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Abstract

We study the Feynman integral for the three-banana graph defined as the scalar two-

point self-energy at three-loop order. The Feynman integral is evaluated for all identical

internal masses in two space-time dimensions. Two calculations are given for the

Feynman integral: one based on an interpretation of the integral as an inhomogeneous

solution of a classical Picard–Fuchs differential equation, and the other using arithmetic

algebraic geometry, motivic cohomology, and Eisenstein series. Both methods use the

rather special fact that the Feynman integral is a family of regulator periods associated

to a family of K3 surfaces. We show that the integral is given by a sum of elliptic

trilogarithms evaluated at sixth roots of unity. This elliptic trilogarithm value is related

to the regulator of a class in the motivic cohomology of the K3 family. We prove a

conjecture by David Broadhurst which states that at a special kinematical point the

Feynman integral is given by a critical value of the Hasse–Weil L-function of the K3

surface. This result is shown to be a particular case of Deligne’s conjectures relating

values of L-functions inside the critical strip to periods.
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1. Introduction

The computation of scattering amplitudes in quantum field theory requires the evaluation of
Feynman integrals. This is a non-trivial task for which many techniques have been developed by
physicists over the years (cf. the reviews [BDK96, Bri11, EKMZ12, EH13]). Feynman integrals
are multivalued functions of the physical parameters given by the external momenta and internal
masses. Differentiating with respect to the physical parameters leads to a first order system of
differential equations, as in, e.g. [Hen13, CH14], or to higher order differential equations, as in,
e.g. [LR05, MWZ12, MWZ14, Van14, ABW13, ABW14].

The Feynman integral associated to a graph Γ with n edges (propagators) is an integral over
the positive simplex ∆n := {[x1 : · · · : xn] ∈ Pn−1(R)|xi > 0} in projective (n − 1)-space of a
meromorphic differential (n− 1)-form:

IΓ =

∫
∆n

ΩΓ. (1.1)

The form ΩΓ depends on the physical parameters, that is, the external momenta and
internal masses attached to the graph, and is expressed in terms of the first and second
Symanzik polynomial [IZ80]. The variables xi are the Schwinger proper times indexed by edges
(propagators).

For the algebro-geometric approach of [BEK06], the Feynman integral IΓ is a period of
the mixed Hodge structure on the relative cohomology group Hn−1(Pn−1\XΓ, B\(B ∩ XΓ)),
where XΓ is the graph hypersurface defined by the poles of ΩΓ and B is a blow-up of the
simplex ∆n. Varying the physical parameters leads to a variation of the Hodge structure. As
a result, the Feynman integral satisfies a set of first order differential equations under the
action of the the Gauss–Manin connection [Gri69], leading to an inhomogeneous Picard–Fuchs
equation. The inhomogeneous term has its origin in the extension of the mixed Hodge structure
associated with Feynman graphs. The dependence on external momenta means that we have a
family of extensions, also known as a normal function, from the work of Poincaré [Poi10] and
Griffiths [Gri79].

This point of view enables us to bring to bear a number of techniques including Picard–
Fuchs differential equations, motivic cohomology and regulators, Eisenstein series, and Hodge
structures, for the analysis of the properties of Feynman integrals.
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The main topic of this paper is the evaluation of the Feynman integral for the three-banana
graph

IQ(t) :=

∫
x1,x2,x3>0

1

(1 +
∑3

i=1 xi)(1 +
∑3

i=1 x
−1
i )− t

3∏
i=1

dxi
xi
. (1.2)

The associated graph hypersurface XQ(t) := {(1 +
∑3

i=1 xi)(1 +
∑3

i=1 x
−1
i ) − t = 0} leads to

a family of K3 surfaces with (generic) Picard number 19, over the modular curve P1\{0, 4,
16,∞} ∼= Y1(6)+3. It is closely related to the family of elliptic curves over Y1(6), which was
studied in [BV15] in connection with the Feynman integral arising from the sunset (two-loop
banana) graph.

We prove in Theorems 2.3.2 and 5.3.1 that the Feynman integral evaluates to the product of
a period $1(τ) of the K3 surface and an Eichler integral of an Eisenstein series. Explicitly, we
have

IQ(t) = $1(τ)

(∑
n>1

ψ(n)

n3

qn

1− qn
− 4(log q)3 + 16ζ(3)

)
, (1.3)

where q = exp(2πiτ), ψ(n) is a mod-6 character given in (2.3.24) and t is related to τ by the
Hauptmodul (2.3.11) for Γ1(6)+3.

Remarkably, the Eichler integral factor can be expressed as a combination of the Beilinson–
Levin elliptic trilogarithms [BL94, Lev97, Zag90]

IQ(t) = $1(τ)(40π2 log q + 24Li3(τ, ζ6) + 21Li3(τ, ζ2
6 ) + 8Li3(τ, ζ3

6 ) + 7Li3(τ, 1)) (1.4)

where ζ6 := exp(iπ/3) is the same sixth root of unity that enters the expression of the sunset
integral studied in [BV15].

It turns out that the three-banana integral is associated to a generalized normal function
arising from a family of ‘higher’ algebraic cycles or motivic cohomology classes [KL07, DK11].
The passage from classical normal functions associated with families of cycles to normal
functions associated with motivic classes suggests interesting new links between mathematics
and physics [KL07, DK11]. Actually, motivic normal functions can, in many cases, be associated
with multiple-valued holomorphic functions which arise as amplitudes as in this work or in the
context of open mirror symmetry as in [MW09] for instance.

The plan of the paper is as follows. In § 2 we derive the inhomogeneous Picard–Fuchs equation
satisfied by the three-banana integral. The solution of the differential equation in terms of the
elliptic trilogarithm is given in Theorem 2.3.2. In § 3 we give a construction of the family of K3
surfaces associated with the three-banana graph.

In § 4 we show that the three-banana integral IQ(t) is a higher normal function, originating
from a family of elements in K3(K3′s) (a charming sort of mathematical eponym). Specifically,
we show that the Milnor symbols {−x1,−x2,−x3} ∈ KM

3 (C(XQ(t))) extend to classes Ξt ∈
H3
M (XQ(t),Q(3)). We construct a family of closed 2-currents R̃t representing the Abel–Jacobi

classes AJ (Ξt) ∈ H2(XQ(t),C/Q(3)), and a family of holomorphic forms ω̃t ∈ Ω2(XQ(t)) such
that

IQ(t) =

∫
XQ(t)

R̃t ∧ ω̃t

(Theorem 4.3.2). This has immediate consequences, including a conceptual proof of the
inhomogeneous Picard–Fuchs equation for IQ(t) (Corollary 4.3.3).
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m1

K K
m2

m3

m4

Figure 2.1.1. The three-loop three-banana Feynman graph. K is the external momentum in
R2 and mi > 0 with i = 1, . . . , 4 are internal masses.

In § 5 we pull the higher cycle Ξt back from the family of K3 surfaces to a modular Kuga
3-fold, where we are able to recognize it as an Eisenstein symbol in the sense of Beilinson.
Applying a general computation (Theorem 5.1.1) of higher normal functions associated with
Beilinson’s cycles gives a ‘motivic’ proof (Theorem 5.3.1) that the three-banana integral IQ(t)
takes the form claimed in (1.3)–(1.4). In § 6 we give the abstract Hodge-theoretic formulation of
the Feynman integral in our case.

Finally, in § 2.4 and Theorem 7.2.1 we show that the integral at t = 0 takes the value
IQ(0) = 7ζ(3) recovering at result of [BBBG08, Bro11, Bro13]. And in §§ 2.5 and 7.1.1 we
evaluate the three-banana at the special value t = 1. (The results in § 7 again make crucial use
of Theorem 4.3.2.) We show the regulator to be trivial, which means that the Feynman integral
is actually a classical rational period of the K3 up to a factor of 12πi/

√
−15. A conjecture of

Deligne then relates the Feynman integral to the critical value of the Hasse–Weil L-function of
the K3 at s = 2. This proves a result first obtained numerically by Broadhurst in [Bro11, Bro13]
up to a rational coefficient.

2. The three-banana Feynman integral

2.1 The integral
We look at the three-loop banana graph in two space-time dimensions associated with the
Feynman graph in Figure 2.1.1:

IQ(m1,m2,m3,m4;K) :=

∫
R8

δ(
∑4

i=1 `i +K)
∏4
i=1 d

2`i∏4
i=1(`2i +m2

i )
. (2.1.1)

Setting t = K2, this integral can be equivalently represented as (see, for instance, [Van14, § 8])

IQ(mi; t) =

∫
xi>0

1

(m2
4 +

∑3
i=1m

2
ixi)(1 +

∑3
i=1 x

−1
i )− t

3∏
i=1

dxi
xi
. (2.1.2)

Theorem 2.1.1. The integral IQ(mi; t) defined in (2.1.2) has the following integral represent-

ation for t < (
∑4

i=1mi)
2:

IQ(mi; t) = 23

∫ ∞
0

xI0(
√
tx)

4∏
i=1

K0(mix) dx. (2.1.3)

The Bessel functions K0, I0 are defined by

K0(2
√
ab) :=

1

2

∫ ∞
0

e−ax−b/x
dx

x
for a, b > 0 (2.1.4)
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and

I0(x) :=
∑
k>0

(
x

2

)2k 1

Γ(k + 1)2
. (2.1.5)

For the all equal mass case this Bessel representation has already been given in [BBBG08,

Bro13].

Proof. For t < (
∑4

i=1mi)
3 we can perform the series expansion

IQ(mi; t) =
∑
k>0

tkIk (2.1.6)

with

Ik :=

∫
xi>0

1

(m2
4 +

∑3
i=1m

2
ixi)

k+1(1 +
∑3

i=1 x
−1
i )k+1

3∏
i=1

dxi
xi
. (2.1.7)

Exponentiating the denominators using
∫∞

0 dxxk exp(−ax) = Γ(k + 1)/ak+1 for a > 0 we have

Ik =
1

Γ(k + 1)2

∫
xi>0

∫
u,v>0

e−u(1+
∑3
i=1 x

−1
i )−v(m2

4+
∑3
i=1m

2
i xi)

du dv

(uv)−k

3∏
i=1

dxi
xi
. (2.1.8)

Using the definition in (2.1.4), the integral over each xi leads to a K0(x) Bessel function, and
therefore

Ik =
23

Γ(k + 1)2

∫
u,v>0

e−u−vm
2
4

3∏
i=1

K0(2
√
uvmi)

du dv

(uv)−k
. (2.1.9)

Changing variables (u, v)→ (x = 2
√
uv, v),

Ik =
24

Γ(k + 1)2

∫
v,x>0

e−x
2/4v−vm2

4

3∏
i=1

K0(2
√
uvmi)

(
x

2

)2k+2 dx dv

xv

=
25

Γ(k + 1)2

∫ +∞

0

4∏
i=1

K0(mix)

(
x

2

)2k+2 dx

x
. (2.1.10)

Now we can perform the summation over k using the series expansion of the Bessel function

I0(
√
tx) given in (2.1.5) to conclude the proof. 2

For the all equal masses case m1 = m2 = m3 = m4 = 1 we have

IQ(t) :=

∫
xi>0

1

(1 +
∑3

i=1 xi)(1 +
∑3

i=1 x
−1
i )− t

3∏
i=1

dxi
xi

= 23

∫ ∞
0

xI0(
√
tx)K0(x)4 dx. (2.1.11)
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2.2 The Picard–Fuchs equation
In this section we show that the three-loop banana integral IQ(t) satisfies an inhomogeneous
Picard–Fuchs equation given in [MWZ14, Van14], following the derivation given in [Van14] for
the equal masses banana graphs at all loop orders.

Theorem 2.2.1. The three-loop banana integral

IQ(t) =

∫
xi>0

1

(1 +
∑3

i=1 xi)(1 +
∑3

i=1 x
−1
i )− t

3∏
i=1

dxi
xi

(2.2.1)

satisfies the inhomogeneous Picard–Fuchs equation L3
t IQ(t) = −24 with the Picard–Fuchs

operator L3
t given by

L3
t := t2(t− 4)(t− 16)

d3

dt3
+ 6t(t2 − 15t+ 32)

d2

dt2
+ (7t2 − 68t+ 64)

d

dt
+ t− 4. (2.2.2)

This Picard–Fuchs operator already appeared in the work by Verrill in [Ver96, MWZ12]. We
will comment on the relation to this work in § 3.2.

Proof. We consider the Bessel integral representation of the previous section,

IQ(t) =
∑
k>0

tkIk, (2.2.3)

where Ik is given by (2.1.10) with m1 = m2 = m3 = m4 = 1:

Ik =
24

Γ(k + 1)2

∫ +∞

0

(
x

2

)2k+1

K0(x)4 dx. (2.2.4)

Then the action of the Picard–Fuchs operators on this series expansion gives

L3
t IQ(t) =

∑
k>0

(
tαk + βk +

γk
t

)
tkIk (2.2.5)

and therefore

L3
t IQ(t) =

γ0I0

t
+ γ1I1 + β0I0 +

∑
k>1

(αkIk + βk+1Ik+1 + γk+2Ik+2)tk. (2.2.6)

Using the result of the Lemma 2.2.2 below, we have L3
t IQ(t) = γ1I1 + β0I0. Evaluating the

integrals gives that γ1I1 + β0I0 = −24, which proves the theorem. 2

Lemma 2.2.2. The Bessel moment integrals

Ik =
24

Γ(k + 1)2

∫ +∞

0

(
x

2

)2k+1

K0(x)4 dx (2.2.7)

satisfy the recursion relation

αkIk + βk+1Ik+1 + γk+2Ik+2 = 0, k > 0 (2.2.8)

with, for k > 0,

αk := (k + 1)3

βk :=−2(2k + 1)(5k2 + 5k + 2) (2.2.9)

γk := 64k3.
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Proof. The proof has been given in [BS08, Example 6] (see [Ouv05] for related considerations).
Following this reference we introduce the Bessel moment integrals c4,2k+1 = 22k−3Γ(k + 1)2Ik.
One notices that K0(x)4 satisfies the differential equation L5K0(x)4 = 0 where

L5 :=

(
x
d

dx

)5

− 20x2

(
x
d

dx

)3

− 60x2

(
x
d

dx

)2

+ 8x2(8x2 − 9)

(
x
d

dx

)
+ 32x2(4x2 − 1).

(2.2.10)

And finally, one notices the identities∫ +∞

0
xk+j

(
x
d

dx

)m
(K0(x)4) dx = (−1− k − j)mc4,k+j . (2.2.11)

Therefore, integrating term by term, the expression∫ +∞

0
t2k+1L5K0(x)4 dx = 0 (2.2.12)

leads to the recursion (2.2.8). 2

2.3 Solution of the inhomogeneous Picard–Fuchs equation
We need an intermediate result expressing the solution of the third order differential equation
using the Wronskian method. Recall the Wronskian of a linear differential equation

fn(x)y(x)(n) + · · ·+ f1(x)y′ + f0(x)y = 0 (2.3.1)

is the determinant W (x) := det(y
(i)
j ), where y1, . . . , yn are independent solutions. Viewing (2.3.1)

as a system of n first order equations, the Wronskian is the solution of the first order equation
given by the determinant of the system. This yields the formula

W (t) = exp

(
−
∫ t

fn−1(x)/fn(x) dx

)
. (2.3.2)

Consider the inhomogeneous differential equation

f3(x)y′′′(x) + f2(x)y′′(x) + f1(x)y′(x) + f0(x)y(x) = S(x). (2.3.3)

Let yi(x) with i = 1, 2, 3 be three independent solutions of the homogeneous equation. Let

W (t) =

∣∣∣∣∣∣
y1(t) y2(t) y3(t)
y′1(t) y′2(t) y′3(t)

y′′1(t) y′′2(t) y′′3(t)

∣∣∣∣∣∣ (2.3.4)

be the Wronskian of these solutions, and introduce the modified Wronskian

W̃ (t, x) =

∣∣∣∣∣∣
y1(x) y2(x) y3(x)
y′1(x) y′2(x) y′3(x)
y1(t) y2(t) y3(t)

∣∣∣∣∣∣ . (2.3.5)

We have the following identities:

W̃ (t, t) = 0,
∂W̃ (t, x)

∂t

∣∣∣∣
x=t

= 0,
∂2W̃ (t, x)

∂t2

∣∣∣∣
x=t

= W (t) (2.3.6)

3∑
i=0

fi(t)
∂i

∂ti
W̃ (t, x) = 0. (2.3.7)
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A simple computation now yields the general solution for the inhomogeneous equation (2.3.3):

y(t) =
3∑
i=1

αiyi(t) +

∫ t

0
W̃ (t, x)

S(x) dx

W (x)f3(x)
. (2.3.8)

For the three-banana graph, the Picard–Fuchs operator in (2.2.2) has f3(x) = x2(x−4)(x−16)
and f2(x) = 6x(x2 − 15x+ 32) = 3

2df3(x)/dx, and therefore the Wronskian is given by

W (t) = exp

(
−
∫ t f2(x)

f3(x)
dx

)
=

W0

(t2(t− 4)(t− 16))3/2
. (2.3.9)

The arbitrary normalization W0 of the Wronskian is determined in (2.3.18). We now use the
fact shown in [Ver96, Theorem 3], and reviewed in § 3.2, that the Picard–Fuchs operator is a
symmetric square of the sunset Picard–Fuchs operator. For t ∈ P1\{0, 4, 16,∞}, the solutions of
the homogeneous equations are given by

(y1(t), y2(t), y3(t)) = $1(τ)(1, 2πiτ, (2πiτ)2). (2.3.10)

In this expression, $1(τ) is a period and τ is the period ratio. The parameter t is the Hauptmodul
given by [Ver96]

t(τ) = HQ([τ ]) = −
(
η(τ)η(3τ)

η(2τ)η(6τ)

)6

. (2.3.11)

We recall that the Dedekind eta function η(τ) is defined by

η(τ) = exp(πiτ/12)
∞∏
n=1

(1− exp(2πinτ)). (2.3.12)

The special values of the Hauptmodul t = {0, 4, 16,+∞} are obtained for the values of τ = {0,
(−3 + i

√
3)/12, (3 + i

√
3)/6,+i∞}. The nature of the fibers for these values of the Hauptmodul

are discussed in § 3.2. The value t = 4 is the pseudo-threshold of the Feynman integral and the
value t = 16 is the normal threshold of the Feynman integral.

In the neighborhood |t| > 16 of t =∞ the holomorphic period is given by

$1(τ) =
1

(2πi)3

∫
|x1|=|x2|=|x3|=1

1

(1 +
∑3

i=1 xi)(1 +
∑3

i=1 x
−1
i )− t

3∏
i=1

dxi
xi

=−
∑
n>0

t−n−1 1

(2πi)3

∫
|x1|=|x2|=|x3|=1

(
1 +

3∑
i=1

xi

)n(
1 +

3∑
i=1

x−1
i

)n 3∏
i=1

dxi
xi

=−
∑
n>0

t−n−1
∑

p+q+r+s=n

(
n!

p!q!r!s!

)2

. (2.3.13)

Using the above expression for the Hauptmodul t, the period is expressed as

$1(τ) :=
(η(2τ)η(6τ))4

(η(τ)η(3τ))2
. (2.3.14)

Expanding the modified Wronskian

W̃ (t, x) = y1(t)W23(x)− y2(t)W13(x) + y3(t)W12(x)

=$1(W23(x)− τ(t)W13(x) + τ(t)2W12(x)) (2.3.15)
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and then evaluating yields

W12(t) = 2πi$2
1

dτ

dt
, W13(t) = (2πi)2$2

12τ
dτ

dt
, W23(t) = (2πi)3$2

1τ
2dτ

dt
. (2.3.16)

Thus

W̃ (t, x) = (2πi)3$1(τ)$1(x)2(τ(x)− τ(t))2 dτ

dx
. (2.3.17)

The condition

∂2
t W̃ (t, x)|x=t = W (t) (2.3.18)

determines the normalization W0 = 2 of the Wronskian.
Therefore the three-loop banana integral is given by

IQ(t) = Iperiod − 12(2πi)3$1(t)

∫ t

0
(τ(x)− τ(t))2(x2(x− 4)(x− 16))1/2dτ(x)

dx
dx

(2.3.19)

where Iperiod is a homogeneous solution belonging to $1(τ)(C + τC + τ2C).

Lemma 2.3.1. Using the expressions for the Hauptmodul t and the period $1, the function
σ(τ) := −24$1(τ)2(t(τ)2(t(τ)− 4)(t(τ)− 16))1/2 has the representation

σ(τ) = 1
5(−E4(τ) + 16E4(2τ) + 9E4(3τ)− 144E4(6τ)) (2.3.20)

where E4(τ) is the Eisenstein series

E4(τ) =
1

2ζ(4)

∑
(m,n)6=(0,0)

1

(mτ + n)4
= 1 + 240

∑
n>1

n3 qn

1− qn
. (2.3.21)

With q := exp(2πiτ), the coefficients σn of the q-expansion

σ(τ) =
∑
n>0

σnq
n (2.3.22)

are given by σ0 = −24 and

σn = n3
∑
m|n

1

m3
ψ(m) (2.3.23)

where ψ(n+ 6) = ψ(n) is an even mod 6 character taking the values

ψ(1) = −48, ψ(2) = 720, ψ(3) = 384,

ψ(4) = 720, ψ(5) = −48, ψ(6) = −5760. (2.3.24)

Proof. The expression in (2.3.20) is obtained by performing a q-expansion and verifying that the
coefficients are the same to very high order in the q-expansion using [Ste14].

The expression for the Fourier coefficients in (2.3.23) is easily obtained by using

E4(τ) = 1 + 240
∑
n>1

σ3(n)qn, (2.3.25)

where σ3(n) =
∑

m|nm
3 is the divisor sum, and a reorganization of the q-expansion mod 6. 2
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Recall the polylogarithm functions Lir(z) :=
∑∞

n=1 z
n/nr.

Theorem 2.3.2. The integral IQ(t) in (2.1.11), with t given in (2.3.11), is given by the following
function of q,

IQ(t(τ)) = $1(τ)

(
16ζ(3) +

∑
n>1

ψ(n)

n3

qn

1− qn
− 4(log q)3

)
, (2.3.26)

with$1(τ) the period in (2.3.14) and ψ the even mod 6 character with the values given in (2.3.24).
This integral can be expressed as a linear combination of the elliptic trilogarithms introduced
by Beilinson and Levin [BL94, Lev97, Zag90],

IQ(t(τ)) = $1(τ)(40π2 log q − 48HQ(τ)), (2.3.27)

where

HQ(τ) := 24Li3(τ, ζ6) + 21Li3(τ, ζ2
6 ) + 8Li3(τ, ζ3

6 ) + 7Li3(τ, 1) (2.3.28)

with Li3(τ, z) defined by

Li3(τ, z) := Li3(z) +
∑
n>1

(Li3(qnz) + Li3(qnz−1))

−
(
− 1

12
(log z)3 +

1

24
log q(log z)2 − 1

720
(log q)3

)
. (2.3.29)

Proof. In order to prove the theorem we just evaluate the integral in (2.3.19). We perform the
change of variables 2πiτ(t) = log q and 2πiτ(x) = log q̂ to get

IQ(t) = Iperiod +
1

2
$1(t)

∫ q

1

(
log

q̂

q

)2

σ(q̂) d log q̂. (2.3.30)

(Here we used that t = 0 for τ = 0 and that Iperiod is a solution of the homogeneous Picard–Fuchs
equation in$1(τ)(C+τC+τ2C).) The form of the homogeneous solution is determined in (2.3.43).

Using the q-expansion for σ(τ) and the integrals∫ q

1

(
log

q̂

q

)2

q̂n d log q̂ =
2(qn − 1)− 2n log q − n2(log q)2

n3∫ q

1
log

(
q̂

q

)2

d log q̂ =
(log q)3

3
, (2.3.31)

summing all the terms we find that

IQ(t(τ)) = Iperiod +$1(τ)

(
σ0

6
(log q)3 +

∑
n>1

σn
n3

(
qn − 1

2
(1 + log(qn))2

))
. (2.3.32)

This leads to

IQ(t(τ)) = Iperiod +
σ0

6
$1(τ)(log q)3 +$1(t)

∑
n>1

σn
n3
qn. (2.3.33)

We remark that the coefficients σn in (2.3.23) can be expressed in terms of the sixth root of
unity ζ6 = exp(iπ/3),

σn = −48n3

( 6∑
r=1

cr
∑
m|n

1

m3
ζrm6

)
n > 1 (2.3.34)
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with cr = {24, 21, 16, 21, 24, 14}. This allows us to express the q-expansion as

σ0

6
(log q)3 +

∑
n>1

σn
n3
qn = −48HQ(τ) + 40π2 log q − 16ζ(3), (2.3.35)

where

HQ(τ) := 24Li3(τ, ζ6) + 21Li3(τ, ζ2
6 ) + 8Li3(τ, ζ3

6 ) + 7Li3(τ, 1) (2.3.36)

is given in terms of the elliptic trilogarithms Li3(τ, z) of Beilinson and Levin [BL94, Lev97]
defined by

Li3(τ, z) := Li3(z) +
∑
n>1

(Li3(qnz) + Li3(qnz−1))

−
(
− 1

12
(log z)3 +

1

24
log q(log z)2 − 1

720
(log q)3

)
. (2.3.37)

Therefore the three-loop banana integral is a sum of elliptic trilogarithms modulo periods
solutions of the homogeneous Picard–Fuchs equation

IQ(t(τ)) = $1(τ)(α1 + α2τ + α3τ
2)− 48HQ(τ) (2.3.38)

where we have expressed the homogeneous solution Iperiod as $1(τ)(α1 + α2τ + α3τ
2) with α1,

α2 and α3 arbitrary complex numbers.
Using the relation (2.3.35) and that∑

n>1

σn
n3
qn =

∑
n>1

ψ(n)

n3

qn

1− qn
(2.3.39)

with ψ(n) given in (2.3.24), one can rewrite the expression in (2.3.38) as

IQ(t(τ)) = $1(τ)

(
α1 + (α2 − 40π2)τ + α3τ

2 +
∑
n>1

ψ(n)

n3

qn

1− qn
− 4(log q)3 + 16ζ(3)

)
.

(2.3.40)

Using Lemmas 2.4.1 and 2.4.2 we can evaluate the integral at t = 0, corresponding to τ = 0:

IQ(0) = lim
τ→0

$1(τ)(α1 + (α2 − 40π2)τ + α3τ
2 + 336ζ(3)). (2.3.41)

Since limτ→0$1(τ) ∼ (48τ2)−1, we have that

IQ(0) = 7ζ(3) +
α3

48
+

1

48
lim
τ→0

τ−2(α1 + (α2 − 40π2)τ). (2.3.42)

Because the integral is finite at t = 0 with the value IQ(0) = 7ζ(3) as shown in [BBBG08, Bro11,
Bro13], we deduce that

α1 = α3 = 0, α2 = 40π2. (2.3.43)

This proves the theorem. 2

Remark 2.3.3. Using [Ste14] we have numerically evaluated the integral and the elliptic
trilogarithms at the particular values given in Table 1 in order to check the validity of the
representation in (2.3.27) for the three-loop banana integral.

The Feynman integral is regular for t < 16. It will be noted that in Table 1 we give no
example with t > 4. We are confident that an analytic continuation of our result applies for
4 < t < 16 but do not attempt to compute any such value here.
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Table 1. Numerical evaluations of the Hauptmodul t(τ), the three-loop banana integral IQ(t),
the elliptic trilogarithm sum −48HQ(τ), and the period $1(τ).

τ
−3 + i

√
3

12
t(τ) 4

IQ(t) 9.109181165853514

−48HQ(τ) 347.868145888636 + 637.725764198092i

$1(τ) −0.224110197194− 0.388170248035i

τ
−3 + i

√
15

24
t(τ) 1

IQ(t) 8.570280443360948

−48HQ(τ) 404.292203809358 + 325.565905143148i

$1(τ) 0.133813847482− 0.518258802791i

τ −(3 + 1.80224199747123i)−1

t(τ)
319

80
IQ(t) 9.106670607198028

−48HQ(τ) 355.272552751915 + 625.839953492151i

$1(τ) −0.206610686713− 0.388422174005i

Remark 2.3.4. The integral expression in (2.3.19)

IQ(t(τ)) = (2πi)3$1(τ)

∫ t

0
(τ(x)− τ(t))2σ(τ(x)) dτ +$1(C + τC + τ2C) (2.3.44)

shows that IQ(t(τ))/$1(τ) is an Eichler integral of the modular form σ(τ). Another proof of
this will be given in § 5 and in Theorem 5.3.1.

2.4 Value of the integral at t = 0
This section contains the two lemmas needed in the proof of Theorem 2.3.2 when evaluating the
integral at t = 0 which corresponds to τ = 0.

Lemma 2.4.1. We have the following identity:

16ζ(3) +
∑
n>1

ψ(n)

n3

qn

1− qn
=

τ

2πi

∑
m∈Z
n>1

ψ(n)

n2

1

(m+ nτ)(m− nτ)
. (2.4.1)

Proof. Using the Kronecker regularization for the sum [Wei76]∑
m∈Z

e
1

m+ nτ
= −iπ1 + qn

1− qn
(2.4.2)

and that

16ζ(3) +
∑
n>1

ψ(n)

n3

qn

1− qn
=

1

2

∑
n>1

ψ(n)

n3

1 + qn

1− qn
, (2.4.3)
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we conclude that

16ζ(3) +
∑
n>1

ψ(n)

n3

qn

1− qn
= − 1

2πi

∑
n>1

∑
m∈Z

e
ψ(n)

n3

1

m+ nτ
, (2.4.4)

which can be rewritten as a converging sum

τ

2πi

∑
m∈Z
n>1

ψ(n)

n2

1

(m+ nτ)(m− nτ)
(2.4.5)

to complete the proof. 2

This expression is antisymmetric under the transformation τ → −τ .

Lemma 2.4.2. The series in (2.4.1) has the following asymptotic behavior when τ → 0:

lim
τ→0

τ−2 τ

2πi

∑
m∈Z
n>1

ψ(n)

n2

1

m2 − (nτ)2
= 336ζ(3). (2.4.6)

Proof. We start by rewriting the sum as

τ

2πi

∑
n6=0
m>1

ψ(n)

n2

1

m2 − (nτ)2
=

τ3

2πi

∑
n6=0
m>1

ψ(n)

(
1

n4m2τ2
+

1

m2(m2 − (nτ)2)

)

=
τ3

2πi

∑
n∈Z,n6=0
m>1

ψ(n)

m2

1

m2 − (nτ)2
, (2.4.7)

using
∑

n>1 ψ(n)/n4 = 0. Therefore,

τ

2πi

∑
m∈Z
n>1

ψ(n)

n2

1

m2 − (nτ)2
=

τ3

2πi

∑
n∈Z
m>1

ψ(n)

m2

1

m2 − (nτ)2
+

5760τ3

2πi
ζ(4). (2.4.8)

We perform a Poisson summation on n to get∑
n∈Z

1

m2 + ((r + 6n)τ)2
=
∑
n̂∈Z

∫ +∞

−∞

e−2πixn̂

m2 + ((r + 6x)τ)2
dx

=
π

6mτ

∑
n̂∈Z

e−π
m|n̂|
3τ

+iπ n̂r
3 . (2.4.9)

Therefore,

τ

2π

∑
m∈Z
n>1

ψ(n)

n2

1

m2 + (nτ)2
= −τ

2

12

6∑
r=1

∑
n̂∈Z
m>1

ψ(r)

m3
e−π

m|n̂|
3τ

+iπ n̂r
3 − 63π3

2
τ3, (2.4.10)

which has the following limit for τ → 0:

lim
τ→i0+

τ−2 τ

2πi

∑
m∈Z
n>1

ψ(n)

n2

1

m2 − (nτ)2
= −ζ(3)

12

6∑
r=1

ψ(r) = 336ζ(3). (2.4.11)

This concludes the proof. 2

In § 7 we will obtain this result using the higher normal function analysis method and
Theorem 7.2.1.
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2.5 Value of the integral at t = 1
It is numerically obtained in [Bro11, Bro13] that the value at t = 1 of the banana graph is given
by a L-function value

IQ(1)
?
=

12π√
15
L(f+, 2), (2.5.1)

with L(f+, s) =
∑

n>1 an/n
s the L-function associated to the weight-3 modular form f+(q) =

η(τ)η(3τ)η(5τ)η(15τ)
∑

m,n∈Z q
m2+mn+4n2

=
∑

n>0 anq
n constructed in [PTvdV92]. Because the

functional equation is Γ(s)(
√

15/(2π))sL(s) = Γ(3− s)(
√

15/(2π))3−sL(3− s), the value s = 2 is
inside the critical band. We show in § 7.1.1 that for t = 1 the mixed Hodge structure (motive)
associated to the Feynman integral has rank two.

Anticipating the relation between the three-banana and the sunset geometry described in
§ 3.2, we use the relation t(−1/(6τ)) = 10−9/t�(τ)−t�(τ) between the three-banana Hauptmodul
t and the sunset Hauptmodul t�(τ) = 9 + 72η(τ)5η(2τ)η(3τ)−1η(6τ)5. One finds that the value
t = 1 is reached1 for t�(τ�) = 3

2(1−
√

5) with τ� = (3 + i
√

15)/6 and the sunset elliptic curve is

defined over Q[
√

5]:

E� : y2 = x3 + 3
8(1− 3

√
5)x2 + 3

2(3−
√

5)x. (2.5.2)

This curve has complex multiplication (CM) with discriminant −15, as can be seen by (1 +
i
√

15)(Z + τ�Z) = (Z + τ�Z).
Getting back to the banana period ratio by τQ = −1/(6τ�) = (−3 + i

√
15)/24,

IQ(1) = $1(τQ)

(
−4(2πiτQ)3 +

τQ
2πi

∑
m∈Z
n>1

ψ(n)

n2

1

m2 − (nτQ)2

)
. (2.5.3)

We remark that $1(τQ) = −3
4τ

2
�$r with τ� = (3 + i

√
15)/6 and

$r =
(η(τ�)η(3τ�))4

(η(2τ�)η(6τ�))2
= (θ4(e4iπτ�)θ4(e12iπτ�))2, (2.5.4)

which has the sum expression2

$r =

(
1 + 2

∑
n>1

e−n
2π
√

5/3

)2(
1 + 2

∑
n>1

e−n
2π
√

15

)2

, (2.5.5)

showing that $r ∈ R. Since the integral is real we conclude that

=m

[
τ2
�

(
−4(2πiτQ)3 +

τQ
2πi

∑
m∈Z
n>1

ψ(n)

n2

1

m2 − (nτQ)2

)]
= 0, (2.5.6)

which implies

=m

(
τQ
2πi

∑
m∈Z
n>1

ψ(n)

n2

1

m2 − (nτQ)2

)
=
√

15<e

(
τQ
2πi

∑
m∈Z
n>1

ψ(n)

n2

1

m2 − (nτQ)2

)
− 2π3

3
. (2.5.7)

1 There is of course another solution obtained for t′�(τ ′�) = 3
2
(3+
√

5) and E ′� : y2 = x3 + 3
8
(1+3

√
5)x2 + 3

2
(3+
√

5)x.
These two elliptic curves are isogeneous. We refer to § 3.2 for a review of the relation between the three-banana
and the sunset geometry.
2 Using the cubic modular equation of [BBBG08, § 5.11], this expression is equal to 1

2
(
√

15 −
√

3)(1 +

2
∑
n>1 e

−n2π
√

15)4 as given in [BBBG08, Bro11, Bro13].

2342

https://doi.org/10.1112/S0010437X15007472 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007472


A Feynman integral via higher normal functions

To evaluate the real part of the series we use

<e

(
τQ
2πi

∑
m∈Z
n>1

ψ(n)

n2

1

m2 − (nτQ)2

)

=

√
15

2π

∑
m>1
n>1

ψ(n)

n2

(
1

24m2 − 6mn+ n2
+

1

24m2 + 6mn+ n2

)

=

√
15

2π
11ζ(4) =

11π3

12
√

15
. (2.5.8)

It then follows that

IQ(1) =
(2π)3

√
15

1 + i
√

15

16
$1(τQ) = −(2iπ)3

√
−15

$r

8
, (2.5.9)

and the conjecture in (2.5.1) amounts to showing

L(f+, 2)
?
= −(2πi)2$r

48
. (2.5.10)

This relation between the period $r and the critical value of the L-function is shown in § 7.1 to
be correct up to a rational coefficient.

3. The family of K3 surfaces

Our analysis of the three-banana pencil is based on its presentation both as a family of
anticanonical toric hypersurfaces and as a modular family of Picard-rank-19 K3 surfaces. Modern
research in this area is influenced by the theory of toric varieties, most particularly, the toric
variety associated to the Newton polytope of a Laurent polynomial. Briefly, to a Laurent
polynomial φ in n variables x1, . . . , xn we associate firstly the set Mφ ⊂ Zn corresponding to
exponents of monomials appearing with non-zero coefficient in φ and secondly the convex hull

∆φ :=

{∑
m∈M

amm
∣∣∣ am > 0,

∑
am = 1

}
⊂ Rn (3.0.1)

of these points. Let x0 be another variable and define the graded ring (graded by powers of x0)
by

Rφ := C[{xr0xm|r ∈ Z>0,m ∈ r∆φ ∩ Zn}] ⊂ C[x0, x
±1
1 , . . . , x±1

n ]. (3.0.2)

Notice that x0φ ∈ Rφ. By definition,

P∆φ
= ProjRφ ⊃ Gn

m = ProjC[x0, x
±1
1 , . . . , x±1

n ], (3.0.3)

where ProjR is the set of homogeneous prime ideals in a graded ring R with the ‘trivial’ graded
ideal consisting of all elements of graded degree greater than zero omitted. (Alternatively, one
may construct P∆φ

by taking the normal fan to ∆φ.) Divisors at ∞, i.e. in the complement
P∆φ
\Gn

m, correspond to codimension 1 faces (facets) of ∆φ. For a summary of other important
properties of this construction, see [Bat94].

We begin by reviewing the simplest example of a family of anticanonical modular toric
hypersurfaces, the sunset family of elliptic curves studied in [BV15].
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3.1 Sunset in a nutshell
Consider the Laurent polynomial

φ�(x, y) := (1 + x+ y)(1 + x−1 + y−1)

and its associated (hexagonal) Newton polytope ∆� ⊂ R2, which defines a toric Fano surface
P∆� (P2 blown up at three points). Compactifying the hypersurface defined by

t� − φ�(x, y) = 0

in P∆� × P1\L� (L� := {0, 1, 9,∞}) defines the sunset family

X�
π�
� P1\L�.

For its modular construction, recall that the congruence subgroup

Γ1(6) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1 mod 6, c ≡ 0 mod 6

}
of SL2(Z) produces a universal family

E1(6) := (Z2 o Γ1(6))\(C× H)
π1
� Γ1(6)\H =: Y1(6)

of elliptic curves with six marked 6-torsion points (forming a copy of Z/6Z). Write τ for the
parameter on H and q := e2πiτ . Then we have an isomorphism

E1(6)
H�

∼=
//

π1
����

X�
π�
����

Y1(6)
H�

∼=
// P1\L�

of families, in which the Hauptmodul H�,

t� = H�([τ ]) = 9 + 72
η(2τ)

η(3τ)

(
η(6τ)

η(τ)

)5

, (3.1.1)

maps [τ ] = [0], [i∞], [1
2 ], [1

3 ] to t� =∞, 9, 1, 0, respectively. In the semistable compactification of
either family, these points support fibers of (respective) Kodaira types I6, I1, I3, I2. H� sends
the marked points on π−1

1 ([τ ]) to the six points where π−1
� (H�([τ ])) meets the toric boundary

P∆�\(C∗)2.

3.2 Verrill’s family
Turning to the three-banana, the relevant pencil

XQ
πQ
� P1\LQ

(LQ = {0, 4, 16,∞}) of K3 surfaces is defined in the same fashion; namely, we compactify the
hypersurface

t− φQ(x, y, z) = 0

2344

https://doi.org/10.1112/S0010437X15007472 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007472


A Feynman integral via higher normal functions

in P∆Q
× P1\LQ, where ∆Q ⊂ R3 is the Newton polytope of

φQ = (1− x− y − z)(1− x−1 − y−1 − z−1).

Here we are using the coordinate change x1 = −x, x2 = −y, x3 = −z, which swaps R×3
>0 with

R×3
<0, for reasons related to the completion of the Milnor symbol below.

Laurent polynomials with Newton polytope contained in ∆Q may be regarded as sections of
an ample sheaf O(1) on P∆Q

[Bat94, Definition 2.4]. The polytope ∆Q has 12 vertices {±ei}3i=1∪
{±(ei − ej)}16i<j63, and a computation shows that its polar polytope

∆◦
Q

:= {v ∈ R3|v · w > −1 (∀w ∈ ∆Q)}

has the 14 vertices {±ei}3i=1 ∪ {±(ei + ej)}16i<j63 ∪ {±(e1 + e2 + e3)}. Since ∆◦
Q

is

evidently integral, ∆Q is reflexive [Bat93, Definition 12.3], and so O(1) is the anticanonical
sheaf [Bat93, Theorem 12.2]. Moreover, as ∆◦

Q
∩ Z3 consists only of vertices and 0, by [Bat94,

Theorem 2.2.9(ii)], P∆Q
is smooth apart from 12 point singularities corresponding to vertices of

∆Q. It follows that for any Laurent polynomial f which is ∆Q-regular in the sense of [Bat94,
Definition 3.1.1], the (anticanonical) hypersurface in P∆Q

defined by f = 0 is a smoothK3 [Bat94,

Theorem 4.2.2].3

We shall need to know the structure of ‘divisors at infinity’ DQ := P∆Q
\(C∗)3 and DQ :=

π−1

Q
(t) ∩ DQ, the latter of which is the base locus of our pencil (and independent of t). This is

understood by examining the facets of ∆Q and facet polynomials of φQ, as explained in [DK11,
§ 2]. Briefly, we draw a plane Rσ through each facet σ and (by choosing an origin) noncanonically
identify Rσ ∩Z3 =: Zσ with Z2. The pair (σ,Zσ) then yields a toric Fano surface Dσ in the usual
manner; these are the components of DQ. For ∆Q, one may choose the identifications with Z2

so that the 8 triangular facets (respectively, 6 quadrilateral facets) have vertices (0, 0), (1, 0),
(0, 1) (respectively, (0, 0), (1, 0), (0, 1), (1, 1)), whereupon the corresponding {Dσ} are evidently
isomorphic to P2 [respectively P1 × P1] (for instance by taking normal fans).

The components Dσ := π−1

Q
(t) ∩ Dσ of DQ are obtained by retaining only the terms of the

Laurent polynomial with exponent vectors in σ and viewing this as a Laurent polynomial in
two variables (in a manner made precise in [DK11, § 2.5]). One checks that DQ is a union of 20
rational curves. The respective configurations of D∆φ

and DQ are shown below.

Note that t−φQ fails to be ∆Q-regular at the point in each boundary P1×P1 where the two
(rational curve) components of Dσ intersect. However, in local holomorphic coordinates at each

3 We need not carry out the MPCP-desingularization in [Bat94, Theorem 4.2.2], as such a hypersurface avoids the
12 singular points (of P∆

Q
) which it resolves.
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such point, t − φQ takes the form w = uv, and it follows that for each t ∈ P1\LQ, π−1

Q
(t) is a

smooth K3. Finally, as previously mentioned, P∆Q
has 12 singular points; one way to construct

it is by blowing up P3 at the 4 ‘vertices’ then along the proper transforms of the 6 ‘edges’, then
blowing down 12 (−1)-curves. One choice of toric (MPCP-)desingularization (as in [Bat94]) in
fact simply reverses this blow-down; note that this produces no additional components in DQ
and does not affect the K3 hypersurfaces. In subsequent sections, P∆Q

will denote this smoothed
toric 3-fold.

The family XQ was studied by Verrill [Ver96] (cf. also [Ber06, DK11]), who proved

that the generic fiber Xt = π−1

Q
(t) has Picard rank 19. More precisely, the local system of

R2(πQ)∗Z contains a 19-dimensional subsystem spanned by divisors. We write R2
var(πQ)∗Z

for the quotient. The fibers R2
var(πQ)∗Z =: H2

var(Xt) have monodromy group isomorphic to
Γ1(6)+3. The intersection form is H ⊕ 〈6〉 with discriminant 6. In particular, XQ is a family of
M6 := E8(−1)⊕2⊕H⊕〈−6〉-polarized K3 surfaces, and is thus of Shioda–Inose type (cf. [Mor84]).
There are countably many t for which the Picard rank is 20. For these fibers, the transcendental
part H2

tr(Xt) is a quotient of H2
var of rank two. The motive H2

tr(Xt) for these fibers has complex
multiplication, i.e. the rational endomorphism ring is an imaginary quadratic field.

We describe a modular construction of such a family, closely related to that of [DK11, § 8.2.2].
Set

α3 :=

 √
3

2√
3

−2
√

3 −
√

3

 , β3 :=

 −√3
1√
3

−4
√

3
√

3

 , µ6 :=

 0
−1√

6√
6 0


and note that 

β3µ6 = µ6α3

β−1
3 α3 =

(
5 3

18 11

)
∈
(
−1 0

0 −1

)
Γ1(6).

(3.2.1)

We have α3(τ) = −(τ + 2/3)/(2τ + 1), µ6(τ) = −1/6τ . These induce involutions on Y1(6) since

Γ1(6) C Γ1(6)+3 := 〈Γ1(6), α3〉
M M

〈Γ1(6), µ6〉 =: Γ1(6)+6 C Γ1(6)+3+6 := 〈Γ1(6), α3, µ6〉
(3.2.2)

and α2
3 =

(−1 0
0 −1

)
= µ2

6. (The action on cusps is [i∞] ↔ [1
2 ], [0] ↔ [1

3 ] for α3 and [i∞] ↔ [0],

[1
2 ]↔ [1

3 ] for µ6.) From (3.2.1) one deduces that these involutions commute, and so µ6 descends
to Y1(6)+3 := 〈α3〉\Y1(6)∗α3 and α3 to Y1(6)+6 := 〈µ6〉\Y1(6)∗µ6 , where ‘∗’ means to delete fixed
(elliptic) points.

Let ′E1(6)
′π1
� Y1(6) be the fiber-pullback of π1 by α3. (Note that α3 and µ6 do not lift

to involutions of E1(6), but do lift to 3:1, respectively 6:1, fiberwise isogenies.) Put ′E [2]
1 (6) :=

E1(6)×Y1(6)
′E1(6), and let

I
[2]
3 : ′E [2]

1 (6)
∼=
→
′E [2]

1 (6)

be the involution given by

(τ ; [z1]τ , [z2]α3(τ)) 7→ (α3(τ); [z2]α3(τ), [z1]τ ).

A first approximation to the three-banana family is then

E [2]
1 (6)+3 := I

[2]
3 \
′E [2]

1 (6)∗α3
π2
� Y1(6)+3.
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It has fibers of type E[τ ] × E[α3(τ)], and hence intersection form H ⊕ 〈6〉 on H2
var, and the same

local system as R2
var(πQ)∗ZXQ . By Schur’s lemma and the Theorem of the Fixed Part [Sch73], a

C-irreducible Z-local system can underlie at most one polarized Z-variation of Hodge structure,

making the two variations isomorphic.

However, π2 is not yet a family of K3 surfaces. Quotienting fibers by (−id)2 and resolving

singularities yields a family of Kummer K3 surfaces, with (incorrect) intersection form (H ⊕
〈6〉)[2] on H2

var,Z. To correct this multiplication by 2, we require a fiberwise-birational 2:1 cover

of the Kummer family, which is the Shioda–Inose family [Mor84] X1(6)+3 over Y1(6)+3. Since

this is a family of M6-polarized K3 surfaces with integral H2 isomorphic to πQ, the relevant

global Torelli theorem (cf. [Dol96, Corollary 3.2]) yields an isomorphism as shown in the following

diagram.

X1(6)+3

π
����

∼=

HQ // XQ
πQ
����

Y1(6)+3
HQ
∼=
// P1\LQ

Explicitly, the Hauptmodul (mapping [i∞] 7→ ∞, [0] 7→ 0, elliptic points 7→ 4, 16) is given
by (2.3.11) and we have the relation

t =
−64t�

(t� − 9)(t� − 1)
. (3.2.3)

This relation between the Hauptmoduls of Feynman integrals with two and three loops was

obtained more than 40 years ago by Geoffrey Joyce, who established a corresponding result for

honeycomb and diamond lattices in condensed matter physics, exploiting results on integrals

of Bessel functions obtained by Wilfrid Norman Bailey in the 1930s. For further details of the

striking relationships between Feynman integrals and lattice Green functions, see [BBBG08].

3.3 Miscellany

Two observations aboutHQ are in order. The first (used below in § 5.2) is that we may construct a

family X̃ → Y1(6)+3 of smooth surfaces mapping onto X1(6)+3 and E [2]
1 (6)+3 (over Y1(6)+3), with

both projections generically 2:1 on each fiber. We may then transfer generalized algebraic cycles

from E [2]
1 (6)+3 to XQ by composing this correspondence withHQ; the Abel–Jacobi maps are then

related by the action of this correspondence on cohomology (which is an integral isomorphism

on H2
tr after multiplication by 1

2). To obtain the family X̃ , we take (a) the fiber product Ěa of

E [2]
1 (6)+3 and the Kummer family over E [2]

1 (6)+3/〈(−id)×2〉 and (b) the fiber product Ěb of the

Kummer family and X1(6)+3 over the quotient of X1(6)+3 by the Nikulin involution (cf. [Mor84]).

Smoothing these families yields Ea and Eb, whose fiber product over the Kummer family followed

by resolution of singularities yields X̃ .

The second observation4 is that we may use HQ to perform a rational involution on relative

cohomology of the family over the automorphism µ : t 7→ 43/t induced by µ6. First of all, XQ
does not itself have a birational involution over µ, since H2

var(Xt,Z) ∼= H2
var(Eτ × Eα3(τ),Z)

and H2
var(X1/43t,Z) ∼= H2

var(Eµ6(τ) × Eα3(µ6(τ)),Z) are rationally but not integrally isomorphic.

4 This is not used in the sequel, but it illustrates an important difference between this family and the Apéry family
of K3 surfaces (cf. [DK11]), which does admit such an involution.
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In particular, we only have a correspondence

E [2]
1 (6)+3 //

����

E [2]
1 (6)+3

����
Y1(6)+3 µ6

∼=
// Y1(6)+3

which is a 2:1 isogeny in the first factor and a 1:2 multivalued map in the second factor, given
by

(τ ; [z1]τ , [z2]α3(τ)) 7→
(
µ6(τ);

[
(2τ + 1)z2

τ

]
µ6(τ)

,

[
z1

2(−3τ + 1)

]
α3(µ6(τ))

)
.

However, the graph of this correspondence is a family of abelian surfaces, mapping fiberwise 2:1

onto both E [2]
1 (6)+3 and its µ6-pullback, which does have an involution over µ6. This family, or its

associated Shioda–InoseK3 family, can then be used as a correspondence (inducing isomorphisms
of rational H2

tr) between X1(6)+3 and its µ6-pullback over Y1(6)+3.
Finally, for future reference, we shall write down a family of holomorphic 2-forms on the

fibers of πQ. For any t ∈ P1\LQ, let

ωt := ResXt

(
dx/x ∧ dy/y ∧ dz/z

1− t−1φQ

)
(3.3.1)

be the standard residue form. Remark that the holomorphic period in the neighborhood |t| > 16
of t =∞ may be computed by integrating

1

2πi

dx/x ∧ dy/y ∧ dz/z
1− t−1φQ

over the product (S1)×3 of unit circles. By the Cauchy residue theorem, this is

(2πi)2
∑
k>0

akt
−k, (3.3.2)

where ak, given in (2.3.13), is the constant term in (φQ)k.

4. The three-banana integral as a higher normal function

In this section we shall explain the precise relationship between the integral IQ and the family
XQ of K3 surfaces defined by the denominator of the integrand. Properly understanding this,
even without the modular description (done in § 5), leads at once to the inhomogeneous equation
(§ 4.3) and the special values at t = 0 and 1 (§ 7).

There are a number of general comments. The integral IQ (2.1.6) is a period, i.e. the integral
of a rational differential form ω on a variety P over a chain c whose boundary ∂c is supported on
a proper closed subvariety Σ ⊂ P . This theme goes back to Abel’s theorem on Riemann surfaces.
For Abel, P is a Riemann surface, Σ = {p, q} ⊂ P is a set of two points, ω is a holomorphic
1-form on P , and c is a path from p to q. In modern terms, this process associates to the 0-cycle
(p)− (q) an extension of Hodge structures

0→ H1(P,Q(1))→ H → Q(0)→ 0.
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The second point is that dependence on external momenta means that we have a family of
integrals depending on a parameter t. The corresponding family of extensions is called a normal
function and first appeared in the work of Poincaré [Poi10, Gri79].

Finally, it turns out that the three-banana amplitude is associated to a generalized normal
function arising from a family of ‘higher’ algebraic cycles or motivic cohomology classes [KL07,
DK11]. The passage from classical normal functions associated with families of cycles to normal
functions associated with motivic classes suggests interesting new links between mathematics
and physics [KL07, DK11]. For one thing, motivic normal functions can, in many cases, be
associated with multiple-valued holomorphic functions which arise as amplitudes. For a discussion
of normal functions in physics, cf. [MW09], for instance.

Briefly, the higher Chow groups CH p(X, q) of a variety X over a field k are the homology
groups of a complex Zp(X, •). By definition, Zp(X, q) is the free abelian group on irreducible
codimension p subvarieties V ↪→ X × (P1\{1})q meeting faces properly, where faces are defined
by setting various P1-coordinates to be 0 or ∞. Elements of Zp(X, q) are called (higher Chow)
precycles. The face maps Zp(X, q) → Zp(X, q − 1) are defined by restrictions to faces with
alternating signs; elements of the kernel are called (higher Chow) cycles.

If f1, . . . , fp are rational functions on X, the locus {x, f1(x), . . . , fp(x)} will (assuming the
zeroes and poles of the fi are in general position) define a precycle in Zp(X, p). The easiest
way for its image under the face map to vanish, so that this precycle is a cycle and represents
a class in CH p(X, p), is for the fi to be units (invertible functions) on the complement of the
subvariety of X defined by

∏p
j=1(fj(x)− 1) = 0. A basic theorem of Suslin and Totaro identifies

CH p(Spec k, p) ∼= KM
p (k), the pth Milnor K-group of the field k. These groups are linked to

algebraic K-theory via the γ-filtration

CH p(X, q)⊗Q ∼= grpγKq(X).

Finally, in keeping with modern usage, we will define motivic cohomology by

Hr
M (X,Z(s)) := CH s(X, 2s− r)

when X is smooth. Notice that Hr
M (X,Z(r)) = CH r(X, r) in this case. More generally, Hr

M (X,
Q(s)) may be constructed from higher Chow precycles as described in [DK11, § 1.3], which leads
to a long exact sequence used only briefly at the end of § 4.1 below.

4.1 K3 of a K3!

Let Xt = π−1

Q
(t) (t ∈ P1\LQ) be as in § 3.2, X∗t := Xt ∩ (C∗)3 = Xt\DQ, and DQ =

⋃20
j=1Dj

(Dj
∼= P1). The Milnor symbol

{x|Xt , y|Xt , z|Xt} ∈ KM
3 (C(Xt)) ∼= lim

U⊂Xt
Zar. op.

H3
M (U,Z(3))

extends to a (cubical) higher Chow cycle

[ξt] := [∆(C∗)3 ∩X∗t ×�3] ∈ CH 3(X∗t , 3) = H3
M (X∗t ,Z(3)),

where � := P1\{1} and [· · · ] denotes cycle class. To (integrally) lift [ξt] to a class

[Ξt] ∈ H3
M (Xt,Z(3))
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in the exact sequence5

⊕
j

H1
M (Dj ,Z(2))→ H3

M (Xt,Z(3))→ H3
M (X∗t ,Z(3))

Tame−−−→
⊕
j

H2
M (D∗j ,Z(2)),

we must check vanishing of the TameD∗j ([ξt]). Inspection of the edge polynomials [DK11, § 2.5]

shows that these are all of the form {±u, 1}, {1,±v}, and {±u, 1 − (±u)} (in toric coordinates
{u, v} on D∗j ∼= (C∗)2), which are trivial.

On the cycle level, the mechanism by which the lift takes place is given by the moving lemma
for higher Chow groups [Blo93]. This yields a quasi-isomorphism

Z3(X∗t , •)
'
←
∗
Z3(Xt, •)/ıD∗ Z2(DQ, •)

inducing the above exact sequence, and there exists µt ∈ Z3(X∗t , 4) such that6

ξt + ∂µt = ∗Ξt.

Moreover, there are 6 of theDj (say, j = 1, . . . , 6) on which x, y, or z is identically 1, so that in this

argument we may replace X∗t by X∼t := Xt\
⋃20
j=7Dj , ξt by its Zariski closure ξ∼t ∈ Z3(X∼t , 3),

and µt by some µ∼t . The fact that the configuration J =
⋃20
j=7Dj

has trivial H1 will be crucial for the argument in § 4.3 below.
Working modulo torsion, one can do somewhat better than a lift [Ξt] for each t ∈ P1\LQ

that is ambiguous by the image of
⊕

j H
1
M (Dj ,Q(2)). Let X̄Q

π̄
→ P1\{∞} be the Zariski

closure of XQ in P∆Q
× (P1\{t = ∞}). One shows that φQ is reflexive and tempered and

the assumptions of [DK11, Remark 3.3(iv)] hold (with K = Q). So by [DK11, Theorem 3.1],
there exists a motivic cohomology class [Ξ̄Q] ∈ H3

M (X̄Q,Q(3)) defined over Q and restricting
to [{x, y, z}] ∈ H3

M ((C∗)3,Q(3)) under the inclusion (C∗)3 ↪→ X̄Q given by (x, y, z) 7→ (x,
y, z, φQ(x, y, z)−1). Its fiberwise restrictions therefore produce rational lifts of ξt, and since
H1
M ((A1×Dj)/Q,Q(2)) ∼= H1

M (Spec(Q),Q(2)) = {0} there is also no ambiguity. This guarantees
that the processes described above can be carried out in a ‘continuous’ fashion, and that the lift
extends (as a motivic cohomology class) across the singular fibers over t = 16, 4, 0.

In fact, the construction of [Ξ̄Q] in this case is quite simple. The total space X̄Q has six
singularities (of the local type xy = zw), situated over t = 0 in the base locus where the two Dj

5 The ambiguities of this lift by the images of the H1
M (Dj ,Z(2)) may for our purposes be ignored, as they have

no bearing upon the transcendental part of its Abel–Jacobi image.
6 Note: in this paper ‘∂’ is used both to denote the boundary of a C∞ cochain and the differential in the higher
Chow complex.
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in each P1×P1 component cross. Blowing these points {pk}6k=1 up, we have exceptional divisors

Ek ∼= P1 × P1 (k = 1, . . . , 6) in ˜̄XQ and the long exact sequence⊕
k

H2
M (Ek,Q(3))→ H3

M (X̄Q,Q(3))

→ H3
M ( ˜̄XQ,Q(3))⊕

⊕
k

H3
M ({pk},Q(3))

α
→

⊕
k

H3
M (Ek,Q(3)).

One easily lifts [{x, y, z}] to [Ξ̃Q] ∈ H3
M ( ˜̄XQ,Q(3)) (since the Tame symbols vanish), whereupon

α([Ξ̃Q], 0) vanishes since x, y, or z is 1 at each pk.
In the sequel, the restriction of [Ξ̄Q] to H3

M (XQ,Q(3)) will be denoted by [ΞQ]; we call this
the three-banana cycle.

4.2 Review of Abel–Jacobi
We shall need a few generalities on regulator currents for the arguments below. The presentation
will be sketchy, as a more thorough exposition may be found in [DK11, § 1].

Let X be a smooth projective variety with complexes of currents D•(X) and (2πi)pA-valued
C∞-cochains C•top(X;A(p)) (A ⊂ R a subring). Given a cochain γ, we write δγ for the current
of integration over it, and use this to define the Deligne complex

C•D(X,A(p)) := (C•+1
top (X;A(p))⊕ F pD•+1(X)⊕D•(X))[−1]

with differential

D(T,Ω, R) := (∂T,−d[Ω], d[R]− Ω + δT ). (4.2.1)

Its (2p− n)th cohomology sits in a short exact sequence

0→ Jp,n(X)A→ H2p−n
D (X,A(p))→ Hgp,n(X)A→ 0,

where
Hgp,n(X)A := HomA-MHS(A(0), H2p−n(X,A(p)))

Jp,n(X)A := Ext1
A-MHS(A(0), H2p−n−1(X,A(p))).

Let Zp(X, •) be the codimension-p higher Chow cycle complex with nth homology CH p(X,
n) = H2p−n

M (X,Z(p)) and boundary map ∂; in particular, Zp(X,n) is a subgroup of the cycle
group Zp(X×�n). Denote by ZpR(X, •) ⊂ Zp(X, •)Q the quasi-isomorphic subcomplex7 described
in [KL07, § 8.2]. By [KLM06, § 7], the cycle class map

c p,nD : CH p(X,n)Q = H2p−n
M (X,Q(p))→ H2p−n

D (X,Q(p))

defined in [Blo86] is computed by a map of complexes

ZpR(X, •)→ C2p−•
D (X,Q(p)).

Taking • = n, it is defined on irreducible components by8

ξ 7−→ (2πi)p−n((2πi)nTξ,Ωξ, Rξ), (4.2.2)

7 These are still precycles with Q-coefficients; the ‘R’ refers to intersection conditions with real-analytic chains.
8 This differs from the formula in [KLM06] by a (2πi)−dim(X) twist arising there from Poincaré duality, since we
interpret currents here as computing cohomology, not homology. (This choice is more convenient for computation.)
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where (writing πX , π� for the projections from a desingularization ξ̃ to X, �n) Rξ, Ωξ, Tξ are

defined by applying (πX)∗(π�)∗ to, respectively,9

Rn :=
n∑
j=1

((−1)n2πi)j−1 log(zj)
dzj+1

zj+1
∧ · · · ∧ dzn

zn
δTz1∩···∩Tzj−1

Ωn :=

n∧
j=1

dzj
zj

Tn :=

n⋂
j=1

Tzj :=

n⋂
j=1

z−1
j (R<0).

Properties of Tn,Ωn, Rn imply that

d[Rξ] = Ωξ − (2πi)nδTξ + 2πiR∂ξ, (4.2.3)

so (by (4.2.1)) (4.2.2) gives a map of complexes.

Suppose ∂ξ = 0 (so that [ξ] ∈ H2p−n
M (X,Q(p))) and n > 1. Since [Tξ] and [Ωξ] define

the map to Hgp,n(X)Q (which is zero for n > 1), there exist K ∈ F pD2p−n−1(X) and

Γ ∈ C2p−n−1
top (X;Q(p)) such that Ωξ = d[K] and Tξ = ∂Γ, whereupon

R̃ξ := Rξ −K + (2πi)nδΓ

defines a closed current with class [R̃ξ] ∈ H2p−n−1(X,C) projecting to

(cp,nD (ξ) =)AJ p,nX (ξ) ∈ Jp,n(X)Q ∼=
H2p−n−1(X,C)

F pH2p−n−1(X,C) +H2p−n−1(X,Q(p))
.

If X is a smooth algebraic K3 surface and p = n = 3, then

AJ 3,3
X : H3

M (X,Z(3))→ H2(X,C/Z(3)) = J3,3(X) (4.2.4)

is computed by

R̃ξ := Rξ + (2πi)3δΓ, (4.2.5)

since Ωξ ∈ F 3D3(X) = {0}. Let U ⊂ X be a Zariski open set. Any precycle ξ ∈ Z3
R(U, 3) is a

sum of components supported over divisors and components with generic support. The simplest

examples of the latter are elements of the form

{f1, f2, f3}U := {(x, f1(x), f2(x), f3(x))|x ∈ U\ ∪ |(fi)|},

where fi ∈ C(X)∗ and the bar denotes Zariski closure in U ×�3. One can show that

R{f1,f2,f3} = log(f1)
df2

f2
∧ df3

f3
+ 2πi log(f2)

df3

f3
δTf1 + (2πi)2 log(f3)δTf1∩Tf2

extends to a 2-current on X (even if the closure of {f1, f2, f3}U over X is not a precycle).

9 Here log(z) is regarded as a 0-current on P1 with branch cut along R<0, so that d[log(z)] = dz/z − 2πiδTz .
Operations involving pullback are not in general defined on currents, but a convergence argument (when ξ is in
the subcomplex) shows that Rξ and Ωξ are in fact currents on X.
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This has the following application to the general situation of § 4.1, where ξ = {f1, f2, f3}U =
∗Ξ−∂µ for Ξ ∈ ker(∂) ⊂ Z3

R(X, 3) and µ ∈ Z3
R(U, 4), under the assumption that

⋂
j f
−1
j (R<0)∩

U = ∅. Working modulo currents and chains supported on D := X\U , formally applying (4.2.2)
(and noting that Rµ extends to X) gives

((2πi)3Tξ, 0, Rξ) +D

(
(2πi)3Tµ, 0,

1

2πi
Rµ

)
≡ ((2πi)3TΞ, 0, RΞ), (4.2.6)

while our assumption gives Tξ ≡ 0. For the chains, this yields TΞ = −∂Tµ + SD, where SD is a
(closed) 1-chain supported on D; since TΞ is exact, so is SD (on X), and we write SD = ∂γ. For
the currents, (4.2.6) gives

RΞ = Rξ +
1

2πi
d[Rµ] + (2πi)3δTµ +KD

for some 2-current KD supported on D, so that (taking Γ = −Tµ + γ in (4.2.5))

R̃Ξ = Rξ +
1

2πi
d[Rµ] + (2πi)3δγ +KD

gives a lift of AJ 3,3
X (Ξ).

The key point is now that if H1(D) = {0}, then we may take γ to be supported on D, and
up to exact currents on X and arbitrary currents supported on D,

R̃Ξ ≡ R{f1,f2,f3}. (4.2.7)

This is precisely what occurs in § 4.1 with X = Xt, Ξ = Ξt = ΞQ|Xt , U = X∼t , D = J , and
{f1, f2, f3} = {x|X∼t , y|X∼t , z|X∼t }; the assumption T{x,y,z} ≡ 0 holds for

t /∈ φQ(R×3
<0) = [16,∞].

Writing

AJ
3,3
Xt := πvar ◦AJ 3,3

Xt
: H3

M (Xt,Q(3))→ H2
var(Xt,C/Q(3)),

(4.2.7) provides a well-defined lift (for t /∈ [16,∞] ∪ {0, 4})

Rt := πvar[R̃Ξt ] ∈ H2
var(Xt,C)

of R̄t := AJ
3,3
Xt (Ξt). As the extension of R2

var(πQ)∗Q across t = 0 has only rank one, and R̄t must
extend through t = 0, we conclude part (i) of the following proposition.

Proposition 4.2.1. (i) Rt yields a holomorphic section of the sheaf O ⊗ R2
var(πQ)∗C over

P1\[16,∞]∪{0, 4} and is the unique such section lifting R̄t with no monodromy about t = 0 and
t = 4.

(ii) Writing δt := t(d/dt) and ∇ for the Gauss–Manin connection, we have

∇δtRt = −[ωt],

with ωt := ResXt((dx/x ∧ dy/y ∧ dz/z)/(1− t−1φQ)).

Proof. (ii) follows at once from [DK11, Corollary 4.1] (note tDK = t−1). 2
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4.3 Reinterpreting the Feynman integral

The term ‘higher normal function’ has been used in several different ways in the theory of

algebraic cycles, for instance, to describe the section of
⋃
t J

3,3(Xt) (i.e. the family of extension

classes (4.2.4)) associated to a family of higher cycles like Ξt. Here we shall pair this section with

a specific family of holomorphic forms to get an actual function (Definition 4.3.1). We preface

this with a brief discussion of the pairings used here and in later sections.

Let X be a smooth projective surface, [X] ∈ H4(X,Q) its fundamental class, and∫
[X]

: H4(X,Q)→ Q(0)

the map (of Hodge type (−2,−2)) induced by pairing with [X]. We can define a Poincaré pairing
in one of two ways:

〈 , 〉 : H2(X,Q)×H2(X,Q)→ H4(X,Q)

∫
[X]
→ Q(0)

〈 , 〉′ : H2(X,Q)×H2(X,Q)→ H4(X,Q) = Q(−2).

While the second bracket has type (0, 0), we prefer to work with the first bracket.

We now turn to the main content of this subsection.

Definition 4.3.1. The (truncated) higher normal function associated to ΞQ is

VQ(t) := 〈Rt, [ω̃t]〉 ∈ O(UQ),

where ω̃t := (−1/(2πi)2t)ωt ∈ Ω2(Xt) and UQ ⊂ P1\LQ = P1\{0, 4, 16,∞} is the complement

of the real segment 16 < t <∞.

Note that VQ extends holomorphically across t = 4 and 0, since it pairs finite (in fact

non-zero) homology (respectively cohomology) classes [ω′t] (respectively Rt) on those singular

fibers.

Theorem 4.3.2. The Feynman integral agrees with the (truncated) higher normal function;

more precisely, IQ(t) = VQ(t) on UQ.

Proof. Begin by noting that

ω̃t =
−1

(2πi)2
ResXt

(
dx/x ∧ dy/y ∧ dz/z
t− φQ(x, y, z)

)
=: ResXt(Ω̃t)

so (regarding Ω̃t ∈ F 3D3(P∆Q
) as a 3-current)

d[Ω̃t] = 2πiıXt∗ ω̃t.

Furthermore, R∗3 := R{x,y,z} extends to a 2-current on P∆Q
, and writing Ω∗3 := dx/x∧dy/y∧dz/z,

T ∗3 := Tx ∩ Ty ∩ Tz, on P∆Q
we have

d[R∗3] = Ω∗3 − (2πi)3δT ∗3 +KD, (4.3.1)

where KD (∈ F 1D3(P∆Q
)) is supported on DQ.
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Now10

IQ(t) =

∫
R×3
<0

dx/x ∧ dy/y ∧ dz/z
t− φQ(x, y, z)

= −(2πi)2

∫
T ∗3

Ω̃t

=−(2πi)2

∫
P∆
Q

δT ∗3 ∧ Ω̃t.

By (4.3.1), this is

=
1

2πi

∫
P∆
Q

(d[R∗3]− Ω∗3 −KD) ∧ Ω̃t.

Noting that KD ∧ Ω̃t and Ω∗3 ∧ Ω̃t are zero by type, it becomes

=
1

2πi

∫
P∆
Q

d[R∗3] ∧ Ω̃t

=
1

2πi

∫
P∆
Q

R∗3 ∧ d[Ω̃t]

=

∫
P∆
Q

R∗3 ∧ ıXt∗ ω̃t

=

∫
Xt

R{x|X∼t ,y|X∼t ,z|X∼t }
∧ ω̃t. (4.3.2)

Finally, the argument of (4.2.7) allows us to rewrite this as

=

∫
Xt

R̃Ξt ∧ ω̃t = VQ(t). 2

Without the last step, (4.3.2) would not pair two closed currents and would have no

cohomological meaning. So the seemingly bizarre criterion that H1(J ) = {0} is, in the end,

absolutely essential.

To give an idea of the power of Theorem 4.3.2, we conclude this section with one of its

basic consequences, namely, an alternate proof of Theorem 2.2.1. The characterization of IQ as

a higher normal function can also be used to compute some special values, cf. § 7.

For deriving the Picard–Fuchs equation, we shall modestly abuse notation and regard the

family of forms as a section

ω̃t ∈ Γ(P1\LQ,O ⊗R
2
var(πQ)∗C).

Let ∇PF be the operator on cohomology obtained from DPF := L3
t =

∑3
k=0 fk(t)(d

k/dtk) by

replacing d/dt by ∇t := ∇d/dt, so that by [Ver96, Proposition 8], ∇PFω̃t = 0. Note that f3(t) =

t2(t− 4)(t− 16) and f2(t) = 6t(t2 − 15t+ 32) = 3
2f
′
3(t). Introduce the Yukawa coupling

Ỹ (t) := 〈ω̃t,∇2
t ω̃t〉,

10 The apparent sign change in the denominator (compare (2.2.1)) arises from the orientation of T ∗3 and the change
of variables.
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which may be computed as follows. Observe that, by type, 0 = 〈ω̃t,∇tω̃t〉 implies

0 =
d2

dt2
〈ω̃t,∇tω̃t〉 = 〈ω̃t,∇3

t ω̃t〉+ 3〈∇tω̃t,∇2
t ω̃t〉,

so that
d

dt
Ỹ (t) = 〈ω̃t,∇3

t ω̃t〉+ 〈∇tω̃t,∇2
t ω̃t〉 =

2

3
〈ω̃t,∇3

t ω̃t〉

implies

f3(t)Ỹ ′(t) = 2
3〈ω̃t,−f2(t)∇2

t ω̃t − f1(t)∇tω̃t − f0(t)ω̃t〉
=−f ′3(t)Ỹ (t),

which implies

Ỹ (t) =
κ

f3(t)
∈ C(t).

We will see below in § 5.2 that κ = −24/(2πi)2. Assuming this, we conclude the following result.

Corollary 4.3.3. The Feynman integral satisfies the Picard–Fuchs equation DPF(IQ(t)) =
−24.

Proof. By Proposition 4.2.1(ii),
∇tRt = (2πi)2ω̃t.

Now IQ(t) = VQ(t) = 〈Rt, ω̃t〉, and

d

dt
〈Rt, ω̃t〉= (2πi)2〈ω̃t, ω̃t〉+ 〈Rt,∇tω̃t〉 = 〈Rt,∇tω̃t〉

d2

dt2
〈Rt, ω̃t〉= (2πi)2〈ω̃t,∇tω̃t〉+ 〈Rt,∇2

t ω̃t〉 = 〈Rt,∇2
tωt〉

by type (and Griffiths transversality [Gri69]). Together with

d3

dt3
〈Rt, ω̃t〉 = (2πi)2Ỹ (t) + 〈Rt,∇3

t ω̃t〉,

these give

DPF〈Rt, ω̃t〉= 〈Rt,∇PFω̃t〉+ (2πi)2f3(t)Y (t)

= (2πi)2f3(t)Ỹ (t) = −24. 2

Remark 4.3.4. For later reference we note that Y (t) := 〈ωt,∇2
δt
ωt〉 = (2πi)4t4Ỹ (t) =⇒ Y (∞) =

(2πi)4κ.

5. A second computation of the three-banana integral: the Eisenstein symbol

As an application of the results in §§ 3 and 4, we will use HQ to pull back the toric three-banana
cycle ΞQ ∈ H

3
M (XQ,Q(3)) to X1(6)+3. We will then apply a correspondence to produce a higher

Chow cycle on a Kuga variety E [2](6) (defined below), and recognize this as an Eisenstein symbol
in the sense of Beilinson [Bei86, DS91, DK11]. This will allow us to write the pullback V ◦HQ
of the higher normal function (i.e. Feynman integral) as an elliptic trilogarithm, giving another
proof of Theorem 2.3.2.
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5.1 Higher normal functions of Eisenstein symbols
For simplicity, we shall restrict the exposition to the setting of Kuga 3-folds. We begin with an
explanation of Beilinson’s construction of higher cycles (‘Eisenstein symbols’) on these 3-folds and
their relationship to Eisenstein series of weight 4. Each such cycle gives rise to a higher normal
function over a modular curve (defined in (5.1.3)), which turns out to be an Eichler integral
of the corresponding Eisenstein series. The main result of this subsection, Proposition 5.1.1,
computes the q-expansion (5.1.5) of this normal function. In many cases it may be rewritten in
terms of trilogarithms (cf. Theorems 2.3.2 and 5.3.1). Everything in this subsection is general.
In §§ 5.2–5.3 we shall apply this general computation to our special case, by pulling back the
three-banana cycle from XQ to the Kuga 3-fold and interpreting the result (up to Abel–Jacobi
equivalence) as one of Beilinson’s cycles.

To describe these cycles, consider the elliptic modular surface E(N) := (Z2 oΓ(N))\(C×H)
over Y (N) = Γ(N)\H, where Γ(N) = ker{SL2(Z) → SL2(Z/NZ)} and N > 3. Its fibers are
elliptic curves with 1-form dz and standard Betti 1-cycles α = [0, 1], β = [0, τ ]. By duality we
may regard α, β as defining H1 classes and write [dz] = [β]− τ [α].

Let E [2](N)
π[2](N)
−−−−→ Y (N) be the self-fiber product of E(N). There exists a semistable

compactification E [2](N) → Y (N) due to Shokurov [Sho76], with singular fibers D[2](N) =

E [2](N)\E [2](N). Choose for each cusp σ = [r/s] ∈ κ(N) := Y (N)\Y (N) an element Mσ :=( p q
−s r

)
∈ SL2(Z). Define modular forms of weight n for Γ(N) by

Mk(N) :=

F ∈ O(H)

∣∣∣∣∣∣∣
(i) F (τ) =

F (γ(τ))

(cτ + d)k
=: F |kγ (∀γ ∈ Γ(N))

(ii) rσ(F ) := lim
τ→i∞

F |kMσ−1
<∞ (∀σ ∈ κ(N))

 .

There is an isomorphism ([Sho76], or [DK11, Proposition 7.1])

Ψ : M4(N)
∼=
→ Ω3(E [2](N))〈logD[2](N)〉

F (τ) 7→ (2πi)3F (τ)dz1 ∧ dz2 ∧ dτ.

Let ΦK
2 (N) denote the vector space of K-valued functions on (Z/NZ)2, with subspaces

ΦK
2 (N)◦ := ker{evaluation at (0̄, 0̄)} and

ΦK
2 (N)◦ := ker{augmentation}

=

{
f : (Z/NZ)2

→ K

∣∣∣∣ ∑
06m,n6N−1

f(m,n) = 0

}
.

Assuming K ⊃ Q(ζN ) (ζN := e2πi/N ), these are exchanged by the finite Fourier transform

ϕ(m,n) 7→ ϕ̂(µ, η) :=
∑

(m,n)∈(Z/NZ)2

ϕ(m,n)ζµn−ηmN .

This allows us to define the Q-Eisenstein series EQ
4 (N) by the image of the map

E : ΦQ
2 →M4(N)

ϕ 7→ Eϕ(τ) := − 3

(2πi)4

∑
(m,n)∈Z2\{(0,0)}

ϕ̂(m,n)

(mτ + n)4
.
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The horospherical maps

Hσ : ΦQ
2 (N)◦→Q

ϕ 7→Hσ(ϕ) :=
1

8

N−1∑
a=0

B4

(
a

N

)
· ((πσ)∗ϕ)(a)

record the ‘values’ limτ→i∞Eϕ(τ)|4
M−1
σ

(= Hσ(ϕ)) of the Eisenstein series Eϕ at the cusps. Here

πσ : (Z/NZ)2 � Z/NZ sends (m,n) = a(p, q) + b(−s, r) 7→ a, while (πσ)∗ sums along fibers of
πσ, and B4(x) = x4 − 2x3 + x2 − 1

30 is the fourth Bernoulli polynomial. Alternatively, one has

Hσ(ϕ) = − 6

(2πi)4
L(ι∗σϕ̂, 4)

where ισ : Z/NZ ↪→ (Z/NZ)2 sends a 7→ a(−s, r) and

L(φ, n) :=
∑
k>1

φ(k)

kn
.

To construct the cycles, let U ⊂ E(N) (respectively, U [2] ⊂ E [2](N)) be the complement of
the N2 (respectively, N4) N -torsion sections over Y (N). Fix ϕ ∈ ΦQ

2 (N)◦, and (thinking of it as
a Q-divisor supported on E(N)\U) let mα ∈ Q and fα1, fα2, fα3 ∈ O∗(U) satisfy

∑
αmα(fα1) ∗

(fα2)∗(fα3) = ϕ (Pontryagin product). Here (fαi) is the divisor of fαi, the divisor being viewed as
a function on (Z/NZ)2, and the Pontryagin product of two functions on a finite abelian group is
defined by (f ∗g)(a) =

∑
b+c=a f(b)g(c). The group11 G := D4n(Z/NZ)4 acts on H3

M (U [2],Q(3)),
and the G-symmetrization of∑

α

mα{fα1(−z1), fα2(z1 − z2), fα3(z2)}

extends to a cycle in H3
M (E [2](N),Q(3)) (cf. [DK11, § 7.3.4]). By abuse of notation we shall call

it Zϕ, since its fiberwise AJ 3,3-classes

Rϕ(y) ∈ H2
var(π

[2](N)−1(y),C/Q(3)), y ∈ Y (N) (5.1.1)

depend only on ϕ, indeed, only on the {Hσ(ϕ)|σ ∈ κ(N)}, and not on the choice of {fαi} [DK11,
Corollary 9.1].12

The connection between the cycle Zϕ and the Eisenstein series Eϕ comes about as follows.
First, by using the moving lemma [Blo93] and log complexes of currents, it is possible to extend
the (T,Ω, R) calculus of § 4.2 to the quasi-projective setting ([KLM06, § 5.9], [KL07, § 3.1]). In
particular, the fundamental class of Zϕ (i.e. the image of c3,3

D (Zϕ) in Hg3,3(E [2](N))Q) is computed
by the holomorphic (3, 0)-form ΩZϕ . According to a result of Beilinson (in the form of [DK11,
Theorem 8.1]), we have

ΩZϕ = Ψ(Eϕ) = {(2πi)3Eϕ(τ) dz1 ∧ dz2} ⊗ dτ. (5.1.2)

It follows that Rϕ(y) is given (up to an important ‘constant of integration’) by the Gauss–Manin
integral of (5.1.2); that is, (5.1.2) is ∇Rϕ.

11 Here D4 denotes the dihedral group of order 8.
12 The reader is warned of the typo ‘surjective’ for ‘injective’ in the statement of [DK11, Lemma 9.1(ii)].
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Define the associated higher normal function by13

Vϕ(τ) := 〈R̃ϕ([τ ]), [dz1 ∧ dz2]〉 (5.1.3)

where, for now, R̃ϕ is an indeterminate lift of Rϕ to O⊗R2
varπ

[2](N)∗C. Arguing as in the proof
of Corollary 4.3.3 above, and noting ∇3

τ [dz1 ∧ dz2] = 0,

d3

dτ3
Vϕ(τ) =

d2

dτ2
〈Rϕ,∇τ [dz1 ∧ dz2]〉

=
d

dτ
〈Rϕ,∇2

τ [dz1 ∧ dz2]〉

= 〈(2πi)3Eϕ(τ)[dz1 ∧ dz2], 2[α1 × α2]〉

=−2(2πi)3Eϕ(τ). (5.1.4)

That is, Vϕ is an Eichler integral of Eϕ. This leads to the following result, which is closely related
to [DK11, Proposition 9.2].

Proposition 5.1.1. Assume for simplicity that ϕ̂(m,n) = ϕ̂(−m,−n). Then up to a Q(3)-period
(2πi)3Q0 + (2πi)2Q1 log q + (2πi)Q2(log q)2 (Qi ∈ Q),

Vϕ(q)≡ 2

(2πi)4
L(ι∗i∞ϕ̂, 4)(log q)3 +

1

N
L((πi∞)∗ϕ̂, 3)

+
2

N

∑
M>1

qM/N
∑
d|M

1

d3

∑
a∈Z/NZ

ζ
aM/d
N ϕ̂(d, a). (5.1.5)

(Note that (1/(2πi)4)L(ι∗i∞ϕ̂, 4) ∈ Q.)

Proof. By a classical result (cf. [Gun62]), we have

Eϕ(τ) = H[i∞](ϕ)− 1

N4

∑
M>1

qM/N
∑
r|M

r3
∑

a∈Z/NZ

ζarN ϕ̂

(
M

r
, a

)
. (5.1.6)

In accordance with (5.1.4), we must take three indefinite integrals of −2(2πi)3Eϕ(τ) with respect
to dτ = (1/2πi)d log q, i.e. of −2Eϕ(τ) with respect to d log q. Applying this to the second term
of (5.1.6) gives

2

N

∑
M>1

qM/N

M3

∑
r|M

r3
∑

a∈Z/NZ

ζarN ϕ̂

(
M

r
, a

)
, (5.1.7)

and replacing r by d = M/r recovers the sum in (5.1.5). Doing the same to H[i∞](ϕ) would give

−1
3H[i∞](ϕ)(log q)3 plus an arbitrary quadratic polynomial in log q. The more precise stated

result follows at once from [DK11, (9.29)],14 which is based on the delicate fiberwise AJ 3,3

computation for Zϕ carried out in [DK11, § 9.2]. 2

13 Note: a priori this just uses the Poincaré pairing H2(E×2
τ ,C)⊗2

→ C on each fiber. However, it is better to
think of [dz1 ∧ dz2] as a class in H2(E×2

τ ,C) by Poincaré duality and (5.1.3) as pairing H2 ×H2 → C, since this

approach will extend across the singular fibers of E [2](N) over cusps σ for which Hσ(ϕ) = 0.
14 Note that while this formula is derived in [DK11] for ϕ of the form (1/N)π∗i∞ϕ

′, any ϕ is of this form modulo
ker(H[i∞]) ⊂ ΦQ

2 (N)◦.
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The connection of this formula to trilogarithms arises as follows. Define

L̂i3(x) :=
∑
k>1

Li3(xk) =
∑
k>1

∑
δ>1

xkδ

δ3
=
∑
m>1

xm
∑
δ|m

1

δ3
, (5.1.8)

and suppose that we can write

ϕ̂ =
∑
α|N
β|N

µαβψα,β

where

ψα,β(m,n) :=

{
1 if α|m and β|n,
0 otherwise.

(5.1.9)

In the
∑

M>1 term

2

N

∑
α,β

µαβ
∑
M>1

qM/N
∑
d|M

1

d3

∑
a∈Z/NZ

ζ
aM/d
N ψα,β(d, a)

of (5.1.5), the sum
∑

a∈Z/NZ ζ
aM/d
N ψα,β(d, a) is zero unless α|d and (N/β)|(M/d) (implies

(αN/β)|M), in which case it is N/β. So, after putting M = (αN/β)m and d = αδ, the last

displayed expression becomes

=
2

N

N

β

∑
α,β

µαβ
∑
m>1

(qα/β)m
∑
δ|m

1

δ3α3
,

which (upon putting k = m/δ)

= 2
∑
α,β

µαβ
βα3

L̂i3(qα/β). (5.1.10)

5.2 Modular pullback of the three-banana cycle

In this subsection, we identify the pullback of ΞQ to E [2](6) as an Eisenstein symbol. We begin

with a general statement.

Let X ρ
→ P1 be a 1-parameter family of anticanonical hypersurfaces in a toric Fano 3-fold

P∆, with smooth total space obtained by a blow-up X
β
� P∆, and β(X0) := β(ρ−1(0)) = D∆ :=

P∆\(C∗)3. Suppose we have a higher cycle Ξ̄ ∈ H3
M (X\X0,Q(3)) with ∂TΞ̄ (4.2.2) the integral

generator of H2(X0,Z)15 and a rational map (or even a correspondence) as shown in the following

diagram.

E [2](N)
Θ //

π[2](N)
��

X

��
Y (N)

H // // P1

15 Alternatively, Res(Ξ̄) ∈ H4
M,X0

(X,Q(3)) has cycle class in H4
X0

(X,Q(3)), 1/(2πi)3 of which integrally generates
H2(X0,Z).

2360

https://doi.org/10.1112/S0010437X15007472 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007472


A Feynman integral via higher normal functions

Let Θ : E [2](N) 99K X be the restriction to the complement of the singular fibers, and Ξ ∈H3
M (X ,

Q(3)) the restriction of Ξ̄. Defining coefficients rσ(Ξ) ∈ Q by

Θ̄∗(X0) =
∑

σ∈κ(N)

rσ(Ξ) · π[2](N)
−1

(σ),

we have the following proposition.

Proposition 5.2.1. Modulo cycles with trivial fiberwise AJ 3,3, we have

Θ∗Ξ = Zϕ ∈ H3
M (E [2](N),Q(3))

for any ϕ ∈ ΦQ
2 (N)◦ with Hσ(ϕ) = rσ(Ξ) (∀σ ∈ κ(N)).

Proof. This is immediate from the fact that (5.1.1) depends only on the ‘residues’ Hσ(ϕ). 2

To apply this general statement to the three-banana cycle ΞQ constructed in § 4.1, we begin
by analyzing the transformation of the family of holomorphic forms ω := {ωt} ∈ Γ(P1\LQ,
(πQ)∗Ω

2
πQ

) (cf. (3.3.1)) under the correspondence

XQ
πQ
��

X1(6)+3
∼=

HQoo

$$

X̃

��

p1

2:1
// //p2

2:1
oooo ′E [2]

1 (6)+3

yy

E [2]
1 (6)

J̄
[2]
3oooo

��

θ

tt

P1\LQ Y1(6)+3
∼=

HQoo Y1(6)
2:1

oooo

between E [2]
1 (6) and XQ. Here X̃ is described in § 3.3, and

J
[2]
3 : E [2]

1 (6) := E1(6) ×
Y1(6)

E1(6)
3:1
� ′E [2]

1 (6)

is the map over Y1(6) defined by

(τ ; [z1]τ , [z2]τ ) 7−→
(
τ ; [z1]τ ,

[
−z2

2τ + 1

]
α3(τ)

)
,

and J̄
[2]
3 is its composition with the quotient by I

[2]
3 (cf. § 3.2).

By (2.3.13), the period of H∗
Q
ω over the minimal invariant cycle in Htr

2,Z about q = 0 (t =∞)

limits to (2πi)2; applying p∗2, (p1)∗, (J̄
[2]
3 )∗ multiplies this by, respectively, 2, 2, and 3. Writing

θ∗ := (J̄
[2]
3 )∗(p1)∗p

∗
2, it follows that

θ∗ω ≡ 12(2πi)2dz1 ∧ dz2 mod O(q) (5.2.1)

and hence (noting δq = (1/2πi)(∂/∂τ))

Y (∞) = 〈ω,∇2
δtω〉|t=∞

=
1

12
〈θ∗ω,∇2

δqθ
∗ω〉|q=0

=
122(2πi)4

12(2πi)2
〈[dz1 ∧ dz2],∇2

τ [dz1 ∧ dz2]〉

=−24(2πi)2,
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where Y (t) was defined in Remark 4.3.4. In fact, by that remark we now have κ = −24/(2πi)2

as claimed in the proof of Corollary 4.3.3.
Turning to the computation of the {rσ(ΞQ)}, we take Θ to be the composition of θ with

the base change over Y (6) � Y1(6). We examine the pullback by Θ of the (3, 0) form ΩΞQ
which computes the fundamental class of the cycle. By (4.2.3) and Proposition 4.2.1(ii), ΩΞQ

=

−ω ∧ dt/t ∈ Ω3(XQ), and (5.2.1) now gives

ΩΘ∗ΞQ
=−Θ∗ΩΞQ

= Θ∗ω ∧ dlogHQ(τ)

≡ 12(2πi)3dz1 ∧ dz2 ∧ dτ mod O(q),

which implies at once that r[i∞](ΞQ) = 12. (Note the consistency with (5.1.2) and (5.1.6).) Now

the (partial) pullback of ΞQ to ′E [2]
1 (6) is invariant under I

[2]
3 ; a calculation as in [DK11, § 8.2.2]

shows that consequently r[−1/2](ΞQ) = r[α3(i∞)](ΞQ) = −(r[i∞](ΞQ)/32) = −4
3 . In fact, writing

ΩΘ∗ΞQ
= (2πi)3EQ(τ)dz1 ∧ dz2 ∧ dτ , we have EQ(τ) ∈ M4(Γ1(6)+3), and rσ(ΞQ) : κ(6)→ Q

is the pullback of the function on κ1(6) = {[i∞], [0], [1
2 ], [1

3 ]} taking the respective values 12,
0,−4

3 , 0. (Under κ(6) � κ1(6), the preimage of [i∞], respectively [1
2 ], is {[i∞]}, respectively

{[1
2 ], [3

2 ], [−1
2 ]}.) Using the formula for Hσ, one then finds that the function ϕQ on (Z/NZ)2

with Fourier transform

ϕ̂Q(m,n) :=


−2635/5 (m,n) ≡ (0,±1) mod 6,

2633/5 (m,n) ≡ (±2,±1 or 3) mod 6,

0 otherwise

(5.2.2)

satisfies Hσ(ϕQ) = rσ(ΞQ).

Finally, we determine the pullbacks of ω and ω̃. In [Ver96], it is shown that $1(τ) =

(η(2τ)η(6τ))4(η(τ)η(3τ))−2 is theHQ-pullback of a solution toDPF, so Θ∗(ω̃) = C·$1(τ)dz1∧dz2

for some constant C. But then Θ∗(ω) = −(2πi)2C$1(τ)HQ(τ)dz1 ∧dz2 and, by (5.2.1), C = 12.

Remark 5.2.2. One further immediate consequence is that EQ(τ) = 12($1(τ)/2πi)(dH−1

Q
(τ)/

dτ) = 12 + 24q− 168q2 + · · · , but the equality EQ(τ) = EϕQ(τ) is more useful for us as it allows

us to apply Proposition 5.1.1 and get the ‘constant of integration’ right.

5.3 The main result

Recall that VQ(t) = 〈Rt, [ω̃t]〉. Putting everything together, we arrive at the following theorem.

Theorem 5.3.1. Up to a Q(3)-period (2πi)3Q0 + (2πi)2Q1τ + (2πi)Q2τ
2 (Qi ∈ Q), we have

VQ(HQ(τ))

$1(τ)
= −4(log q)3 + 16ζ(3)− 16{2L̂i3(q6)− L̂i3(q3)− 6L̂i3(q2) + 3L̂i3(q)},

where L̂i3(x) :=
∑

k>1 Li3(xk).

Proof. First, notice that

VQ = 〈R, ω̃〉 = 1
12〈Θ

∗R,Θ∗ω̃〉

= 1
12〈RϕQ , 12$(τ)[dz1 ∧ dz2]〉

=$1(τ)〈RϕQ , [dz1 ∧ dz2]〉
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so that VQ = $1VϕQ . The leading term in (5.1.5) is − 2
3!H[i∞](ϕQ)(log q)3 = −4(log q)3. For the

constant term we compute

((π[i∞])∗ϕ̂Q)(n) =


−2735/5 n ≡ 0 mod 6,

2634/5 n ≡ ±2 mod 6,

0 otherwise

=⇒ 1

6
L((π[i∞])∗ϕ̂Q, 3) =

1

6

∑
n>1

(π[i∞])∗ϕ̂Q(n)

n3

=
1

6
· −2 · 65

5

{
7

3
· 1

63
ζ(3)− 1

3
· 1

23
ζ(3)

}
=
−2 · 64

5
· −20

3 · 63
ζ(3) = 16ζ(3).

Finally, we write, using the character ψa,b defined in (5.1.9),

ϕ̂Q =
−3326

5
{10ψ6,1 − 10ψ6,2 − 9ψ6,3 + 9ψ6,6 − ψ2,1 + ψ2,2}.

Substituting this into (5.1.10) gives the remaining terms in the result. 2

6. Foundational results via Hodge theory

The methodology of §§ 4 and 5 involving higher Chow cycles and currents is delicate. Care is
needed to avoid bad position and ill-defined multiplication of currents. The purpose of this section
is to give a general Hodge-theoretic context for proving basic results about periods in related
situations. In the context of this paper, arguments using currents are required to lift the Milnor
symbol regulator, defined a priori only on X∗t , over all of Xt. Arguments in this section only
give results up to periods over X∗t . Because Xt\X∗t in our case is a union of rational curves, it
turns out that these extra periods associated to 2-chains on Xt relative to Xt\X∗t are themselves
of motivic interest. This point will be discussed briefly at the end of the section.

6.1 Some lemmas
In this subsection, we give an elementary but useful application of Verdier duality (Lemma 6.1.4),
also known, thanks to MacPherson, as ‘red-green duality’ (cf. Remark 6.1.5). We work throughout
with sheaves for the complex topology.

Lemma 6.1.1. Let P be a smooth, quasi-projective variety over C, and let X,Y ⊂ P be closed
subvarieties. Consider the following diagram.

P\(X ∪ Y )

k′

��

j′ // P\X

k
��

P\Y j // P Y
ioo

(6.1.1)

Assume that for every point z ∈X∩Y there exists a ball B about z in P and a decomposition
B = BX × BY (where BX , BY are smaller dimensional balls). Assume further that there exist
analytic subvarieties X ′ ⊂ BX and Y ′ ⊂ BY such that X ∩B = X ′×BY and Y ∩B = BX × Y ′.
Then, viewed as maps on the respective derived categories of sheaves for the complex topology
(in keeping with modern usage we write, for example, j∗ in place of Rj∗), we have

j!k
′
∗QP\(X∪Y ) = k∗j

′
!QP\(X∪Y ). (6.1.2)
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Proof. We have

j∗k∗j
′
!QP\(X∪Y ) = k′∗QP\(X∪Y ). (6.1.3)

Since j! is left adjoint to j∗ we deduce the existence of a map (extending the identity map on
P\(X ∪Y )) from left to right in (6.1.2). To check that this map is a quasi-isomorphism is a local
problem. The assertion is evident except at points of X ∩ Y ⊂ P . By assumption, near such a
point our diagram (6.1.1) looks as follows.

(BX\X ′)× (BY \Y ′) //

��

(BX\X ′)×BY

��
BX × (BY \Y ′) // BX ×BY BX × Y ′oo

(6.1.4)

The assertion is now clear by a variant of the Kunneth formula. Namely, both sides are identified
with

(kBX∗QBX\X′)⊗ (jBY !QBY \Y ′). (6.1.5)

This concludes the proof. 2

Remark 6.1.2. The hypotheses of the lemma are satisfied if X ∪ Y ⊂ P is a normal crossings
divisor locally at points of X ∩ Y .

Lemma 6.1.3. Let notation be as above and write Z = X ∩ Y . We have

H∗(P\X,Y \Z;Q) ∼= H∗(P, j!k
′
∗Q). (6.1.6)

Proof. We have

j!k
′
∗QP\(X∪Y ) = j!j

∗k∗QP\X . (6.1.7)

The functorial distinguished triangle of sheaves on P

j!j
∗S → S → i∗i

∗S +1−→ · · ·

yields a distinguished triangle

j!k
′
∗QP\(X∪Y )→ k∗QP\X → i∗i

∗k∗QP\X . (6.1.8)

Consider the following diagram.

P\X

k
��

Y \Z`oo

k′′

��
P Y

ioo

(6.1.9)

The lemma will follow if we show i∗k∗QP\X
∼=−→ k′′∗`

∗QP\X in (6.1.9). Since i∗ is left-adjoint to
i∗, the existence of such a map is equivalent to the existence of a map

k∗→ i∗k
′′
∗`
∗ = k∗`∗`

∗. (6.1.10)

It is enough to define a map from the identity functor to `∗`
∗. But again by adjunction, this is

the same as a map `∗→ `∗. Here we can take the identity.
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Arguing as before, the problem is now local and we can work in a small ball B = BX ×BY .
The local picture with the notation of the previous lemma is as shown below.

(BX\X ′)×BY

��

(BX\X ′)× Y ′oo

��
BX ×BY BX × Y ′oo

(6.1.11)

Again the assertion is clear by Kunneth. 2

Lemma 6.1.4. Let notation and assumptions be as above, and write n = dimP . Assume P is
smooth and projective. Then we have a perfect pairing

H∗(P\Y,X\Z;Q(n))×H2n−∗(P\X,Y \Z;Q)→ Q. (6.1.12)

Said another way, we have

H∗(P\Y,X\Z;Q(n)) ∼= H2n−∗(P\X,Y \Z;Q). (6.1.13)

Proof. From the previous lemma applied twice, we are reduced to showing

H∗(P, j!k
′
∗Q)(−n) ∼= H2n−∗(P, k!j

′
∗Q)∨. (6.1.14)

The Verdier duality functor D is a contravariant functor on the derived category of sheaves
on P such that the sheaves S and DS are Poincaré dual, i.e. there is a perfect pairing H i(P,
S)×H−i(P,DS)→ Q. We have DQ = Q[−2n](n), and D intertwines lower shriek and lower star.
Thus

H2n−∗(P, k!j
′
∗Q)∨ =H−∗(P, k!j

′
∗DQ)(−n) = H−∗(P,D(k∗j

′
!Q))(−n)

=H∗(P, k∗j
′
!Q)(−n) = H∗(P, j!k

′
∗Q)(−n). (6.1.15)

This concludes the proof. 2

Remark 6.1.5. In the analytic context, one way of representing the factors of (6.1.12) is in terms
of topological cycles (using (6.1.13) and its analogue for the other factor). For the left-hand factor,
these must avoid X (red) but are allowed to bound on Y (green), whereas for the right-hand
factor, red and green are swapped.

6.2 Applications: CY periods
Take n > 2 and assume (various generalizations are possible) that π : P → Pn is a toric variety
obtained by a sequence of blow-ups. Let X ⊂ P be the strict transform of a hypersurface of
degree n + 1, X0 ⊂ Pn. Let Y0 ⊂ Pn be the coordinate simplex Y0 :

∏n
0 Ti = 0 where the Ti are

homogeneous coordinates, and let Y = π−1Y0. We assume that X is smooth and Y ∪ X is a
normal crossings divisor. Let Z = X ∩ Y . Note that P\Y ∼= Pn\Y0

∼= Gn
m. The exact sequence of

relative cohomology yields

Hn−1(Gn
m,Q(n))→Hn−1(X\Z,Q(n))

→Hn(P\Y,X\Z;Q(n))→ Hn(Gn
m,Q(n))→ 0. (6.2.1)

This can be rewritten (the superscript ˜ indicating we take the quotient modulo the image of
Hn−1(Gn

m,Q(n))) as

0→Hn−1(X\Z,Q(n))˜
α
→Hn(P\Y,X\Z;Q(n))→ Q(0)→ 0. (6.2.2)
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Assume further that the topological chain given by Ti > 0, 0 6 i 6 n, lifts to a chain σ on
P with ∂σ ⊂ Y and σ ∩X = ∅.16 Then σ represents a class in Hn(P\X,Y \Z;Q) which maps
to 1 ∈ Q(0) = Hn(P\Y,Q). Via (6.1.13) above, we can interpret σ ∈ Hn(P\Y,X\Z;Q(n)) as a
splitting of (6.2.2) as an exact sequence of Q-vector spaces. The extension class of (6.2.2) in the
ext group of mixed Hodge structures

Ext1
MHS(Q(0), Hn−1(X\Z,Q(n))˜) ∼= Hn−1(X\Z,C(n)/Q(n))˜ (6.2.3)

is computed as follows. By [Del71, Corollaire 3.2.15(ii)] it follows that

F 0Hn−1(X\Z,C(n))˜ = (0).

As a consequence, one has F 0Hn(P\Y,X\Z;C(n)) ∼= C(0), so there is a unique sF ∈ F 0Hn(P\Y,
X\Z;C(n)) lifting 1. So the class of the extension (6.2.2) is given by

ε ∈ Hn−1(X\Z,C(n)/Q(n)) ,̃

where ε is the unique class with α(ε) = σ − sF .
By assumption, X0 is an anticanonical hypersurface in Pn. Let Ω0 6= 0 be a global n-form

on Pn with a pole of order 1 along X0 and no other singularities. Assume further that the
pullback Ω := π∗Ω0 has a pole along the strict transform X of X0 and no other singularities,
so Ω represents a class in FnHn(P\X,C). We have Hn(Y \Z,C) = (0) by cohomological
dimension, and FnHn−1(Y \Z,C) = (0) by [Del71, Corollaire 3.2.15(ii)], so the exact sequence
of relative cohomology yields an isomorphism FnHn(P\X,C) ∼= FnHn(P\X,Y \Z;C). Thus,
Ω lifts canonically to Ω ∈ FnHn(P\X,Y \Z;C). We have a perfect pairing of mixed Hodge
structures by Lemma 6.1.4:17

〈 , 〉′ : Hn(P\X,Y \Z;Q)⊗Hn(P\Y,X\Z;Q(n))→ Q(0). (6.2.4)

In particular, the element 〈Ω, sF 〉′ ∈ FnC(0) = (0). We have proven the following result.

Proposition 6.2.1. With notation as above, the pairing of Ω with the extension class (6.2.2) is
given, up to (relative) periods{∫

Γ
Ω

∣∣∣∣ Γ ∈ image{Hn−1(X,Z;Q)
Tube−−−→ Hn(P\X,Y \Z;Q)}

}
,

by the integral of Ω over the chain σ:

〈Ω, σ − sF 〉′ =
∫
σ

Ω. (6.2.5)

Alternatively, with ω := ResX(Ω), we have

〈ω, ε〉′ ≡ 1

2πi

∫
σ

Ω

modulo relative periods
∫
γ ω, γ ∈ Hn−1(X,Z;Q).

16 One can check for our family of K3-surfaces that blowing up the vertices and then the faces of dimension 1 in
P3 suffices to achieve σ ∩X = ∅.
17 We refer to the beginning of § 4.3 for the definition of 〈 , 〉′.
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To relate the above to the Abel–Jacobi viewpoint for Milnor symbols explained in § 4.2,
one can use Deligne cohomology Hp

D(V,Z(q)) for any quasi-projective variety V over C, [EV88].

There is a functorial cycle class map CH a(V, b)
[ ]
−→H2a−b

D (V,Z(a)). One has the universal Milnor
symbol in degree n which represents a class symn ∈ CH n(Gn

m, n). In our situation, one has
X\Z ↪→ P\Y = Gn

m. Consider the following diagram.

CH n(Gn
m, n)

��

// CH n(X\Z, n)

��

// CH n(Gn
m, X\Z;n− 1)

��
Hn
D(Gn

m,Z(n)) // Hn
D(X\Z,Z(n)) // Hn+1

D (Gn
m, X\Z;Z(n))

(6.2.6)

Deligne cohomology fits into an exact sequence

0→ Ext1
HS(Q(0), Hn−1

Betti(V,Z(r)))→ Hn
D(V,Z(r))→ Hn

Betti(V,Z(r)). (6.2.7)

By cohomological dimension, we have

Hn+1
Betti(G

n
m,Z) = (0) = Hn

Betti(X\Z,Z),

so the bottom line in (6.2.6) can be written

Hn
D(Gn

m,Z(n))
a−→ Ext1

HS(Q(0), Hn−1
Betti(X\Z,Z(n)))

→ Ext1
HS(Q(0), Hn

Betti(Gn
m, X\Z;Z(n))) (6.2.8)

Consider the diagram with top row the extension given by a[symn] in (6.2.8).

0 // Hn−1(X\Z,Q(n))

��

//M

b

��

// Q(0) // 0

0 // Hn−1(X\Z,Q(n))˜ // Hn(Gn
m, X\Z;Q(n)) // Q(0) // 0

(6.2.9)

It follows from (6.2.8) that there exists an arrow b as indicated. This means that up to rational

scale, the Milnor symbol extension coincides with the extension (6.2.2). Note that this does

not recover Theorem 4.3.2. Indeed, quite generally, the ambiguity is given by the periods
∫
c ω

where c represents a class in Hn−1(X,Z;Q). In our situation, where we have a family Xt

of K3-surfaces, the resulting multi-valued function of t does not satisfy the inhomogeneous

Picard–Fuchs equation because the local system with fibers H2(Xt\Zt) is larger than the local

system H2(Xt). For us, the ‘extra’ periods have the form
∫
ct
ωt where ct is a 2-disc on Xt with

boundary on Zt. Since Zt is a union of rational curves, such periods are associated to motivic

cohomology classes in H3
M (Xt,Q(2)). For more detail on these interesting periods, see [Ker13]

and the references cited there.

7. Special values of the integral

As promised in § 4.3, we present some consequences for special values of the identification of the

Feynman integral as a higher normal function (Theorem 4.3.2) by evaluating the three-banana

integral at the special values t = 1 and t = 0.
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7.1 Special value at t = 1
It has been conjectured in [BBBG08, Bro11, Bro13] that the value at t = 1 of the three-banana
integral is given by an L-function value

IQ(1) =
12πi√
−15

L(f+, 2) (7.1.1)

where L(f+, s) =
∑

n>1 an/n
s is the L-function associated to the weight-3 conductor-15 modular

form

f+(τ) = η(τ)η(3τ)η(5τ)η(15τ)
∑
m,n∈Z

qm
2+mn+4n2

=
∑
n>1

anq
n (7.1.2)

constructed in [PTvdV92].
We will show that (7.1.1) holds up to a rational coefficient using a triviality result,

Theorem 7.1.2 below, for the trace of a certain Z/5Z-action on the Milnor symbol. The proof
invokes Deligne’s conjecture [Del79] for critical values of L-functions. In this case, the L-function
in question (7.1.2) is a Hecke L-series associated to an algebraic Hecke character, and Deligne’s
conjecture was proven by Blasius [Bla86]. The specific application we will use of their work is
the following proposition.

Proposition 7.1.1. Let ω1 ∈ Γ(X1,Ω
2) be the algebraic differential form over Q (3.3.1).

(i) Let 0 6= c ∈ H2(X1,Q)tr be a 2-cycle. Then L(f+, 2) ∈ Q(
√
−15) ·

∫
c ω1.

(ii) Let 0 6= x ∈ H2(X1,Q(2))tr be a Betti cohomology class. Then L(f+, 2) ∈ Q(
√
−15) ·

〈x, ω1〉′. Here 〈x, ω1〉′ is the Poincaré duality pairing.

Proof. Note that (i) and (ii) are equivalent because H2(X1,Q) ∼= H2(X1,Q(2)), an isomorphism
of Hodge structures which is compatible with the pairings with H2. (To see that the L-function is
critical at s = 2 the reader can consult [HS85, § 2].) The usual formulation of Deligne’s conjecture
would say that if x in (ii) is invariant under the real conjugation, then L(f+, 2) ∈ Q · 〈x, ω1〉′.
However, in this case we have complex multiplication by Q(

√
−15), i.e. H2(X1,Q)tr is a rank one

Q(
√
−15)-vector space, so changing x multiplies the pairing by an element in the CM field. 2

7.1.1 Special fiber at t = 1. Recall from § 3.2 that countably many fibers Xt in the K3 family
have Picard number 20, and hence are of CM type. That X1 is one of these CM fibers is shown
in [PTvdV92] (so that H2

tr(X1) is a CM Hodge structure). What makes X1 special amongst the
CM fibers is an additional symmetry property which arises as follows.

Consider P4 with homogeneous coordinates T0, . . . , T4, hyperplane H = {
∑4

i=0 Ti = 0}, and
hypersurface Y = {

∑4
i=0

∏
j 6=i Tj = 0}. Then X1 is a resolution of singularities of H ∩ Y , which

can be seen by writing Ui := Ti|H (i = 0, . . . , 4) and xi := Ui/U0 (i = 1, 2, 3). Since Y and H are
stable under the permutation action of the symmetric group S5 on the {Ti}, it is clear that S5

acts on H ∩ Y and hence birationally on X1. Let ω1 ∈ Ω2(X1) be as in (3.3.1). Since we may
express ω1 as

ResX ResH

(∑4
i=0(−1)iTidT0 ∧ · · · ∧ d̂Ti ∧ · · · ∧ dT4

(
∑

i

∏
j 6=i Tj)(

∑
Ti)

)
∈ Ω2(H ∩ Y ),

the action of S5 on Cω1 and hence on H2
tr(X1)(( H2

var(X1)) is through the alternating
representation.
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7.1.2 The higher normal function analysis.

Theorem 7.1.2. The value of the Feynman integral at one is (2πi)3 times a period of

ω1 := ResX1

(
dx/x ∧ dy/y ∧ dz/z

1− (1− x− y − z)(1− x−1 − y−1 − z−1)

)
.

Proof. Let σ : X1 → X1 be the automorphism induced by the cyclic permutation T0 7→ T1 7→
· · · 7→ T4 7→ T0 of the {Ti}. Write Ξ̂1 :=

∑4
j=0(σj)∗Ξ1 ∈ H3

M (X1,Q(3)). Since σ∗ω̃1 = ω̃1, we
have

5VQ(1) = 5〈R1, ω̃1〉

=

4∑
j=0

〈R1, (σ
j)∗ω̃1〉 =

〈 4∑
j=0

(σj)∗R1, ω̃1

〉
,

where the cohomology class
∑4

j=0(σj)∗R1 ∈ H2
var(X1,C) gives a lift of AJ

3,3
X1

(Ξ̂1) ∈ H2
var(X1,

C/Q(3)). To show that VQ(1) is a Q(3)-period, it will suffice to establish that the image of the
latter in H2

tr(X1,C/Q(3)) is zero.
Let U ⊂ X1 be any Zariski open set and Y = X\U . In the commutative diagram18

H3
M,Y (X,Q(3))

AJY
��

// H3
M (X1,Q(3))

AJX1

��

// H3
M (U,Q(3))

AJU
��

H2
Y (X1,C/Q(3)) // H2(X1,C/Q(3))

ν // H2(U,C/Q(3))

the image of ν factors the projection from H2(X1) to H2
tr(X1). This reduces the problem to

checking that the image Ξ̂1|ηX1
of Ξ̂1 in

lim−→
U

H3
M (U,Q(3)) ∼= KM

3 (C(X1))⊗Q

is zero.
This is now a simple computation in Milnor K-theory (written additively). Working modulo

(2-)torsion, we have

ξ := {x, y, z} =

{
x,
y

x
,
z

x

}
,

σ∗ξ =

{
y

x
,
z

x
,
1 + x+ y + z

x

}
=

{
1 + x+ y + z

x
,
y

x
,
z

x

}
,

(σ2)∗ξ =

{
z

y
,
1 + x+ y + z

y
,

1

y

}
= −{1 + x+ y + z, y, z},

(σ3)∗ξ =

{
1 + x+ y + z

z
,

1

z
,
x

z

}
= −

{
1 + x+ y + z,

1

x
, z

}
,

(σ4)∗ξ =

{
1

1 + x+ y + z
,

x

1 + x+ y + z
,

y

1 + x+ y + z

}
= −

{
1 + x+ y + z,

y

x
,

1

x

}
.

18 Note: H3
M,Y (X,Q(3)) ∼= CH 2(Y, 3)Q.
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Now observe that

ξ + σ∗ξ =

{
1 + x+ y + z,

y

x
,
z

x

}
and

(σ2)∗ξ + (σ3)∗ξ + (σ4)∗ξ = −
{

1 + x+ y + z,
y

x
,
z

x

}
,

so that Ξ̂1|ηX1
=
∑4

j=0(σj)∗ξ = 0. 2

7.1.3 Value at t = 1. The proof for Broadhurst’s formula (7.1.1) up to a rational coefficient
is now straightforward. By Theorem 7.1.2, the regulator class in H2(X1,C/Q(3))tr is trivial,
which implies that the lifting R of this class to H2(X1,C)tr lies in H2(X1,Q(3))tr = 2πi ·H2(X1,
Q(2))tr. Thus,

IQ(1) = 〈R, ω1〉′ ∈ 2πi〈H2(X1,Q(2)), ω1〉′ = Q(
√
−15) · 2πiL(f+, 2). (7.1.3)

The identity on the right follows from Proposition 7.1.1.

7.2 Special value at t = 0

It has been shown in [BBBG08, Bro13] that IQ(0) = 7ζ(3). We provide in this section a derivation

of this result from the point of view of higher normal functions.

Theorem 7.2.1. The value of the Feynman integral at zero is 7ζ(3).

Proof. The fiber X0 (after semistable reduction) has the two components Y1 and Y2 arising from

1− x− y − z = 0 and 1− x−1 − y−1 − z−1 = 0 respectively, and six arising from the semistable

reduction process which we may ignore since R{x,y,z} is zero there. The motivic cohomology

formalism tells us to compute the pairing

VQ(0) = 〈[R{x,y,z}], [ω̃0]〉 =
2∑
i=1

∫
Yi

R{x,y,z} ∧ ω̃0

of a cohomology and homology class.
Observing that Y1∩Y2 is essentially the ‘triangle’ {(x, y, 1−x−y)|(1−x)(1−y)(x+y) = 0},

let γ = γ1 +γ2 +γ3 be a generator of H1(Y1 ∩ Y2,Z). Also let β = β1 +β2 be a 2-cycle on X0 with
∂β1 = γ = −∂β2 and where (x, y, z) 7→ (x−1, y−1, z−1) sends β1 7→ β2. We have in H2(X0,Q)
(really in H2

var, i.e. working modulo classes in the limit of the fixed part) that [ω̃0] = 1
2β. The 1

2
is obtained by computing

Resx=1 Resy=1 Resz=1−x−y
dx/x ∧ dy/y ∧ dz/z

φQ(x, y, z)

= Resx=1 Resy=1
dx/x ∧ dy/y

(1− x−1 − y−1 − 1
1−x−y )(x+ y − 1)

= Resx=1 Resy=1
dx ∧ dy

(1− x)(1− y)(x+ y)
=

1

2
,

which is a period of ω̃0 over a vanishing cycle α ∈ H2(X0) with 〈α, β〉 = 1.
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It remains to compute

1

2

2∑
i=1

∫
βi

R{x,y,z} =

∫
β1

R{x,y,z}

=

∫
β1

log(x)
dx

x
∧ dy
y

=

∫
β1

log(x)

y(1− x− y)
dx ∧ dy

=

∫
β1

d

{
log(1− x− y/y) log(x)

1− x
dx

}
=

∫
γ1+γ2+γ3

log(1− x− y/y) log(x)

1− x
dx

= 2

∫ 1

−1

log(−x) log(x)

1− x
dx.

This integral is readily evaluated as follows:

2

∫ 1

−1

log(−x) log(x)

1− x
dx≡ 4

∫ 1

−1
log(1− x) log(x)

dx

x
mod Q(3)

≡−4
∑
k>1

1

k

∫ 1

−1
log(x)xk−1 dx mod Q(3)

≡ 8
∑
k>1
odd

1

k3
≡ 7ζ(3) mod Q(3).

Now IQ(0) is obviously real, so we can ignore the Q(3) ambiguity. 2

Remark 7.2.2. Alternatively we can give a very different proof of Theorem 7.2.1 using the

Eisenstein analysis of § 5. Referring to the proof of Theorem 5.3.1, we have

IQ = VQ = $1(τ) · VϕQ(τ).

Applying [DK11, Propositions 9.2 and 9.4] (the former suitably modified for the cusp [0]), we

have that

VϕQ(τ) ∼ −τ
2

6
L((π0)∗ϕ̂Q, 3) = 7 · 3 · 24ζ(3)τ2

as τ → 0. For the other factor, the property η(−1/τ) =
√
τη(τ) of Dedekind eta allows us to

pull back $1(τ) = (η(6τ)η(2τ))4/(η(3τ)η(τ))2 under µ6 : τ 7→ −1/6τ =: τ̃ . Namely, we have

$1(τ) = $1(−1/6τ̃) = −3

4
τ̃2HQ(τ̃)$1(τ̃) ∼ 3

4
τ̃2 =

1

243τ2

as τ → 0. Taking the product (and noting the correspondence τ = 0↔ t= 0) gives IQ(0) = 7ζ(3).
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Appendix A. Higher symmetric powers of the sunset motive

In this section we consider the higher symmetric powers for the sunset regulator. This leads
immediately to generalization of the Eichler integral found for the two-loop sunset (cf. [BV15]
and § 3.1) and three-banana (cf. § 3.2) Feynman integrals. It remains to be seen whether this has
any relevance for the higher loop banana integrals studied in [Van14, § 9].

Consider the series∑
a6=0

e
ψ(a, b)

an−1(aτ + b)
Eisenstein summation, n = 3, 4. (A.1)

(Here ψ : (Z/NZ)2
→ C is some map.)

Let A be a finite dimensional Q-vector space, and let A∨ := Hom(A,Q) be the dual. There is a
natural embedding A∨ ↪→ Der(Sym(A)) identifying A∨ with the translation invariant derivations
of Sym(A), the symmetric algebra. (For example, if ai is a basis of A, the dual basis elements
a∨i are identified with ∂/∂ai.) This leads to perfect pairings

〈 , 〉 : Symn(A∨)⊗ Symn(A)→ Q, 〈DI , aJ〉 = DI(aJ)|0 (A.2)

Notice, however, that because of factorials, this pairing is not perfect integrally. (The integral
dual of Sym is the divided power algebra.)

Let B := Zε1⊕Zε2. Identify B ∼= B∨ via the pairing 〈ε1, ε2〉 = −〈ε2, ε1〉 = 1. With the above
identification we find

〈εi11 ε
i2
2 , ε

j1
1 ε

j2
2 〉 =

{
(−1)i2i1!i2! ik = j1−k,

0 otherwise.
(A.3)

We now compute 〈
(τε1 + ε2)n−2,

∫ i∞

τ

(xε1 + ε2)n−2 dτ

(ax+ b)n

〉
= (n− 2)!

n−2∑
k=0

(
n

k

)
(−τ)n−2−k

∫ i∞

τ

dxxk

(ax+ b)n

= (n− 2)!

∫ i∞

τ

(x− τ)n−2

(ax+ b)n
dx

=
(n− 2)!

(n− 1)an−1(ax+ b)
. (A.4)

Notice the left-hand side is exactly the pairing we would expect to compute for Symn−2H1(Et),
where Et is the sunset elliptic curve, while the right-hand side when Eisenstein summed over a, b
yields the corresponding function (A.1).
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eds R. Laza, M. Schütt and N. Yui (Springer, New York, 2013), 387–409.

KL07 M. Kerr and J. Lewis, The Abel–Jacobi map for higher Chow groups, II, Invent. Math. 170
(2007), 355–420.

KLM06 M. Kerr, J. Lewis and S. Müller-Stach, The Abel–Jacobi map for higher Chow groups, Compos.
Math. 142 (2006), 374–396.

LR05 S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl.
Phys. B 704 (2005), 349–386.

Lev97 A. Levin, Elliptic polylogarithms: an analytic theory, Compositio Math. 106 (1997), 267–282.

Mor84 D. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105–121.

MW09 D. Morrison and J. Walcher, D-branes and normal functions, Adv. Theor. Math. Phys. 13
(2009), 553–598.

MWZ12 S. Müller-Stach, S. Weinzierl and R. Zayadeh, A second-order differential equation for the two-
loop sunrise graph with arbitrary masses, Commun. Number Theory Phys. 6 (2012), 203–222.

MWZ14 S. Müller-Stach, S. Weinzierl and R. Zayadeh, Picard–Fuchs equations for Feynman integrals,
Comm. Math. Phys. 326 (2014), 237–249.

Ouv05 S. Ouvry, Random Aharonov–Bohm vortices and some exactly solvable families of integrals,
J. Stat. Mech. Theory Exp. 1 (2005), P09004.

PTvdV92 C. Peters, J. Top and M. van der Vlugt, The Hasse zeta function of a K3 surface related
to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992),
151–176.
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(4) 27 (1910), 55–108.

Sch73 W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent.
Math. 22 (1973), 211–319.

Ste14 W. A. Stein et al., Sage mathematics software (Version 6.2), The Sage Development Team,
2014, http://www.sagemath.org.

Sho76 S. Shokurov, Holomorphic forms of highest degree on Kuga’s modular varieties, Mat. Sb. (N.S.)
101 (1976), 131–157, 160 (in Russian).

Van14 P. Vanhove, The physics and the mixed Hodge structure of Feynman integrals, Proc. Symp.
Pure Math. 88 (2014), 161–194.

Ver96 H. Verrill, Root lattices and pencils of varieties, J. Math. Kyoto Univ. 36 (1996), 423–446.

Wei76 A. Weil, Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik
und ihrer Grenzgebiete, vol. 88 (Springer, Berlin, Heidelberg, New York, 1976).

Zag90 D. Zagier, The Bloch–Wigner–Ramakrishnan polylogarithm function, Math. Ann. 286 (1990),
613–624.

2374

https://doi.org/10.1112/S0010437X15007472 Published online by Cambridge University Press

http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
https://doi.org/10.1112/S0010437X15007472


A Feynman integral via higher normal functions

Spencer Bloch spencer bloch@yahoo.com

5765 S. Blackstone Ave.,
Chicago, IL 60637, USA

Matt Kerr matkerr@math.wustl.edu

Department of Mathematics, Campus Box 1146,
Washington University in St. Louis,
St. Louis, MO 63130, USA

Pierre Vanhove pierre.vanhove@cea.fr

Institut des Hautes Études Scientifiques, Le Bois-Marie,
35 route de Chartres F-91440 Bures-sur-Yvette, France

and
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