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THE EXACT STRENGTH OF THE CLASS FORCING THEOREM
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SCHLICHT, AND KAMERYN J. WILLIAMS

Abstract. The class forcing theorem, which asserts that every class forcing notion P admits a forcing

relation P, that is, a relation satisfying the forcing relation recursion—it follows that statements true in

the corresponding forcing extensions are forced and forced statements are true—is equivalent over Gödel–

Bernays set theory GBC to the principle of elementary transfinite recursion ETROrd for class recursions of

lengthOrd. It is also equivalent to the existence of truth predicates for the infinitary languagesLOrd,ù(∈,A),

allowing any class parameter A; to the existence of truth predicates for the languageLOrd,Ord(∈,A); to the

existence of Ord-iterated truth predicates for first-order set theory Lù,ù(∈,A); to the assertion that every

separative class partial order P has a set-complete class Boolean completion; to a class-join separation

principle; and to the principle of determinacy for clopen class games of rank at most Ord+ 1. Unlike set

forcing, if every class forcing notion P has a forcing relation merely for atomic formulas, then every such

P has a uniform forcing relation applicable simultaneously to all formulas. Our results situate the class

forcing theorem in the rich hierarchy of theories between GBC and Kelley–Morse set theory KM.

§1. Introduction. We shall characterize the exact strength of the class forcing
theorem, which asserts that every class forcing notion P has a corresponding forcing
relationP, a relation satisfying the relevant forcing relation recursion.When there is
such a forcing relation, then statements true in any corresponding forcing extension
are forced and forced statements are true in those extensions.
Unlike set forcing, for which one may prove in ZFC that every set forcing notion

has corresponding forcing relations, with class forcing it is consistent with Gödel–
Bernays set theory GBC that there is a proper class forcing notion lacking a
corresponding forcing relation, even merely for the atomic formulas. For certain
forcing notions (see [6, 9], also Theorem 17), the existence of an atomic forcing
relation implies Con(ZFC) and much more, and so the consistency strength of the
class forcing theorem strictly exceeds GBC, if this theory is consistent. Nevertheless,
the class forcing theorem is provable in stronger theories, such as Kelley–Morse set
theory. What is the exact strength of the class forcing theorem?
Our project here is to identify the strength of the class forcing theorem by situating

it in the rich hierarchy of theories between GBC and KM, displayed in part in
Figure 1, with the class forcing theorem highlighted in blue. (The theory KM +
Class Choice that appears at the top of Figure 1 is defined e.g. in [11, Definition
2.11].) It turns out that the class forcing theorem is equivalent over GBC to an
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GBC GB ZFC ZF

GBC+ Con(GBC) ZFC + Con(ZFC)

GBC + Con (GBC) ZFC + Con (ZFC)

GBC + ETR

GBC+ ETR = GBC+ -iterated truth predicates

GBC + ETR Ord = GBC+ -iterated truth predicates

GBC+ Class forcing theorem = GBC+ ETROrd
= GBC+ truth predicates for Ord ( , A)
= GBC+ truth predicates for Ord,

,

Ord ( , A)
= GBC+ Ord-iterated truth predicates
= GBC+ Boolean set-completions exist =

GBC+Determinacy for clopen class games of rank Ord+1

GBC+ ETROrd ·

GBC+ ETR = GBC+ Determinacy for clopen class games

GBC + Determinacy for open class games

GBC +Π11-comprehension

KM KM+Class Choice

Figure 1. A hierarchy of theories between GBC and KM by consistency strength
(≡ means equiconsistent)

attractive collection of several other natural set-theoretic assertions; it is a robust
axiomatic principle.
The main theorem is naturally part of the emerging subject we call the reverse

mathematics of second-order set theory, a higher analogue of the perhaps more
familiar reverse mathematics of second-order arithmetic. In this new research area,
we are concerned with the hierarchy of second-order set theories between GBC and
KM and beyond, analyzing the strength of various assertions in second-order set
theory, such as the principle ETR of elementary transfinite recursion, the principle
of Π11-comprehension or the principle of determinacy for clopen class games. We fit
these set-theoretic principles into the hierarchy of theories over the base theoryGBC.
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The main theorem of this article does exactly this with the class forcing theorem by
finding its exact strength in relation to nearby theories in this hierarchy.
Specifically, extending the analysis of [2, 6, 7, 9], we show that the class forcing

theorem is equivalent over GBC to the principle of elementary transfinite recursion
ETROrd for transfinite class recursions of length Ord; to the existence of various
kinds of truth predicates and iterated truth-predicates; to the existence of Boolean
completions for any separative class partial order; to a class-join separationprinciple;
and to the principle of determinacy for clopen class games of rank at most Ord+1.
In addition, by separating the class forcing theorem from the nearby theories of
Figure 1, placing it strictly between the theory with ETRα simultaneously for all
ordinals α and the theory ETROrd·ù , we locate it finely in the hierarchy of second-
order set theories.

MainTheorem. The following are equivalent over Gödel–Bernays set theory GBC.

(1) The atomic class forcing theorem: every class forcing notion admits forcing
relations for atomic formulas

p  ó = ô, p  ó ∈ ô.

(2) The class forcing theorem scheme: for each first-order formula ϕ in the
forcing language, with finitely many class names Γ̇i, there is a forcing relation
applicable to this formula and its subformulas

p  ϕ(Eô, Γ̇0, ... , Γ̇m).

(3) The uniform first-order class forcing theorem: every class forcing notion P

admits a uniform forcing relation

p  ϕ(Eô, Γ̇0, ... , Γ̇m)

applicable to all assertionsϕ ∈Lù,ù(∈,V
P, Γ̇0, ... , Γ̇m) in the first-order forcing

language with finitely many class names.

(4) The uniform infinitary class forcing theorem: every class forcing notion P

admits a uniform forcing relation

p  ϕ(Eô, Γ̇0, ... , Γ̇m)

applicable to all assertions ϕ ∈ LOrd,Ord(∈,V
P, Γ̇0, ... , Γ̇m) in the infinitary

forcing language with finitely many class names.

(5) Names for truth predicates: every class forcing notion P has a class name Ṫ
and a forcing relation for which 1  Ṫ is a truth-predicate for the first-order
forcing language with finitely many class names Lù,ù(∈,V

P, Γ̇0, ... , Γ̇m).
(6) Boolean completions:Every class forcing notionP, that is, every separative class
partial order, admits a Boolean completion B, a set-complete class Boolean

algebra into which P densely embeds.

(7) The class-join separation principle plus ETROrd-foundation.
(8) For every class A, there is a truth predicate for LOrd,ù(∈,A).
(9) For every class A, there is a truth predicate for LOrd,Ord(∈,A).
(10) For every class A, there is an Ord-iterated truth predicate for Lù,ù(∈,A).
(11) The principle of determinacy for clopen class games of rank at most Ord+1.
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(12) The principle ETROrd of elementary transfinite recursion for Ord-length
recursions of first-order properties, using any class parameter.

1

2

3

5 4

6 7

8

9

10

11 12

We shall prove the theorem by establishing the complete cycle of implications.
Precise details for the terms appearing in the theorem statements appear in the
various sections below where the corresponding implications are proved. The red
implication arrows indicate more substantial or critical implication arguments; blue
arrows correspond to the essentially immediate implications; and the dashed green
arrow indicates implication (12)→ (1), which although not needed to complete the
cycle, is nevertheless used in the proof of Theorem 13, establishing the implication
(12)→ (4).
We should like particularly to emphasize that statement (2) is a scheme over

the formulas ϕ that are finite in the meta-theory, stating as a scheme that for each
such formula, there is a forcing relation class that works with that formula and
its subformulas. Statements (3) and (4), in contrast, are not schemes, but assert
in each case that there is a single uniform relation that works with all formulas
simultaneously. In the set-forcing ZFC context, we are used to having the forcing
relations p  ϕ(Eô) available only as a scheme, a separate relation for each formula
ϕ, and because of Tarski’s theorem on the nondefinability of truth, it follows that
one cannot prove in ZFC that there is a single unified forcing relationP that works
with all formulas (although by Theorem 12 one can do this in the quantifier-free
infinitary case). In the case of class forcing, however, our main theorem shows
that if every class forcing notion P admits forcing relations merely for atomic
formulas, then in fact they all have fully uniform forcing relations P, and not only
for the first-order forcing languages, but for the infinitary forcing languages, as in
statement (4).
Let us remark specifically on the role of the global axiom of choice in this analysis.

The base theory for the subject is Gödel–Bernays set theory GBC, which includes
the global axiom of choice, the assertion that there is a class well-ordering of the
universe. But actually, none of the arguments in the proof of the main theorem
require the global axiom of choice, as opposed to the ordinary axiom of choice
for sets, with the exception of the implications to the clopen determinacy assertion
of statement (11). In particular, our arguments show that all the statements in the
main theorem except statement (11) are equivalent over the theory GB+AC, which
has the axiom of choice only for sets. Meanwhile, the clopen determinacy assertion
of statement (11) in the main theorem implies the global axiom of choice, by the
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folklore result mentioned in [2, Theorem4], and so global choice is required if one
wants to include statement (11).
For definiteness, in this article we say P is a class forcing notion if P is a separative

class preorder. Note that the axiom of global choice allows us to form the separative
quotient of any class preorder.

§2. ETROrd implies the class forcing theorem scheme. In this section, we shall
prove the implications (12)→ (1) and (1)→ (2) in the main theorem. Let’s begin
by defining the notions carefully.

Definition 1. The principle of elementary transfinite recursion ETROrd for
recursions of lengthOrd, is the scheme asserting of any first order formulaϕ(x,X ,A)
with a class parameter A, that there is a class S ⊆Ord×V that is a solution of the
following recursion

Sα = {x | ϕ(x,S ↾ α,A)},

where Sα = {x | 〈α,x〉 ∈ S} denotes the αth slice of S and S ↾ α = S∩ (α×V) is
the part of the solution prior to stage α.

Thus, the axiom asserts that we may undertake transfinite recursive definitions
of classes by recursions of length Ord. In general, in GBC one may not necessarily
undertake class recursions evenmerely of lengthù, since first-order truth, of course,
is definedby theTarskian recursionon formulas, and this recursionhas lengthmerely
ù; but in GBC, if consistent, one cannot prove the existence of a truth-predicate for
first-order truth and therefore this recursion may have no solution. So even ETRù ,
which asserts that class recursions of length ù have solutions, is not provable in
GBC, if GBC is consistent, and consequently neither is ETROrd.
Meanwhile, ETROrd is a consequence of the full principle ETR of elementary

transfinite recursion, which allows recursion along any class well-founded relation,
including relations much taller than Ord, and this principle is strictly weaker than
GBC+Π11-comprehension [10], which is itself strictly weaker than Kelley–Morse
set theory KM. Gitman and Hamkins [2] proved that ETR is equivalent over GBC
to the principle of determinacy for clopen class games.
The idea of [2, Lemma7] shows that the principle ETROrd is equivalently

formulated in terms of recursions along arbitrary well-founded class relations of
rank Ord.

Definition 2. A class forcing notion P admits forcing relations for atomic

formulas, if there are relations

p  ó ∈ ô, p  ó ⊆ ô, p  ó = ô

which obey the following recursive properties:

(a) p  ó ∈ ô if and only if there is a dense class of conditions q ≤ p for which
there is 〈ñ,r〉 ∈ ô with q≤ r and q  ó = ñ.

(b) p  ó = ô if and only if p  ó ⊆ ô and p  ô ⊆ ó.
(c) p  ó ⊆ ô if and only if whenever 〈ñ,r〉 ∈ ó and q≤ p,r then q  ñ ∈ ô.
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Since the formulas are distinguished syntactically, we may unify the three forcing
relations into a single relation , applied to any atomic assertion. One may take
statement (c) as a definition of the relation p ó ⊆ ô in terms of the forcing relation
for ∈, and in this case statements (a) and (b) are expressible as a recursion solely in
terms of p  ó ∈ ô and p  ó = ô. So the use of ⊆ here is merely a convenience.

Theorem 3. The principle ETROrd of elementary transfinite recursion for class

recursions of length Ord implies that every class forcing notion P admits a forcing

relation for atomic formulas.

This will establish implication (12)→ (1) in the main theorem.

Proof. The main point is that having a forcing relation for atomic formulas, by
definition, is to have a solution of the recursion that is expressed by Definition 2.
Since this is an ∈-recursion on the P-names, we may organize it as a recursion
of length Ord, using the natural Ord-ranking of pairs of names 〈ó,ô〉, which are
ordered first by the maximum of their ranks and then lexically by rank.Wemay now
place the forcing relation p  ó ∈ ô and p  ó = ô on the αth slice, when the pair
〈ó,ô〉 has rank α with respect to that relation; the forcing relation for such names is
defined in terms of the forcing relation on preceding pairs of names. So ETROrd is
sufficient to find a solution of the recursion. ⊣

Now, let us explain how to extend the forcing relation beyond the atomic formulas.
A class P-name Γ̇ is simply a class of pairs 〈ñ,p〉, where ñ is a P-name and p ∈ P;
so, it is a class that is a P-name. The canonical name for the generic filter is the
class Ġ = {〈p̌,p〉 | p ∈ P}. We denote by Lù,ù(∈,V

P, Γ̇0, ... , Γ̇m) the usual first-order
forcing language, allowing the names ó ∈VP as constants and allowing finitelymany
class name parameters Γ̇i. This notation will mesh with the more general notation
we introduce in Definition 10 for the various infinitary languages.

Definition 4. A class forcing notion P admits a forcing relation for a collection
of first-order formulas, closed under subformulas, if there is a relation  obeying
the following recursive properties, for the formulas on which it is defined:

(a) The forcing relation  is defined on atomic formulas ó = ô and ó ∈ ô in
accordance with Definition 2;

(b) for a class name Γ̇, we have p  ó ∈ Γ̇ if and only if there is a dense class of
q≤ p for which there is 〈ô,r〉 ∈ Γ̇ with q≤ r and q  ó = ô.

(c) p  ϕ∧ø if and only if p  ϕ and p  ø;
(d) p  ¬ϕ if and only if there is no q≤ p with q  ϕ; and
(e) p  ∀xϕ(x) if and only if p  ϕ(ô) for every P-name ô.

Whatwemean is that in each case, if the left-hand side of the equivalence is defined,
then the relations appearing on the right hand side are defined and furthermore, are
defined in such a way that fulfills the equivalence. We say that P admits a forcing
relation for a formula ϕ, if it admits a forcing relation defined on a collection of
formulas including all instances of ϕ(Eô) for any choice of P-names Eô.
We should like particularly to emphasize that this definition, as well as the

definition of what it means to have a forcing relation for atomic formulas, makes
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no reference whatsoever to generic filters or to genericity of any kind or to the
truth of any formula in any forcing extension. Rather, for a forcing relation to
exist means, by definition, precisely that there is a class relation P exhibiting the
recursive properties expressed in Definitions 2 and 4 (and later, for the infinitary
language case, Definition 11). These recursive properties are entirely first-order
expressible properties of the class relation P, and the question of whether P has
those properties can be answered entirely in the ground model. The question for a
given forcing notion P is whether or not there is indeed a class relationP exhibiting
those recursive properties.

Theorem 5. If a forcing notion P admits a forcing relation for atomic formulas,

then it admits a forcing relation for any particular first-order formula ϕ in the forcing
language Lù,ù(∈,V

P, Γ̇0, ... , Γ̇m).

This establishes (1)→ (2) in the main theorem, which although not necessary for
the main cycle of implications, will be used in subsequent arguments.

Proof. This is also proved in [6]. This is a theorem scheme, proved by meta-
theoretic induction on the formulaϕ. Given the forcing relation defined on atomic
formulas ó = ô and ó ∈ ô, one may proceed simply to define the forcing relation
for any given first-order formula in the meta-theory. For any particular formula ϕ,
we may form the finite set of subformulas of ϕ, plus the atomic formulas, and then
simply apply the recursive definitions expressed by the requirements of Definition 4.
For an actual formula, this recursion takes place in the meta-theory, and so we get
the desired forcing relation in finitely many recursive steps. ⊣

Because the induction in the proof of Theorem 5 takes place in the meta-theory,
the result applies only to formulas ϕ that are finite in the meta-theory. We cannot
use this theorem directly, for example, to get a forcing relation for nonstandard
formulas in a nonstandard model of GBC. Nevertheless, the main theorem shows
that the principle ETROrd implies that indeed we can have a uniform forcing relation
applying to such formulas in such a model, as in statement (3) of the main theorem.

Lemma 6. Suppose that P is a class forcing notion and is a forcing relation defined

on the relevant formulas.

1. If p  ϕ and q≤ p, then q  ϕ.
2. If it is dense below p to force ϕ, then p  ϕ.
3. If ϕ→ ø is a logical validity and p  ϕ, then p  ø.

Proof. Statements (1) and (2) are each proved for atomic formulas by induction
on names, and then easily extended to all formulas by induction on formulas. For
example, for the negation case of statement (2), if it is dense below p to force ¬ϕ,
then for any q≤ p there is r≤ q with r ¬ϕ, which means by (1) that q cannot force
ϕ, and so p  ¬ϕ, as desired.
Statement (3) is proved by induction on proofs with respect to a standard

deduction system. It is easy to verify, for example, that forcing respects modus
ponens:
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if p  ϕ and p  ϕ→ ø, then p  ø.

Forcing respects substitution, since by definition, p  ∀xϕ(x) just in case p  ϕ(ô)
for any particular name ô. Also, if p  ϕ and x is not a variable in ϕ, then p  ∀xϕ.
One can prove by induction on names that every condition forces every instance

of the atomic equality axioms:

ó = ó,

ó = ô→ ô = ó,

ó = ô→ (ô = ñ→ ó = ñ),

ó = ô→ (ñ ∈ ó↔ ñ ∈ ô).

We leave to the reader the further elementary exercises to prove for every condition
p that

p  ∀x(ϕ→ ø)→ (∀xϕ→∀xø),

p  ϕ→ (ø→ ϕ),

p  (¬ø→¬ϕ)→ (ϕ→ ø),

p  [ϕ→ (ø→ è)]→ [(ϕ→ ø)→ (ϕ→ è)].

In each case, one can prove the statement by considering the definition of what it
means to be a forcing relation and by using statements (1) and (2) in a density
argument. Since we have therefore observed that forcing respects the axioms and
rules of a complete deduction system, statement (3) now follows by induction on
proofs. ⊣

The lemma also holds by essentially similar arguments for the infinitary languages
we introduce in Section 5. For example, the forcing relation respects the infinitary
conjunction rule and the infinitary quantifier rules.

§3. Constructing actual forcing extensions. Before proceeding to the rest of the
main theorem, we should like to clarify some issues concerning the forcing relation
and class forcing and the construction of forcing extensions. It has been traditional
to highlightwhat has been called the forcing theorem,which explains how the forcing
relation interacts with truth in a forcing extension. What we would like to do here
is to explain how that part of the forcing theorem is a consequence of the existence
of the forcing relation, which we defined here as a solution of the forcing relation
recursion. The central question with regard to a class forcing notion P, therefore,
becomes whether indeed one has such a forcing relation; for if one does, then it will
interact with truth in the forcing extension in the desired manner.
In order to show this, let us first review how one constructs a forcing extension

for a forcing notion P. We shall explain how to construct forcing extensions of
an arbitrary model M of GBC, without assuming that that model is countable or
transitive.
Given a class forcing notion P inside a model M of GBC, let’s say that a filter

G ⊆ P is M-generic, if G meets every dense subclass D ⊆ P that is in M. Suppose
that we have a forcing relation available inM for P. For any suchG, we may define
the following relations on the P-names available inM:
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ó =G ô ⇐⇒ ∃p ∈ G p  ó = ô,

ó ∈G ô ⇐⇒ ∃p ∈ G p  ó ∈ ô.

Equivalently, using the Boolean values described in Theorem 14, we have defined

ó =G ô ⇐⇒ [[ó = ô ]] ∈ G,

ó ∈G ô ⇐⇒ [[ó ∈ ô ]] ∈ G.

It follows easily using Lemma 6 that =G is an equivalence relation and a congruence
with respect to ∈G. Let M[G] denote the collection of equivalence classes [ó]=G ,
equipped with the relation induced by ∈G. This amounts to the same quotient
procedure one undertakes with the Boolean-valued model approach to forcing and
the Boolean ultrapower (discussed in [4]).
It is well-known that 〈M[G],∈G〉 is not necessarily amodel of ZFC, sincewith class

forcing one can, for example, collapse all cardinals toù, which of course contradicts
ZFC; indeed, one can even collapse M itself to become countable, as will happen
with the forcing FA that we consider in Section 8. Nevertheless, 〈M[G],∈G〉 is a
structure of some kind and has its theory, whatever it may be, and so it still makes
sense to inquire about which statements in that theory are true in M[G] or forced
by a condition, and so on.
If we had equipped the forcing relation with a class name Γ̇, then we define its

extension inM[G] by

Γ([ó]) ⇐⇒ ∃p ∈ G p  ó ∈ Γ̇,

which is the same as saying that there is a dense class of conditions q≤ p for which
there is 〈ñ,r〉 ∈ Γ̇ with q ≤ r and q  ó = ñ. For example, if we use the canonical
name of the generic filter Ġ, then we have G([ó]) just in case there is p ∈ G with
p  ó ∈ Ġ. If G isM-generic, this is equivalent to saying that there is some p,r ∈ G
with p≤ r and p  ó = ř.

Theorem 7. Suppose that M is a model of GBC with a class forcing notion P that

admits a forcing relation in M for a first-order formula ϕ, which is standard in the
meta-theory, in a forcing language with finitely many class names Γ̇i and G ⊆ P is

M-generic. Then

〈M[G],∈G,Γ0, ... ,Γn〉 |= ϕ([ô]) if and only if ∃p ∈ G p  ϕ(ô).

Proof. This is proved by induction in the meta-theory on the formula ϕ, which
is why we need ϕ to be standard in the meta-theory. The theorem is true for atomic
formulas basically by definition of the relations =G and ∈G and the definitions of
the extensions Γi in M[G] for any of the class names Γ̇i. If the theorem statement
is true for ϕ, then it is also true for ¬ϕ, since the class of conditions p with p  ϕ
or p  ¬ϕ is easily seen to be dense, and so there is such a condition in G. If the
theorem statement is true for ϕ and ø, then it is also true for the conjunction ϕ∧ø,
because the class of conditions p that either force both ϕ and ø or else force one of
the negations ¬ϕ or ¬ø is dense, and so there is such a p ∈ G, which then gives the
theorem for the conjunction. If the theorem is true for ϕ, then it is true for ∀xϕ(x),
since the class of conditions p that either force ¬ϕ(ô) for some ô or force ϕ(ô) for
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all such names ô, is dense, and so there is such a condition p ∈ G, which then gives
the theorem for ∀xϕ(x), as desired. ⊣

The argument can just as easily handle assertions ϕ in the infinitary languages
LOrd,Ord(∈,A), introduced in Definitions 10 and 11, provided that the formulas are
actually well-founded in the meta-theory.
We should like to emphasize that although Theorem 7 works with nonstandard

models M of GBC, we do still have a standardness assumption for the formula
ϕ, since one proves the theorem by induction on formulas in the meta-theory. We
shall later explain how one can move beyond that to a setting accommodating
nonstandard formulas ϕ by using Theorem 9 to construct suitable truth predicates
in the extension.

§4. Forcing relation as name for a truth predicate. We shall now prove the
equivalence (3)↔ (5) in the main theorem. Let us begin by making precise what it
means to have a truth predicate for first-order truth.

Definition 8. A truth predicate for first-order truth (also known as a satisfaction
class), with a class parameter A, is a class T consisting of pairs 〈ϕ, Ea〉, where ϕ
is a formula in the first-order language of set theory augmented with a predicate
symbol Â for the class A and Ea is a valuation mapping the free variables of ϕ to
corresponding set parameters, such that the following recursion is satisfied:

(a) T judges the truth of {=,∈, Â}-atomic statements correctly:

T(x= y,〈a,b〉) if and only if a= b,

T(x ∈ y,〈a,b〉) if and only if a ∈ b,

T(x ∈ Â,a) if and only if a ∈ A.

(b) T performs Boolean logic correctly:

T(ϕ∧ø, Ea) if and only if T(ϕ, Ea) and T(ø, Ea),

T(¬ϕ, Ea) if and only if ¬T(ϕ, Ea).

(c) T performs quantifier logic correctly:

T(∀xϕ, Ea) if and only if ∀bT(ϕ,baEa).

When a truth predicate exists in a model of GBC, then it is unique, since there
cannot be a least formula where the disagreement occurs. Nevertheless, classical
results of Krajewski [8] show that there are (necessarily nonstandard) models of
ZFC that admit different incompatible truth predicates as ZFC-amenable classes
(see discussion and further results in [5]). Similar reasoning produces models of
ZFC with different incompatible forcing relations for a given forcing notion, even
for set forcing, each of them ZFC-amenable but not jointly ZFC-amenable.
Let us introduce the notation op(ó,ô) for the canonical name for the ordered pair

of ó and ô; technically, if we use the Kuratowski definition of the ordered pair, then
op(ó,ô) = {〈{〈ó,1〉},1〉,〈{〈ó,1〉,〈ô,1〉},1〉}.
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Theorem 9. For any class forcing notion P, and any finitely many class name

parameters Γ̇0, ... , Γ̇m, the following are equivalent:

(i) P admits a uniform forcing relation for the first-order forcing language Lù,ù(∈,
Γ̇0, ... , Γ̇m).

(ii) There is a class name Ṫ and a forcing relation defined on the following statement,
for which

1  Ṫ is a truth predicate for Lù,ù(∈, Γ̇0, ... , Γ̇m).

The main lesson of this argument should be that a uniform forcing relation
essentially is the name of a truth predicate.

Proof. (i)→ (ii) Suppose that we have a uniform forcing relation  for P in the
first-order forcing language Lù,ù(∈, Γ̇0, ... , Γ̇m). Let

Ṫ = {〈op(ϕ̌, Eô),p〉 | p  ϕ(Eô)},

which is a class name for the pairs 〈ϕ, Ea〉 such that ϕ(Ea) will be true in the extension.
Since we have the atomic forcing relation, it follows by Theorem 5 that we may
extend  to cover any particular first-order statement using any other fixed class
parameter. In particular, we can talk about whether specific assertions about Ṫ are
forced, even if Ṫ is not one of the Γ̇i (that is, Theorem 5 allows us to apply the
forcing relation to specific individual assertions about Ṫ). Using this, we claim that

1  Ṫ is a first-order truth predicate.

This is a first-order-expressible property of the predicate Ṫ.
The main point is that the recursive requirements on the forcing relation are

exactly what one needs to prove that Ṫ is (forced to be) a truth predicate. The atomic
case is clear, because a condition p forces (the canonical name of) 〈x∈ y,〈ó,ô〉〉 to be
in Ṫ if and only if p ó ∈ ô, and similarly with = and with any class name parameter
Γ̇. Since p  ¬ϕ just in case no stronger condition q≤ p forces ϕ, it follows that the
class of conditions q either forcing ϕ or forcing ¬ϕ, but never both, is dense, and
so 1 forces that Ṫ exhibits the negation requirement for a truth predicate. Similarly,
since any condition p forces

∧

iϕi just in case it forces each ϕi separately, it follows

that 1 forces that Ṫ obeys the conjunction rule. And since p  ∀Exϕ(Ex) just in case
p  ϕ(Eô) for all particular Eô, it follows that 1 forces that Ṫ obeys the quantifier
requirement.
(ii→ i) Conversely, suppose that P admits a class P-name Ṫ and a forcing relation

 for which

1  Ṫ is an Lù,ù(∈, Γ̇0, ... , Γ̇m)-truth predicate.

We take it as part of this assertion, following Definition 4, that the forcing relation
 is defined on all atomic formulas. For assertions ϕ in the forcing language, let us
define a new relation� as follows:

p� ϕ(Eô) ←→ p  op(ϕ̌, Eô) ∈ Ṫ.

That is, we say that an assertion ϕ(ô) is forced via � by a condition p, if p forces
that it is true according to the truth predicate Ṫ. On the right hand side of this
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definition, we use the extension of the atomic forcing relation  as in Theorem 5 to
any particular first-order expression in the forcing language.
First, let’s notice that the two forcing relations agree on atomic formulas.

Specifically, because of what it means to be a truth predicate, this relation gets
the right answer for atomic formulas, since we have that p� ó = ô if and only if
p  op

(

(x = y)ˇ,op(ó,ô)
)

∈ Ṫ, which holds if and only if p  ó = ô; and similarly,

p� ó ∈ ô if and only if p  op
(

(x ∈ y)ˇ,op(ó,ô)
)

∈ Ṫ, which holds if and only if
p  ó ∈ ô. So � and  agree on atomic assertions (and therefore we didn’t really
need a new forcing symbol).
We have to verify that this relation that we have just defined satisfies the required

recursive properties to be a forcing relation. We have already observed that it agrees
with the forcing relation for atomic assertions. Since 1 forces that Ṫ is a truth
predicate, it follows that for any particular assertion ϕ(Eô), there are densely many
conditions q either forcing that ϕ(Eô) is true according to Ṫ or that ¬ϕ(Eô) is true
according to Ṫ, but never both. From this, it follows that p� ¬ϕ(Eô) just in case
no stronger condition forces ϕ(Eô). Similarly, the truth-predicate requirements on
conjunctions lead to the fact that p� ϕ ∧ø if and only if p� ϕ and p� ø. And
p� ∀xϕ(x) just in case p� ϕ(ô) for all P-names ô. So we’ve got a uniform forcing
relation, as desired. ⊣

Theorem 9 establishes the equivalence (3) ⇐⇒ (5) in the main theorem on a
case-by-case basis for any class forcing notion P. A similar argument shows that to
have a forcing relation  defined on a fragment of the forcing language, such as the
collection of subformulas of a given formula or the formulas of a certain complexity,
then 1 forces that the corresponding predicate Ṫ is a truth predicate on the same
language fragment. In the case of the infinitary languages introduced in Section 5,
an analogue of Theorem 9 provides a name for a truth predicate for the language
consisting of all ground-model assertions in that infinitary language.

§5. The infinitary languages. Let us nowexplainhow to extend the forcing relation
concept to the case of various infinitary languages. These languages are unified as
instances of the following general definition.

Definition 10. Assume κ,ë≤Ord are infinite cardinals or Ord itself.

(a) The language Lκ,ë(∈, Â) has a signature consisting of the binary relation ∈,

a unary predicate symbol Â and sufficiently many (e.g. ë<κ many) variable
symbols xi. The formulas of the language are obtained from the atomic
formulas x = y, x ∈ y and x ∈ Â by closing under negation ¬ϕ, under
conjunctions

∧

j∈J ϕj of size |J| < κ, provided that there are fewer than

max(ù,ë) many free variables collectively in the ϕj, and under quantification
∀Exϕ(Ex) by quantifier blocks Ex= 〈xi | i ∈ I〉 of size |I |< ë.

(b) The forcing language Lκ,ë(∈,V
P, Γ̇0, ... , Γ̇m), for any class forcing notion P,

augments the previous language with all the various P-names as constant
symbols and predicate symbols Γ̇i for finitelymany class names, closing under
conjunctions of size less than κ and quantifier blocks of size less than ë.

This general definition has natural special cases, with which we shall be
concerned:
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• The usual first-order language of set theory Lù,ù(∈);
• the usual first-order forcing language Lù,ù(∈,V

P, Ġ);
• the quantifier-free infinitary forcing language LOrd,0(∈,V

P, Ġ);

• the partial infinitary language LOrd,ù(∈, Â);

• the full infinitary language LOrd,Ord(∈, Â).

• the full infinitary forcing language LOrd,Ord(∈,V
P, Γ̇0, ... , Γ̇m).

Every formula in each of these languages is determined by its well-founded parse
tree, which specifies at each node how the formula was constructed from its various
subformulas, and one may undertake inductive proofs on formulas by means of
these parse trees. Indeed, let us simply identify every formula ϕ with its parse
tree.
Extending Definitions 2 and 4, we now define what it means to have uniform

forcing relations for these languages.

Definition 11. If P is a class forcing notion and L(∈,VP, Γ̇0, ... , Γ̇m) is one of
the forcing languages mentioned above, then we say that P admits a uniform forcing
relation for this language, if there is a relation  obeying the following recursive
properties:

(a) The forcing relation  is defined on all atomic formulas ó = ô, ó ∈ ô, and
ó ∈ Γ̇i and fulfills the requirements expressed by Definitions 2 and 4 for these
atomic formulas;

(b) for conjunctions in the language, p 
∧

j∈J ϕj if and only if p  ϕj for each j;

(c) p  ¬ϕ if and only if there is no q≤ p with q  ϕ;
(d) if the language allows quantification, then p ∀xϕ(x) if and only if p ϕ(ô)
for every P-name ô; and

(e) if the language allows infinitary blocks of quantifiers, then p ∀Exϕ(Ex), where
Ex = 〈xi | i ∈ I〉, if and only if p  ϕ(Eô) for all sequences of P-names Eô = 〈ôi |
i ∈ I〉.

If we regard disjunction
∨

jϕj as an abbreviation for ¬
∧

j¬ϕj, then the definition
requires that p 

∨

jϕj if and only if there are densely many q≤ p for each of which
there is some j such that q  ϕj, allowing different j for different q. Similarly, if we
regard ∃xϕ(x) as an abbreviation for ¬∀x¬ϕ(x), then the definition requires that
p  ∃xϕ(x) if and only if there are densely many q ≤ p for each of which there is
some ô such that q  ϕ(ô).
It turns out that every class forcing relation for atomic formulas can be extended to

a uniform forcing relation on the quantifier-free infinitary forcing language. Indeed,
the proof of Theorem 12 shows that the expressive power of the forcing language
LOrd,0(∈,V

P, Ġ) does not actually exceed the expressive power of the atomic equality
assertions ȧ = ḃ, and this is why having a forcing relation for merely the atomic
assertions suffices to provide a forcing relation for LOrd,0(∈,V

P, Ġ). This theorem
will be used in Section 6.

Theorem 12. If a class forcing notion P admits a forcing relation for atomic

formulas, then it admits a uniform forcing relation in the quantifier-free infinitary

forcing language LOrd,0(∈,V
P, Ġ).
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Proof. This argument adapts the main ideas of [6, Lemma5.2, Theorem5.5],
generalizing from the context there of a countable transitive model of set theoryM
to our development here of class forcing as an internal GBC matter. The difference
is that in the countable-transitive-model case, one is able to define a forcing relation
externally by reference to what is true in the various extensionsM[G], and then use
that relation in inductive arguments; but here, wemust define a suitable class relation
internally to GBC and then prove that it fulfills the forcing-relation recursion, even
in uncountable or nonstandardmodels andwith nonstandard formulas, whose truth
conditions are not necessarily sensible in the meta-theory.
To begin, we assume that P is a class forcing notion for which we have a forcing

relation  for the atomic formulas. We aim to define a forcing relation p  ϕ for
the sentences ϕ in the quantifier-free infinitary forcing languageLOrd,0(∈, V

P, Ġ). In
order to do so, we shall recursively assign to each sentence ϕ in the quantifier-free
infinitary forcing language LOrd,0(∈,V

P, Ġ) an atomic formula of the form ȧϕ = ḃϕ
and then define the desired forcing relation  as follows:

p  ϕ ←→ p  ȧϕ = ḃϕ . (∗)

Basically, we aim to find suitable atomic equality assertions ȧϕ = ḃϕ that track the
truth and forcing conditions for any given quantifier-free infinitary assertion ϕ, and
we shall then prove that the relation  defined by (∗) is indeed a forcing relation.
The assignmentϕ 7→ ȧϕ = ḃϕ will be the end result of a certain transfinite syntactic

translation process, which gradually reduces a given sentence ϕ in LOrd,0(∈,V
P, Ġ)

to sentences appearing earlier in the (well-founded) translation hierarchy that is
implicit in our construction, eventually reaching the atomic equalities ȧϕ = ḃϕ as
irreducible terminal nodes. At each step, the translation process will respect the
forcing-relation requirements of Definition 11.
For the first step of the translation, we systematically eliminate use of the Ġ

predicate, except for the check names, by applying the following transformation
whenever ó is not itself a check name:

ó ∈ Ġ 7→
∨

p∈P∩Vrank(ó)+1

(

p̌ ∈ Ġ∧ó = p̌
)

.

Since it is not difficult to see by induction on names that 1  ó ∈ V̌rank(ó)+1 for any
name ó, the idea of this transformation is that the only way ó can name a condition
in Ġ is if it is naming one of the conditions p ∈ P∩Vrank(ó)+1. It follows that 1 forces

the equivalence of the assertion ó ∈ Ġ with its translation at the right. The result of
the transformation is a formula for which the only occurrences of the Ġ predicate
are with check names of the form p̌ ∈ Ġ.
Next, we systematically apply the infinitary deMorgan laws to push all remaining

negations to the bottom of the parse tree, so that they appear, if at all, immediately
in front of atomic formulas.

¬
∨

i∈I

ϕi 7→
∧

i∈I

¬ϕi,

¬
∧

i∈I

ϕi 7→
∨

i∈I

¬ϕi.
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These transformations are logical validities and therefore, if the forcing relation is
defined on the formulas at the right, then it can be legitimately extended to the
formulas at the left.
After this, we eliminate most of the remaining negations by systematically

applying the following reductions.

ó 6= ô 7→ ó 6⊆ ô∨ ô 6⊆ ó,

ó 6⊆ ô 7→
∨

〈ñ,r〉∈ó

(

ř ∈ Ġ∧ñ /∈ ô
)

,

ó /∈ ô 7→
∧

〈ñ,r〉∈ô

(

ř /∈ Ġ∨ó 6= ñ
)

.

What we intend here is that the reductions are applied iteratively, until they can no
longer be applied; an easy inductive argument on names shows that the reduction
process eventually terminates. It is easy to see in each case that 1 forces the
equivalence of each of these negated atomic formulas with its translation.
The translation process mentioned so far reduces any given sentence to a

positive infinitary Boolean combination (using iterated infinitary conjunction and
disjunction) of formulas of the form ó = ô, ó ∈ ô, p̌ ∈ Ġ and p̌ /∈ Ġ. In order to
eliminate all but the atomic equalities, we now apply the following reductions

ó ∈ ô 7→ ô = ô∪{〈ó,1〉},

q̌ ∈ Ġ 7→ {〈∅,q〉}= {〈∅,1〉},

q̌ /∈ Ġ 7→ {〈∅,q〉}= ∅,

whose equivalences are in each case forced by 1.
Thus, we have transformed every sentence of the quantifier-free infinitary forcing

language LOrd,0(∈,V
P, Ġ) to a positive Boolean combination of atomic equalities

ó = ô. We shall now systematically apply further reductions to eliminate the need
for conjunctions and disjunctions, and thereby reduce every infinitary sentence ϕ to
a single atomic equality ȧϕ = ḃϕ .

If ϕi has already been mapped to the atomic equality ȧi = ḃi, then we eliminate
the infinitary conjunction by the transformation

∧

i∈I

ϕi 7→ {〈op(̌i, ȧi),1〉 | i ∈ I }= {〈op(̌i, ḃi),1〉 | i ∈ I }.

It is easy to see that a condition p forces the atomic equality ȧ= ḃ at the right if and
only if p  ȧi = ḃi for all i ∈ I .
Infinitary disjunctions are a little more troublesome, but we can eliminate them

by means of the transformation
∨

i∈I

ϕi 7→ ȧ= ḃ,

where

u̇ = {〈op(̌i, ȧi),1〉 | i ∈ I }∪{〈op(̌i, ḃi),1〉 | i ∈ I },

u̇j = {〈op(̌i, ȧi),1〉 | i ∈ I }∪{〈op(̌i, ḃi),1〉 | i ∈ I , i 6= j},
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ȧ = {〈uj,1〉 | j ∈ I },

ḃ = {〈uj,1〉 | j ∈ I }∪{〈u̇,1〉}.

The idea is that the names u̇j each removewhatmight be a redundancy from u̇, and so

the names ȧ and ḃwill name the same set just in case there is such a redundancy.Note
that if p ȧj = ḃj for some particular j, then p u̇j = u̇, because of the corresponding

redundancy in u̇, and consequently p ȧ= ḃ. Conversely, if p ȧ= ḃ, then p u̇∈ ȧ,
and so there are densely many q ≤ p for which there is some j such that q  u̇ = u̇j
and consequently q  ȧj = ḃj. In short, p  ȧ = ḃ if and only if there are densely

many q≤ p with q ȧi = ḃi for some particular i. Thus, our transformation respects
the desired forcing relation requirement for disjunctions.
We now complete the proof of the theorem. We have described a translation of

any sentence ϕ in the quantifier-free infinitary forcing language LOrd,0(∈,V
P, Ġ) to

a corresponding atomic equality ȧϕ = ḃϕ . This translation process was an ordinary
set-like recursion on formulas, which can be undertaken in GBC without the need
for any ETR-like assumption. We defined the forcing relation by (∗) above, namely,
p  ϕ if and only if p  ȧϕ = ḃϕ . This relation , we claim, obeys the recursive
requirements of Definition 11. This is proved by induction on the translation order.
If is a forcing relation on all formulas appearing beforeϕ in the translation process,
then because as we have observed, each step of the translation process respects the
requirements of the forcing relation, it follows that  is also a forcing relation on
the sentence ϕ. So we have defined a uniform forcing relation on LOrd,0(∈,V

P, Ġ),
as desired. ⊣

The statement in the conclusion of Theorem 12, if stated for all class forcing
notions—that is, the assertion that every class forcing notion P admits a uniform
forcing relation for the quantifier-free infinitary forcing language—is equivalent to
all the other statements made in the main theorem, because the previous theorem
shows that it is implied on a case-by-case basis by statement (1) and conversely it
clearly also implies statement (1). So we could actually have added this statement
to the main theorem as yet another equivalent assertion.
The method of the previous theorem extends to the case of limited-complexity

infinitary assertions, which allow finitely many quantifiers at the top level of the
parse tree. That is, if one has a forcing relation for atomic formulas, then one can
have a forcing relation for any formula having finitely many quantifiers at the front,
alternating in any desired pattern, followed by a quantifier-free infinitary assertion.
One first gets the forcing relation for the quantifier-free infinitary language as above,
and then applies induction in the meta-theory as in Theorem 5.
Let us now prove the implication (12)→ (4). Meanwhile, the implications (4)→

(3)→ (2)→ (1) are essentially immediate.

Theorem 13. The principle ETROrd of elementary transfinite recursion for class

recursions of length Ord implies that every class forcing notion P admits a uniform

forcing relation for assertions in the forcing language LOrd,Ord(∈,V
P, Γ̇0, ... , Γ̇m),

allowing any fixed class names Γ̇i.
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Proof. For any class forcing notion P, we get the forcing relation for atomic
formulas by Theorem 3. And now the point is that the requirements stipulated for
the rest of the forcing relation by Definition 11 amount exactly to a recursion on
formulas. That is, to have a forcing relation is to have the solution of a certain
recursion, the recursion expressed by Definition 11. Since every formula has a well-
founded parse tree, which has some ordinal rank, we may organize this recursive
definition of the uniform forcing relation as a class recursion of length Ord, by
recursing on the rank of the parse tree of the formula. Thus, ETROrd provides a
solution of this recursion, which is the desired uniform infinitary forcing relation. ⊣

We should like to call attention to the contrast between Theorems 12 and 13. In
the case of Theorem 12, we constructed a uniform forcing relation for quantifier-free
infinitary assertions in the forcing language LOrd,0(∈,V

P, Γ̇0, ... , Γ̇m) on a case-by-
case basis for the forcing P, without any need for ETROrd. This was an ordinary
set-like recursion on formulas. In Theorem 13, however, the recursion is no longer
set-like, because for the quantifier case, the relation p ∀xϕ(x) reduces to a proper
class of smaller instances p  ϕ(ô), even when ϕ is merely first-order. Thus, this is
no longer an ordinary recursion on sets, but a class recursion of length Ord, which
can be undertaken using ETROrd.
In the ZFC context, set theorists have grown accustomed to having separate

forcing relations for each formula ϕ, since it is not possible ever to have a uniform
forcing relation as a definable class, as this would lead quickly to a definable truth
predicate, contrary to Tarski’s theorem. Nevertheless, the main theorem shows that
if every class forcing notion P has its atomic forcing relations, then ETROrd holds,
and therefore every class forcing relation P has a fully uniform forcing relation, even
in the full infinitary forcing language LOrd,Ord(∈,V

P, Γ̇0, ... , Γ̇m). And therefore also
we get the accompanying truth predicates that these relations provide. This does not
violate Tarski’s theorem, because while the forcing relations exist as classes, they are
not first-order definable classes.
For that reason, the ‘definability lemma’ terminology in the literature, used to

refer to the assertion that the class forcing relations exist, is somewhat misleading,
because this terminology should not be interpreted as asserting that the forcing
relations are actually (first-order) definable classes. Indeed, certain definable class
forcing notions, such as those used in Section 8, cannot have first-order definable
forcing relations, even in the case of the forcing relations for atomic formulas only,
although those relations can exist as GBC classes. It is true, however, that when the
forcing relations exist, then they are the unique class relations satisfying the forcing
relation recursion, and therefore they are always first-order implicitly definable, in
the sense of [3], and therefore also second-order definable relations.

§6. Boolean completions. In this section we prove the equivalence (1) ↔ (6).
This argument basically follows [6, Theorem5.5], generalizing it from the context
of countable transitive models of set theory to the general case of arbitrary models
of GBC, using our recursion conception of what it means in GBC to have a forcing
relation. The equivalence holds on a case-by-case basis for each class forcing notion
P separately.
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Theorem 14. For any class forcing notion P, the following are equivalent:

(i) P admits a forcing relation for atomic formulas.
(ii) P admits a uniform forcing relation for quantifier-free infinitary formulas in the
forcing language LOrd,0(∈, Ġ).

(iii) P admits a Boolean completion, a set-complete class Boolean algebra B into
which P densely embeds.

Proof. The implication (i→ ii) is provided by Theorem 12.
For (ii→ iii), assume that P has a uniform forcing relation for quantifier-free

infinitary formulas in the forcing language LOrd,0(∈, Ġ). For ϕ,ø in this language,
define ϕ ≈ ø just in case 1  ϕ ↔ ø. This is a class equivalence relation, and the
quotient B = LOrd,0(∈, Ġ)/≈, inheriting the logical structure of the language itself,
is easily seen to be a set-complete Boolean algebra, as in the Lindenbaum algebra,
where¬[ϕ]≈ = [¬ϕ]≈ and

∧

i∈I [ϕi]≈ = [
∧

i∈I ϕi]≈. (We use Scott’s trick to represent
each equivalence class canonically by the set of its minimal-rank members, in order
to avoid the inconvenience that an equivalence class would otherwise be a proper
class.) Finally, P embeds densely into B by the map p 7→ [p̌ ∈ Ġ]≈.
Lastly, for (iii→ i), suppose that a class forcing notionP has aBoolean completion

B, a set-complete class Boolean algebra B with a dense embedding i : P→ B. We
shall prove that there is a forcing relation for atomic formulas. To do so, we define
the following Boolean values, by recursion on names:

[[ó ∈ ô ]] =
∨

〈ñ,r〉∈ô

(

[[ó = ñ ]]∧ i(r)
)

,

[[ó = ô ]] = [[ó ⊆ ô ]]∧ [[ô ⊆ ó ]],

[[ó ⊆ ô ]] =
∧

〈ñ,r〉∈ó

(

¬i(r)∨ [[ñ ∈ ô ]]
)

.

This is a straightforward recursion on names, which we may undertake in GBC,
without need for any ETR assumption. We now define the corresponding forcing
relation p  ϕ if and only if i(p)≤ [[ϕ ]], for atomic ϕ.
It remains to check that this relation is indeed a forcing relation for atomic truth,

that is, that it fulfills the recursive requirements of Definition 2. This is an exercise
in the usual Boolean-valued reasoning. For example, if p  ó ∈ ô, then

i(p)≤ [[ó ∈ ô ]] =
∨

〈ñ,r〉∈ô

(

[[ó = ñ ]]∧ i(r)
)

,

and so every p′ ≤ p has i(p′) compatible with [[ó = ñ ]]∧ i(r) for some 〈ñ,r〉 ∈ ô,
which means there is some q ≤ p′ with q ≤ r and i(q) ≤ [[ó = ñ ]]. Thus, there is a
dense class of q ≤ p with q  ó = ñ for some 〈ñ,r〉 ∈ ô with q ≤ r, as desired. The
other properties are similar and left for the reader. ⊣

§7. ETROrd implies truth predicate for LOrd,Ord(∈,A). In this section, we shall
prove the implication (12)→ (9). The implication (9)→ (8) is essentially immediate.
We begin by providing the natural generalization of the truth predicate concept of
Definition 8 to the infinitary context as follows.
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Definition 15. If κ,ë ≤ Ord are cardinals or Ord itself and A is a fixed class
parameter, then a truth predicate for the Lκ,ë(∈, Â) language of set theory with a
predicate for A is a class T consisting of pairs 〈ϕ, Ea〉, where ϕ is a formula in that
language and Ea is a valuation mapping the free variables of ϕ to corresponding set
parameters, such that the following recursion is satisfied:

(a) T judges the truth of {=,∈, Â}-atomic statements correctly:

T(x= y,〈a,b〉) if and only if a= b,

T(x ∈ y,〈a,b〉) if and only if a ∈ b,

T(x ∈ Â,a) if and only if a ∈ A.

(b) T performs Boolean logic correctly:

T
(

∧

i∈I

ϕi, Ea
)

if and only if T(ϕi, Ea) for all i ∈ I ,

T(¬ϕ, Ea) if and only if ¬T(ϕ, Ea).

(c) T performs quantifier logic correctly:

T(∀Exϕ, Ea) if and only if ∀Eb T(ϕ, EbaEa),

where EbaEa is the valuation extending Ea by mapping the variables of Ex to the
objects listed by Eb.

This generalizes Definition 8 from the case of the first-order language Lù,ù(∈,A)
to the infinitary languages, such asLOrd,ù(∈,A) andLOrd,Ord(∈,A). Let us sublimate
a fewminor syntactical details, such as the fact that in (b) when referring to T(ϕi, Ea),
we should restrict the valuation Ea to the free variables of ϕi, if these were fewer than
in

∧

iϕi.

Theorem 16. Assume the principle of elementary transfinite recursion ETROrd for

recursions of length Ord. Then there is a truth predicate for LOrd,Ord(∈,A), with any
class parameter A.

Proof. The point is that the existence of a such a truth predicate for this infinitary
logic is an elementary transfinite recursion of length Ord, defined by recursion on
formulas. The formulas each have an ordinal rank coming from the rank of their
parse trees, and we may define the truth of such a formula by reference to the truth
of its constituent pieces. ⊣

In light of the results of Section 13, we should not expect to get Ord-iterated
truth predicates for the infinitary logic LOrd,Ord(∈,A), or even an ù-iterated truth

predicate for LOrd,ù(∈,A), since those recursions have length Ord
2 or Ord ·ù, and

ETROrd is not able to prove that such recursions have a solution. Indeed, it follows
from the separation results of that section that the existence of an ù-iterated truth
predicate for LOrd,ù(∈) is strictly stronger in consistency strength than ETROrd.
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§8. Forcing theorem implies truth predicate for LOrd,ù. In this section, we shall
prove the implication (1)→ (8) in the main theorem. In order to do so, let us define
a particular class forcing notion FA, from whose atomic forcing relation we shall
be able to extract a truth predicate. This is an adaptation and generalization of the
forcing defined in [6, Definition 2.4], and the argument here is based on the analysis
of [6, Section 7]. Let A be a proper class parameter. Since the existence of a truth
predicate relative to A is invariant under finite changes of A, we can assume that A
has at least two elements and that A 6= V . Let Coll(ù,V) be the class partial order
having as conditions all finite injective partial functions f :ù→V . This is the usual
forcing to add a bijection from ù to V. To form FA, we take a disjoint union that
augments the forcing Coll(ù,V) with additional conditions, by setting

FA = Coll(ù,V)⊔{en,m | n,m ∈ ù }⊔{an | n ∈ ù }

where for f ∈ Coll(ù,V) we define

f ≤ en,m ⇐⇒ f (n) ∈ f (m), and

f ≤ an ⇐⇒ f (n) ∈ A.

In other words, the condition en,m is by definition precisely the supremum of the
conditions f with f (n)∈ f (m), and an is by definition the supremumof the conditions
f for which f (n) ∈ A. Let us also take 1 = ∅ ∈ Coll(ù,V) to be above all the new
conditions en,m and an. Recall that A has at least two elements, and that A 6= V .
Using this, it is easy to check that FA is separative.
In short, we define the forcing FA to be basically the collapse forcing Coll(ù,V),

but augmented with some additional conditions that are the suprema of certain
useful classes of conditions. In particular, Coll(ù,V) is a dense subclass of FA, and
consequently a generic filter G ⊆ FA will be fully determined by G ∩Coll(ù,V),
which will be generic for that forcing. Nevertheless, class forcing differs from set
forcing in that a dense subclass of the forcing does not necessarily give rise to the
same forcing extensions (see [7, Section 5]). The reason is that the extra conditions,
such as en,m and an above, allow one to form names in the larger forcing that are
not equivalent to any name in the smaller forcing, even though it is dense. Basically,
we augmented the forcing with those extra conditions precisely so that we could use
those conditions to form FA-names for objects that we could not have been able to
name in the Coll(ù,V) forcing alone.
Let us illustrate with a few examples. Define the name

ε̇ = {〈op(ň,m̌),en,m〉 | n,m ∈ ù }.

Notice that ε̇ is a set-sized name—actually, it is countable—even though it seems
to carry information about what will ultimately happen with a proper class of
conditions f. The reason it can do so is precisely because of the supremum conditions
en,m that we added to FA.
Similarly, we may define the name

Ȧ= {〈ň,an〉 | n ∈ ù }.

This is not a name for the class A itself, but rather it is the name for the copy of
A on ù that will be induced by the generic bijection. That is, Ȧ is the name for the
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collection of n ∈ ù that will correspond to an element of A by the generic bijection.
Again, this is a set-sized name, actually countable, which we can form precisely
because of the extra conditions an that we had added to the forcing.
Lastly, without using the augmented part of FA, let us define for each set a the

name

ṅa = {〈ǩ, (n 7→ a)〉 | k < n ∈ ù },

where (n 7→ a) = {〈n,a〉} ∈ Coll(ù,V) is the finite partial function defined on only
the point n and mapping it to a. Thus, ṅa is the name of the set of numbers k that
are less than the natural number n that will get mapped to a by the generic bijection.
In other words, since every natural number is the set of smaller numbers, ṅa is the
name of the number n that will get mapped to a.
The following theorem is a generalization of [6, Theorem7.3] to the internal GBC

treatment of class forcing and also to allow a class parameter.

Theorem 17. If the forcing FA, for a fixed class parameter A, admits forcing

relations for atomic formulas, then there is a truth predicate for LOrd,ù(∈,A).

Proof. Fix the class A and suppose that the forcing FA admits forcing relations
for atomic formulas. It follows byTheorem12 thatwe have a uniform forcing relation
for quantifier-free infinitary assertions in the forcing language LOrd,0(∈,V

FA).
Our proof will make use of the following purely syntactical translation ϕ 7→

ϕ⋆, where ϕ ∈ LOrd,ù(∈,A) and ϕ
⋆ ∈ LOrd,0(∈,V

FA). The translation is defined by
recursion on ϕ as follows:

(x ∈ y)⋆ = x ε̇ y,

(x= y)⋆ = x= y,

(x ∈ A)⋆ = x ε̇ Ȧ,

(ϕ∧ø)⋆ = ϕ⋆∧ø⋆,

(¬ϕ)⋆ = ¬ϕ⋆,
(

∧

i∈I

ϕi
)⋆

=
∧

i∈I

ϕ⋆i ,

(∀xϕ)⋆ =
∧

m∈ù

ϕ⋆(m̌).

The interesting cases are (x ∈ y)⋆ and (∀xϕ)⋆. The idea is that the translation is
transforming truth assertions about the structure 〈V ,∈,A〉 to the corresponding
truth assertions about the structure 〈ù, ε̇, Ȧ〉, which intuitively will be made
isomorphic by the generic bijection a 7→ (ṅa)G, where G is generic for FA. The
point is that ∈ assertions in V will correspond to ε̇ relations in the latter structure,
and universal assertions ∀xϕ in V will correspond to countable conjunctions in the
latter structure, since every object will be placed at some n by the generic bijection,
mapping a to (ṅa)G. Intuitively, the translation aims at establishing the equivalence

〈V ,∈,A〉 |= ϕ(a) ⇐⇒ V [G] |=
(

〈ù, ε̇G, ȦG〉 |= ϕ
⋆((ṅa)G)

)

.
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Formalizing this equivalence at the outset, however, is somewhat problematic,
because the left-hand side is not expressible unless we already have the desired
truth predicate, and the right-hand side makes truth assertions inV [G], which is not
amodel of any decent set theory, as we have collapsedV to become countable, and so
it isn’t clear to what extent V [G] has a truth predicate for the structure 〈ù, ε̇G, ȦG〉.
One might hope alternatively for the right hand side to work directly with the
structure 〈ù, ε̇G, ȦG〉, using an externally defined truth predicate; but this will not
work properly with nonstandard models, since there will be nonstandard formulas
ϕ⋆ whose truth in that structure will not have a clear meaning in the meta-theory
(although this approach does work when the original model is transitive).
Nevertheless, without formalizing the equivalence displayed above, we may

instead take it as inspiring an idea that we are able to formalize, specifically, the
definition in GBC of a certain predicate Tr(ϕ, Ea), which we shall prove is a truth
predicate. The idea is similar to that of Theorem 9. Namely, if ϕ is an infinitary
formula in the languageLOrd,ù(∈,A) and Ea= 〈a0, ... ,ak〉 is a valuation of the (finitely
many) free variables of ϕ, then we define

Tr(ϕ, Ea) ⇐⇒ 1 FA
ϕ⋆(ṅa0 , ... , ṅak).

The definition uses the forcing relation in FA only in the case of the formulas ϕ
⋆,

which are quantifier-free infinitary assertions in the forcing languageLOrd,0(∈,V
FA),

and we have a uniform forcing relation for that language by Theorem 12. Let us
prove that this is indeed a truth predicate.

Lemma 17.1. For any formula ϕ ∈ LOrd,ù(∈,A), any sets a0, ...,ak and any
condition p,

p  ϕ⋆(ṅa0 , ... , ṅak) if and only if 1  ϕ⋆(ṅa0 , ... , ṅak).

Proof. We proceed by induction on the formula ϕ. It is important here that the
only names appearing as parameters in ϕ⋆ have the form ṅa for some a; for example,
the lemma is not true if one allows parameters of the form ň, since if p(n) is defined,
then p will force things about ň that other conditions will not. For the atomic case,
it is easy to verify that

p  ṅa = ṅb if and only if a= b,

p  ṅa ε̇ ṅb if and only if a ∈ b,

p  ṅa ε̇ Ȧ if and only if a ∈ A

because we can simply extend p to a condition that decides the exact values of ṅa
and ṅb. It follows that if p  ṅa = ṅb, p  ṅa ε̇ ṅb, or p  ṅa ε̇ Ȧ, then 1 also forces
that statement, which verifies the atomic case of the lemma. Next, for conjunctions,
suppose that p

(
∧

iϕi(ṅa)
)⋆
, which by the definition of the ⋆-translationmeans p

ϕ⋆i (ṅa) for every i (for notational simplicity, we consider just one parameter ṅa). By

the induction hypothesis, this means 1 ϕ⋆i (ṅa) for every i and so 1
(
∧

iϕi(ṅa)
)⋆
,

as desired. For negation, if p  ¬ϕ⋆(ṅa), it means there is no q≤ p with q  ϕ
⋆(ṅa).

But now, in fact there is no q at all with q ϕ⋆(ṅa), for if there were such a q, then by
induction we would have 1 ϕ⋆(ṅa), contrary to our assumption that p ¬ϕ

⋆(ṅa).

https://doi.org/10.1017/jsl.2019.89 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.89


THE EXACT STRENGTH OF THE CLASS FORCING THEOREM 891

Finally, we consider the universal quantifier case. Since universal quantifiers get
⋆-translated to conjunctions over the natural numbers, let us suppose that p 
∧

m∈ùϕ
⋆(m̌, ṅa). If 1 does not force this conjunction, then there is some condition

forcing the negation, and by strengthening further we find a condition q forcing
¬ϕ⋆(m̌, ṅa) for some particular m. Notice that ϕ

⋆(m̌, ṅa) does not fall under the
induction assumption, since the name m̌ is not of the form ṅa. Nevertheless, by
strengthening further if necessary,wemayassume q(m) is definedand thus q m̌= ṅb
for some b. It follows by Lemma 6 that q ¬ϕ⋆(ṅb, ṅa). By the induction hypothesis
(and the negation case), it follows now that 1  ¬ϕ⋆(ṅb, ṅa). By strengthening p
to a condition p′ forcing ṅb = m̌ for some m, this contradicts our assumption that
p 

∧

m∈ùϕ
⋆(m̌, ṅa). ⊣

We now proceed to prove that the class Tr defined before the lemma is a truth
predicate for the language LOrd,ù(∈,A). We need simply to verify the recursive
requirements of Definition 15. For the atomic case, the equivalences

a= b if and only if 1  ṅa = ṅb,

a ∈ b if and only if 1  ṅa ε̇ ṅb,

a ∈ A if and only if 1  ṅa ε̇ Ȧ,

follow essentially by design from the definitions of ṅa, ε̇ and Ȧ.
Next, let’s check that our definition performs Boolean logic correctly. For

simplicity, allow us to consider the case of just one parameter a rather than Ea.
In the case of conjunctions, we have Tr(

∧

iϕi,a) just in case 1 
∧

iϕ
⋆
i (ṅa), which

holds if and only if1ϕ⋆i (ṅa) for each i, which by induction is equivalent to Tr(ϕi,a)
for all i, as desired.
Consider next negation. If Tr(ϕ,a) holds, then 1  ϕ⋆(ṅa), and so it is not the

case that 1  ¬ϕ⋆(ṅa) and so Tr(¬ϕ,a) fails. Conversely, if Tr(ϕ,a) does not hold,
then 1 6 ϕ⋆(ṅa). It follows by the lemma that no condition p can force ϕ

⋆(ṅa) and
consequently 1 ¬ϕ⋆(ṅa), which implies that Tr(¬ϕ,a) holds, thereby fulfilling the
desired negation requirement.
Finally, consider the quantifier case. Suppose that Tr(∀xϕ(x),a) holds. By

definition, this means 1 
(

∀xϕ(x)
)⋆
(ṅa), and by definition of the ⋆-translation,

this means 1 
∧

m∈ùϕ
⋆(m̌, ṅa), which is equivalent to 1  ϕ⋆(m̌, ṅa) for every m.

For any set b, there is a dense class of conditions q≤1with q ṅb= m̌ for somem and
consequently q ϕ⋆(ṅb, ṅa). Since the q are dense, this implies 1 ϕ⋆(ṅb, ṅa), and so
we have Tr(ϕ,baa) for every set b, as required. Conversely, if Tr(ϕ,baa) for every set
b, then 1  ϕ⋆(ṅb, ṅa) for every b, and from this it follows that 1  ϕ(m̌, ṅa) for any
particular m, since it is dense to force m̌= ṅb for some b. Thus, 1

∧

m∈ùϕ
⋆(m̌, ṅa)

and consequently Tr(∀xϕ,a), as desired. ⊣

§9. Truth predicate for LOrd,ù(∈,A) implies Ord-iterated truth predicate for
Lù,ù(∈,A). In this section, we prove the implication (8) → (10). To begin, let
us define what it means to have an Ord-iterated truth predicate. The idea is to have a
truth predicate that applies not only to statements in the language of set theory, but
to statements about (earlier stages of) truth in that language. So the Ord-iterated
truth predicate will make truth assertions in ordinal stages.
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Definition 18. An Ord-iterated truth predicate for first-order truth, with a class
parameter A, is a class Tr consisting of triples 〈â ,ϕ, Ea〉, where â is an ordinal, ϕ is a
formula in the first-order language of set theory augmented with a predicate for A
and also with a trinary predicate symbol T̂r to be used for (iterated) truth assertions,
and Ea is a valuation mapping the free variables of ϕ to corresponding parameters,
such that the following recursion is satisfied:

(a) Tr judges the truth of {=,∈, Â}-atomic statements correctly:

Tr(â ,x= y,〈a,b〉) if and only if a= b,

Tr(â ,x ∈ y,〈a,b〉) if and only if a ∈ b,

Tr(â ,x ∈ Â,a) if and only if a ∈ A.

(b) Tr judges atomic assertions of the truth predicate self-coherently:

Tr(â , T̂r(x,y,z),〈α,ϕ, Ea〉)

if and only if α < â and Tr(α,ϕ, Ea).

(c) Tr performs Boolean logic correctly:

Tr(â ,ϕ∧ø, Ea) if and only if Tr(â ,ϕ, Ea) and Tr(â ,ø, Ea),

Tr(â ,¬ϕ, Ea) if and only if ¬Tr(â ,ϕ, Ea).

(d) Tr performs quantifier logic correctly:

Tr(â ,∀xϕ, Ea) if and only if ∀b Tr(â ,ϕ,baEa).

Note the crucial clause (b), which insists that atomic truth assertions made at
stage â can refer only to earlier stages of truth, α < â . When the formula ϕ has
no free variables, then to improve readability we shall write Tr(â ,ϕ) in place of
Tr(â ,ϕ,〈〉), since in this case the valuation is empty.
When Tr(â ,ϕ, Ea), then we shall say that ϕ[Ea] is declared true by the predicate at

stage â . In this way, we can extract from the uniform truth predicate the sequence
of individual truth predicates Trâ(ϕ, Ea) for the truth assertions made at each stage
â . These predicates perform as one would want for the nonuniform manner of
iterated truth, where one makes truth assertions always only at a particular stage of
truth, with a separate predicate symbol for each stage. We should like to emphasize,
however, that the uniform truth predicate is stronger than this, because it allows
formulas to quantify over the stages of truth. For example, the uniform iterated
truth predicate allows one to express various liar-type sentences, which have an
interesting nature with respect to the iterated truth predicate.
Consider the following instance, a sentence ó whose truth value will systematically

and endlessly alternate between true and false at successive ordinal stages.
Specifically, the sentence ó expresses that there is no immediately preceding stage at
which ó is true. To formalize this in the language of the iterated truth predicate, let
⊤ be any tautologically valid sentence, such as ∀xx= x, and notice that in light of
requirement (b) above, the assertion T̂r(α,⊤) is judged true at stage â if and only if
α < â ; we can use this feature to quantify in effect over the ‘earlier’ stages of truth.
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By the Gödel–Carnap fixed-point theorem, which asserts of every formula ϕ(x) that
there is a sentence ó such that our theory proves ó↔ ϕ(ó), it follows that there is a
sentence ó for which:

ó←→¬∃α
[

Tr(α,ó)∧Tr(α,⊤)∧¬Tr(α+1,⊤)
]

,

and furthermore, this equivalence is valid at every stage of truth. Said plainly, ó
asserts that it isn’t the case that ó is true at a stage which is the largest ‘previous’
stage. At stage 0, there is no largest previous stage, and so indeed ó is true at stage 0.
Thus, it will become false at stage 1, and therefore true again at stage 2. Whenever ó
is true at stage â , then it will become false at stage â+1 and true again at stage â+2.
The sentence ó will be true at limit ordinal stages, since there is no largest previous
stage. So ó flips between true and false for the iterated truth predicate, being true at
every even ordinal stage and false at every odd ordinal stage, even though it is the
very same sentence being considered each time.
Similar constructions yield sentences ó that are true exactly at the stages in a class

A or exactly at certain other stages in away that is convenient. Such kind of sentences
are not generally possible in the weaker language having only truth predicates Trâ
for each stage of truth separately, without the possibility of quantifying over the
index â , since in that language a sentence ϕ would refer to only finitely many of
those predicates, and therefore the truth or falsity of the sentence would stabilize at
stages of truth beyond those explicitly mentioned in ϕ.

Theorem 19. For any class A, if there is a truth predicate for the infinitary language

LOrd,ù(∈,A), then there is an Ord-iterated truth predicate in the first-order language

Lù,ù(∈, T̂r,A).

This will establish implication (8)→ (10) in the main theorem.

Proof. Suppose that T(ø, Ea) is a (noniterated) truth predicate for the infinitary
language LOrd,ù(∈,A), where A is a fixed class parameter. Note that in light of
Lemma 24, we don’t actually need the parameters Ea, since every set is definable,
and so the entire semantic content of the truth predicate is actually contained in its
sentences. Nevertheless, we shall carry on with the parameters Ea.
Using the truth predicate T, we shall define another truth predicate, an Ord-

iterated truth predicate Tr(â ,ϕ, Ea) for first-order assertions ϕ in the language
Lù,ù(∈, T̂r,A). In order to do so, we first define a certain syntactic translation

(â ,ϕ) 7→ ϕ∗
â ,

where â is an ordinal and ϕ is a formula in the first-order language with an
iterated truth predicate Lù,ù(∈, T̂r,A). The resulting formula ϕ

∗
â is an assertion in

LOrd,ù(∈, A), without any truth predicate. This translation is defined by induction
on â and ϕ, as follows:

(a) Atomic formulas not mentioning the truth predicate are not changed by the
translation:
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(x ∈ y)∗â = (x ∈ y),

(x= y)∗â = (x= y),

(x ∈ Â)∗â = (x ∈ Â).

(b) T̂r(x,y,z)∗â is the assertion

∨

î<â ,ø∈Lù,ù(∈,T̂r,Â)

[

“x= î”∧“y= ø”∧∃Ea valuationø(z, Ea)∧ø
∗
î (Ea)

]

.

(c) (ϕ∧ø)∗â = ϕ
∗
â ∧ø

∗
â .

(d) (∀xϕ)∗â = ∀xϕ
∗
â .

The key translation occurs in step (b), replacing atomic instances of the truth
predicate with certain infinitary formulas. The formula valuationø(z, Ea) asserts that
z is a valuation mapping the variables that happen to be free in ø to the objects in
Ea. Basically, the stage â translation of the atomic truth assertion T̂r(x,y,z) is the
assertion that (i) x is some stage î less than â ; (ii) y is some formula ø; and (iii)
z is a valuation of the free variables of that formula to objects Ea for which ø∗

î (Ea)

holds. In particular, in statement (b) we used the expressions “x= î” and “y= ø”,
and by this we mean the formulas èî(x) and èø(y) provided by Lemma 24, which
as we mentioned does not involve using î or ø (or any code for ø) as a parameter.
We should also like to emphasize that we do not need ETROrd in order to make this
recursive definition of the translation, since it is an ordinary transfinite recursion of
length Ord on sets, not a class recursion.
We now define our proposed iterated truth predicate Tr(â ,ϕ, Ea) to hold if and

only if T(ϕ∗
â , Ea). We claim that this relation fulfills the requirements to be an iterated

truth predicate.
Because T is a truth predicate for assertions in LOrd,ù(∈,A), it follows easily that

our iterated truth predicate Tr works correctly on {∈,=, Â}-atomic formulas and
on Boolean combinations and quantifiers. The only difficult part is to verify that
we have judged the atomic truth assertions themselves in a self-coherent manner.
What we need to prove is that Tr(â , T̂r(x,y,z),〈α,ϕ, Ea〉) holds if and only if α < â
and Tr(α,ϕ, Ea).
To see this, notice that Tr(â , T̂r(x,y,z),〈α,ϕ, Ea〉) holds, by the definition of Tr,

just in case T(T̂r(x,y,z)∗â ,〈α,ϕ, Ea〉) holds, which is equivalent to

T

(

∨

î<â ,ø∈Lù,ù(∈,T̂r,Â)

(

“x= î”∧“y= ø”∧ø∗
î

)

, 〈α,ϕ, Ea〉

)

.

Since T is a truth predicate, we may unwrap the meaning of this disjunction to see
that this holds if and only if α < â and T(ϕ∗

α , Ea), since the disjuncts can be realized
only with α = î and ϕ = ø themselves. By the definition of Tr, this is equivalent to
Tr(α,ϕ, Ea). So we have verified that Tr is an iterated truth predicate for first-order
truth with the class parameter A, as desired. ⊣

One can extract from this argument a corresponding result for having merely a
κ-iterated truth predicate, given a truth predicate for theLκ,ù language of set theory.
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Theorem 20. For any class A, if there is a truth predicate for the infinitary language

Lκ,ù(∈, Â), where κ is any uncountable cardinal, then there is an κ-iterated truth

predicate in the first-order language Lù,ù(∈, T̂r, Â).

Proof. The point is that to define Tr(â ,ϕ, Ea) in the previous theorem, we took a
disjunction of sizeù ·â , whichwill still be less than κ for â<κ, if κ is an uncountable
cardinal. So exactly the same translation and definition of Tr works up to κ. ⊣

§10. Iterated truth predicates imply the elementary transfinite recursion principles.
In this section, we shall prove implication (10) → (12) in the main theorem, and
indeed, we shall prove (10) ⇐⇒ (12). To do so, we shall undertake a refinement of
the following theorem of Fujimoto [1] (see also Gitman and Hamkins [2]).

Theorem 21. The principle of elementary transfinite recursion ETR is equivalent

over GBC to the existence of iterated truth predicates along any well-founded class

relation.

The forward implication of this is straightforward, as the truth predicate itself
is defined as the solution to a certain recursion. The real content of the theorem
is the converse, that from any sufficiently iterated truth predicate one can extract
a solution of a given recursion. For the full ETR, one must consider recursions of
length exceeding Ord, as well as iterated truth predicates of length strictly longer
than Ord, for any well-founded class relation.
What we want to prove here is that the equivalence goes through when one

restricts the recursions and iterations to length Ord, or indeed, to length Γ for any
well-ordered infinite class Γ.

Theorem 22. For any class well-order Γ, with ùù ≤ Γ, the principle of elementary
transfinite recursion ETRΓ for recursions of length Γ is equivalent over GBC to the
existence of Γ-iterated truth predicates, allowing any class parameter in each case.

This will establish the equivalence (10)↔ (12) in the main theorem, if we consider
the case Γ = Ord. The expression ùù refers to the countable ordinal arising via
ordinal exponentiation of ù with itself.

Proof. We follow the proof of [2, Theorem 8]. Let us emphasize that both
statements in the theorem make their assertions universally for all class parameters.
The forward implication is basically straightforward, since the iterated truth

predicate itself is defined by a transfinite recursion of length ù ·Γ, by recursion
on formulas. Namely, if we have the predicate Tr ↾ α up to stage α ∈ Γ, then we can
define Tr at stage α by a length ù-recursion on formulas, by reference to the partial
solution Tr ↾ α. So the entire recursion has length ù ·Γ. Note that ETRΓ implies
ETRΓ+Γ, since one need only perform the recursion up to stage Γ, and then define a
new recursion for the rest of the way, using the partial solution as a new parameter.
And since ùù ≤ Γ, it follows that ù ·Γ< Γ+Γ (use that Γ =ùù ·Λ+α for some Λ
and some α<ùù , and observeù ·Γ=ù ·(ùù ·Λ+α) =ùù ·Λ+ù ·α =Γ+ù ·α<
Γ+Γ). Thus, we can get the Γ-iterated truth predicate from ETRΓ, as desired.
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Conversely, suppose that for a class parameter A, we have an iterated truth
predicate Tr of length Γ for first-order truth relative to the parameter A. Now
suppose that we have an instance of ETRΓ, iterating a formula ϕ(x,α,A,X), where
we seek a solution S up to Γ, a class S⊆Γ×V for which Sα = {x | ϕ(x,α,A,S ↾ α)}
for every α<Γ.We claim that using the truth predicate as a class parameter, we may
define such a solution S. To do this, we claim first that there is a formula ϕ such that
if one extracts from Tr the class defined by ϕ, namely, S = {〈α,x〉 | Tr(α,ϕ,x)},
then S is a solution to the recursion of ϕ along Γ. The formula ϕ should simply be
chosen so that 〈V ,∈,A,Tr ↾ α〉 |= ϕ(x,α) if and only if 〈V ,∈,A,S ↾ α〉 |= ϕ(x,α),
where S is defined as just mentioned using ϕ. Such a formula ϕ exists by
the Gödel–Carnap fixed-point lemma: for any e, let ø(e,x,α) be the assertion
〈V ,∈,A,{〈α,x〉 | Tr(α,e,x)}〉 |= ϕ(x,α), and then by the usual fixed-point trick
find a formula ϕ(x,α), for which 〈V ,∈,A,Tr ↾ α〉 |=ø(ϕ,x,α)↔ ϕ(x,α). It follows
that the class S iteratively defined from Tr by ϕ satisfies ϕ at each step and therefore
is a solution to the recursion of ϕ up to Γ, as desired. ⊣

An essentially similar idea works with infinitary formulas, provided that Ord ·Γ≤
Γ+Γ, which is to say that Γ is at least Ordù , with ordinal exponentiation.

Theorem 23. For any infinite class well-order Γ, of order type at least Ordù , the
principle ETRΓ

(

LOrd,Ord(∈,A)
)

of elementary transfinite recursion for recursions of

length Γ in the infinitary language with a class parameter A is equivalent over GBC to
the existence of Γ-iterated truth predicates for that language.

Proof. The forward implication is proved by observing that the iterated truth
predicate is precisely a solution of a recursion. The converse implication is proved
as in the previous theorem by defining a solution of the recursion by reference to
the iterated truth predicate. ⊣

§11. Class-join separation. In this section, we shall prove the implications (12)
→ (7) → (8) in the main theorem. To begin, we define the principle of ETROrd-
foundation to be the assertion that every instance of elementary transfinite recursion
of length Ord either has a solution, or else fails at some least stage α ≤ Ord. That
is, either there is a solution or there is α ≤ Ord such that for every â < α there is a
solution of the recursion of length â , but there is no solution of length α. Since the
partial solutions are unique when they exist, perhaps some readers expect that one
could simply combine those earlier solutions into one uniform solution; but such
an argument would appeal to a class-comprehension principle that is not provable
in GBC. (Consider the difficulty, for example, of combining the various Σn-truth
predicates into a uniform truth predicate, if the model is ù-standard and has only
definable classes.) Meanwhile, the principle of ETROrd-foundation is a consequence
of the principle of Π11-foundation, which asserts that every Π

1
1-definable class of

ordinals has a least element, and both of these principles are true in anywell-founded
model of GBC. That is, in transitive models, we get it for free.
Let us now define a separation-like principle that we call the class-join separation

principle. This is the assertion that for any class Φ of LOrd,ù(∈,A)-formulas in
finitely many free variables, where A is any class parameter, if every formula ϕ ∈Φ
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admits a truth predicate Tϕ , then {Ea | ∃ϕ ∈Φ Tϕ(ϕ, Ea)} exists as a class. (By a
truth predicate Tϕ , we mean a class that satisfies the conditions in Definition 8,
but only for subformulas of ϕ.) The idea is that this class is essentially what we
would want to mean by the class {Ea |

∨

ϕ∈Φϕ(Ea)}, defined by a class-sized join.
The principle asserts that such class-sized joins can be used to define classes, even
when one lacks a uniform truth predicate and only has truth predicates for each
formula ϕ individually. Indeed, if there is a uniform truth predicate application to
all ϕ ∈Φ, then the instance of the class-join separation principle would follow from
the ordinary separation axiomofGBC simply by using that predicate as a parameter.
The principle, instead, is about unifying a class-indexed collection of separate truth
predicates.
The dual principle, the class-meet separation principle, asserts of every Φ as above

that {Ea | ∀ϕ ∈Φ Tϕ(ϕ, Ea)} exists. In other words, the principle allows us to use
the class-sized conjuction

∧

ϕ∈Φϕ(Ex) to define a class, provided that we have truth
predicates for each individual ϕ ∈Φ.
It will be convenient to have the following folklore lemma, showing that every set

is definable by a suitable infinitary formula.

Lemma 24. For every set a, there is a formula èa(x) in the infinitary language
LOrd,ù(∈) that defines a. More specifically, there is a truth predicate for the class of
these formulas èa and their subformulas, and with respect to this truth predicate, èa(x)
is true only when x= a.

In particular, in any transitive model of set theory, èa defines a, meaning that
M |= èa[b] just in case b= a.

Proof. We define the formulas èa by the following ∈-recursion:

èa(x) = ∀z
[

z ∈ x↔
∨

u∈a

èu(z)
]

.

The formula asserts that the elements of x are precisely the objects satisfying the
definition of an element of a. In GBC we can define a truth predicate for the class
of èa(x) and their subformulas simply by extending the class {〈èa(x),a〉 | a ∈ V} in
the natural way to the subformulas of the èa, which are these, joins of these and the
formulas z ∈ x↔

∨

u∈a èu(z). Basically, since we know that we want èa(x) to define
x = a, we can use that to build the truth predicate. One can verify inductively that
this is indeed a truth predicate for these formulas. ⊣

Subsequently, we shall write simply “x = a” for the formula èa(x), with the
understanding that a is not appearing here as a parameter, but rather the hereditary
∈-structure of a appears essentially in the parse tree of the formula itself.

Theorem 25. The following are equivalent over GBC:

(i) The principle ETROrd.
(ii) For every class A, there is a truth predicate for LOrd,ù(∈,A).
(iii) The class-join separation principle plus ETROrd-foundation.
(iv) The class-meet separation principle plus ETROrd-foundation.
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Proof. (i)↔ (ii) This was established by the results of Sections 7 and 10.
(ii)→ (iii) The principle of ETROrd-foundation is an immediate consequence of

ETROrd. And oncewe have a uniformLOrd,ù(∈,A)-truth predicate T, any instance of
class-meet separation with predicateA reduces to an ordinary instance of separation
relative to the class predicate T.
(iii)↔ (iv) This follows easily from the de Morgan law.
(iv) → (ii) Assume the class-join separation principle plus ETROrd-foundation.

Consider the recursive definition of a truth predicate for LOrd,ù(∈,A). This is an
Ord-recursion, defined by recursion on the rank of the parse trees of the formulas.
If the recursion has a solution, then we have the desired truth predicate. If it does
not, then by ETROrd-foundation, the recursion fails at some least rank α ≤Ord. So
for every â < α, we have a uniform truth predicate Tâ for the class L

â consisting of
formulas whose parse tree has rank less than â , but there is no such uniform truth
predicate covering all formulas of rank less than α. Since we can easily extend a
truth predicate for formulas of rank â to rank â+1, it follows that α must be a limit
ordinal or Ord itself, and so the class of formulas of rank less than α is the union of
those of rank less than some â < α. Let Φ be the class of formulas in Lα with free
variable x. Using the class-join separation principle, we may define a predicate Tα
as follows:

Tα =

{

(y,z) |
∨

ø∈Φ

(

“y= ø”∧ø(z)
)

}

.

What we mean by the join is the assertion ∃ø ∈ ΦTø
(

“y = ø”∧ø(z)
)

, where
“y=ø” is the formula èø(y) of Lemma 24 and where Tø is a truth predicate for the
conjunction “y=ø”∧ø(z). Indeed we have such a truth predicate, because we can
simply combine the truth predicate of ø arising from the fact that it has rank less
than α with the truth predicates provided by Lemma 24.
Thus, we have included (ϕ,a) in Tα just in case ϕ is some formula ø of rank less

than α for which ø(z) is true. It is now easy to verify that this is indeed a uniform
truth predicate for all formulas of rank less than α, contrary to the assumption that
there was no such solution at stage α. ⊣

At bottom, the argument is that ETROrd-foundation tells you that if the recursion
fails, then it does so at a particular stage, and class-join separation allows you to
unify the earlier-stage truth predicates into a uniform predicate, showing that that
stage was not a failure after all. So the recursion must succeed.

§12. Clopen determinacy for games of rank at most Ord+1. We shall now prove
the implications (12)→ (11)→ (8), using arguments that amount to a refinement
of corresponding results of Gitman and Hamkins in [2].
A clopen class game is played on a well-founded class tree T ⊆ V<ù , whose

terminal nodes are labeled as a win for one or the other player. The game starts
at the root node, which we place at the top, so the play proceeds downward. The
players take turns, each subsequently selecting a child node of the current node
and then continuing in turn from this node. The game ends when a terminal node
is reached—by well-foundedness this must happen at some finite stage—and the
winner is determined by the label of that node.

https://doi.org/10.1017/jsl.2019.89 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.89


THE EXACT STRENGTH OF THE CLASS FORCING THEOREM 899

A well-founded class tree T admits a ranking function with a well-ordered class
relation Γ, if there is a labeling of the nodes of the tree with elements of that relation,
in such a way that every child node has lower rank than its parent. A tree has rank
at most Ord+1, therefore, if we can label the root of the tree with Ord and all other
nodes of the tree with ordinals, in such a way that these ordinals descend as one
moves down in the tree. A ranking is continuous, if it obeys the recursive property
that the rank of any node p is exactly the supremum of rank(q)+1 in Γ for every
child q of p. The principle ETRΓ implies that every tree with a Γ ranking function
has a continuous Γ ranking function, but it isn’t clear whether one can prove this
without an appeal to some fragment of ETR.
Meanwhile, we claim that the question of whether or not a well-founded class tree

T has rank at most Ord+1 is actually a first-order-expressible property of the tree,
and furthermore in GBC such trees always admit first-order-definable continuous
ranking functions, without requiring any appeal to a fragment of ETR. To see this,
notice that if we considerT∩Vè , which is a well-founded set-sized tree, then it has an
continuous ranking function, since ZFC proves that every well-founded set relation
has a continuous ranking function. As è increases, the rank of any fixed node in
T ∩Vè never decreases. If every nonroot node in T has the property that its ranks
in these approximation trees T ∩Vè eventually stabilize for large enough è, then in
fact those limit values form an acceptable continuous ranking of the whole tree T, if
we should place label Ord or a suitable ordinal on the root node. And conversely, if
we are able to rank the whole tree, then those ranks also serve as ranks in the trees
T ∩Vè . So a tree has rank at most Ord+1 if and only if every nonroot node has an
eventually stabilizing ordinal rank in T ∩Vè , which is a first-order property about
the tree. Since the assignment to the nodes of the corresponding limit rank value
is first-order definable, we thereby achieve a definable continuous ranking of such
trees, as we claimed.
The existence of rankings in a game tree is connected with the requirement in

some games that a particular player must count down in a well-order during play.
This counting-down feature in a game is often a convenient way to ensure that
the game is clopen, since the player cannot count down forever, and the outcome
of the game is known when the clock runs out. If a game tree has one player
counting down in Γ during play, then we can rank the tree with elements of
2 ·Γ+1, since we label the root node with 2 ·Γ, and then whenever the count-
down player has just announced α, we label that node with 2 ·α, and if it is the
other players turn, we label with 2 ·α+1. Thus, using the fact that 2 ·Ord = Ord,
a game where one of the players must count down in the ordinals has rank at
most Ord+1.

Definition 26. The principle of determinacy for clopen class games of rank at
most Γ, a class well-order, is the assertion that for every clopen class game with a
game tree of rank at most Γ, one of the players has a winning strategy.

We emphasize that we are referring here to the ordinal rank of the game tree,
which is not the same as the game values that would arise in the open determinacy
analysis of the game. For example, the game tree can have a very high rank, even
if the first player has a winning move on the first move, which would make the
game value very low. Meanwhile, the game value for a clopen game, when it exists
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(it is defined by a class recursion and in GBC there needn’t be a solution of that
recursion) is bounded by the rank of the tree.
A winning strategy for a player is a function on the game tree, which selects of

every parent node a child of it, in such a way that every play of the game that
conforms with those choices on that player’s moves, leads to a terminal node that is
a win for that player.

Theorem 27. The principle of elementary transfinite recursion ETROrd for Ord-

length recursions implies the principle of determinacy for clopen class games of rank

at most Ord+1. More generally, for any class well-order Γ, the principle ETRΓ for
recursions of length Γ implies determinacy for clopen class games of rank at most
Γ+1.

This will establish implication (12)→ (11) in the main theorem.

Proof. Using the back-propagation method, due originally to Zermelo in his
proof of the fundamental theorem of finite games, we shall label every node in the
game tree T as a win either for player I or for player II, and these designations
will provide a winning strategy for whoever gets their label on the root node, the
strategy being: stay on the nodes with your label. To begin, assume ETRΓ for a class
well-order Γ, and suppose T is a well-founded game tree T of rank at most Γ+1.
Thus, the root node in the tree gets rank Γ, but all other nodes will have a rank
below Γ. Using ETRΓ, we apply the back-propagation method to label the nodes of
the tree with player I or player II, by recursion on rank. The terminal nodes, with
rank 0, are already labeled for us. If all children of a node t are labeled, then if it is
player I’s turn to play and there is a child node labeled I, then we place label I on t,
and otherwise II; similarly, if it is player II’s turn to play, and there is a child node
labeled II, then we place label II on t, and otherwise I. By the principle ETRΓ, this
labels all the nonroot nodes of the tree. We may now place the corresponding label
on the root, labeled following the same back-propagation rule. From this labeling,
we can get a winning strategy: whoever has their label on the root node can always
stay on their own labels, and thereby win the game. ⊣

Next, we establish the implication (11)→ (8) in the main theorem.

Theorem 28. The principle of determinacy for clopen class games of rank at

most Ord+1 implies the existence of a truth predicate for LOrd,ù(∈,A) for any class
parameter A.

Proof. We follow the main ideas of Gitman and Hamkins [2, Theorem9], using
a natural infinitary analogue of the truth-telling game, where the interrogator counts
down in the ordinals. Specifically, consider the truth-telling game for assertions in
the logic LOrd,ù(∈,A). There are two players, the interrogator and the truth-teller.
At each move, the interrogator issues a challenge in the form of a set Φ of infinitary
formulas ϕ ∈ LOrd,ù(∈,A) and a valuation Ea of their free variables. The interrogator
must also state an ordinal α, which will strictly descend during play; we call this
the count-down clock. The truth-teller replies to the inquiry by stating of each
formula ϕ ∈ Φ whether it is true or false at Ea (not necessarily truthfully). If the
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truth-teller happens to declare an existential formula ∃xø(x) to be true, then she is
also obligated to provide awitness b and declare that (ø,baEa) is true. The truth-teller
loses, if she should ever explicitly violate the Tarskian recursion. The interrogator
loses if the clock runs out (which must happen eventually, in finitely many moves).
This game has rank at most Ord+1, because of the ordinal count-down clock.

Now, we simply argue as in [2] that if the truth-teller has a winning strategy, then the
truth assertions made by that strategy will be independent of the play, for all plays
in which there remains sufficient time on the clock. This can be proved by induction
on formulas. It is clearly true for atomic formulas. And if it is true for a formula,
it will be true for the negation, since any violation of this can be transformed into
a violation of the Tarski recursion. If it is true for a set of formulas, then it will be
true for the conjunction, just by taking the supremum of the stabilizing clock values
plus one. And the quantifier case is also easy to handle.
Thus, these plays provide a truth predicate for our infinitary language, as desired.
Finally, we need to argue that the interrogator can have no winning strategy. If

ó is any strategy for the interrogator, then find an ordinal è such that Vè is closed
under that strategy, and have the truth-teller play in accordance with truth in Vè .
This will never violate the Tarski recursion and therefore it will defeat ó.
So if clopen determinacy holds for this game, then there is a truth predicate for

LOrd,ù(∈,A) truth, as desired. ⊣

We would like to remark that Gitman and Hamkins have pointed out that
there is a flaw in their published proof of [2, Theorem 9] for the implication of
clopen determinacy to ETR. While that implication is indeed correct as they state,
nevertheless it does not suffice for the interrogator to count down merely in the
natural numbers, as they had initially claimed. Rather, the interrogator should
count down in the order ù ·Γ, where Γ is the length of the iteration, and one can
prove by induction in this case that the truth assertions made by the truth-teller
about the solution up to any stage α are invariant of the play, provided that the
count-down clock is at least ù · (Γ ↾ α). Gitman and Hamkins plan to release an
updated version of their paper addressing this matter.

§13. Separating the theorem from other second-order theories. In order to situate
the class forcing theorem more precisely in the hierarchy of theories between GBC
and KM, let us prove a few theorems that separate ETROrd from other similar
principles in the vicinity.

Theorem 29. The theory GBC+ ETROrd·ù is strictly stronger in consistency
strength than GBC+ETROrd.

Proof. Assume GBC+ETROrd·ù , and fix a class global well-order. By Theo-
rem 22, it follows that we may form an (Ord ·ù)-iterated truth predicate Tr for first-
order truth relative to the fixed global well-order (in the language with a predicate
for that order). Using this predicate, consider the GBC model having the same sets
as V, but having as classes only those classes that are definable from a proper initial
segment Tr ↾ (Ord · n) for some n < ù. This is a GBC model, and furthermore, it
satisfies ETROrd, because if a class A is definable from Tr ↾Ord ·n, then we have an
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Ord-iterated truth predicate definable from Tr ↾
(

Ord · (n+1)
)

. So by statement (10)
in the main theorem, we have ETROrd in this model. But this model cannot have its
own (Ord ·ù)-iterated truth predicate, because no such predicate is definable from a
proper initial segment of itself. Thus, this is a model of ETROrd without ETROrd·ù .
But furthermore, since the entire collection of classes of our constructed model is
coded by a single class in our original model, it follows that ETROrd·ù implies the
consistency of GBC+ETROrd, as desired. ⊣

Theorem30. The theoryGBC+ETROrd has a strictly stronger consistency strength
then the theory GBC+ETR<Ord, which asserts ETRα for every ordinal α, provided
this latter theory is consistent.

Proof. We may use a similar argument for this. Let Tr be an Ord-iterated
truth predicate for first-order truth, with a fixed class global well-order parameter.
Consider the GBC model arising from the sets in V together with any class that is
definable from a proper initial segment of the truth predicate Trα . This latter GBC
model satisfies GBC+ETR<Ord by Theorem 22, since one has an α-iterated truth
predicate with respect to any class that arises. ⊣

One may undertake similar arguments to separate many other levels of the ETRΓ
hierarchy. For example, ETRù is not provable in GBC, since one can use it to
construct a truth predicate for first-order truth. ButETRù does not establishETRù2 ,
since ETRù2 is enough to construct an ù-iterated truth predicate, and then one can
take the classes definable from a proper initial segment of it. This will be a GBC
model that satisfies ETRù , but not ETRù2 .

§14. Final remarks. We have now proved all the implications necessary to
establish the main theorem. Let us make a few final remarks on the topic of the
class forcing theorem.
First, we should like to call attention to the fact that only some of the implications

in the main theorem hold on a case-by-case basis for the various class forcing
notions P and class parameter A. For example, if P admits a forcing relation for
atomic formulas, then by Theorems 5 and 12 we get a scheme of forcing relations
for first-order assertions and also a uniform forcing relation for the quantifier-free
infinitary forcing language LOrd,0(∈,V

P, Γ̇0, ... , Γ̇m), but we do not generally get a
uniform forcing relation for the first-order language of set theory or for the stronger
infinitary languages. To see this, consider a very nice forcing notion, such as the
Easton forcing to control the GCH pattern or even trivial forcing, in a model of
GBC having only its definable classes. There is a definable forcing relation for atomic
formulas in this model, but there can be no uniform forcing relation for first-order
assertions, since from such a relation we could define a truth predicate for the
ground model, which is impossible as the model has only definable classes. To get
the uniform forcing relation for a class P, what one needs is an instance of ETROrd
relative to the forcing relation as a class parameter. In order to complete the cycle of
implications in themain theorem, therefore, one applies the statements with stronger
and more robust class parameters.
Second, an observant reader might have noticed that we established the

equivalences of themain theoremmainly by appealing to an instance of class forcing,
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the forcing FA, which probably one would rarely want to perform, since this forcing
is highly destructive, collapsing the entire universe to become countable, and not just
making all sets countable, but rather making V itself countable. Perhaps the reader
may wonder if the strength of the class forcing theorem is ETROrd simply because
one is including these strange notions of forcing, and that with a more well-behaved
collection of class forcing, the principle might be weaker.
In a sense, the objection is correct. To see this, consider the pretame class forcing

notions, a prominent collection of well-behaved class forcing notions (see [7]).When
forcing over the countable transitive models of GB, it turns out that pretameness is
equivalent to the preservation of the axioms of GB–, that is, GB without the power
set axiom. Furthermore, Maurice Stanley has proved that the class forcing theorem
holds outright for all pretame class forcing (see [7] for the case of forcing over a
countable transitive model of set theory; the argument works generally in GBC and
in fact already inGB–). The class forcing theorem for pretame forcing, consequently,
has no extra consistency strength beyond the base theory.
Meanwhile, if one attempts to move beyond pretame class forcing, then we claim

that one is immediately again in the realm of the analysis of this article, with highly
destructive forcing notions such as FA. The reason is that [7, Lemmas 2.6 and 2.7]
shows that if a class forcing notion P is not pretame, then there is some cardinal ä
and a class P-name Ḟ forced to be a surjection from ä toV. In other words, any class
forcing notion that is not pretame necessarily collapses the entire universe V to a
cardinal. Furthermore, making use of the class P-name Ḟ , an easy reworking of the
arguments of Section 8 shows that for every proper classA, the forcing P is dense in a
notion of class forcingQA that can be used in place of the forcing FA in the argument
of Theorem 17. So if we consider any natural collection of class forcing notions that
goes strictly beyond pretame forcing and which includes a forcing notion whenever
it includes a dense subclass of that forcing, then the class forcing theorem for this
collection will already be as strong as the class forcing theorem for the collection of
all class forcing notions.
Let us provide a rough sketch of the reworking idea we mentioned. Suppose that

P is a nonpretame notion of class forcing and that Ḟ is a P-name for a surjection
from a cardinal ä to Ord. Given a proper class A, we construct the forcing QA from
P in the same manner that we had constructed FA from Coll(ù,V) in Section 8.
Namely, we add the conditions en,m as before, as upper bounds for the conditions
forcing Ḟ(ň) ∈ Ḟ(m̌), but we do this now for all n,m < ä, and we similarly add the
conditions an for n < ä as upper bounds for the conditions forcing Ḟ(ň) ∈ A. In
addition, we add a condition (n 7→ a), for every set a and n < ä, which will be the
supremum of all conditions forcing that ň is the least ordinal with Ḟ(ň) = ǎ. Since
Ḟ is only a surjection and not necessarily a bijection, we define ṅa so that it is the
name of the least ordinal n< ä that will get mapped to a. Under this setup, we may
carry out the analogue of the proof of Theorem 17, replacing FA by QA and ù by ä,
respectively. One minor change consists of isolating a least, rather than an arbitrary,
ordinal n < ä for which q forces ¬ϕ∗(ň, ṅa) in the quantifier case in the proof of
Lemma 17.1; this ensures that we can choose q and find some set b so that q forces
ň= ṅb, as in the corresponding step in the proof of Lemma 17.1.
In summary, the class forcing theorem for pretame forcing is provable in GBC,

but for any sufficiently robust collection of class forcing notions going beyond the

https://doi.org/10.1017/jsl.2019.89 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.89


904 VICTORIA GITMAN ET AL.

pretame forcing, the class forcing theorem will have the full strength of ETROrd and
all the other statements of the main theorem.
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