
J. Fluid Mech. (2021), vol. 907, R4, doi:10.1017/jfm.2020.876
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This paper presents a quantitative evaluation of the Reynolds analogy factor s = 2ch/cf for
self-similar turbulent boundary layers with pressure gradients in the streamwise direction
via direct numerical simulation. Both sub- and supersonic cases are considered at nearly
adiabatic wall conditions. The Reynolds analogy factor is found to be greatly increased
for adverse-pressure-gradient cases and decreased for favourable-pressure-gradient cases.
Although the boundary layers considered cover a comparatively large Reynolds-number
range from small to moderate Reynolds numbers, no Reynolds-number dependency of s
is found in the parameter range investigated. Mach-number influences on s are found to
be small; s decreases slightly with increasing Mach number. The influence of pressure
gradients on s turns out to be well approximated by the analytical relation derived by So
(Intl J. Heat Mass Transfer, vol. 37, 1994, pp. 27–41) for incompressible flow if a fixed,
calibrated Reynolds number is used. Moreover, the effects of non-self-similarity prior to
the self-similar region are assessed.
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1. Introduction

The Reynolds analogy is one of the essential building blocks for the theoretical
description of the energy equation in wall-bounded flows. It expresses a similarity between
momentum exchange and the specific, i.e. temperature-difference-related, heat transfer in
certain fluid flows, and hence can be seen as the essential basis of most turbulence models
for the energy equation in turbulent flows. For compressible flows, it further forms the
basis of most fundamental compressible concepts (for instance, Morkovin’s hypothesis),
which all rely on arguments based on the Reynolds analogy. For wall-bounded flows, the
overall effect of the Reynolds analogy can be determined by considering only the ratio
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between the specific wall heat flux and the wall shear stress, which is commonly known as
the Reynolds analogy factor s with

s ≡ 2ch

cf
= q̄wue

τ̄wcp
(
Tw − T̄r

) . (1.1)

Here cf ≡ τ̄w/(ρeu2
e/2) is the skin-friction coefficient and ch ≡ q̄w/(ρeuecp(Tw − T̄r)) the

heat transfer coefficient, i.e. the Stanton number. The subscript e indicates flow properties
evaluated at the boundary-layer edge y = δe. Bar denote Reynolds (ensemble) averaged
values, while values that do not have a fluctuation component are denoted without bars;
τ̄w is the mean wall shear stress, q̄w the wall heat flux in the wall-normal direction y,
Tw the prescribed wall temperature, T̄r the adiabatic wall (recovery) temperature and
cp the specific heat at constant pressure. The Reynolds analogy factor is an excellent
representation of the Reynolds analogy because it reflects the integral effect of the
momentum and heat transfer across the boundary layer at the wall.

For turbulent flows, however, the behaviour of the exact Reynolds analogy factor s (and
hence the Reynolds analogy in general) is complex,and observed trends have often not
been validated due to the lack of high-quality data. For zero-pressure-gradient (ZPG)
conditions, on the one hand, s is surprisingly insensitive to variations in Tw (or q̄w),
Reynolds number or Mach number; see e.g. Duan, Beekman & Martin (2010), Duan &
Martin (2011) and Zhang et al. (2014). On the other hand, influences such as surface
roughness (see e.g. Forooghi et al. 2018; Peeters & Sandham 2019) and pressure gradients,
among others, have strong effects on s. Under pressure-gradient conditions, the Reynolds
analogy factor is influenced by the particular pressure distribution in the streamwise
direction, and also variations in Tw (or q̄w) have an impact if combined with pressure
gradients, as is known for laminar cases; see Cohen & Reshotko (1955). From the point
of view of literature, the quantitative influence of streamwise pressure gradients on s
is largely unknown, because both measurements and simulations of heat transfer are
essentially non-existent, even for situations where the flows are in some state of streamwise
self-similarity (except in the work of Houra & Nagano (2006) and Araya & Castillo
(2013)), a state from which the most generic conclusions can be drawn. Note that the term
self-similarity only refers to the approximated state of self-similarity for the outer layer and
not for the entire boundary layer as a whole; see Gibis et al. (2019) for a detailed discussion.

1.1. Influence of streamwise pressure gradients
The strong influence of the pressure gradient on the Reynolds analogy factor is made
immediately obvious by considering the limiting case of a separating boundary layer.
While the skin friction (coefficient) tends to zero (cf → 0) as the velocity gradient
at the wall tends to zero, the heat-transfer coefficient ch remains finite since the
(specific) heat transfer primarily occurs via conduction at the wall regardless of the
pressure gradient, leading to s → +∞. Hence, by concluding the considerable variation
of 2ch/cf results from the fact that ch is much less sensitive to changes in the
streamwise pressure gradient than cf in incompressible conditions, it is expected that
in comparison to ZPG cases, s increases for adverse-pressure-gradient (APG) cases and
decreases for favourable-pressure-gradient (FPG) cases; see e.g. Tetervin (1969). For
self-similar laminar flows, this behaviour is well studied and documented, see Cohen &
Reshotko (1955).

In turbulent boundary layers (TBLs), turbulent mixing is the dominant mechanism
for energy and momentum transfer, and convection replaces conduction as the primary
907 R4-2
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heat-transfer process. For boundary layers subjected to pressure gradients, the dominant
role of turbulent mixing intuitively should, therefore, make turbulent flows less sensitive
to the effect of streamwise pressure gradients compared to laminar ones (Bons 2005).
For incompressible TBLs the only analytical attempt based on classical self-similarity
solutions can be found in the little-known work of So (1994), where the self-similarity
analysis by Mellor & Gibson (1966) for the momentum equation has been extended to the
energy equation. The meaningfulness of the analytical results derived has been assessed
by Bons (2005) by comparison with experimental data, which, however, cannot reliably
be assumed to stem from a well converged near-equilibrium state. Nevertheless, the
predicted (or expected) trends of pressure-gradient influences could be at least qualitatively
confirmed.

For compressible TBLs in pressure-gradient conditions, it is not obvious to what extent
the incompressible trends can be simply transferred. The streamwise evolution of the
skin-friction factor cf (and hence also ch) is difficult to predict even under self-similar
conditions, making the behaviour of s non-trivial; see Wenzel et al. (2019). Strictly
speaking, the Reynolds analogy is expected to apply to both sub- and supersonic cases; for
compressible self-similar laminar flows the influence of Mach number is usually negligible
for Tw/T0 = const. (see Cohen & Reshotko 1955 for details). It can, therefore, also be
expected that for the Reynolds analogy factor s in compressible TBLs subjected to pressure
gradients no significant Mach-number dependence exists. This is supported by the fact that
the adiabatic recovery factor r, which is closely linked to the Reynolds analogy, is also
only slightly influenced in these conditions; see Wenzel et al. (2019). However, since to
our knowledge there is no verified theoretical prediction of s, the quantitative behaviour of
s is largely unknown, both in the incompressible and the compressible regime.

1.2. Objectives of this study
Summarizing, the overall effect of pressure gradients on the Reynolds analogy factor s
is far from well described or understood. For non-equilibrium conditions, the boundary
layers are somewhat arbitrarily influenced by history effects, making general conclusions
very difficult, if not impossible. In Wenzel et al. (2019) and Gibis et al. (2019), direct
numerical simulation (DNS) data of (approximate) self-similar compressible TBLs have
been made available, which are unique both in terms of the length of the self-similar
regions and the degree of self-similarity achieved for the outer layer. These data provide
the opportunity to describe the effect of pressure gradients on the Reynolds analogy factor
s with high reliability for the first time. By dealing with both sub- and supersonic data, it is
further possible to estimate Mach number effects on s. By only considering near-adiabatic
wall conditions, a first step towards a systematic description of the pressure-gradient
behaviour of s in both compressible and incompressible TBLs is presented. Two main
questions are addressed: how is the Reynolds analogy factor s = 2ch/cf influenced by
non-zero pressure-gradient conditions, and does the Mach number play a role? The present
study is structured as follows. All DNS conducted are briefly summarized in § 2. The main
part, the pressure-gradient dependence of the Reynolds analogy factor s, is discussed in
§ 3, and concluding remarks are given in § 4.

2. Simulation details

This study is based on DNS results for self-similar compressible TBLs with pressure
gradients presented in Wenzel et al. (2019) for inflow Mach numbers of M∞,0 = 0.5
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Case Me Tw/Te Reτ Reδ∗ Reδ∗
K,w

(1) iZPG 0.50 1.079 344–714 1476–3518 1292–3073
(2) iAPGβK=0.19 0.47–0.43 1.073–1.066 354–726 1651–3937 1474–3574
(3) iAPGβK=0.58 0.44–0.36 1.066–1.055 360–759 1971–4719 1798–4417
(4) iAPGβK=1.05 0.42–0.33 1.063–1.051 364–757 2213–5507 2041–5226

(5) cZPG 2.00 1.781 278–478 4294–8160 980–1825
(6) cAPGβK=0.55 1.77–1.40 1.617–1.395 325–839 4593–9802 1371–4241
(7) cFPGβK=−0.18 2.09–2.36 1.851–2.077 259–351 4133–7800 850–1173

TABLE 1. Summary of boundary-layer parameters for DNS data. All data are evaluated at the
beginning and the end of the self-similar regions. Given parameters are the boundary-layer-edge
Mach number Me, the Reynolds numbers Reτ = ρ̄wuτ δ99/μ̄w, Reδ∗ = ρeueδ

∗/μe, Reδ∗
K,w

=
ρ̄wueδ

∗
K/μw and the wall-to-edge temperature ratio Tw/Te; for Tw/T̄r see the text.

and M∞,0 = 2.0. To allow for a meaningful determination of ch, the relevant cases have
been recomputed with near-adiabatic fixed wall temperatures. For the subsonic cases,
the wall temperature Tw is set to be +10 K above the adiabatic one taken from the
fully adiabatic reference cases in Wenzel et al. (2019), yielding Tw/T̄r ≈ 1.03. For the
supersonic cases, the wall temperature is set to be +20K above the adiabatic references,
yielding Tw/T̄r ≈ 1.04. Note that the recovery temperature is a function of x with
pressure gradient, and so is the prescribed wall temperature. To ensure that the wall
heating does not noticeably affect the results in comparison to fully adiabatic conditions,
the strongest subsonic APG case iAPGβK=1.05 also has been recomputed with a wall
temperature of −10 K below the adiabatic one; all results shown in the following have been
found to be almost unaffected and thus can be considered almost adiabatic. Determined
with the incompressible form of the displacement thickness δ∗

K = ∫ δ99
0 (1 − ū/ue) dy as

a length scale, βK = (δ∗
K/τ̄w)(dpe/dx) denotes the kinematic Rotta–Clauser parameter,

which allows a comparison of pressure-gradient influences between compressible and
incompressible cases; see Wenzel et al. (2019) and Gibis et al. (2019). Boundary-layer-edge
values (index e) are determined at the wall-normal position where the spanwise vorticity
ωz drops below 10−6 of its wall value, similarly to Spalart & Strelets (2000). Evaluated at
the beginning and the end of the self-similar regions, relevant boundary-layer properties
are summarized in table 1 for all cases. Given parameters are the Mach number
at the boundary-layer edge Me, the Reynolds numbers Reτ = ρ̄wuτ δ99/μw, Reδ∗

K
=

ρeueδ
∗
K/μe, Reδ∗

K,w
= ρwueδ

∗/μw and the resulting wall-to-edge temperature ratios. The

displacement and momentum thicknesses used are δ∗ = ∫ δ99
0 (1 − (ρ̄ ū)/(ρeue)) dy and

θ = ∫ δ99
0 (ρ̄ ū)/(ρeue)(1 − ū/ue) dy, respectively. Details about the spatial extent of the

computational domains are identical to the fully adiabatic cases (see Wenzel et al. 2019)
and are therefore not repeated. The same holds for the numerical method.

2.1. Simulation parameters
In contrast to the fully adiabatic DNS results presented in Wenzel et al. (2019), the
temperature at the solid wall is fixed according to a prescribed temperature distribution
Tw = Tw(x), which hence suppresses any temperature fluctuations at the wall. The
pressure is calculated by (dp/dy)w = 0. Apart from the change in the wall-temperature
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boundary condition, the numerical set-up of the supersonic adiabatic cases and the
present supersonic cases are identical and therefore not reconsidered here; see Wenzel
et al. (2019) for details. The same applies to the subsonic cases, for which, however, the
domain size has been halved in the spanwise direction to reduce the computational costs.
A comparison with a reference case computed from the original domain size has shown
only negligible effects on the boundary-layer properties discussed in this paper. As for the
adiabatic set-ups, the reference thermodynamic flow properties are the inflow far-field
temperature T∞,0 = 288.15 K, inflow far-field density ρ∞,0 = 1.225 kg m−3, Prandtl
number Pr = 0.71, specific gas constant R = 287 J kg−1 K−1 and ratio of specific heats
γ = 1.4; these are set equal for all cases. Data averaging is performed over both time
and spanwise direction and does not start before the flow has passed the whole domain
at least twice. Consistently for all cases and in accordance with the fully adiabatic cases,
time averages were computed over a flow-through time corresponding to at least 250 local
boundary-layer thicknesses δ99 (Δtue/δ99 = 250, where Δt is the averaging period), which
corresponds to at least eight eddy-turnover times Δtuτ /δ99 for the most restricting APG
cases. Both the appropriate convergence of the statistics and the initial transients have been
assessed as described in Wenzel et al. (2019) and Wenzel et al. (2018); see also Bobke et al.
(2017).

3. Reynolds analogy factor

In this section, the streamwise evolution of both cf and ch is investigated, before the
pressure-gradient dependence of the Reynolds analogy factor s = 2ch/cf is discussed.
Special attention needs to be given to the calculation of the (adiabatic) recovery
temperature T̄r which is chosen to normalize the wall heat flux in the calculation of ch =
q̄y,w/(ρeuecp(Tw − T̄r)). To ensure consistent and meaningful results, all T̄r-distributions
have been taken from the fully adiabatic reference cases.

3.1. Streamwise evolution of cf and ch

The streamwise evolution of both cf and ch is depicted in figures 1(a) and 1(c) for the
sub- and supersonic cases, respectively. For the ZPG cases in both regimes, a grey dotted
best-fit curve is plotted approximating cf with cf = 26.515 Re−0.318

τ for the subsonic case
in panel (a) and cf = 19.896 Re−0.335

τ for the supersonic case in panel (c). In comparison
to the fully adiabatic cases, cf -values are slightly decreased by about 1 % due to the
effect of wall-heating. By fitting s to match the ch-distributions for the ZPG cases, the
approximations for ch are calculated from the respective cf by ch = s(cf /2); s = 1.18 for
the subsonic and s = 1.16 for the supersonic cases. To allow for a quantitative evaluation
of pressure-gradient influences, all distributions are normalized by the best-fit cf -curve of
the corresponding ZPG case at the same inlet Mach number in panels (b) and (d). Only
regions of approximate self-similarity are depicted.

First, the subsonic cases of panels (a) and (b) are discussed. As shown in Wenzel et al.
(2019), the cf -distributions of the subsonic APG cases in panel (a) can be interpreted
as a scaling of the ZPG-case distribution. Hence, by scaling with the best-fit curve of
the ZPG case, all distributions depicted in panel (b) become constants; the same holds
for ch. All results show the expected trends introduced in § 1.1. The cf -distributions
are more influenced by pressure gradients than the ch-distributions: cf is decreased by
approximately 22 % for the strongest APG case, while ch is increased by only about 8 %;
compare the y-axis on the right-hand side of (b).
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FIGURE 1. Streamwise evolution of cf and ch for the sub- and supersonic cases in panels
(a) and (c), respectively, and normalized with the best-fit for cf of the corresponding ZPG case
at same inlet Mach number in panels (b) and (d). For the sub- and supersonic ZPG cases, the
best-fits are cf = 26.515 Re−0.318

τ and cf = 19.896 Re−0.335
τ , respectively. The best-fits for ch are

computed from ch = s(cf /2) with calibrated values of s = 1.18 for the subsonic and s = 1.16 for
the supersonic case.

For the supersonic cases in panels (c) and (d), the cf -distributions are more complex
since pressure-gradient effects and the effect of the varying Mach number in the
streamwise direction interact. While the effect of an APG decreases cf , the countereffect
of decreasing local Mach number increases cf ; see Wenzel et al. (2019). In line with the
subsonic cases, the ch-distributions of the supersonic cases also follow the trends of the
cf -distributions. However, because of the strong influence of the varying Mach number
in the streamwise direction, both cf and ch are increased in the supersonic APG case and
decreased in the supersonic FPG case. For the APG case, cf is increased by a maximum of
up to 10 %, while ch is increased by a maximum of up to 45 %. Consequently, in contrast to
the incompressible point of view which holds for the subsonic cases (see § 1.1), it cannot
be argued for the supersonic cases that the effect of pressure gradients on s can be mainly
attributed to influences on cf , while ch remains almost unchanged.

3.2. Pressure-gradient dependence of the Reynolds analogy factor
The resulting Reynolds analogy factors s = 2ch/cf are depicted in figure 2(a) and
normalized with the respective ZPG-value at corresponding inflow Mach number
s/sZPG = (2ch/cf )/(2ch/cf )ZPG in (b). All data are plotted versus the kinematic
Rotta–Clauser parameter βK . Cases with βK = 0 are ZPG cases, those with positive βK
are APG cases and those with negative βK are FPG cases. The s-values are plotted as
dots with transparent colour for every 10th data point in the streamwise direction in
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regions of approximate self-similarity: blue for the subsonic and red for the supersonic
cases. Regions near the inlet of the computational domain, where the streamwise pressure
gradient is slowly imposed and the resulting flows are not yet self-similar, are depicted
as thick, transparently coloured lines for each case. The only analytical attempt based on
classical, incompressible self-similarity solutions known to the authors (So 1994) is plotted
according to

2ch

cf
=

κ−1 ln
(

Reδ∗
K,w

)
+ B + A (βK)

κ−1
θ ln

(
Reδ∗

K,w

)
+ Bθ + Aθ (βK, Prt)

. (3.1)

The numerator represents a skin-friction relation for 2/cf derived by Mellor & Gibson
(1966), the denominator a Stanton-number relation for 1/ch derived by So (1994). Both
relations are based on overlap arguments between the logarithmic law of the wall and a
defect law, where κ = 0.41, κθ = 0.41/Prt and B = 4.9, Bθ = 3.8 have been used as the
constants of the respective logarithmic law. The respective wake deficit is quantified by
A(βK) and Aθ (βK, Prt) and is obtained from the solutions of the differential equations for
the wall-normal velocity and temperature profiles. Note that (3.1) is only valid for small
βK-values up to around βK = O(1). For higher βK , where cf tends towards zero, a high-βK
version has to be used; see Mellor & Gibson (1966) and So (1994) for details.

Some comments regarding (3.1) should be made. (i) Some assumptions leading to
the general form of the cf - and ch-correlations made by Mellor & Gibson (1966) and
So (1994) are quite restrictive. For example, the von Kármán constant κ is assumed
to be independent of the pressure-gradient parameter βK , but recent studies suggest a
noticeable pressure-gradient dependence; see Vinuesa et al. (2017). Nevertheless, the
chosen form provides a reasonable starting point for a meaningful estimate. (ii) In the
incompressible study by So (1994), the Reynolds number chosen is the incompressible
displacement-thickness Reynolds number Reδ∗

inc
= ρueδ

∗/μ. For compressible data there
are multiple choices, two of which are summarized in table 1: Reδ∗ = ρeueδ

∗/μe is the
compressible defined displacement-thickness Reynolds number, and Reδ∗

K,w
= ρ̄wueδ

∗
K/μw

is the Reynolds number defined with the kinematic displacement thickness δ∗
K similar

to the Rotta–Clauser parameter βK . For the present data, Reδ∗
K,w

is in a comparable
range for both the sub- and supersonic cases; see table 1. The influence of the chosen
Reynolds number will be further discussed in § 3.2.1. (iii) The next comment refers
to the determination of Aθ (βK, Prt). Since Aθ (βK, Prt) is based on the solution of
the differential equation of the temperature profile, it is influenced by the assumptions
made in its derivation. This includes in particular the assumption of an eddy viscosity,
a constant turbulent Prandtl number and an assumed Reynolds analogy of the form
2ch/cf = C(βK, Prt). Because no reference data exist for self-similar pressure-gradient
cases with heat transfer, there is almost no quantitative validation of its distribution.
(iv) As already shown in So (1994), the choice of Prt has a crucial influence on the absolute
values of 2ch/cf depicted in figure 2(a), but only a negligible influence on the course
of [(2ch/cf )/(2ch/cf )ZPG]So in figure 2(b) if normalized with the ZPG-value. Hence, for
practical use, the reference curves in panel (a) are obtained by scaling the normalized
reference curve in panel (b) with the DNS value for the ZPG cases of the respective
inflow Mach number [(2ch/cf )ZPG]DNS[(2ch/cf )/(2ch/cf )ZPG]So. Since the choice of Prt
only negligibly influences the results, Prt = 1.0 has been chosen in the following for the
reference curves, to be consistent with So (1994).
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FIGURE 2. Reynolds analogy factors 2ch/cf in (a), normalized with the respective ZPG-value
at corresponding Mach number in (b), both plotted as functions of the kinematic Rotta–Clauser
parameter βK . Blue and red dots represent results for the sub- and supersonic cases, respectively,
evaluated at every 10th data point in the streamwise direction. The analytical reference is
computed from (3.1), and the orange square denotes DNS results for a cooled ZPG case from
Duan et al. (2010) at M∞ = 5.0 with Tw/T̄δ = 3.74 and Tw/T̄r = 0.68.

3.2.1. Self-similar regions
First, the subsonic DNS results, indicated by blue dots, and the blue solid line for the

analytically derived relation in figure 2(a) are discussed. Compared to the iZPG case at
βK = 0 with s = 2ch/cf ≈ 1.18, the Reynolds analogy factor s is significantly larger for
the subsonic iAPG cases with increasing APG strength (blue dots at positive βK). For
the strongest iAPGβK=1.05 case with βK = 1.05, s is approximately 40 % larger than in the
iZPG case. This is particularly noteworthy since APGs of βK ≈ 1 are only considered to be
moderate in the literature. For the subsonic data in the range 1000 � Reδ∗

K,w
� 5000 (see

table 1), the coloured dots are clustered for each case, implying nearly no Reynolds-number
dependency of s for the moderate Reynolds-number range considered. This behaviour is
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in accordance with the intuitive expectation that self-similar solutions imply a state of s in
which there is only a low dependence on the Reynolds number. In contrast to the DNS data,
the analytical relation by So (1994) (see (3.1)) exhibits a high Reynolds-number sensitivity.
If determined for the Reynolds numbers obtained from the DNS, a streamwise variation
of s by about 25 % is suggested for 1000 � Reδ∗

K,w
� 5000; compare the reference curves

for Reδ∗
K,w

= 1000 and Reδ∗
K,w

= 5000 in panel (b). It is worth mentioning, however, that
So’s correlation (like most self-similarity analysis for turbulent flows) is applicable to
high-Reynolds-number flows only in a strict sense. Nevertheless, the pressure-gradient
influences on s observed in the DNS are perfectly predicted by the reference with an
empirically calibrated, virtual Reynolds number of Reδ∗

K,w
= 16 000 (with Prt = 1.0).

Therefore, it can be concluded that Aθ (βK, Prt), which is the only parameter influenced by
βK in the denominator, nearly perfectly reflects pressure-gradient influences on ch and
thus on s. The role of Reδ∗

K,w
, in contrast, might be much more limited to a constant,

which, once calibrated, appears to be valid for a large Reynolds-number range. The
possibility cannot be excluded, however, that for sufficiently high Reynolds numbers a
clear Reynolds-number trend will be observed. According to So, this trend would tend
towards lower s-values.

A comparison between the subsonic and the supersonic ZPG cases shows a slight
Mach-number influence; compare the blue and red dots at βK = 0. For the supersonic
cZPG case, s = 2ch/cf ≈ 1.16, which is approximately 2 % smaller than for the subsonic
case. An orange symbol is added which represents the temporal DNS result by Duan
et al. (2010) for a moderately cooled TBL at M = 5.0 to allow for an estimate for higher
Mach numbers. It should be recalled that no clear influence of the wall temperature has
been found in the literature, which hence should make the reference comparable to the
present near-adiabatic cases. The reference data support the Mach-number trend observed;
however, differences caused by different set-ups or by variations in computing the adiabatic
reference temperature cannot be reliably assessed.

A comparison between the subsonic iAPGβK=0.58 case and the supersonic cAPGβK=0.55
case shows very good agreement; compare the blue and red dots at βK ≈ 0.6. If at
all, the s-values of the supersonic case are slightly below those of the subsonic case,
which could confirm the slight Mach-number influence observed for the ZPG cases
also for the APG regime. The only minor influence of the local Mach number in
pressure-gradient conditions is in accordance with laminar investigations, where s is
mostly assumed not to be influenced by the local Mach number Me; see e.g. Cohen
& Reshotko (1955). Combining the only minor influence of the Mach number on s
with the assumption that the Mach-number influence is comparable in the ZPG and
pressure-gradient cases, the subsonic analytical reference curve has been scaled to fit the
supersonic ZPG case at βK = 0; this is depicted as a solid red line. For the supersonic
cFPGβK=−0.18 with βK = −0.18, the red reference and the DNS data are in good
agreement.

To eliminate the Mach-number effects observed, the results of figure 2(a) are repeated in
figure 2(b), but normalized with the respective s-value for a corresponding ZPG case at the
same Mach number. To correctly incorporate Mach-number effects in pressure-gradient
conditions, all results at every streamwise position have to be scaled by their own ZPG
reference at a corresponding Mach number in a strict sense. To roughly account for
the effect of Mach number, results for the cAPGβK=0.55 case with local Mach numbers
between Me = 1.77 and Me = 1.4 have been scaled with a reference slightly below the
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compressible cZPG case (s = 1.17), and those for the cFPGβK=−0.18 case (Me up to 2.36)
with a reference slightly above the compressible ZPG case (s = 1.185).

3.2.2. Non-self-similar behaviour
All results discussed so far are only valid for near-adiabatic pressure-gradient cases with

a very high degree of self-similarity of the outer layer in the streamwise direction; only
these regions of the DNS computed have been evaluated so far. Since all computations start
from ZPG conditions at the inflow of the domain, all cases also include non-self-similar
regions where the pressure gradient is applied, but the self-similarity is not yet established.
These regions are characterized by a non-constant Rotta–Clauser parameter βK , implying
that the streamwise evolution of the outer layer cannot be represented by only a simple set
of characteristic scales; see Gibis et al. (2019). These regions are depicted as transparently
coloured thick lines in figure 2. Based on these results, the universality of the conclusions
previously drawn from the self-similar regions can be assessed for non-self-similar
regions.

For the subsonic cases, the thick blue lines in figure 2(b) closely follow the black
reference curve for the self-similar results. Both cf and ch hence rapidly and synchronously
react to the streamwise pressure variation without being too strongly influenced by the
non-self-similar history of the analysed boundary layers. Consequently, (3.1) allows for
a very good approximation of local s-values for non-self-similar nearly incompressible
TBLs as well, if the local βK-values are known. For fully adiabatic flows where ch is not
defined, this further allows for a rough estimation of local ch-values.

For the supersonic cases, the s-values show large deviations from the analytical reference
in regions of non-self-similarity. For the APG case, the corresponding s-values are
significantly too low, and for the FPG case slightly too large, in comparison to those of
self-similar flows. In contrast to the subsonic cases, local values of the Reynolds analogy
factor s, therefore, do not depend only on the local βK-value, but also on the global pressure
distribution, or in other words, the upstream history of the boundary layer.

4. Conclusions

A quantitative study of cf , ch and the related Reynolds analogy factor s = 2ch/cf
for self-similar sub- and supersonic turbulent boundary layers with pressure gradients
in the streamwise direction has been conducted up to moderate Reynolds numbers.
For the subsonic, nearly incompressible cases, the cf - and ch-distributions show the
expected results, i.e. cf is much more strongly affected by pressure gradients than
ch. For the supersonic cases, pressure-gradient influences are complex and affect
both cf and ch; in our cases ch is more influenced. Computed from the respective
cf - and ch-distributions, the resulting Reynolds analogy factor is greatly increased
for adverse-pressure-gradient conditions and decreased for favourable-pressure-gradient
conditions. For the strongest subsonic adverse-pressure-gradient case with βK = 1.05,
s is increased by about 40 % in comparison to zero-pressure-gradient conditions.
A comparison between sub- and supersonic cases shows only a small Mach-number
influence, which is in a comparable range for zero-pressure-gradient and pressure-gradient
cases; s is slightly lower for the supersonic cases. Although the DNS cover quite a large
Reynolds-number range from small to moderate Reynolds numbers, no Reynolds-number
dependency is found for s in the parameter range investigated. This is remarkable since
Reynolds-number effects should be noticeable if present, especially for low Reynolds
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numbers, where high-Reynolds-number assumptions are questionable. The variation of
s with pressure-gradient parameter βK is found to agree with the analytical relation by
So (1994) if calibrated to fit the DNS data. However, this only holds if a fixed, virtual
Reynolds number is assumed for calibration. For the non-self-similar conditions occurring
in the upstream region of the domain of interest, s is found to follow closely the self-similar
trends for the subsonic cases. For the supersonic adverse-pressure-gradient case, however,
the corresponding s-values are significantly lower, and for the favourable-pressure-gradient
case higher, in comparison to the self-similar state.
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