A note on an identity of Jacobi's

By Nancy Walls.

That the determinant

$$
\left|\begin{array}{cccc}
h_{r} & h_{s} & \cdots & h_{t} \\
h_{r-1} & h_{s-1} & \cdots & h_{t-1} \\
h_{r-2} & h_{s-2} & \cdots & h_{t-2} \\
\cdots \cdots & \cdots & \cdots & \cdots
\end{array}\right| .
$$

where h_{r} is the $r^{\prime h}$ complete homogeneous symmetric function in a set of n arguments, is equal to the quotient of a particular pair of alternants was shown essentially by Jacobi in 1841 and by Trudi in 1864. The present note exhibits this well-known relation, (3), as the immediate consequence of a simple matrix equality.

The symmetric functions h_{r} are connected with the elementary symmetric functions a_{r} in the same n arguments a, β, \ldots, κ by the Wronski relations

$$
\begin{array}{r}
a_{0} h_{1}-a_{1} h_{0}=0, \\
a_{0} h_{2}-a_{1} h_{1}+a_{2} h_{0}=0, \\
a_{0} h_{3}-a_{1} h_{2}+a_{2} h_{1}-a_{3} h_{0}=0,
\end{array}
$$

obtained by equating the coefficients of powers of x in the identity

$$
\mathscr{H}(\alpha, \beta, \ldots, \kappa ; x) \mathcal{H}(\alpha, \beta, \ldots, \kappa ; x)=1,
$$

where

$$
\mathcal{A} \equiv(1-\alpha x)(1-\beta x) \ldots(1-\kappa x)
$$

and

$$
\mathcal{H} \equiv\left(1+\alpha x+a^{2} x^{2}+\ldots\right)\left(1+\beta x+\beta^{2} x^{2}+\ldots\right) . .\left(1+\kappa x+\kappa^{2} x^{2}+\ldots\right)
$$

are the generating functions of the a_{r} and the h_{r} respectively. Let us similarly equate coefficients in the identity
$\mathcal{A}(\beta, \gamma, \ldots, \kappa ; x) \mathcal{H}(a, \beta, \gamma, \ldots, \kappa ; x)=1+\alpha x+a^{2} x^{2}+\ldots$.
We obtain relations of the type

$$
(a) a_{0} h_{r}-(a) a_{1} h_{r-1}+(a) a_{2} h_{r-2}-\ldots=a^{r},
$$

where (a) a_{r} denotes the $r^{\text {th }}$ elementary symmetric function in the arguments with a omitted, a set of $n-1$ arguments, so that all $a_{r}=0$ for $r \geqq n$.

In virtue of such relations for the different arguments we have

$$
\begin{align*}
& {\left[\begin{array}{ccccc}
1 & -(\alpha) a_{1} & (\alpha) a_{2} & \cdots & \pm(\alpha) a_{n-1} \\
1 & -(\beta) a_{1} & (\beta) a_{2} & \cdots & \pm(\beta) a_{n-1} \\
\cdots \cdots \cdots \cdots & \cdots \cdots & \cdots & \cdots & \cdots \cdots \\
1 & -(\kappa) a_{1} & (\kappa) a_{2} & \cdots & \pm(\kappa) a_{n-1}
\end{array}\right]\left[\begin{array}{llll}
h_{r} & h_{s} & \cdots & h_{t} \\
h_{r-1} & h_{s-1} & \cdots & h_{t-1} \\
h_{r-2} & h_{s-2} & \cdots & h_{t-2} \\
\cdots \cdots & \cdots \cdots \cdots & \cdots & \cdots
\end{array}\right]} \\
& =\left[\begin{array}{ccccc}
\alpha^{r} & a^{s} & \cdots & a^{t} \\
\beta^{r} & \beta^{s} & \cdots & \beta^{t} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\kappa^{r} & \kappa^{s} & \cdots & \cdots & \cdots \\
& & \kappa^{t}
\end{array}\right] . \tag{2}
\end{align*}
$$

If we take as second factor on the left hand side the matrix

$$
H \equiv\left[\begin{array}{ccccc}
h_{0} & h_{1} & h_{2} & \cdots & h_{n-1} \\
\bullet & h_{0} & h_{1} & \cdots & h_{n-2} \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

so that $|H|=1$, the corresponding determinantal relation gives us

$$
\left|1 \quad(\beta) a_{1} \quad(\gamma) a_{2} \quad \ldots \quad \pm(\kappa) a_{n-1}\right|=\left|\begin{array}{lllll}
a^{0} & \beta^{1} & \gamma^{2} & \ldots & \kappa^{n-1}
\end{array}\right|
$$

as is otherwise obvious from consideration of the linear factors of each determinant, and hence the determinantal form of (2) is equivalent to

$$
\begin{equation*}
\left|\boldsymbol{a}^{0} \beta^{1} \gamma^{2} \ldots \kappa^{n-1}\right|\left|h_{0} h_{r-1} h_{s-2} \ldots h_{t-n+1}\right|=\left|\boldsymbol{a}^{0} \beta^{r} \gamma^{8} \ldots \kappa^{t}\right| \tag{3}
\end{equation*}
$$

Jacobi's identity.
It may be remarked in passing that, since the reciprocal of H is
because of the Wronski relations, the particular form of (2) with $r, s, \ldots, \mathrm{t}=0,1, \ldots, n-1$ may also be written

$$
\begin{aligned}
& J \equiv\left[\begin{array}{ccccc}
1 & -(\alpha) a_{1} & (\alpha) a_{2} & \cdots & \pm(\alpha) a_{n-1} \\
1 & -(\beta) a_{1} & (\beta) a_{2} & \cdots & \pm(\beta) a_{n-1} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots & \cdots \cdots \cdots & \cdots \cdots \cdots \\
1 & -(\kappa) a_{1} & (\kappa) a_{2} & \cdots & \pm(\kappa) a_{n-1}
\end{array}\right]
\end{aligned}
$$

the determinantal form of which has been noted by Muir (Theory of

Determinants, IV, p. 148) in referring to a paper in which (-$)^{\frac{3 n(n-1)}{1)}} \boldsymbol{J}$ arises as the Jacobian of the functions $a_{1}, a_{2}, \ldots, a_{n}$.

The identity (1) may be extended to

$$
\mathcal{A}(\ldots ; x) \mathcal{H}(\ldots, a, \beta, \ldots ; x)=\mathcal{H}(a, \beta, \ldots ; x) .
$$

and similarly we have

$$
\mathcal{H}(\ldots, a, \beta, \ldots ; x) \mathcal{H}(\ldots \ldots ; x)=\mathcal{A}(a, \beta, \ldots \ldots: x)
$$

[In particular, (4) is an immediate consequence of

$$
\left.\mathcal{A}(\alpha, \beta, \ldots, \kappa ; x) \mathcal{H}(\alpha ; x)=\mathcal{A}\left(\beta, \ldots .,{ }_{\kappa}^{\kappa} ; x\right) .\right]
$$

Further, $\mathcal{H}(\ldots, a, \beta, \ldots ; x) \mathcal{H}(\ldots, \lambda, \mu, \ldots ; x)$

$$
=\mathscr{H}(a, \beta, \ldots, x) \mathcal{H}(\lambda, \mu, \ldots ; x) .
$$

Generalizations of (2) may hence be obtained.

University College,

Southampton.

A note on the "probleme des rencontres."

By A. C. Aitken.

1. This celebrated problem is treated in nearly all the textbooks on probability; for example in Bertrand's Calcul des Probabilités, 1889, pp. 15-17, in Poincaré's of the same title, 1896, pp. 36-38, and in most of the recent textbooks. The problem may be stated in abstract terms as follows: Among the $n!$ permutations ($\alpha_{1} \alpha_{2} \alpha_{3} \ldots a_{n}$) of the natural order ($123 \ldots n$), how many have no a_{j} equal to j ? The problem has been clothed in many picturesque (and highly unlikely) "representations"; for example, by imagining n letters placed at random in n addressed envelopes, and inquiring what is the chance that no letter is in its correct envelope; or by imagining n gentlemen returning at random to their n houses; and so on, ad risum. Various derivations have also been given of the probability in question, namely

$$
\begin{equation*}
p(0 ; n)=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-)^{n} \frac{1}{n!} \tag{1}
\end{equation*}
$$

