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Abstract. Let M be a compact Riemannian manifold of (variable) negative curvature.
Let h be the topological entropy and h^ the measure entropy for the geodesic flow
on the unit tangent bundle to M. Estimates for h and /iM in terms of the 'geometry'
of M are derived. Connections with and applications to other geometric questions
are discussed.

Section 1
Unless otherwise stated, M denotes a compact n-dimensional Riemannian manifold
of (variable) negative curvature. SM denotes the space of linear elements to M
(i.e. the unit tangent bundle), and v :SM ->M the canonical projection. If v eSM
with v(v) = x, we let yv(t) be the unit speed geodesic starting at x in the direction
v. The geodesic flow on SM which we denote by <f>, may then be denned by

If JU denotes the canonical Riemannian volume element on SM, then it is well
known that ^ is 4>, invariant. Let h^ be the entropy of this classical dynamical
system {<£„ /x} [13] and let h be the topological entropy of the geodesic flow [2].
Quite generally the topological entropy of a dynamical system dominates the
measure entropy for any measure, see Goodwyn [5].

K^h. (l.i)

It is our aim in this paper to give some estimates for h and h^, in terms of the
geometry of M, by which we mean, in terms of such quantities as volume, diameter,
curvature averages, etc.

It is not too difficult (see Sinai [14]) to show directly that if the curvature K satisfies

then
(n- l )V-A' + </ i ( t < / t<(n- l ) \ / - .K '_ . (1.2)

In dimension 2 Katok [6] has obtained the much sharper isoperemetric type of
inequality

(^f^ (1.3,
with strict inequalities unless the curvature is constant (in which case they are all
equal). In (1.3) g is the genus of M while V is the volume. His method uses the
fact that every surface is conformal to one of constant curvature, and so in its
present form cannot be extended to higher dimensions.
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514 P.Samak

One is interested in the isometric invariants h and h^ since they measure the
amount of randomness in the geodesic flow. Also h governs the asymptotic
behaviour of the lengths of the closed geodesies on M, see Margulis [10].

However, we would like to point out how an inequality such as (1.3) can be very
useful in some other geometric problems which have received much attention
recently. The problem is that of determining the geometry of a manifold from the
knowledge of the eigenvalues of the Laplace-Beltrami operator, or 'hearing the
shape of a manifold' (see Mckean & Singer [9]). Katok's inequality (1.3) tells us
that the knowledge of the three numbers h, V and g are sufficient to determine
whether M is of constant curvature. Now the numbers of V and g, may be
determined from the asymptotics of the eigenvalues, that is by Weyl's law — see
Mckean & Singer [9]. The lengths of the closed geodesies are also determinable
from the eigenvalues, by use of the 'trace formulae' worked out by Chazarin, Colin
de Verdiere, Duistermaat Guillemin see for example [4]. As pointed out earlier
these lengths (or rather their asymptotics) determine h. It follows that one 'can
hear' whether a negatively curved surface is of constant curvature or not. Though
this result has been proven by other methods, see Berger [1], the above argument
is very natural, and inequalities such as (1.3) in higher dimensions could lead to
similar results in higher dimensions, where very little on such inverse problems is
known.

In order to describe our results we need to define some quantities. Let v e SM
and let ir(v) = x. If Vi, v2e. TX{M) are linearly independent, we let K{v\, v2) be the
sectional curvature of M at x in the plane of vi and v2. Define the functions A ,
K~ on SM by:

K+(v)= max K(v, y)

y In

and (1.4)

K~(v)= min K(v, y)

y _Lu

Let dd be the normalized measure on the (n -1) sphere, and define the function
A7+and*r onMby

K±(x)=\ iK
±(v)d6(v). (1.5)

In terms of these we have:

THEOREM 1.

^— [ J-K+(x)dV(x)<h^<{n-\)(— [ -K'(x)dV(x)]

where dV is the Riemannian volume element.

Firstly we note that in constant curvature all of the above numbers are the same.
Secondly, the above clearly is significantly sharper than (1.2). Thirdly, in dimension
two where K+(x) and K~{x) are just the Gauss curvature A7(JC), the above leads
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through the use of the Gauss-Bonnet formula to:

CROROLLARY 1. For a surface of genus g > 2

1 J / * 1/2

The right hand side in this corollary is a slightly v/eaker version of (1.3).
The proof of theorem 1 also allows one to bound nM from above, even for spaces

with positive curvature, as long as the curvature is not too large. We state and
prove the following theorem only in the case of dimension two (the n-dimensional
case is similar).

THEOREM 2. Let M be a surface of genus g > 2 and suppose that the curvature
{which may be positive) satisfies

then
1/2

Before giving proofs, which will all be carried out in § 2, we discuss some lower
bounds for the topological entropy h. The lower bound is in terms of the spectrum
of the Laplace-Beltrami operator on the universal covering. One may argue that
this spectrum is no easier to compute, however, we are following the principle that
eigenvalues are 'more computable' than entropy, just as in the case of a dirreomorph-
ism on a compact manifold, where a lower bound for h is provided in terms of
eigenvalues of the induced map on real homology, see Bowen [2]. As pointed out
in Manning [7], in the case of a flow, c/>i is isotopic to the identity so that these
mentioned bounds lead to nothing.

Let M be the universal covering of M, thus M is diffeomorphic to R", and is
locally isometric with M. Let A be the corresponding Laplace-Beltrami operator
on functions on M. Let /3 be the bottom of the spectrum of -A with respect to the
L2 spectral theory of A (L2 with respect to the Riemannian volume measure of
M). We cannot describe /? as the smallest eigenvalue of —A, since M is not compact,
and so square integrable eigenfunctions should not be expected. However, /3 may
be described as the largest real number y such that all numbers to the left of are
in the resolvent set of -A.

THEOREM 3. Notation as above then, the spectrum of —A is essential and /? < h2/4.

We shall see that the above is sharp for constant curvature spaces. Also, the
left-hand side is greater than or equal to ((n - 1)2/4)|.K+| by a result which is due
to Mckean [8], Thus the estimate of theorem 3 is no worse than (1.2), though in
many cases the lower bound for h via
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from (1.1) and theorem 1, may be better. We also construct at the end of § 2 a
sequence of surfaces for which h -» oo but for which /3 is bounded above, so that
the estimate of theorem 3 may be very poor indeed. Finally we remark that the
inequality of theorem 3 may of course be viewed as an upper bound for /3.

Section 2
All expressions for entropy involve quantities denned through limits of one sort
or another. We choose appropriate expressions from which such estimates can be
drawn. In the case of the measure entropy h^, we will use a formula due to Pesin
[11] which is in terms of Liapunov exponents. For the topological entropy h we
will use a characterization due to Margulis [10] and Manning [7] in terms of growth
rates of geodesic balls in M.

We begin with Pesin's formula. We need an appropriate Riemannian structure
on SM. Let

K:T(TN)-*TM

be the connection map (see Eberlein [3]). The tangent space to TM then splits
into a sum of a horizontal and vertical subspace

(TM)V = ker dir ©ker K, where v e TM.

A Riemannian structure on TM is then given by

(€, V > = idiri, d-rr-q ) m + (K£, Kr, ) m

for £, TJ e TV(TM). SM then inherits the induced Riemannian structure as a subspace
of TM. The measure n is just the volume element for this structure.

Now fixaoeSM and £&TV(SM), and let || || be the norm on T{TM) just
described. We define the Liapunov exponent at v in the direction g by

* > , £ ) = lirn" 7 log ||^,(£)||. (2.1)

It is clear that \+ assumes at most 2n -1 distinct values on T(SM), and we have
a filtration

where x+(v, €) is constant at value A, (D)>0 on LJ{V)\LJ-I(V), j ^ 1, andj-+(t;, £)^0
for £ € L0(v). The Ay's are distinct and increasing in size. Let

kj(v) = dimLj(v) —dimLj-^v) for/ >1 .
Define

*(!>)= I* */(i>)A,(t;). (2.2)
; = l

Pesin's formula for h^, which applies whenever n is a smooth measure for a
flow, states that

(2.3)
SM

In order to estimate the exponents x(v) w e need a more concrete form for the
differential d<f>,(£). This can be done by use of Jacobi fields along the geodesic yv(t).
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A Jacobi field along y is a vector field Y which satisfies

517

X = 0 (2.4)

where X = y(t),' is covariant differentiation along y, and R is the curvature tensor.
An isomorphism between TV(TM) and the Jacobi fields on y comes from solving
(2.4) with

This correspondence has the added property that

For a proof and more details see Eberlein [3].
Since we are interested in the exponential growth rate of d<(>,(g) we may restrict

ourselves to perpendicular Jacobi fields, i.e. ones for which (Ye(t), y(t)) = 0 for all
t. To analyse these it is convenient to choose a parallel orthonormal frame E\,... ,En

along y with En(s) = y(s) (here s = t = arclength parameter). A perpendicular field
Y(s) may then be expressed as

Y{s) = £ Y,(s)E,(s).
; = i

If R(s) is the ( n - l ) x ( n - l ) matrix with entries

(2.6)

then (2.4) becomes the vector equation

Y =
YB_,

d2Y

dsT=-R{s)Y{s). (2.7)

Of course, /?fi- is symmetric and YT.RY/||Y||2 is just the sectional curvature in
the plane of Y(s) and y{s). It follows that the spectrum of the matrix R(s) lies in
the interval

LEMMA 2.1. Let

g(t) = \\Y(t)\\2 + \\Y'(t)\\2

then if for some initial conditions (Y(0), Y'(0)) it is true that

g(u) du =00

then

t-»oo / t-»oo f Jo

Proof, let Z(f) = < Y(t), Y(t)). Notice that the R""1 inner product of

Yn
-yr

(2.8)
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and that of (2.6) in Ty(s)(M) are the same.

^ = <Y, Y) + (Y,-RY)>\\Y\\2 + (-K+)\\Yf. (2.9)
at

Now

^ (2.10)

Now by compactness there is a 0 < c < 1 such that —K+{t) s c, and so by (2.9)

Jrcg{t)-
The assumption that J" g(u) du = oo, then shows that z(t0) >0 for some ?0- Now

use (2.10) to conclude that

logz{t) 2 r' , +

V-lif (u)du
' ^ -"to

and since g(f) >2z(r), the conclusion of lemma 2.1 is clear. •

LEMMA 2.1. Again let

with Y, as in (2.6) and satisfying (2.7). Let c >0 be arbitrary, then

i im^-^<c+c" 1 l im- f (-K')(u)du. (2.11)

Proof. Let

2(YY) + 2'\Y2c(Y,Y) + 2c'\Y,-RY)
dt

= YT(2c-2c~1R)Y

(the last || || being L2 matrix norm). Now
\ \ \ \

Therefore (2.12)

^(c+c-\-K-))z
dt

and so

i jj^I \\-K-)(u)du.
t Joc

r-»oo t

Finally, we have g(t)<Bz(t) for a suitable constant B, from which the lemma
follows. •
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If we choose

c

in the last lemma we have

= J\im-[ -K-(u)duy < t Jo

loggCf)^/ — 1 f
t

— 1 f -K-(u)du) . (2.13)
t-*oo t Jo '

We now prove theorem 1. Since all the sectional curvatures are negative the
flow <t>, is Anosov on SM. Thus there is a decomposition of TV(SM) as

TV(SM)=X®Y®Z

with dim X = dim Y = n -1, dim Z = 1. X is the tangent space to the contracting
horospheres, Y to the expanding horospheres, and Z is the flow direction. For
suitable A > 0 we have

andy(0)=Z.
From this it is clear that x(v, €)^0 for

(2.14)

On the other hand, for any £ we have seen that (by (2.13))

liX(v,£)slim - -tf-(u)rfM) (2.15)
r-»oo V( Jo '

(since \\d<t>M)f =
(2.14) and definition (2.3) show that

^(n-l)(\tei-[ -K~(u)du). (2.16)
\t-.oo t Jo /

For a lower bound we observe the easily verified fact that for f tLZ®Xv

l l ^ r (dh asf-*oo.
Therefore

as t -> oo. (Note that ij£Xv or >>„ => ys is perpendicular Jacobi field.)
Applying (2.8) gives

(u,£)s!im- V - ^ M ) ^ .
(-.co t Jo

The dimension of the space on which the latter holds is (n — 1) dimensional,
therefore

https://doi.org/10.1017/S0143385700001747 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001747


520 P. Sarnak

By the Birkhoff ergodic theorem

1 f'
lim - yl~K+{u) du =
t-»oo t Jo

and
1 flim- f -K~(u)du=^2(v)

l-»oo t Jo

exists for almost all v, and the integral of the limit (which in this case is constant
almost everywhere) is simply the space average. Therefore

\—K+(v)diJ,i(v)^hu.= \ x(v) dfj.i(v)
SM JSM

\JSMJSM

Now integrating over the (n-1) sphere at each point of M first, and then over
M, and remembering that dfi i is normalized, leads to

n — I f / I f \1^2

—— (-K+(x))U2dV{x)sh^(n-l)(—\ -K-(x)dV(x)\
V JM \V JM I

proving theorem 1. •

For the upper bound of theorem 2, we observe that the upper bound of lemma
2.1 holds (say in the case of dim M = 2) if

c+c~\-K)>0
i.e., (2.17)

So in this case,

x(v, f j ^ - l c+c" 1 Hm- -A"(«)rfM).
Z \ I-»oo f Jo '

Since K may be non-negative, we do not necessarily have any Anosov property
so we learn only that

If

X{v)<c+c Mim- I -K{u)du.

i <•'
l = lim - -K(u)du

t-.oo t Jo

which exists almost everywhere by the Birkoff ergodic theorem, then we have

[
SM

^c+c 1 I x(v)dni(v)
JSM

= c+c"1f -K(v)dndv)
JSMJSM

= c+c~x
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Therefore choosing

/4ir(g-l)
c V v

which by assumption makes (2.17) valid, shows that

as needed.

We now turn to the proof of theorem 3.
Let F be the fundamental group of M, which acts as isometries on the universal

covering M. F is of course infinite. For y e F, let the operator Ty which acts on
functions on M and in particular on L2(M) be defined by

Tyf(x)=f(yx).

Since y e F is an isometry of M it follows that

7 > A = A°7V (2.18)

With these remarks it is easy to see that the spectrum of A is essential - (for a
definition of essential spectrum see Reed & Simon [12]).

In fact, if A is an eigenvalue of A, then it must be of infinite multiplicity. For
suppose

A/ = A/ with/eL2(M).

It is clear that sufficiently large 'translates' of / by motions y e F will yield linearly
independent functions in L2(M) (since feL2). On the other hand, it is clear from
(2.18) that such a translate fy is again an eigenfunction of A with eigenvalue A.

The characterization of h in terms of volumes mentioned in the beginning of § 2
is as follows. Let x be any point of M, and let x e M lie above x. Let

V{x,R) = Volume (B(x, R))

where B (x, R) is a ball radius R in M centred at x. Then independent of x

R-.OO K

The bottom of the spectrum of -A, /3, may be described in the variational form

|2

P = inf —r
/ of compact support f ^

JM'M

The estimate of theorem 3 will follow when we show that the 'Rayleigh quotient'
can be made as close to /i2/4 as we please by suitable choice of test functions.

Let £>0 , T J > 0 with e small and r\ large, let 4> be a positive C°° function
<f> €C"(0, oo) and ^ l o n [£, 17].
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Take x eM, and let (r, 8) be geodesic normal polar coordinates about x. Thus,
0<r <oo, 6 e s"'1; these give a global chart for M. The line elements takes the form

i.e.,

8.7 =

Let

Then

, ei>0.

Q(f) = -

f f (%-
Jo Js—' \ar

Let

oof f
Jo J s " 1

S(r)=f

which is the volume of the spherical shell radius r about x. Since S is increasing and

.R

V(x,R)= f
Jo

r) dr

we see from (2.19) that

also

Now

for any hx

(2.20)

f
Jo

The estimates (2.20) allow us to let e -* 0 and TJ -» oo, and we have
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oo L \ I ^

e x p — 2 ( — l - e i j r l — + £ i ) S(r)dr

J
fh ^2

=(H-
Since e i is arbitrary,

In the case that M and hence M has constant negative curvature, say K = — 1,
then it is known, see for example Mckean [8], that

r / „ 1 \ 2 -.

spectrum (-A) = ——) , oo

and is absolutely continuous. So that in this case the inequality of theorem 3 is sharp.
To show that the same inequality can be rather rough, consider a two-dimensional

flat torus M with m small holes removed.
Now think of M as having two sides and 'blow up' the picture slightly so that

we have anm + 1 holed torus of negative curvature with all the curvature concen-
trated on (or near) the rims of the holes. Let § b e a simply connected sub-domain
which is untouched.

Clearly, 0<Ai(£>) where \i(D) is the smallest eigenvalue for the Dirichelet
problem of D. One may remove the holes in such a fashion that the volume of M
remains essentially unchanged.

Using (1.3) it is evident that h -* oo with m, while /3 remains bounded.
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Section 3

Question: What is the nature of the spectrum of A on Ml One may guess in analogy
with Bloch wave theory for a periodic potential (see Reed & Simon [12]) that it
consists of bands and is absolutely continuous.

Note. It has been pointed out to the author that A. Manning (1980) has obtained
a similar lower bound for h^, to that of corollary 1.

This work was partially supported by NSF grant MCJ-7900813. Some of the results
of this paper are part of the author's thesis, Stanford, 1980.
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