.19)

then to zero order these interfaces are given by

x~SQ{T-tfl\ (2.20)

where, from (2.18)

^ = {-(l-p)ao2
eo/2Yi/e° , (2.21)

with the appropriate number of roots being taken. Thus where two interfaces
are present we may write (2.18), with £0 even, as

= 0,
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[8] Asymptotics of extinction

Going further in (2.17) we find that W{ and W2 satisfy

421

= (m-p)t0d
2(W0

m)

2m(l-p) d£

and

(2.23)

1.24)

2.3. Uniformity of the intermediate expansion near the interfaces
It is important now to look at the structure of the intermediate expansion

as £, —> £0, since this will reveal any nonuniformities that are present near
the interfaces. From (2.23) and (2.24) we can show that in this limit

w
1

and

(2.25)

(2.26)

Here Dl and D2 are arbitrary constants, and the first term in (2.25) arises
from the particular integral of (2.23); the second term comes from the com-
plementary function. So using (2.25) and (2.26) we can write the expansion
(2.17) as I -* <*0 in the form

w HffY
_2icn -P){p + m -
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The terms involving the arbitrary constants can be absorbed into the leading
approximation by a change of independent variable from £ to s, say, where

s = £,-Dx— <̂ 0
0^ °T °-D2— <̂ 0

0^ °T ' H . (2.27)
0 0

This procedure gives

W(S,X)r

- . (2.28)

This shows clearly that the intermediate expansion is uniformly valid for
m + p > 2, a result that is true in general for m + p = 2 as well.

It is instructive to confirm this for Kersner's exact solution (1.2) in the
following way. Taking lQ = 2, (2.20) gives the intermediate variable as
£ = xt~xl2 and so writing u{x, t) from (1.2) in terms of £ and expanding
for small T gives

60

The appropriate form for the variable s is given by s = £ + 2 7 T / 8 ^ H , so
in terms of s we have

2I2

60T

which is uniformly valid as s —> ^0 = (1 + 30 r ) /4 . We can also confirm
the interface behaviour (2.20) for the exact solution by expanding (1.4) for

2X2(t) as t —* T, giving

'/2
 1/2f 2 7 r _

\ 2 ( l + 3 0 r ) +
30D'/2

 1/2f 2
\ 2(l+30r)
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Returning now to the general case, we see from (2.28) that for m +p < 2,
the intermediate expansion breaks down when

Kl=2K0(l-p)/(2-m-p).

To examine the region of nonuniformity near the interface, we rescale .s via

s = Z0-SlT
K> (2.29)

and, guided by (2.28), we expand w as

K/{lp) (2.30)

in the limit, i - » 0 , sx = 0( 1). We call this the inner expansion and sx the
inner variable. Rewriting (2.15) in terms of s{, x and substituting (2.30)
we have to leading order

d\u") | 2m(l-p)Z0dU0 2m LrP _ Q

ds\ (m-P)t0 dsx (m-p) °

We are required to solve this subject to Uo = 0 and the zero flux condition

0 ( 2 - 3 2 )

at some value s = z*, say, together with the matching condition with the
intermediate solution, namely

si

m+p-l m+D_l

2Z2
0(l-p)2(l-m)

Not surprisingly, since <̂ 0 depends on the initial conditions via aQ, the con-
stant (£0/e0) can be eliminated from (2.31)-(2.33) via the scalings

U -(£ II T
uo - ICo/V Jo- -IP If ^PMm+p2)

to yield (2.31)-(2.33) with Uo replaced by To and £0/£0 = 1. The condition

°~ dz ~U

now is applied at z = z*, with z* being found as part of the solution.
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A possible numerical scheme for solving the problem for To and finding
z* is outlined below. First we can show that as z->oo,

Ta = zT=i - ( m ~ p ) ( 7 + / ? ~ 1 ) * g ^ ~ + Q(z ^ ^ )• (2-35)0 2(\-p)\m-\)

If we now put zx = z — z* then the problem reduces to

d (ro ) 2{1-p)dT0 2m p

dz\ (m-p) dz{ (m-p) °

° ^h = 0 at Z ' = °
and, from (2.35),

J L . f m n U m + n i l mtp~l z*zp/1~p 2m+2p-3
{m P^m+P l) Z*1 O(z~Fi-

)(
(2.38)

The ordering indicated in (2.35) is consistent provided 2m + p < 3, an
area in the (p, m) plane which is shown in Figure 1. We can now integrate
(2.36) from z, = 0 using the series

/m-pV2-
\m+pj

2(1-p)(m+p)
,m+pj {p(m + p) - (m + 2 - p)}(m - p) '

to initiate the integration. The value of z* which solves the problem can be
estimated numerically from (2.38) as

(2.39)

For permitted parameter values outside the range 2m + p < 3 we would
need to extend the series (2.38), but in principle z* could still be estimated
using a similar scheme to (2.39). The numerical convergence of the limit
(2.39) for z* is shown in Figure 2 (page 426) while the solution in the form
of T0/z\/{l~p) is shown in Figure 3 (page 426) for parameter values p - 0.5,
m = 1.1 and p = 0.1, m = 1.1. These results are entirely consistent with
the asymptotic expansion (2.35), and we can certainly conclude with a large
amount of certainty that a unique solution to the problem exists for the
parameter regime p + m < 2.
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m

p + m = 2

p + 2m = 3

FIGURE 1. p — m parameter space.
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K{ZX)

4.0

3.0

2.0
100 200 300 400 500 600

FIGURE 2. K(zt), defined in the large brackets in (2.39), as a function of z, for m = 1.1 .
p = 0.1 . This illustrates the convergence of the limit in (2.39).

FIGURE 3. The solution for 7"0z,
i

' p ' as a function of z, for the indicated parameter
pairs.
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3. Summary

In this paper, we have constructed the analytic behaviour of the solution
together with the motion of the interfaces during the final stages of extinc-
tion for the nonlinear diflFusion-reaction initial-value problem posed by (2.1).
With T as the extinction time and the origin as the isolated extinction point,
the construction has been developed using matched expansions. An outer ex-
pansion valid as t —• T,

is constructed in the form (2.13), viz.,

u(x,t) = (T-tfl-p(l

with (2.11) and (2.12). This expansion breaks down as \Q —> oo and an
intermediate region is defined where |^| = |C|TA°^° = 0(1), together with an
intermediate expansion

and u(x, t) — 0 otherwise. Here .s is an independent variable defined by
(2.27) and for solutions with two interfaces £Q is an even integer. For
m + p > 2 the expansion is uniformly valid as s —> < 0̂. For m + p < 2
the intermediate expansion itself breaks down as s —> < 0̂, and we rescale
according to (2.29) as

and construct an inner expansion via (2.30) and (2.7) as

u(x, t) = (T- tf+K°mi-p){U0(Sl) +

as H T . Here
_(m-p) 1 _ 2KQ(1-P)

K° 2(1 -p) e0' *> (2-m-py
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The function U^s^ and the value of s{ = z* where Uo is zero are estimated
numerically for selected values of p and m . Thus to the appropriate order,
s{ = z* determines the interface as

Appendix

The case p + m = 2
The aim of the analysis presented in this appendix is to discount the pos-

sibility, which happens in the case m = 1 (Galaktionov et al. [1]), that
logarithms may occur in the homogeneous perturbations in (2.8). As we
have pointed out, this could only happen if m + p = 2 and in that event we
have to show that an expansion of the form

(logT)2

with the P 's having algebraic behaviour as C —• ±oo, cannot exist. Assuming
for the moment that (A.1) is possible then substitution into (2.6) gives

P^-CPo + P0 = O, (A.2)

/>"-£/>,' + />, = 0 , and (A.3)

P'; - ZPi + P2 = P0 + {PI2)P2
Q - (1 - p){Pl)" (A.4)

with primes denoting differentiation with respect to £. The solutions of (A.2)
and (A.3) with algebraic decay as ( —» ±oo are simply

P0 = A0-C and Pl=ArC

with Ao and Al arbitrary. Thus the equation for P2(Q becomes

/>; - £/>2 + P2 = A0Z+pA2
0t;

2/2 - 2(1 -p)A\.

Differentiating once and solving for P'2' gives

with Kl arbitrary. The only way that exponential growth can be suppressed
as C —* ±°° is by requiring that Ao = K{ = 0. By a similar argument we
can show that A{ = 0 and so an expansion of type (A.I) cannot exist.
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