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ABSTRACT AND INTRODUCTION

Quadratic programming means maximizing or minimizing a
quadratic function of one or more variables subject to linear restric-
tions i.e. linear equations and/or inequalities.

Among the numerous insurance problems which can be formulated
as quadratic programs we shall only discuss four, namely the
Credibility, Retention, IBNR and the Cost Distribution problems.

Generally, there is no explicite solution to quadratic optimization
problems, only statements about the existence of a solution can be
made or some algorithm may be recommended in order to get exact
or approximate numerical solutions. Restricting ourselves to
typical problems of the above mentioned type, however, enables us
to give an explicit solution in terms of general formulae for quite
a number of cases, such as the onedimensional credibility problem,
the retention problem and—under relatively week assumptions—
for the IBNR-problem.

The results given here are by no means new. The only goal of
this paper is to describe a few fundamental insurance problems
from a common mathematical standpoint, namely that of quadratic
programming and at the same time, to draw attention to a few
special aspects and open questions in this field.

i. THE CREDIBILITY PROBLEM

We consider a portfolio consisting of N different risk categories
j (j = 1,2, N) for each of which claims statistics over the
last n years (i — 1,2, n) are available. With Pq > 0, we
denote the volume of class no. j for the year no. i (volume = number
of risks, total sum insured or underlying premium volume) and
with Yn the corresponding total of claims (or number of claims) so
that the yearly loss ratios (or the claims frequency) are given by
Xtj =
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For the entire statistical period we therefore have
n

a volume P.j = S Pg

and a loss ratio X.} = Y.jjP.j with Y.} = 2 Yq.
( - 1

Now, the so-called credibility problem consists of estimating the
expected value of X. k for a fixed risk category k under the condition
that the latter depends on a risk parameter 6 which characterizes
the heterogeneity of the portfolio. Or, expressed a little more
mathematically:

Estimate E [X.k \ P.k = P, %k = 6]
if E [X. k | P. fc = P, 6k = 0] = (x(m independently of P ,

a* (6)
Var [X.lc\P.k = P,Qlc = d] = - ^

where X. k and X. j are assumed to be stochastically independent
for j ^ k and fixed 6̂  and 6̂  and furthermore 6; independent and
identically distributed according to a distribution £7(6) which is
called "structure function".

Confining ourselves to linear and unbiased minimum square
estimates we may finally write:

For fixed k determine <x# (i = i, 2, . . . « ; j = i, 2, .. .N) such
that

(i) £[{|i.(6fc)— 2 SocflX0p]= minimum

(ii)- E[1i 2 a#X#] = £e [[49)J (unbiasedness)

(iii) o < â - < i for i = i, 2, . . . w and j = i, 2, ...N.

This is a quadratic program for the nN unknowns oc#.

Its explicit solution is given by [2]

wP.fc
where v^ = —• — = Credibility of risk category k

V + wPi
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with v = £e[>
2(9)], w = Vare[[x(6)]

_ N N

and X = £ (y;/y) X . ; with y = S y.j.

We can therefore say that the estimate which is optimal in the
above sense is a weighted average of the individual claims ex-
perience X. ic and the overall claims experience X. The latter is in
general, however, not identical with the "natural" portfolio
average X.. where the individual claims experiences are weighted
with the relative premium volumes, namely

X.. = S (P.JIP..)X.J with P. . = S P.j

but instead, the correct weights are, as we have just seen, the
relative credibilities, since

X= S (y.jly)X.j w i th y = 2 y.y

From the special form of the credibilities y.j we can also im-
mediately see that

—the larger the risk category j (i.e. the larger P.j), the larger is

1-1
—the larger the variations of the Xq's in time (i.e. the larger v),

the smaller is y.;

—the larger the variations of the Xy's within the portfolio (i.e.
the larger w), the larger is y.j

These observations match perfectly with what we may already
have intuitively expected and this makes it relatively easy to
discuss the general results also with insurance practitioners who
are not necessarily mathematically oriented.

However, this very practical advantage seems to be lost as soon
as we change to two- or more-dimensional risk parameters, since at
least so far, we have not been able to write up a similar kind of
explicit solution for 6 = (6/, 0//), i.e. for the case where the port-
folio is divided into subgroups by two or more criteria at the same
time.
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2. RETENTION PROBLEMS

The retention in reinsurance arrangements can be determined
by means of quadratic optimization as is demonstrated in the fol-
lowing summary of a chapter from [1].

Let us consider a portfolio consisting of N independent risks,
where the i-th risk is characterized by S<*), the accumulated claim
in a given time interval. An individual reinsurance arrangement is a
function gi which determines a retained portion gjfSW] of 5<*>.

Confining ourselves to the proportional case, let P<*) denote the
price demanded by the reinsurer for taking over the risk completely,
and P<*).(i — «j) for accepting the cession 1—«j. Then the
stochastic variable

Z = S ai(PU)—SU>) (1)

measures the profit earned on the retained portion of the portfolio.
Then our problem is that of finding those reinsurance arrangements
which guarantee the given expected profit E(Z) in the retention
with the smallest possible deviations. In other words, we determine
the at so that

Var(Z) = min.

under the additional condition that

E(Z) = constant.

For this purpose we introduce the Lagrange multiplier X and dif-
ferenciate the function

</> = Var(Z) + \E{Z) (2)

partially with respect to «j. Because of the independence of the
we have

Var(Z) = 2 ^ Var(Sw)

and

E{Z) = S (n(P<«-£[S(«)]).
i = 1

From
16
-^ = 2«; Var[S«>] + A(PW) — £[S«)]) = o (3)
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for all j it follows that

C is called "absolute Retention" (cf. [i]).

It depends on the insurance carrier's stability policy. If e.g. ac-
cording to the ruin criterion, the probability of ruin should be less
than a given Po it is shown in [i] that

c =
p . | l n P 0

A'
under the assumption that Sw) = £

where

4̂y is a Poisson distributed number of claims variable,
Y^ are independent non-negative variables with identical dis-

tribution,

u is the amount of free reserves, and
p is the ratio of proportional loading in the retained portion in

relation to that in reinsurance.

Replacing those «; which exceed i by i yields an optimal solution
for a smaller E{Z) than the one given.

3. THE IBNR-PROBLEM

In this context IBNR stands for both "Incurred But Not
Reported" and inadequate reserving of already reported claims. It
is a wellknown fact when dealing with so-called "longtail business"
that the final number of claims and final total yearly claims cost
are only known after several years. The insurer—and especially
the excess of loss reinsurer of Motor Liability e.g.—is therefore
forced to estimate final loss ratios either for premium calculation or
reserving purposes on the basis of incomplete statistics. These
purely statistical observations are usually presented as follows in
what is called an "IBNR-triangle":
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Loss ratios as per the end of

1966 1967 1968 1969 1970
year of
occurrence

1966

1967

1968

1969

1970

i = 5
i = 4

i = 3
i = 2

i = 1

e.g. Xi^ = loss ratio for 1967 as per December 31st, 1969

If there are m statistical years in total, we have a triangle

T\X = {If1 I * = 1, 2, m; h = i, 2, i)

and our problem is to estimate the final loss ratio e.g. for the year
i = q or, in other words:

For the conditional expectation EIX^ | ̂ X] determine an
estimator jx̂ 00' such that

- V-q s \ = minimum

and ELi^0'] = Et-E^i00' | ^-X]].
We are thus looking for an unbiased minimum square estimator

for the—at present unknown—final loss ratio of the year i = q.

Under the assumptions

(i) X^ stochastically independent of Xft'1 for i ^ {'
(ii) E[X<h)] = e(K) independently of i

(iii) Pt Cov \X\h), X^} = chh, independently of i and with P% =
underlying premium volume of year i

(iv) 'fz'00' = S 2 0LihX^h) i.e. we confine ourselves to linear esti-
i - l 4 - 1

mators
(v) loss ratio already final after m years: X\m^ = X^

we are again confronted with a quadratic program, this time for
m(m + 1)

the unknowns a^ and subject to simply one boundary

condition, namely
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According to [3] the general solution of this problem is described
by the two following equations

£<»> = oc S Pfa, ft Xt) + (c^, P"1^) (1)

= a £

where the following vector and matrix notation has been used

(2)

C l l C 12 • • • CH

C 21 C 2 2 • • • C2i

> cmi ~

, _ _ , . _ ~U CH • • • Cii

(P4~
1 = inverse of the covariance matrix p4) and where (a, b) denotes

the inner product of the two vectors a and b.
If the expectations em and covariances pm are known, we can

therefore first calculate the multiplier a from equation (2) and
afterwards, by introducing a into (1), directly get the estimator
(̂OT) EqUation (2) is, by the way, nothing else than the condition

of unbiasedness applied to equation (1).

As shown in [5], these calculations become much more transparent
if

{ad-either (i) X<*> = X<*-D + Y<ft>, Y<ft> independent of
ditive model)

or (ii) XW = A<A> Z<ft-D, AW independent of X&-1) (multi-
plicative model)

or (iii) XW = A(*)X(*-D + YW; X»-», YW, AW indepen-
dent (the "mixed" model)

because in these cases the inverses P"1 can all be explicitly written
up (their elements are all equal to zero except those in the diagonal
and in the two adjacent "diagonals").

https://doi.org/10.1017/S0515036100006127 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006127


318 QUADRATIC PROGRAMMING IN INSURANCE

When dealing with concrete practical problems, the parameters
em and (3m are of course unknown, these parameters also have to be
estimated from the information contained in the triangle ^X, a
problem which—depending on one's view—may be formulated as
yet another quadratic programme. In this context, the estimation of
the covariances is of primary interest. Starting e.g. with estimators
chk of the form

ljm

we may perhaps discover that the corresponding estimators for the
coirelation coefficient, namely

are neither bounded by —i or + i nor—as it seems reasonable
to assume—monotonically increasing in h for h ^ k. It is then
indicated to "isotonize" the above p̂ fc values which is essentially
equivalent to solving a specific quadratic program [4].

4. THE COST DISTRIBUTION PROBLEM

We consider an insurance portfolio divided with respect to two
criteria, e.g. branches i (i = 1, 2, . . . . . n) and countries j (j = 1,
2, . . . . . . m), which has to contribute an amount C to a fund, e.g.
a catastrophy fund.

Furthermore, let Ai, Ai, , An and Bi, B2, , Bm denote
the contributions per branch and country, respectively. We assume

S Ai = S B , = C.

The following table represents the distribution of these costs,
where %P# stands for the contribution of branch i in country j ,
Pjj being the corresponding volume (e.g. number of risks, sum
insured or underlying premium volume).
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country 1 country 2 country m

branch 1 xn P11 %i2 P.12 Xim Pim Ax

branch 2 x2x P21 #22 P22 Xim P2

branch n Xni Pnl xni Pni xnm Pnm An

B2 Bm C

We write A{ = a^Pj., Bj = bjP.h C = cP..

where

Pt.= S Pij,P.j= £ PynndP.. = £ S P

Now our problem consists in minimizing the function

2 2 (%• — c)2Pij such that

2 XrjPrj = arPr. (r = 1,2, , w)

Xrs > 0. (3)

As far as we know, this problem cannot be solved explicitly. We
are thus forced to confine ourselves to a few remarks about the
rare results found until now. First, treating the problem without any
sign-restrictions, we form the Lagrangian

<f>= S i {xy — c)» P v + 2 £ %i(£ xy Pfj — At)
j - i ( - 1 i - i j - i

+ 2 2 X; (S xijPij—Bj).

Putting the partial derivatives with respect to xrs to o yields
(4)
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Summing up over r and s, respectively, we get for the Lagrange
multipliers dr and Xs the equations

2 6tP,, + X , P . , = (c — bs)P.s (s = i, 2, ,w) (5)

6rPr. + 2 XyPr;- = (c — ar) Pr. (r = I, 2, , n)

which solved for 0 yield

0rPr. — S 8<or i=8 l . (r = i,2, , n) (6)

With art = V -ZL-S and Sr

,--i

or in matrix-notation

AQ = §

where a^ = 2 a^, aik = â ^ = — ajfc

and 2 8j = o.

The rank of A is less or equal to n — i. In the sequel we assume
rank A = n — i. In this case the one-dimensional subspace
6 = p. i is the solution of the homogenous system AQ = o.

To find a special solution 6* of the inhomogenous system we
add the equation

0* = o

n

because of 2 Sj = o the system

A ) e * = 8 , o
I O O . . . . 0 /

has at least one solution too.
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The solution of the system

321

0.21 . —<X2ra

— 1x34

(X24 <X34 (7)

introduced in 5) and 4) yield the xrs.
Explicit expressions become very complicated for n > 3.

Yet, there are some rules for the computation of the determinant
A of the matrix in 7): It is the sum of all products a ^ a*,*;,
. . . . a.inin in which every subscript appears at least once and in
which no h factors (h = 2, 3, . . . , n) may be ordered in a cycle as

Similar rules exist for the next lower subdeterminants of A.

As an example in the case of n = 3, we have

A = 0C121x13 4" <xi2 <X23 + ai3 K23 a n d the solutions of 5) are

1X23 t 2s T" "Zs . <X13
_— bs

= bs + —-

P..
1X23 P i s

A~

"T~ T; S2 + ~r~

A P . ,

1 A P.

0,13 Pis + P3s

<X13 P 2 3

A P . s 2 ~

ua ^ A ,

ai2 Pis +

T P^
8s.

As the problem can be solved explicitly for n = 2, presumably
even with the sign restrictions, one is encouraged to try to solve the
problem "iteratively" in a first step by distinguishing the first line
of A, combining the second, third a.s.o. to one single line and solving
this 2xm problem (2 lines, m columns), then in a second step dis-

https://doi.org/10.1017/S0515036100006127 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006127


322 QUADRATIC PROGRAMMING IN INSURANCE

tinguishing the originally second line, combining the third to last
a.s.o.

It seems, however, that this procedure is not generally applicable,
at least the numerical examples we have dealt with so far by this
method led, in some cases, to solutions, in others to contradictions.
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