M. Itô and N. Suzuki Nagoya Math. J. Vol. 83 (1981), 53-106

COMPLETELY SUPERHARMONIC MEASURES FOR THE INFINITESIMAL GENERATOR A OF A DIFFUSION SEMI-GROUP AND POSITIVE EIGEN ELEMENTS OF A

MASAYUKI ITÔ AND NORIAKI SUZUKI

§1. Introduction

Let X be a locally compact Hausdorff space with countable basis. We denote by

M(X) the topological vector space of all real Radon measures in X with the vague topology,

 $M_{\kappa}(X)$ the topological vector space of all real Radon measures in X whose supports are compact with the usual inductive limit topology.

Their subsets of all non-negative Radon measures are denoted by $M^+(X)$ and by $M^+_{\mathcal{K}}(X)$, respectively.

In the paragraph 2, we shall prepare the terminology and the notation which we shall use in the sequel.

A continuous linear operator T from $M_{\kappa}(X)$ into M(X) is called a diffusion kernel on X if T is positive, i.e., $T\mu \in M^+(X)$ whenever $\mu \in M^+_{\kappa}(X)$. A semi-group $(T_i)_{i\geq 0}$ of diffusion kernels on X is called a diffusion semigroup if $T_0 = I$ (the identity) and if, for any $\mu \in M_{\kappa}(X)$, the mapping $t \to T_{\iota}\mu$ is continuous in M(X).

We consider the infinitesimal generator A of a transient and regular diffusion semi-group $(T_t)_{t\geq 0}$ on X. A Radon measure $\mu \in M(X)$ is said to be A-superharmonic (resp. A-harmonic) if it satisfies $-A\mu \in M^+(X)$ (resp. $A\mu = 0$).

In the paragraph 3, we shall show that every positive A-superharmonic Radon measure is written uniquely as the sum of a V-potential of a non-negative Radon measure and a non-negative A-harmonic measure, where V is the Hunt diffusion kernel for $(T_t)_{t\geq 0}$, i.e.,

Received April 27, 1979.

$$(1.1) V = \int_0^\infty T_t dt$$

By generalizing the classical positive eigen equation with zero conditions on the boundary and by defining that a Radon measure vanishes V-n.e. on the boundary (Definition 21 in §2), we shall discuss, in the paragraph 4, a positive eigen equation for A with zero conditions in the following setting:

For a positive number c > 0,

(1.2)
$$\begin{cases} A\mu = -c\mu \\ \mu = 0 \text{ V-n.e. on the boundary.} \end{cases}$$

Denote by $E_0(A;c)$ the set of all non-negative solutions of (1.2) and put $E_0(A) = \bigcup_{c \ge 0} E_0(A;c)$. Under the assumption that A satisfies the condition (\mathscr{L}) (Definition 49 in §4), we shall show that $E_0(A)$ is a Borel measurable set in the metrizable space $M^+(X)$.

By generalizing the notion of the classical complete superharmonicity, we define the complete A-superharmonicity of $\mu \in M(X)$. A Radon measure $\mu \in M(X)$ is said to be completely A-superharmonic if, for any integer $n \ge 1$, $(-A)^n \mu \in M^+(X)$, where $(-A)^n$ denotes the *n*-th iterate of -A. Let SC(A) be the set of all non-negative completely A-superharmonic measures in X and put

(1.3)
$$SC_0(A) = \{ \mu \in SC(A); (-A)^n \mu = 0 \text{ V-n.e. on the boundary} \\ \text{for } n = 0, 1, \cdots \}.$$

Under the condition (\mathscr{L}) for A, SC(A) is a closed convex cone in $M^+(X)$ and all extreme rays of SC(A) contained in $SC(A) - SC_0(A)$ are determined whenever all extreme rays of SC(A) contained in H(A) are determined, where H(A) is the convex cone formed by all non-negative A-harmonic measures.

A main purpose of the paragraph 4 is to show that

(1.4)
$$SC_{0}(A) = \left\{ \int \nu d\Phi(\nu) \in M^{+}(X); \Phi \in M_{b}^{+}(E_{0}(A)) \right\}$$
$$= \left\{ \int_{0}^{\infty} \mu_{t} d\sigma(t) \in M^{+}(X); \mu_{t} \in E_{0}(A; t), \sigma \in M_{b}^{+}((0, \infty)) \right\},$$

where $M_b^+(E_0(A))$ and $M_b^+((0,\infty))$ denote the set of all regular Borel nonnegative measures Φ on $E_0(A)$ with $\int d\Phi < \infty$ and that of all Borel non-

54

negative measures σ in $(0, \infty)$ with $\int d\sigma < \infty$, respectively. Let A = d/dx in $(0, \infty)$. Then (1.4) implies the Bernstein theorem.

M. V. Noviskii [16] discussed a similar formula as in (1.4) for the infinitesimal generator of a contraction semi-group in a Banach space.

In the paragraph 5, for a given elliptic differential operator L of second order on a subdomain D of an orientable C^{∞} -manifold, we shall show that the diffusion semi-group defined by the fundamental solution of $\partial/\partial t - L$ is regular if it is transient. Applying our theorem to completely L-superharmonic functions in D, we shall obtain the integral representation of a completely L-superharmonic function in D. This is a generalization of Noviskiĭ's result (see [15]).

§2. Basic notation and preliminaries

We denote by

C(X) the Fréchet space of all real-valued continuous functions in X with the topology of compact uniform convergence,

 $C_{\kappa}(X)$ the topological vector space of all real-valued continuous functions in X whose supports are compact with the usual inductive limit topology.

Their subsets of all non-negative functions are also denoted by $C^+(X)$ and $C^+_{\kappa}(X)$, respectively.

DEFINITION 1. (1) A continuous linear operator T from $M_{\kappa}(X)$ into M(X) is called a diffusion kernel if T is positive, i.e., $T\mu \in M^+(X)$ whenever $\mu \in M^+_{\kappa}(X)$.

(2) A linear operator T from $C_{\kappa}(X)$ into C(X) is called a continuous kernel if T is positive, i.e., $Tf \in C^+(X)$ whenever $f \in C^+_{\kappa}(X)$.

Remark 2. A continuous kernel T is a continuous mapping from $C_{\mathcal{X}}(X)$ into C(X).

We see easily the following

Remark 3. (1) Let T be a diffusion kernel on X. For $f \in C_{\kappa}(X)$, we put

(2.1)
$$T^*f(x) = \int f dT \varepsilon_x ,$$

where ε_x denotes the Dirac measure at $x \in X$. Then $T^*f \in C(X)$ and $T^*: C_x(X) \ni f \to T^*f \in C(X)$ is a continuous kernel on X.

(2) Let T be a continuous kernel on X. For $\mu \in M_{\kappa}(X)$, there exists one and only one $T^*\mu \in M(X)$ such that, for any $f \in C_{\kappa}(X)$,

(2.2)
$$\int f dT^* \mu = \int T f d\mu ,$$

and $T^*: M_{\kappa}(X) \ni \mu \to T^*\mu \in M(X)$ is a diffusion kernel on X.

In (1), T^* is called the dual continuous kernel of T and in (2), T^* is the dual diffusion kernel of T.

Remark 4. Let T be a diffusion kernel or a continuous kernel on X. Then $(T^*)^* = T$.

In the sequel, for a diffusion kernel or a continuous kernel T, its dual kernel is always denoted by T^* . For a diffusion kernel T on X, we put

(2.3)
$$\mathscr{D}(T) = \left\{ \mu \in M(X); \int T^* f d |\mu| < \infty \text{ for all } f \in C^+_{\kappa}(X) \right\}$$

where $|\mu|$ denotes the total variation of μ , and put $\mathscr{D}^+(T) = \mathscr{D}(T) \cap M^+(X)$. Then $\mathscr{D}(T)$ is a linear subspace of M(X) and T can be extended to a positive linear operator from $\mathscr{D}(T)$ into M(X). For $\mu \in \mathscr{D}(T)$, $T\mu$ is called the T-potential of μ .

Let T be a continuous kernel on X. Put

(2.4)
$$\mathscr{D}(T) = \left\{ f \in C(X); \int |f| dT^* \mu < \infty \text{ for all } \mu \in M^+_{\kappa}(X) \text{ and} M^+_{\kappa}(X) \ni \mu \to \int f dT^* \mu \text{ is continuous} \right\}.$$

Then, by the following lemma and Remark 4, we see that $\mathscr{D}(T)$ is a linear subspace of C(X) and that T can be extended to a positive linear operator from $\mathscr{D}(T)$ into C(X) by defining $Tf(x) = \int f dT^* \varepsilon_x$.

LEMMA 5. Let T and $\mathscr{D}(T)$ be the same as above. If $f \in C(X)$ and $|f| \leq |g|$ for some $g \in \mathscr{D}(T)$, then $f \in \mathscr{D}(T)$.

In fact, Lemma 5 follows from the lower semi-continuity of the function $\int h dT^* \varepsilon_x$ of x for all $h \in C^+(X)$.

Let T_j (j = 1, 2) be a diffusion kernel (resp. a continuous kernel) on X. If, for any $\mu \in M_{\kappa}(X)$ (resp. $f \in C_{\kappa}(X)$), $T_2\mu \in \mathcal{D}(T_1)$ (resp. $T_2f \in \mathcal{D}(T_1)$) and if the mapping $\mu \to T_1(T_2\mu)$ (resp. $f \to T_1(T_2f)$) defines a diffusion kernel (resp. a continuous kernel), it is called the product of T_1 and T_2 and denoted by $T_1 \cdot T_2$.

Remark 6. Let T_j (j = 1, 2) be a diffusion kernel (resp. a continuous kernel) on X. If $T_1 \cdot T_2$ is defined, then $T_2^* \cdot T_1^*$ is defined and $(T_1 \cdot T_2)^* = T_2^* \cdot T_1^*$.

In particular, for a diffusion kernel T (resp. a continuous kernel) on X and a positive integer $n \ge 2$, we denote by T^n the diffusion kernel (resp. the continuous kernel) defined inductively by $T^{n-1} \cdot T$ provided that it is defined, where $T^1 = T$. In the case of $T \ne 0$, T^0 means the identity I.

DEFINITION 7. A family $(T_t)_{t\geq 0}$ of diffusion kernels (resp. continuous kernels) on X is called a diffusion semi-group (resp. continuous semi-group) if it satisfies the following three conditions:

(2.5)
$$T_0 = I$$
.

$$(2.6) T_t \cdot T_s = T_{t+s} \text{ for any } t \ge 0, \ s \ge 0.$$

For each $\mu \in M_{\kappa}(X)$ (resp. $f \in C_{\kappa}(X)$), the mapping $t \to T_{t}\mu$ (resp.

(2.7)
$$t \to \int T_{\iota} f d\mu$$
 is continuous in $M(X)$ (resp. continuous for each $\mu \in M_{\kappa}(X)$).

Evidently, for a diffusion semi-group (resp. a continuous semi-group) $(T_t)_{t\geq 0}$, $(T_t^*)_{t\geq 0}$ is a continuous semi-group (resp. a diffusion semi-group).

Let $(T_t)_{t\geq 0}$ be a diffusion semi-group (resp. a continuous semi-group) on X. Putting

$$(2.8) \qquad \mathscr{D}((T_{t})_{t\geq 0}) = \left\{ \mu \in \bigcap_{t\geq 0} \mathscr{D}(T_{t}); t \longrightarrow T_{t}\mu \text{ is continuous in } M(X) \right\}$$
$$\left(\text{resp. } \mathscr{D}((T_{t})_{t\geq 0}) = \left\{ f \in \bigcap_{t\geq 0} \mathscr{D}(T_{t}); t \longrightarrow \int T_{t}fd\mu \text{ is continuous for} \\ \text{ each } \mu \in M_{K}(X) \right\} \right),$$

we call it the domain of $(T_t)_{t\geq 0}$. We put also $\mathscr{D}^+((T_t)_{t\geq 0}) = \mathscr{D}((T_t)_{t\geq 0}) \cap M^+(X)$ (resp. $= \mathscr{D}((T_t)_{t\geq 0}) \cap C^+(X)$).

DEFINITION 8. Let $(T_t)_{t\geq 0}$ be a diffusion semi-group (resp. a continuous semi-group) on X. We say that it is transient if the mapping $V: M_{\kappa}(X) \ni \mu \to \int_0^\infty T_t \mu dt \in M(X)$ (resp. $C_{\kappa}(X) \ni f \to \int_0^\infty T_t f dt \in C(X)$) is defined as a diffu-

sion kernel (resp. a continuous kernel) on X, where, for any $f \in C_{\kappa}(X)$, $\int fd \left(\int_{0}^{\infty} T_{\iota} \mu dt \right) = \int_{0}^{\infty} \int f dT_{\iota} \mu dt.$

In this case, we denote by

$$(2.9) V = \int_0^\infty T_t dt$$

and call it the Hunt diffusion kernel for $(T_t)_{t\geq 0}$ (resp. the Hunt continuous kernel for $(T_t)_{t\geq 0}$).

Evidently we see the following

Remark 9. Let $(T_t)_{t\geq 0}$ be a diffusion semi-group (resp. a continuous semi-group) on X. Then $(T_t)_{t\geq 0}$ is transient if and only if $(T_t^*)_{t\geq 0}$ is transient.

Furthermore, in the case that $(T_i)_{i\geq 0}$ is transient, we have

(2.10)
$$\left(\int_0^\infty T_t dt\right)^* = \int_0^\infty T_t^* dt$$

Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group (resp. a transient continuous semi-group) on X. For any $p\geq 0$, we put

(2.11)
$$V_p = \int_0^\infty \exp\left(-pt\right) T_t dt ,$$

and call $(V_p)_{p\geq 0}$ the resolvent for $(T_i)_{i\geq 0}$. In this case, V_p is a diffusion kernel (resp. a continuous kernel, because the Fatou lemma gives that, for any $f \in C_K^+(X)$, $V_p f$ and $Vf - V_p f$ are lower semi-continuous).

In the usual way, we see the following

PROPOSITION 10. (1) Let $(T_t)_{t\geq 0}$ and $(T'_t)_{t\geq 0}$ be transient diffusion semigroups (resp. transient continuous semi-groups) on X. If $\int_0^\infty T_t dt = \int_0^\infty T'_t dt$, then $T_t = T'_t$ for any $t \geq 0$.

(2) Let $(T_t)_{t\geq t}$ be the same as above and V be the Hunt diffusion kernel (resp. the Hunt continuous kernel) for $(T_t)_{t\geq 0}$. If a family $(V_p)_{p\geq 0}$ of diffusion kernels (resp. continuous kernels) satisfies the following

(2.12)
$$V_p - V_q = (q - p)V_p \cdot V_q \text{ for any } p \ge 0 \text{ and } q > 0, \text{ and} \\ \lim_{p \to 0} V_p = V_0 = V,$$

then $(V_p)_{p\geq 0}$ is the resolvent for $(T_t)_{t\geq 0}$.

58

We remark here that $\lim_{p\to 0} V_p = V_0$ means that, for any $\mu \in M_{\mathbb{X}}(X)$, $\lim_{p\to 0} V_p \mu = V_0 \mu$ in M(X) (resp. for any $f \in C_{\mathbb{X}}(X)$, $\lim_{p\to 0} V_p f = V_0 f$ in C(X)). For a transient continuous semi-group $(T_t)_{t\geq 0}$, the Dini theorem gives that $\lim_{p\to 0} V_p f = V_0 f$ in C(X) if and only if $\lim_{p\to 0} V_p f(x) = V_0 f(x)$ for each $x \in X$. The first equality in (2.12) is called the resolvent equation.

Proof of Proposition 10. We shall show only Proposition 10 for transient diffusion semi-groups, because the proof of the other case is similar. Let $(V_{1,p})_{p\geq 0}$ and $(V_{2,p})_{p\geq 0}$ be the resolvent for $(T_t)_{t\geq 0}$ and that for $(T_t')_{t\geq 0}$, respectively. Evidently we have $\lim_{p\to 0} V_{j,p} = V_{j,0}$ (j = 1, 2). For each $p \geq 0$, we put $H_p(t) = \exp(-pt)$ on $[0, \infty)$ and = 0 in $(-\infty, 0)$. Then, for any $p \geq 0$ and q > 0, $H_p - H_q = (q - p)H_p * H_q$. By the Fubini theorem and (2.7), $(V_{j,p})_{p\geq 0}$ satisfies the resolvent equation. Since, for any $\mu \in M_{\mathbb{K}}(X)$, the mappings $t \to T_t \mu$ and $t \to T_t' \mu$ are continuous in M(X), the above argument and the injectivity of the Laplace transformation show that (2) implies (1). We shall show (2). It suffices to show that, for any p > 0 and any integer $n \geq 1$, $(V_p)^n$ and $(V_{1,p})^n$ are defined and

(2.13)
$$V + \frac{1}{p}I = \frac{1}{p} \left(I + \sum_{n=1}^{\infty} (p V_p)^n \right) = \frac{1}{p} \left(I + \sum_{n=1}^{\infty} (p V_{1,p})^n \right),$$

where $(V_{1,p})_{p\geq 0}$ is the resolvent for $(T_i)_{i\geq 0}$, because $(I - pV_p) \cdot (pV + I) \cdot (I - pV_p) = (I - pV_p) \cdot (pV + I) \cdot (I - pV_{1,p})$. By using the resolvent equation, we see that $(V_p)^n$ and $(V_{1,p})^n$ are defined $(n = 1, 2, \dots)$. We shall show only the first equality in (2.13), because the other is similar. This follows directly from

(2.14)
$$V_q + \frac{1}{p-q}I = \frac{1}{p-q} \left(I + \sum_{n=1}^{\infty} \left((p-q)V_p\right)^n\right)$$

for any q with 0 < q < p, because, for any $\mu \in M_{\kappa}^{+}(X)$, $V_{q}\mu \uparrow V\mu$ with $q \downarrow 0$. By the resolvent equation, we have

(2.15)
$$\begin{aligned} \frac{1}{p-q} \Big(I + \sum_{n=1}^{\infty} ((p-q)V_p)^n) \\ &= \frac{1}{p-q} I + V_q - \lim_{n \to \infty} \Big(\frac{1}{p-q} I + V \Big) \cdot ((p-q)V_p)^n \\ &= \frac{1}{p-q} I + V_q , \end{aligned}$$

because, for any $\mu \in \mathscr{D}^+(V)$,

(2.16)
$$(p-q)^n V(V_p)\mu \leq \left(\frac{p-q}{p}\right)^n V\mu .$$

This completes the proof.

DEFINITION 11. A continuous kernel V on X is said to satisfy the domination principle if, for any $f, g \in C_{\kappa}^{+}(X)$, an inequality $Vf(x) \leq Vg(x)$ on the support of f, supp(f), implies the same inequality on X.

PROPOSITION 12. Let $(T_t)_{t\geq 0}$ be a transient continuous semi-group and V be the Hunt continuous kernel for $(T_t)_{t\geq 0}$. Then V satisfies the domination principle.

If X has a structure of an abelian group with which the topology of X is compatible and if, for any $t \ge 0$, T_t is defined by a positive Radon measure α_t as follows;

$$(2.17) T_t f(x) = \alpha_t * f(x) ,$$

then $(T_t)_{t\geq 0}$ and V are said to be of convolution type. The assertion of Proposition 12 is well-known in the case that $(T_t)_{t\geq 0}$ is of convolution type (see, for example, [8]). Its proof is also valid in general case.

Proof of Proposition 12. Let $(V_p)_{p\geq 0}$ be the resolvent for $(T_t)_{t\geq 0}$ and suppose that, for $f, g \in C^+_{\kappa}(X)$, $Vf(x) \leq Vg(x)$ on $\operatorname{supp}(f)$. Let $h \in C^+_{\kappa}(X)$ such that h(x) > 0 on $\operatorname{supp}(f)$. Then, for any $x_0 \in \operatorname{supp}(f)$, there exists $t_0 > 0$ such that $T_th(x_0) > 0$ for all t with $0 < t < t_0$. Hence $Vh(x_0) > 0$, i.e., Vh(x) > 0 on $\operatorname{supp}(f)$. For any integer $n \geq 1$, there exists $p_0 > 0$ such that, for any $p > p_0$,

(2.18)
$$\left(V+\frac{1}{p}I\right)f(x) \leq \left(V+\frac{1}{p}I\right)\left(g+\frac{1}{n}h\right)(x) \text{ on } \operatorname{supp}(f).$$

Put $u = \inf((V + (1/p)I)f, (V + (1/p)I)(g + (1/n)h))$. Then we have

(2.19)
$$(I - pV_p)\Big(\Big(V + \frac{1}{p}I\Big)f - u\Big) = pV_p\Big(u - \Big(V + \frac{1}{p}I\Big)f\Big) \leq 0$$
 on supp (f).

Since $(I - pV_p)(V + (1/p)I)f = (1/p)f$ and $(I - pV_p)u \ge 0$ on X, we have $(I - pV_p)((V + (1/p)I)f - u) \le 0$, which gives that $(V + (1/p)I)f \le u$ on X, i.e., u = (V + (1/p)I)f on X. Hence the inequality in (2.18) holds on X. Letting $p \to \infty$ and $n \to \infty$, we obtain that $Vf(x) \le Vg(x)$ on X. Thus Proposition 12 is shown.

Remark 13. Let V be the same as above. If, for $f, g \in \mathcal{D}^+(V)$, $Vf \leq Vg$ on supp (f), then the same inequality holds on X.

In fact, for any $f' \in C_{\kappa}^{+}(X)$ with $f' \leq f$, there exists $h \in C_{\kappa}^{+}(X)$ such that Vh(x) > 0 on $\operatorname{supp}(f')$. Hence, for any integer $n \geq 1$, there exists $g_n \in C_{\kappa}^{+}(X)$ such that $g_n \leq g$ and $Vf' \leq Vg_n + (1/n)Vh$ on $\operatorname{supp}(f')$. Proposition 12 gives that $Vf' \leq Vg_n + (1/n)Vh \leq Vg + (1/n)Vh$ on X. Letting $f' \uparrow f$ and $n \uparrow \infty$, we have $Vf \leq Vg$ on X.

Similarly as in Definition 11, we define the domination principle for a diffusion kernel.

DEFINITION 14. A diffusion kernel V on X is said to satisfy the domination principle if, for any $\mu, \nu \in M_{\kappa}^{+}(X)$, $V\mu \leq V\nu$ in a certain neighborhood of supp (μ) implies that the same inequality holds on X^{1} .

PROPOSITION 15. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X and V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$. Then V satisfies the domination principle.

Proof. Assume that, for $\mu, \nu \in M_{\mathbb{K}}^{+}(X)$, $V\mu \leq V\nu$ in a certain open neighborhood ω of $\operatorname{supp}(\mu)$. Choose a relatively compact open set ω_{1} in X such that $\operatorname{supp}(\mu) \subset \omega_{1} \subset \overline{\omega}_{1} \subset \omega$. Let $(V_{p})_{p\geq 0}$ be the resolvent for $(T_{\iota})_{\iota\geq 0}$, and put $\mu_{p} = pV_{p}\mu$ in ω_{1} and $\mu_{p} = 0$ on $C\omega_{1}$ (p>0). Since $\lim_{p\to\infty} pV_{p}\mu = \mu$, $\lim_{p\to\infty} \mu_{p} = \mu$ in $M_{\mathbb{K}}(X)$. Hence $\lim_{p\to\infty} V\mu_{p} = V\mu$ in M(X). By $p(V + (1/p)I) \cdot V_{p} = V$, we have $(V + (1/p)I)\mu_{p} \leq V\nu$ in ω . Put

$$egin{aligned} \lambda &= rac{1}{2} \Big(V
u + \Big(V + rac{1}{p} I \Big) \mu_p - \Big| V
u - \Big(V + rac{1}{p} I \Big) \mu_p \Big) \ & \left(= \inf \Big(V
u, \Big(V + rac{1}{p} I \Big) \mu_p \Big) \Big) \,. \end{aligned}$$

Since $(V + (1/p)I)\mu_p \ge p V_p \lambda$ and $V_\nu \ge p V_p \lambda$, we have

(2.20)
$$\lambda \ge p V_p \lambda \text{ and } \lambda = p \left(V + \frac{1}{p} I \right) (\lambda - p V_p \lambda).$$

Since

(2.21)
$$(I - pV_p)\left(\lambda - \left(V + \frac{1}{p}I\right)\mu_p\right)$$
$$= pV_p\left(\left(V + \frac{1}{p}I\right)\mu_p - \lambda\right) \leq 0 \quad \text{in } \omega ,$$

1) We denote also by $supp(\mu)$ the support of μ .

we have $\lambda \ge (V + (1/p)I)\mu_p$ on X, i.e., $\lambda = (V + (1/p)I)\mu_p$, so that

(2.22)
$$\left(V+\frac{1}{p}I\right)\mu_p \leq V\nu \text{ on } X.$$

Letting $p \to \infty$, we have $V\mu \leq V\nu$ on X. This completes the proof.

Propositions 12, 15 and the Choquet-Deny theorem²) implies the following

PROPOSITION 16. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X and V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$. For any $\mu \in \mathscr{D}^+(V)$ and any relatively compact open set ω in X, there exists one and only one $\mu'_{\omega} \in M^+_{\kappa}(X)$ such that:

$$(2.23) \qquad \qquad \operatorname{supp}\left(\mu_{\omega}^{\prime}\right) \subset \overline{\omega} \ .$$

$$(2.24) V\mu'_{\omega} \leq V\mu \text{ on } X$$

$$(2.25) V\mu'_{\omega} = V\mu \text{ in }\omega$$

(2.26) If $\nu \in M_{\kappa}^{+}(X)$ satisfies $V\nu \geq V\mu$ in ω , then $V\nu \geq V\mu'_{\omega}$ on X.

Proof. First we assume that $\mu \in M_{K}^{+}(X)$. Choose an exhaustion $(\omega_{n})_{n=1}^{\infty}$ of ω^{3} . The Choquet-Deny theorem²⁾ (see [4]) and Proposition 12 give that there exists $\mu'_{n} \in M_{K}^{+}(X)$ such that $\operatorname{supp}(\mu'_{n}) \subset \overline{\omega}_{n}$, $V\mu'_{n} \leq V\mu$ on X and $V\mu'_{n} = V\mu$ in ω_{n} . By Proposition 15, $(V\mu'_{n})_{n=1}^{\infty}$ is increasing. Since, for any compact K in X, there exists $h \in C_{K}^{+}(X)$ such that $V^{*}h(x) > 0$ on K, $(\mu'_{n})_{n=1}^{\infty}$ is vaguely bounded, and hence we may assume that it converges vaguely to $\mu'_{\omega} \in M_{K}^{+}(X)$ as $n \to \infty$. We shall show that μ'_{ω} is a required measure. Evidently μ'_{ω} satisfies (2.23), (2.24) and (2.25), because $V\mu'_{\omega} =$ $\lim_{n\to\infty} V\mu'_{n}$. Let $\nu \in M_{K}^{+}(X)$ satisfy $V\nu \geq V\mu$ in ω . Then, for any $n \geq 1$, Proposition 15 gives that $V\mu'_{n} \leq V\nu$ on X, so that $V\mu'_{\omega} \leq V\nu$ on X, i.e., μ'_{ω} is a required measure.

In general, we assume that $\mu \in \mathscr{D}^+(V)$. We can write $\mu = \sum_{n=1}^{\infty} \mu_n$, where $\mu_n \in M_{\mathcal{K}}^+(X)$. Let $\mu'_{n,\omega}$ the non-negative Radon measure obtained above for μ_n . Then $\sum_{n=1}^{\infty} \mu'_{n,\omega}$ converges vaguely. Putting $\mu'_{\omega} = \sum_{n=1}^{\infty} \mu'_{n,\omega}$, we see easily that μ'_{ω} is a required measure.

²⁾ This shows that V^* satisfies the domination principle if and only if, for any $\mu \in M_K^+(X)$ and any relatively compact open set ω in X, there exists $\mu' \in M_K^+(X)$ satisfying (2.23), (2.24) and (2.25) in Proposition 16.

³⁾ For an open set ω in X, $(\omega_n)_{n=1}^{\infty}$ is called an exhaustion of ω if, for each $n \ge 1$, ω_n is a relatively compact open set in ω , $\overline{\omega}_n \subset \omega_{n+1}$ $(n=1,2,\cdots)$ and $\bigcup_{n=1}^{\infty} \omega_n = \omega$.

Finally we show the unicity of μ'_{ω} . Let μ''_{ω} be another non-negative Radon measure satisfying the required four conditions. Then $V\mu'_{\omega} = V\mu''_{\omega}$. By virtue of the resolvent equation, we have, for any p > 0, $V_p\mu'_{\omega} = V_p\mu''_{\omega}$. By remarking that mappings $t \to T_t\mu'_{\omega}$ and $t \to T_t\mu''_{\omega}$ are vaguely continuous and that the Laplace transformation is injective, we obtain that, for any $t \ge 0$, $T_t\mu'_{\omega} = T_t\mu''_{\omega}$, i.e., $\mu'_{\omega} = \mu''_{\omega}$. Thus the unicity of μ'_{ω} is shown. This completes the proof.

The above non-negative Radon measure μ'_{ω} is called the V-balayaged measure of μ on ω . In general, the above assertion does not hold if ω is not relatively compact. Proposition 16 gives the following

COROLLARY 17. Let $(T_i)_{i\geq 0}$ and V be the same as above. The mapping $V: \mathcal{D}(V) \ni \mu \to V\mu \in M(X)$ is injective.

Proof. Assume that, for $\mu_j \in \mathscr{D}^+(V)$ (j = 1, 2), $V\mu_1 = V\mu_2$. Let $(\omega_n)_{n=1}^{\infty}$ be an exhaustion of X. Put $\mu_{j,n} = \mu_j$ in ω_n and $\mu_{j,n} = 0$ on $C\omega_n$ (j = 1, 2;; $n = 1, 2, \cdots$). We denote by $\mu'_{j,n}$ the V-balayaged measure of $\mu_j - \mu_{j,n}$ on ω_n . Then $\mu_{j,n} + \mu''_{j,n}$ is the V-balayaged measure of μ_j on ω_n (j = 1, 2; $n = 1, 2, \cdots$). Evidently we have $V(\mu_{1,n} + \mu''_{1,n}) = V(\mu_{2,n} + \mu''_{2,n})$ for all $n \ge 1$. In the same manner as above, we have

$$(2.27) \mu_{1,n} + \mu_{1,n}'' = \mu_{2,n} + \mu_{2,n}'' \quad (n = 1, 2, \cdots) .$$

Since $V\mu_{j,n}' \leq V(\mu_j - \mu_{j,n})$ and $\lim_{n \to \infty} V(\mu_j - \mu_{j,n}) = 0$, we have $\lim_{n \to \infty} V\mu_{j,n}' = 0$ (vaguely), and hence $\lim_{n \to \infty} \mu_{j,n}' = 0$ (vaguely) for j = 1, 2. Letting $n \to \infty$ in (2.27), we obtain that $\mu_1 = \mu_2$. This completes the proof.

By generalizing the notion of associated families (see [7]), we define the following

DEFINITION 18. Let $(T_t)_{t\geq 0}$ be a transient continuous semi-group on Xand V be the Hunt continuous kernel for $(T_t)_{t\geq 0}$. We say that $(T_t)_{t\geq 0}$ satisfies the condition (D) if, for any $f \in C^+_{\kappa}(X)$, there exists an associated family of f with respect to $(T_t)_{t\geq 0}$.

Here, an associated family $(f_n)_{n=1}^{\infty}$ of f with respect to $(T_t)_{t\geq 0}$ is, by definition, a sequence in $\mathscr{D}^+((T_t)_{t\geq 0})\cap \mathscr{D}^+(V)$ satisfying the following two conditions:

(2.28)
$$Vf - Vf_n \in C^+_K(X) \ (n = 1, 2, \cdots)$$
.

(2.29) $(Vf_n)_{n=1}^{\infty}$ converges decreasingly to 0 as $n \uparrow \infty$.

By the Dini theorem, the convergence in (2.29) is that in the sense of C(X).

DEFINITION 19. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X. We say that $(T_t)_{t\geq 0}$ satisfies the condition (D^*) if $(T_t^*)_{t\geq 0}$ satisfies the condition (D).

We denote by $\mathfrak{N}(x)$ the totality of compact neighborhoods of $x \in X$.

PROPOSITION 20. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X and V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$. Assume that $(T_t)_{t\geq 0}$ satisfies the condition (D^*) . Then, for any $\mu \in \mathscr{D}^+(V)$ and any $x \in X$,

(2.30)
$$\bigcap_{N \in \mathfrak{N}(x)} P_{CN}(V; V\mu) = \{0\},$$

where $P_{CN}(V; V\mu)$ denotes the vague closure of the set

$$(2.31) \qquad \{V_{\nu}; \nu \in M_{\kappa}^{+}(X), \operatorname{supp}(\nu) \subset CN, \ V_{\nu} \leq V_{\mu} \text{ in } CN\}.$$

Proof. Let $N \in \mathfrak{N}(x)$ and choose an exhaustion $(\omega_n)_{n=1}^{\infty}$ of CN. Let μ'_n be the V-balayaged measure of μ on ω_n . Since $(V\mu'_n)_{n=1}^{\infty}$ is increasing and $V\mu'_n \leq V\mu$ on X $(n = 1, 2, \cdots)$,

(2.32)
$$\eta_{CN} = \lim_{n \to \infty} V \mu'_n \quad \text{(vaguely)}$$

exists. Proposition 15 gives that η_{CN} does not depend on the choice of $(\omega_n)_{n=1}^{\infty}$ and that, for any $\eta \in P_{CN}(V; V\mu)$, $\eta \leq \eta_{CN}$ on X. Choose a sequence $(N_n)_{n=1}^{\infty} \subset \mathfrak{N}(x)$ such that $N_n \subset \mathring{N}_{n+1}$ and $\bigcup_{n=1}^{\infty} N_n = X$, where \mathring{N}_{n+1} denotes the interior of N_{n+1} . Proposition 15 gives that $(\eta_{CN_n})_{n=1}^{\infty}$ is also decreasing. Put

(2.33)
$$\eta_0 = \lim_{n \to \infty} \eta_{CN_n} \, .$$

Then $\eta_0 \in \bigcap_{N \in \Re(x)} P_{CN}(V; V\mu)$ and, for any $\eta' \in \bigcap_{N \in \Re(x)} P_{CN}(V; V\mu)$, $\eta' \leq \eta_0$ on X. Let $(\omega_{n,k})_{k=1}^{\infty}$ be an exhaustion of CN_n and $\mu'_{n,k}$ be the V-balayaged measure of μ on $\omega_{n,k}$ $(n = 1, 2, \dots; k = 1, 2, \dots)$. For any $f \in C^+_K(X)$ and any associated family $(f_m)_{m=1}^{\infty}$ of f with respect to $(T^*_t)_{t\geq 0}$, we have, for any $m \geq 1$,

$$0 \leq \int f d\eta_0 = \lim_{n \to \infty} \int (f - f_m) d\eta_{CN_n} + \lim_{n \to \infty} \int f_m d\eta_{CN_n}$$

$$(2.34) \qquad \leq \lim_{n \to \infty} \lim_{k \to \infty} \int (f - f_m) dV \mu'_{n,k} + \int f_m dV \mu$$

$$= \lim_{n \to \infty} \lim_{k \to \infty} \int (V^*f - V^*f_m) d\mu'_{n,k} + \int V^*f_m d\mu \leq \int V^*f_m d\mu$$

Since $V^*f_m \leq V^*f$, (2.29) gives that $\lim_{m\to\infty} \int V^*f_m d\mu = 0$, which implies that $\int f d\eta_0 = 0$. Thus $\eta_0 = 0$, and hence our required equality (2.30) holds. This completes the proof.

Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X and V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$. For $\lambda \in M(X)$ and an open set ω in X, we put

$$(2.35) P_{\omega}(V;\lambda) = \overline{\{V\nu;\nu\in M_{\kappa}^{+}(X), \operatorname{supp}(\nu)\subset \omega, \ V\nu\leq |\lambda| \ \operatorname{in} \ \omega\}},$$

where the closure is in the sense of vague topology.

DEFINITION 21. Let $(T_i)_{i\geq 0}$ be a transient diffusion semi-group on X and V be the Hunt diffusion kernel for $(T_i)_{i\geq i}$. We say that $\lambda \in M(X)$ vanishes V-n.e. on the boundary of X if, for any $x \in X$,

(2.36)
$$\bigcap_{N \in \mathfrak{R}(x)} P_{CN}(V; \lambda) = \{0\}$$

and if there exists $\mu \in \mathscr{D}^+(V)$ such that $|\lambda| \leq V\mu$.

Evidently, for any $x \in X$, (2.36) holds if and only if there exists an $x \in X$ satisfying (2.36).

DEFINITION 22. A transient diffusion semi-group $(T_i)_{i\geq 0}$ on X is said to be weakly regular if, for each $\mu \in M_{\kappa}^+(X)$, $V\mu$ vanishes V-n.e. on the boundary of X, where V is the Hunt diffusion kernel for $(T_i)_{i\geq 0}$.

PROPOSITION 23. Let $(T_i)_{i\geq 0}$ be a transient diffusion semi-group on X and V be the Hunt diffusion kernel for $(T_i)_{i\geq 0}$. Then the following two statements are equivalent:

(1) $(T_t)_{t\geq 0}$ is weakly regular.

(2) For any $\mu \in \mathscr{D}^+(V)$ and any open set ω in X, there exists one and only one V-balayaged measure μ'_{ω} of μ on ω^{4} . Furthermore we have, for any $x \in X$,

(2.37)
$$\lim_{\substack{N \uparrow X \\ N \in \mathfrak{A}(x)}} V \mu'_{ON} = 0 \ (vaguely) \ .$$

⁴⁾ This means also a positive Radon measure satisfying the analogous conditions to (2.23)-(2.26).

Proof. It suffices to show that $(1) \Rightarrow (2)$, because the domination principle for V implies that, for any $N \in \mathfrak{N}(x)$ and any $\eta \in P_{CN}(V; V\mu)$, $\eta \leq V\mu'_{CN}$ on X, and (2.37) gives that $\bigcap_{N \in \mathfrak{M}(x)} P_{CN}(V; V\mu) = \{0\}$.

Let $x \in X$ and choose a suquence $(N_n)_{n=1}^{\infty} \subset \mathfrak{N}(x)$ such that $N_n \subset \mathring{N}_{n+1}$ and $\bigcup_{n=1}^{\infty} N_n = X$. Then $(\eta_{\mathcal{O}N_n})_{n=1}^{\infty}$ is decreasing. Since $\eta_{\mathcal{O}N_n} \in P_{\mathcal{O}N_n}(V; V\mu)$, the weak regularity of V gives that $\lim_{n\to\infty} \eta_{\mathcal{O}N_n} = 0$ (vaguely). Similarly as in Proposition 16, it suffices to assume that $\mu \in M_K^+(X)$. Let $(\omega_n)_{n=1}^{\infty}$ be an exhaustion of ω and μ'_n be the V-balayaged measure of μ on ω_n . Then $(V\mu'_n)_{n=1}^{\infty}$ is increasing and $V\mu'_n \leq V\mu$ on X $(n = 1, 2, \cdots)$. Put

(2.38)
$$\eta_{\omega} = \lim_{n \to \infty} V \mu'_n \,.$$

Then $\eta_{\omega} \in P_{\omega}(V; V\mu)$ and η_{ω} does not depend on the choice of $(\omega_n)_{n=1}^{\infty}$. Since $(\mu'_n)_{n=1}^{\infty}$ is vaguely bounded, we may assume that it converges vaguely to $\mu'_{\omega} \in M^+(X)$ as $n \to \infty$. Evidently $\eta_{\omega} \geq V\mu'_{\omega}$ on X. We shall show the inverse inequality. Let $\varphi_k \in C_{\kappa}^+(X)$ such that $0 \leq \varphi_k \leq 1$, $\varphi_k = 1$ on N_k and $\supp(\varphi_k) \subset \mathring{N}_{k+1}$ $(k = 1, 2, \cdots)$. Then, for any $n \geq 1$, $V((1 - \varphi_{k+1})\mu'_n) \in P_{CN_k}(V; V\mu)$ $(k = 1, 2, \cdots)$, and hence $V((1 - \varphi_{k+1})\mu'_n) \leq \eta_{CN_k}$ on X. Therefore, for any $f \in C_{\kappa}^+(X)$,

(2.39)
$$\int f dV \mu'_{\omega} \geq \int f dV (\varphi_{k+1} \mu'_{\omega}) = \lim_{n \to \infty} \int f dV (\varphi_{k+1} \mu'_n) \geq \int f d\eta_{\omega} - \int f d\eta_{CN_k} (k = 1, 2, \cdots)$$

Letting $k \to \infty$, we obtain that $V\mu'_{\omega} \ge \eta_{\omega}$ on X. Thus $\eta_{\omega} = V\mu'_{\omega}$. Similarly as in Proposition 16, μ'_{ω} is a required measure. Its unicity follows directly from Corollary 17.

Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X and V be a Hunt diffusion kernel for $(T_t)_{t\geq 0}$. Put

$$(2.40) R(V^*) = \{V^*f; f \in \mathscr{D}((T^*_t)_{t\geq 0}) \cap \mathscr{D}(V^*)\},$$

 $R^{*}(V^{*}) = R(V^{*}) \cap C^{*}(X), R_{\kappa}(V^{*}) = R(V^{*}) \cap C_{\kappa}(X) \text{ and } R_{\kappa}^{+}(V^{*}) = R(V^{*}) \cap C_{\kappa}^{+}(X).$ Then $R_{\kappa}(V^{*})$ is a linear subspace of $C_{\kappa}(X)$ and $R_{\kappa}^{+}(V^{*})$ is a convex cone. Put

$$(2.41) \qquad \mathscr{D}^{\scriptscriptstyle 0} = \left\{ \mu \in M(X); \int |f| d |\mu| < \infty \text{ for any } V^* f \in R_{\kappa}(V^*) \right\}$$

and, for each $\mu \in \mathscr{D}^0$, define the linear functional $A\mu$ on $R_{\kappa}(V^*)$ by

(2.42)
$$A\mu(V^*f) = -\int f d\mu \text{ for any } V^*f \in R_{\kappa}(V^*)$$
.

Precisely we write $\mathscr{D}^{0}(A) = \mathscr{D}^{0}$. Then we have easily the following

Remark 24. Let $(T_t)_{t\geq 0}$ and V be the same as above. Assume that $R_{\kappa}^{+}(V^*)$ is total in $C_{\kappa}(X)^{5}$. Then, for $\mu \in \mathscr{D}^{0}$, a continuous extension of $A\mu$ to $C_{\kappa}(X)$ is uniquely determined if it exists. Furthermore if, for $\mu \in \mathscr{D}^{0}$, $-A\mu$ is non-negative, i.e., $-A\mu(g) \geq 0$ if $g \in R_{\kappa}^{+}(V^*)$, then a positive linear extension of $-A\mu$ to $C_{\kappa}(X)$ exists.

DEFINITION 25. Let $(T_i)_{i\geq 0}$ be a transient diffusion semi-group on X and V be the Hunt diffusion kernel for $(T_i)_{i\geq 0}$. If $R_{\kappa}^+(V^*)$ is total in $C_{\kappa}(X)$, then $(T_i)_{i\geq 0}$ is said to satisfy the condition (C^*) .

For a transient diffusion semi-group on X satisfying the condition (C^*) , we denote by $\mathscr{D}(A)$ the set of all $\mu \in \mathscr{D}^0(A)$ such that a continuous linear extension to $C_{\kappa}(X)$ exists. For $\mu \in \mathscr{D}(A)$, we can write again $A\mu$ its continuous linear extension to $C_{\kappa}(X)$ without confusion (see Remark 24). Evidently $\mathscr{D}(A)$ is a linear subspace of M(X) and the linear operator $A: \mathscr{D}(A) \ni \mu \to A\mu \in M(X)$ is defined.

DEFINITION 26. The above linear operator A is called the infinitesimal generator of $(T_t)_{t\geq 0}$.

DEFINITION 27. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X. If $(T_t)_{t\geq 0}$ satisfies the conditions (D^*) and (C^*) , it is said to be regular.

If a transient diffusion semi-group $(T_i)_{i\geq 0}$ is of convolution type, it is always regular (see, for example, [7] and [8]).

Remark 28. Let $(T_i)_{i\geq 0}$ be a transient diffusion semi-group on X and $(V_p)_{p\geq 0}$ be the resolvent for $(T_i)_{i\geq 0}$. Let p>0 and put

(2.43)
$$T_{p,t} = \exp\left(-pt\right)\left(I + \sum_{n=1}^{\infty} \frac{(pt)^n}{n!} (pV_p)^n\right) \ (t > 0) \ \text{and} \ T_{p,0} = I.$$

Then $(T_{p,t})_{t\geq 0}$ is a transient diffusion semi-group on X and $V + (1/p)I = \int_0^\infty T_{p,t} dt$, where $V_0 = V$. Furthermore, if $(T_t)_{t\geq 0}$ is regular (resp. weakly regular), then so is $(T_{p,t})_{t\geq 0}$ for any p > 0.

In fact, (2.13) gives directly the first part. Assume that $(T_t)_{t\geq 0}$ is regular. Since $p(V^* + (1/p)I) \cdot (I - pV_p^*) = I$, $C_K(X) = R_K(V^* + (1/p)I)$, and hence $(T_{p,t})_{t\geq 0}$ satisfies the condition (C^*) . Let $f \in C_K^+(X)$ and $(f_n)_{n=1}^{\infty}$ be an

⁵⁾ This means that $R_K^+(V^*) \subset C_K(X)$ and, for any $x \in X$ and any neighborhood U of x, there exists an $f \neq 0 \in R_K^+(V^*)$ such that $\operatorname{supp}(f) \subset U$.

associated family of f with respect to $(T_i^*)_{t\geq 0}$. Then $pV_p^*f_n \in \mathscr{D}((T_{p,t}^*)_{t\geq 0}) \cap \mathscr{D}(V^* + (1/p)I)$ and $(V^* + (1/p)I)(pV_p^*f_n) = V^*f_n$. Thus we see that $(pV_p^*f_n)_{n=1}^{\infty}$ is an associated family of f with respect to $(T_{p,t}^*)_{t\geq 0}$. Hence $(T_{p,t})_{t\geq 0}$ is regular for any p > 0. Next we assume that V is weakly regular. Let p > 0 be fixed and $\mu \in M_{\kappa}^+(X)$. For any $x \in X$ and any $N \in \mathfrak{N}(x)$ with $\mathring{N} \supset \operatorname{supp}(\mu)$, we have, in the same manner as in Proposition 15,

(2.44)
$$\left(V+\frac{1}{p}I\right)\nu \leq V\mu'_{CN} \text{ on } X$$

whenever $(V + (1/p)I)\nu \in P_{CN}(V + (1/p)I; (V + (1/p)I)\mu)$, where μ'_{CN} is the V-balayaged measure of μ on CN. By Proposition 23 and (2.44), V + (1/p)I is weakly regular.

Remark 29. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X satisfying the condition (C^*) , V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$ and A be the infinitesimal generator of $(T_t)_{t\geq 0}$. Then, for any $\mu \in \mathcal{D}(V)$, $V\mu \in \mathcal{D}(A)$ and $A(V\mu) = -\mu$.

In fact, we may assume that μ is non-negative. For any $V^*f \in R^+_{\kappa}(V^*)$,

(2.45)
$$\lim_{t\to 0} \frac{1}{t} (I - T_t^*) (V^* f) = \lim_{t\to 0} \frac{1}{t} \int_0^t T_s^* f ds = f \text{ (pointwise)}.$$

Since $\operatorname{supp}(f^+) \subset \operatorname{supp}(V^*f)$,

(2.47)
$$\int |f| dV \mu \leq 2 \int f^* dV \mu < \infty ,$$

which gives that $V\mu \in \mathcal{D}^0(A)$, because, for any $V^*f \in R_\kappa(V^*)$, there exists $V^*g \in R^+_\kappa(V^*)$ such that $V^*g \ge |V^*f|$. Since, for any $V^*f \in R_\kappa(V^*)$, $\int V^*fd\mu = \int fdV\mu$, our assertion holds.

§3. The Riesz decomposition theorem

We begin by the following two lemmas:

LEMMA 30. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X and V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$. For a given positive Radon measure μ in X, there exists $h \in \mathcal{D}^+((T_t^*)_{t\geq 0}) \cap \mathcal{D}^+(V^*)$ such that $V^*h(x) > 0$ on X and $\int hd\mu < \infty$.

Proof. Let $(\omega_n)_{n=1}^{\infty}$ be an exhaustion of X. Then, for any n, there

exists $h_n \in C_K^+(X)$ such that $V^*h_n > 0$ in ω_n . We choose also $g_n \in C_K^+(X)$ satisfying $V^*g_n \ge h_n$ on X. Since, for any t > 0,

$$(3.1) 0 \leq T_t^* h_n \leq T_t^* (V^* g_n) = \int_t^\infty T_s^* g_n ds \leq V^* g_n \text{ on } X,$$

there exists a constant $c_n > 0$ such that

(3.2)
$$c_n V^* h_n \leq \frac{1}{2^n}, c_n T_t^* h_n \leq \frac{1}{2^n} \text{ on } \overline{\omega}_n \ (0 \leq t < \infty)$$

$$\text{and } c_n \int h_n d\mu < \frac{1}{2^n} .$$

Then $h = \sum_{n=1}^{\infty} c_n h_n$ is a required function.

LEMMA 31. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X satisfying the condition (D^*) and V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$. For any $f \in \mathscr{D}^+((T_t^*)_{t\geq 0}) \cap \mathscr{D}^+(V^*)$, there exists also an associated family of f with respect to $(T_t^*)_{t\geq 0}$.

Proof. Choose a sequence $(f_n)_{n=1}^{\infty} \subset C_K^+(X)$ such that $f = \sum_{n=1}^{\infty} f_n$ and an exhaustion $(\omega_n)_{n=1}^{\infty}$ of X. Let $(f_{n,m})_{m=1}^{\infty}$ be an associated family of f_n with respect to $(T_t^*)_{t\geq 0}$. We may assume that, for any $m \geq 1$ and any k with $1 \leq k \leq m$, $V^* f_{k,m} \leq 1/m^2$ on $\overline{\omega}_m$. Put

(3.3)
$$g_n = \sum_{k=1}^n f_{k,n} + \sum_{k=n+1}^\infty f_k \ (n = 1, 2, \cdots) ,$$

then $g_n \in \mathscr{D}((T_t^*)_{t\geq 0}) \cap \mathscr{D}(V^*)$. We see easily that $(g_n)_{n=1}^{\infty}$ is a required associated family of f with respect to $(T_t^*)_{t\geq 0}$.

DEFINITION 32. Let $(T_i)_{i\geq 0}$ be a transient diffusion semi-group on X satisfying the condition (C^*) and A be the infinitesimal generator of $(T_i)_{i\geq 0}$. A real Radon measure μ in X is said to be A-superharmonic (resp. A-harmonic) if $\mu \in \mathcal{D}(A)$ and $-A\mu \in M^+(X)$ (resp. $A\mu = 0$).

Clearly this is equivalent to $\mu \in \mathscr{D}^{0}(A)$ and $\int f d\mu \geq 0$ (resp. $\int f d\mu = 0$) for all $V^{*}f \in R_{\kappa}^{+}(V^{*})$, because $R_{\kappa}^{+}(V^{*})$ is total in $C_{\kappa}(X)$ and forms a convex cone.

DEFINITION 33. Let $(T_t)_{t\geq 0}$ be a diffusion semi-group on X. A real Radon measure μ in X is said to be excessive (resp. invariant) with respect to $(T_t)_{t\geq 0}$ if, for any $t\geq 0$, $\mu\in \mathscr{D}(T_t)$ and $\mu\geq T_t\mu$ (resp. $\mu=T_t\mu$). Remark 34. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group satisfying the condition (C^*) and A be the infinitesimal generator of $(T_t)_{t\geq 0}$. If $\mu \in M^+(X)$ is excessive with respect to $(T_t)_{t\geq 0}$, then μ is A-superharmonic.

In fact, for $g = V^*f \in R^+_{\mathbb{K}}(V^*)$ and t > 0, we put $f_i^+ = 1/t(g - T_i^*g)^+$ and $f_i^- = 1/t(g - T_i^*g)^-$. Then $\operatorname{supp}(f_i^+) \subset \operatorname{supp}(g)$ for all t > 0, and hence the Lebesgue theorem gives that $\lim_{t \to 0} \int f_i^+ d\mu = \int f^+ d\mu$. By the Fatou lemma and $\lim_{t \to 0} f_i^-(x) = f^-(x)$ for all $x \in X$,

(3.4)
$$0 \leq \lim_{t \to 0} \frac{1}{t} \int g d(I - T_t) \mu = \lim_{t \to 0} \frac{1}{t} \int (I - T_t^*) g d\mu$$
$$= \lim_{t \to 0} \int (f_t^+ - f_t^-) d\mu \leq \int f^+ d\mu - \int f^- d\mu = \int f d\mu ,$$

which implies that μ is A-superharmonic.

The main theorem of this paragraph is the following Riesz decomposition theorem.

THEOREM 35. Let $(T_t)_{t\geq 0}$ be a transient and regular diffusion semi-group on X, V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$ and A be the infinitesimal generator of $(T_t)_{t\geq 0}$. Then every non-negative A-superharmonic measure μ in X can be written uniquely as

$$(3.5) \qquad \qquad \mu = V\nu + \mu_h$$

where $\nu \in \mathcal{D}^+(V)$ and μ_h is a non-negative A-harmonic measure in X. Furthermore $\nu = -A\mu$.

First we prepare the following two lemmas.

LEMMA 36. Let $(T_t)_{t\geq 0}$, V and A be the same as above, and let μ be a positive A-superharmonic measure. Then, for any $f \in \mathcal{D}^+((T_t^*)_{t\geq 0}) \cap \mathcal{D}^+(V^*)$ with $\int f d\mu < \infty$ and an associated family $(f_n)_{n=1}^{\infty}$ of f with respect to $(T_t^*)_{t\geq 0}$, $\left(\int f_n d\mu\right)_{n=1}^{\infty}$ is decreasing, $\int f_n d\mu \leq \int f d\mu$ $(n = 1, 2, \cdots)$ and $\lim_{n \to \infty} \int f_n d\mu$ does not depend on the choice of $(f_n)_{n=1}^{\infty}$.

Proof. Since, for any $n \ge 1$, $V^*(f - f_n) \in R^+_{\mathbb{K}}(V^*)$, $\int f_n d\mu \le \int f d\mu$ and $\left(\int f_n d\mu\right)_{n=1}^{\infty}$ is decreasing. Let $(g_n)_{n=1}^{\infty}$ be another associated family of f with respect to $(T^*_t)_{t\ge 0}$. We choose $h \in \mathscr{D}^+((T^*_t)_{t\ge 0}) \cap \mathscr{D}^+(V^*)$ satisfying $V^*h > 0$

on X and $\int hd\mu < \infty$ (see Lemma 30) and an associated family $(h_n)_{n=1}^{\infty}$ of h with respect to $(T_i^*)_{i\geq 0}$. For any integer $m \geq 1$ and any positive number δ , there exists an integer $n_0 \geq 1$ such that, for all $n \geq n_0$,

(3.6)
$$\delta V^*(h-h_n) + V^*f - V^*f_n \ge V^*f - V^*g_m \text{ on } X,$$

which implies that

(3.7)
$$\int (\delta(h-h_n)+g_m-f_n)d\mu\geq 0.$$

Letting $n \to \infty$ and next $\delta \to 0$, $m \to \infty$, we obtain that

(3.8)
$$\lim_{m\to\infty}\int g_m d\mu \ge \lim_{n\to\infty}\int f_n d\mu \ .$$

In the same manner, we see the inverse inequality. Thus $\lim_{n\to\infty} \int f_n d\mu$ does not depend on $(f_n)_{n=1}^{\infty}$, and hence the proof is achieved.

LEMMA 37. Let $(T_t)_{t\geq 0}$, V, A and μ be the same as above. Assume that, for any $f \in \mathcal{D}^+(V^*)$ with $\int f d\mu < \infty$ and any associated family $(f_n)_{n=1}^{\infty}$ of f with respect to $(T_t^*)_{t\geq 0}$, $\lim_{n\to\infty} \int f_n d\mu = 0$. Then, for any $V^*g \in R^+(V^*)$, $\int g d\mu \geq 0$ whenever $\int g^+ d\mu < \infty$.

Proof. It suffices to show that for any $f \in C_{\kappa}^{+}(X)$ with $f \leq g^{-}$, $\int g^{+}d\mu \geq \int fd\mu$. Let $(g_{n})_{n=1}^{\infty}$ and $(f_{n})_{n=1}^{\infty}$ be an associated family of g^{+} with respect to $(T_{\iota}^{*})_{\iota\geq 0}$ and that of f with respect to $(T_{\iota}^{*})_{\iota\geq 0}$, respectively. Let h and $(h_{n})_{n=1}^{\infty}$ be the same as in the above proof. Similarly as in Lemma 36, for any integer $n \geq 1$ and any number $\delta > 0$, there exists an integer $m_{0} \geq 1$ such that, for all $m \geq m_{0}$,

(3.9)
$$\delta(V^*h - V^*h_m) + V^*g^* - V^*g_m \ge V^*f - V^*f_n \text{ on } X,$$

and hence

(3.10)
$$\int \delta(h-h_m)d\mu + \int (g^+ - g_m + f_n - f)d\mu \geq 0.$$

Letting $m \to \infty$ and next $\delta \to 0$, $n \to \infty$, we obtain that $\int g^+ d\mu \ge \int f d\mu$.

Thus Lemma 37 is shown.

Proof of Theorem 35. By Lemma 36, there exists one and only one $\mu_h \in M^+(X)$ such that, for any $f \in C^+_K(X)$,

(3.11)
$$\int f d\mu_h = \lim_{n \to \infty} \int f_n d\mu$$

where $(f_n)_{n=1}^{\infty}$ is an associated family of f with respect to $(T_t^*)_{t\geq 0}$. Put $\mu_p = \mu - \mu_h$. Then we shall show the following two statements:

- (a) μ_h is A-harmonic.
- (b) There exists $\nu \in \mathscr{D}^+(V)$ such that $\mu_p = V\nu$.

We begin by the proof of (a). Let $V^*f \in R^+_{\kappa}(V^*)$. Then $|f| \in \mathscr{D}((T^*_t)_{t\geq 0})$ $\cap \mathscr{D}(V^*)$ and $\operatorname{supp}(f^+)$ is compact (see the proof of Remark 34). Let $(f_n)_{n=1}^{\infty}$ be an associated family of f^- with respect to $(T^*_t)_{t\geq 0}$. Then it is also an associated family of f^+ with respect to $(T^*_t)_{t\geq 0}$. Hence (a) follows from the equality

(3.12)
$$\int g d\mu_h = \lim_{n \to \infty} \int g_n d\mu$$

for any $g \in \mathscr{D}^+((T_t^*)_{t\geq 0}) \cap \mathscr{D}^+(V^*)$ with $\int gd\mu < \infty$, where $(g_n)_{n=1}^{\infty}$ is an associated family of g with respect to $(T_t^*)_{t\geq 0}$. We remark that $\int gd\mu_h \leq \int gd\mu_h$ because, for any $g' \in C_{\kappa}^+(X)$ with $g' \leq g$, $\int g'd\mu_h \leq \int g'd\mu \leq \int gd\mu$. Let h and $(h_n)_{n=1}^{\infty}$ be the same as in the proof of Lemma 36, and let $(f_n)_{n=1}^{\infty}$ be an increasing sequence $\subset C_{\kappa}^+(X)$ with $\lim_{n\to\infty} f_n = g$ in C(X). Then $(V^*f_n)_{n=1}^{\infty}$ converges increasingly to V^*g as $n \uparrow \infty$, i.e., $\lim_{n\to\infty} V^*f_n = V^*g$ in C(X). For any integer $n \geq 1$ and any number $\delta > 0$, there exists an integer $m_0 \geq 1$ such that, for all $m \geq m_0$,

(3.13)
$$\delta V^*h + V^*f_m > V^*g - V^*g_n \text{ on } X.$$

Let $(f_{n,k})_{k=1}^{\infty}$ be an associated family of f_n with respect to $(T_t^*)_{t\geq 0}$. By (3.13), for any $m \geq m_0$, there exists $k_m \geq 1$ such that, for all $k \geq k_m$,

(3.14)
$$\delta V^*(h-h_k) + V^*(f_m - f_{m,k}) \ge V^*g - V^*g_n \text{ on } X.$$

This implies that

(3.15)
$$\delta \int (h-h_k)d\mu + \int (f_m-f_{m,k})d\mu \geq \int (g-g_n)d\mu .$$

72

Letting $k \to \infty$, $m \to \infty$, $\delta \to 0$ and $n \to \infty$, we obtain that

(3.16)
$$\int g d\mu_{h} \leq \lim_{n \to \infty} \int g_{n} d\mu$$

On the other hand, for any integer $n \ge 1$, $k \ge 1$ and any positive number $\delta > 0$, there exists an integer $m_0 \ge 1$ such that, for all $m \ge m_0$,

(3.17)
$$\delta(V^*h - V^*h_m) + V^*(g - g_m) \ge V^*(f_n - f_{n,k}) \text{ on } X.$$

This gives that the inverse inequality of (3.16) holds, i.e., (3.12) holds. Consequently (a) is shown.

Next we shall show (b). By (a) and (3.12), μ_p is a positive A-superharmonic measure and the assumption in Lemma 37 is satisfied. For any $f \in C_K^+(X)$ and any t > 0, $V^*(I - T_i^*)f = \int_0^t T_i^* f ds \in R^+(V^*)$ and $\int ((I - T_i^*)f)^+ d\mu < \infty$. Hence Lemma 37 gives that

$$(3.18) 0 \leq \int (I - T_t^*) f d\mu_p = \int f d(I - T_t) \mu_p \,,$$

and hence, $(I - T_t)\mu_p \in M^+(X)$ for any t > 0. For any $f \in C_K^+(X)$, we choose $g \in C_K^+(X)$ such that $f \leq V^*g$ on X. Since, for any t > 0,

(3.19)
$$\begin{aligned} \frac{1}{t} \int f d(I - T_t) \mu_p &\leq \frac{1}{t} \int V^* g d(I - T_t) \mu_p \\ &= \frac{1}{t} \iint_0^t T_s^* g ds d\mu_p \leq \int g d\mu_p \;, \end{aligned}$$

 $(1/t(I - T_t)\mu_p)_{t>0}$ is vaguely bounded. Let $\nu \in M^+(X)$ be its vaguely cluster point as $t \to 0$ and choose a sequence $(t_n)_{n=1}^{\infty}$ of positive numbers such that $\lim_{n\to\infty} t_n = 0$ and $\lim_{n\to\infty} 1/t_n(I - T_{t_n})\mu_p = \nu$ (vaguely). By remarking (3.19) and $\lim_{t\to 0} T_t = I$, we have $\nu \in \mathcal{D}^+(V)$ and $\mu_p \geq V\nu$. On the other hand, let $f \in C_K^+(X)$ and $(f_n)_{n=1}^{\infty}$ be its associated family with respect to $(T_t^*)_{t\geq 0}$. Then, for any $k \geq 1$,

(3.20)
$$\int f dV_{\nu} = \int V^* f d\nu \ge \int V^* (f - f_k) d\nu$$
$$= \lim_{n \to \infty} \int V^* (f - f_k) d\left(\frac{1}{t_n} (I - T_{t_n}) \mu_p\right)$$
$$= \lim_{n \to \infty} \frac{1}{t_n} \int_0^{t_n} \left(\int (f - f_k) dT_s \mu_p \right) ds \ge \int f d\mu_p - \int f_k d\mu_p ,$$

because the vague boundedness of $(1/t(I - T_t)\mu_p)_{t>0}$ leads to $\lim_{t\to 0} T_t\mu_p = \mu_p$

(vaguely). Letting $k \to \infty$ in (3.20), we obtain that $\int f dV_{\nu} \geq \int f d\mu_{p}$, i.e., $V_{\nu} \geq \mu_{p}$. Thus we have $\mu_{p} = V_{\nu}$. We have also $\lim_{t\to 0} 1/t(I - T_{t})\mu_{p} = \nu$ (vaguely), by the injectivity of V. Consequently we have $\mu = V_{\nu} + \mu_{h}$. Let $\mu = V_{\nu'} + \mu'_{h}$ be another decomposition satisfying our required conditions. Then Remark 29 implies that $-A\mu = \nu = \nu'$, and so $\mu_{h} = \mu'_{h}$. Thus we see the unicity of the decomposition of μ and $\nu = -A\mu$. This completes the proof.

DEFINITION 38. The above $V\nu$ and μ_h are called the potential part of μ and the harmonic part of μ , respectively. The decomposition of μ in Theorem 35 is called the Riesz decomposition of μ .

Theorem 35 gives directly the following

COROLLARY 39. Let $(T_t)_{t\geq 0}$, V and A be the same as in Theorem 35. Then we have;

(1) If $\mu \in M^+(X)$ is invariant with respect to $(T_t)_{t\geq 0}$, then μ is A-harmonic.

(2) Let $\mu \in M^+(X)$ be A-superharmonic. The harmonic part of μ is the greatest A-harmonic minorant of μ .

Evidently (1) holds. Let $\nu \in M^+(X)$ be an A-harmonic measure satisfying $\mu \geq \nu$. Applying Theorem 35 to $\mu - \nu$, we see that $\mu_h \geq \nu$, where μ_h is the harmonic part of μ .

Now we consider A^* -superharmonic functions and A^* -harmonic functions.

DEFINITION 40. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X satisfying the condition (C^*) , V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$ and A be the infinitesimal generator of $(T_t)_{t\geq 0}$. Let Ω be an open set in X. A real-valued Borel function u in X is said to be A^* -superharmonic (resp. A^* -harmonic) in Ω if $\int |u| d |A\mu| < \infty$ and $-\int u dA\mu \ge 0$ (resp. $\int u dA\mu = 0$) for any $\mu \in \mathcal{D}^+_K(A; \Omega)$, where

$$(3.21) \qquad \mathscr{D}^+_{\kappa}(A; \mathcal{Q}) = \{V\mu \in M^+_{\kappa}(X); \mu \in \mathscr{D}(V) \text{ and } \operatorname{supp}(V\mu) \subset \mathcal{Q}\}.$$

LEMMA 41. Let $(T_t)_{t\geq 0}$ be a transient and weakly regular diffusion semigroup on X and V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$. Let $\mu \in \mathscr{D}^+(V)$ and F be a closed set in X. For an exhaustion $(\omega_n)_{n=1}^{\infty}$ of CF, we denote by μ'_n the V-balayaged measure of μ on $C\overline{\omega}_n$. Then $(\mu'_n)_{n=1}^{\infty}$ converges vaguely and its limit does not depend on the choice of $(\omega_n)_{n=1}^{\infty}$.

Proof. Evidently $(V\mu'_n)_{n=1}^{\infty}$ is decreasing and $V\mu'_n \leq V\mu$. This implies also that $(\mu'_n)_{n=1}^{\infty}$ is vaguely bounded. Let μ'_F be its vaguely cluster point as $n \to \infty$. Similarly as in Proposition 23, we have

$$(3.22) V\mu'_F = \lim V\mu'_n (vaguely).$$

By Corollary 17, $(\mu'_n)_{n=1}^{\infty}$ converges vaguely to μ'_F as $n \to \infty$. Let $(\omega'_n)_{n=1}^{\infty}$ be another exhaustion of CF and μ''_n be the V-balayaged measure of μ on $C\overline{\omega}'_n$. Then it is easily seen that $\lim_{n\to\infty} V\mu'_n = \lim_{n\to\infty} V\mu''_n$. By using Corollary 17 again, we have $\mu'_F = \lim_{n\to\infty} \mu''_n$. Thus Lemma 41 is shown.

The above measure μ'_F is also called the V-balayaged measure of μ on F.

PROPOSITION 42. Let $(T_t)_{t\geq 0}$, V and A be the same as in Definition 40, and let Ω be an open set in X. Assume that $(T_t)_{t\geq 0}$ is weaklyr egular. For $f \in C_k(X)$, we put

(3.23)
$$u_f(x) = \int f d\varepsilon'_{x,ca} \text{ in } X,$$

where $\varepsilon'_{x,c\rho}$ is the V-balayaged measure of ε_x on $C\Omega$. Then u_f is A^* -harmonic in Ω .

Proof. First we shall show that u_f is Borel measurable in X. By Lemma 41, it is sufficient to show that, for any open set ω , the function $\int f d\varepsilon'_{x,\omega}$ of x is Borel measurable, where $\varepsilon'_{x,\omega}$ is the V-balayaged measure of ε_x on ω . Let $V^*g \in R_{\kappa}(V^*)$. Then $\int |g| d\varepsilon'_{x,\omega} < \infty$ and $\int V^*g d\varepsilon'_{x,\omega} =$ $\int g dV \varepsilon'_{x,\omega}$. Since $R_{\kappa}(V^*)$ is dence in $C_{\kappa}(X)$, it suffices to show that, for any $g \in C^+_{\kappa}(X)$, the function $\int g dV \varepsilon'_{x,\omega}$ of x is Borel measurable. Let $x \in X$ and $(x_n)_{k=1}^{\infty}$ be a sequence $\subset X$ with $\lim_{n\to\infty} x_n = x$. We choose a subsequence $(x_{n(k)})_{k=1}^{\infty}$ such that $\varepsilon'_{x_n(k),\omega}$ converges vaguely and

(3.24)
$$\underline{\lim_{n\to\infty}}\int gdV\varepsilon'_{x_{n,\omega}} = \lim_{k\to\infty}\int gdV\varepsilon'_{x_{n(k),\omega}}$$

Put $\nu = \lim_{k \to \infty} \varepsilon'_{x_{n(k)},\omega}$. Then supp $(\nu) \subset \overline{\omega}$ and, similarly as in Proposition 23, we have

(3.25)
$$V_{\nu} = \lim_{k \to \infty} V_{\varepsilon'_{x_n(k),\omega}} \quad (\text{vaguely})$$

i.e., $V\nu = V\varepsilon_x$ in ω . By the definition of V-balayaged measures, we have $V\nu \geq V\varepsilon'_{x,\omega}$, which implies that the function $\int gdV\varepsilon'_{x,\omega}$ of x is lower semicontinuous in X. Thus we see that u_f is Borel measurable in X. Let $V\mu \in \mathcal{D}^+_K(\Lambda;\Omega)$. Choose $h \in C^+_K(X)$ such that $V^*h(x) > 0$ on $\mathrm{supp}(f)$ and that $\int hdV |\mu| < \infty$ (see Lemma 30). Since $R_K(V^*)$ is dense in $C_K(X)$, there exists a sequence $(V^*g_n)_{n=1}^{\infty} \subset R_K(V^*)$ such that $|f(x) - V^*g_n(x)| \leq (1/n)V^*h(x)$ on X. Then we have

(3.26)
$$\begin{aligned} \left| \int (u_f(x) - u_{\nu *_{g_n}}(x)) d\mu(x) \right| &\leq \frac{1}{n} \int u_{\nu *_h}(x) d|\mu|(x) \\ &\leq \frac{1}{n} \int V^* h(x) d|\mu|(x) , \end{aligned}$$

where u_{v*g_n} and u_{v*h} are defined analogously to u_j . Consequently, it suffices to show that, for any $V^*g \in R_{\kappa}(V^*)$,

$$(3.27) \qquad \qquad \int u_{\nu*g} d\mu = 0 \; .$$

By remarking the first part of this proof, we have

(3.28)
$$\int u_{V^*g}(x)d\mu(x) = \iint V^*g(y)d\varepsilon'_{x,Cg}(y)d\mu(x)$$
$$= \int V^*g(y)d\left(\int \varepsilon'_{x,Cg}d\mu(x)\right)(y) = \int g(y)dV\left(\int \varepsilon'_{x,Cg}d\mu(x)\right)(y) = \int g(y)dV(y) =$$

Let $(\omega_n)_{n=1}^{\infty}$ be an exhaustion of Ω , and put $\mu_1 = \mu^+$, $\mu_2 = \mu^-$. We denote by $\mu'_{j,n}$ the V-balayaged measure of μ_j on $C\overline{\omega}_n$ (j = 1, 2). Then, by virtue of the domination principle for V and by Proposition 16,

(3.29)
$$V\mu'_{j,n+1} \leq V\left(\int \varepsilon'_{x,C\bar{\omega}_n} d\mu_j(x)\right) \leq V\mu'_{j,n-1} \ (j=1,2; n=2,3,\cdots),$$

where $\varepsilon'_{x,C\overline{\omega}_n}$ is the V-balayaged measure of ε_x on $C\overline{\omega}_n$. This shows that $\int \varepsilon'_{x,C\overline{\omega}} d\mu_j(x)$ is the V-balayaged measure of μ_j on $C\Omega$ (j = 1, 2). Since $V\mu_1 = V\mu_2$ in a certain neighborhood of $C\Omega$, we have

(3.30)
$$\int \varepsilon'_{x,C\rho} d\mu_1(x) = \int \varepsilon'_{x,C\rho} d\mu_2(x) ,$$

76

which implies (3.27). This completes the proof.

This implies the following

COROLLARY 43. Let $(T_i)_{i\geq 0}$, V and A be the same as above, Ω be an open set in X, and let $g \in C^+(X)$ and $f \in C^+_{\kappa}(X)$ with $\operatorname{supp}(f) \subset \Omega$. Assume that there exists $\varphi \in \mathscr{D}^+(V^*)$ such that $V^*\varphi \geq g$ on X. If g is A^* -superharmonic in Ω and if $f = -A^*g$, i.e., for any $V\mu \in \mathscr{D}^+_{\kappa}(A;\Omega)$, $\int gd\mu = \int fdV\mu$, then

(3.31)
$$g(x) = \int f d(V \varepsilon_x - V \varepsilon'_{x, CQ}) + h(x)$$

on X, where $\varepsilon'_{x,CQ}$ is the same as above and h is an A*-harmonic function in Ω . In this case,

(3.32)
$$h(x) = \int g(y) d\varepsilon'_{x,Cg}(y) \text{ on } X.$$

Proof. Let $(\omega_n)_{n=1}^{\infty}$ be an exhaustion of Ω and $\varepsilon'_{x,C\bar{\omega}_n}$ be the same as above. Then, for any $x \in X$ and any $n \ge 1$, $V\varepsilon_x - V\varepsilon'_{x,C\bar{\omega}_n} \in \mathcal{D}^+_K(A;\Omega)$. This implies that $g(x) \ge \int g(y)d\varepsilon'_{x,C\bar{\omega}}(y)$ on X. Let h be the function defined in (3.32). By Proposition 42, h is A*-harmonic in Ω . By our assumption, for any $x \in X$ and any $n \ge 1$,

(3.33)
$$g(x) - \int g(y) d\varepsilon'_{x,C\bar{w}_n}(y) = \int f d(V \varepsilon_x - V \varepsilon'_{x,C\bar{w}_n}) d\varepsilon'_{x,C\bar{w}_n}(y) = \int f d(V \varepsilon_x - V \varepsilon'_{x,C\bar{w}_n}) d\varepsilon'_{x,C\bar{w}_n}(y)$$

Since $\lim_{n\to\infty} \epsilon'_{x,C\bar{\sigma}_n} = \epsilon'_{x,Cg}$ (vaguely), we have

(3.34)
$$\frac{\lim_{n\to\infty}\int gd\varepsilon'_{x,C\bar{\omega}_n} \ge \int gd\varepsilon'_{x,C\bar{\omega}} \text{ and}}{\lim_{n\to\infty}\int (V^*\varphi - g)d\varepsilon'_{x,C\bar{\omega}_n} \ge \int (V^*\varphi - g)d\varepsilon'_{x,C\bar{\omega}}}$$

Remarking that $(V\epsilon'_{x,C\bar{w}_n})_{n=1}^{\infty}$ converges decreasingly to $V\epsilon'_{x,C\bar{v}}$ as $n \uparrow \infty$, we have

(3.35)
$$\lim_{n\to\infty}\int V^*\varphi d\varepsilon'_{x,C\bar{w}_n} = \int V^*\varphi d\varepsilon'_{x,C\bar{g}} \,.$$

By combining (3.33), (3.34) and (3.35), we see the required equality.

§4. Positive eigen elements for A and completely A-superharmonic measures

We begin by the following

DEFINITION 44. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X satisfying the condition (C^*) , V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$ and A be the infinitesimal generator of $(T_t)_{t\geq 0}$.

(1) Given a non-negative number c, the set of all non-negative solutions of the equation

$$(4.1) -A\mu = c\mu$$

is denoted by E(A; c) and called the eigen cone of c. Put $E(A) = \bigcup_{c \ge 0} E(A; c)$. We call $\mu \in E(A)$ a non-negative eigen element of A.

(2) Given a non-negative number c, the set of all non-negative solutions of the equations

(4.2)
$$\begin{cases} -A\mu = c\mu \\ \mu = 0 \text{ V-n.e. on the boundary of } X \end{cases}$$

is denoted by $E_0(A; c)$ and called the eigen cone of c with zero conditions. Put $E_0(A) = \bigcup_{c \ge 0} E_0(A; c)$. We call $\mu \in E_0(A)$ a non-negative eigen element of A with zero conditions.

Now we denote by H(A) the set of all non-negative A-harmonic measures in X.

PROPOSITION 45. Let $(T_t)_{t\geq 0}$, V, A, E(A;c) and $E_0(A;c)$ be the same as above. Furthermore we assume that $(T_t)_{t\geq 0}$ is regular. Then, $\mu \in E_0(A;c)$ if and only if

and we have

$$(4.4) E(A;c) = E_0(A;c) \oplus H(A),$$

where \oplus denotes the direct sum.

In fact, Remark 29, Theorem 35 and Corollary 39 give the first equivalence, and (4.3) and Theorem 35 give (4.4).

DEFINITION 46. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X satisfying the condition (C^*) and A be the infinitesimal generator of $(T_t)_{t\geq 0}$. A Radon measure $\mu \in M^+(X)$ is called a completely A-superharmonic

78

if, for all $n = 0, 1, 2, \dots, (-A)^n \mu \in \mathscr{D}(A)$ and $(-A)^{n+1} \mu \in M^+(X)$, where $(-A)^0 = I$, $(-A)^1 = -A$ and $(-A)^{n+1} \mu = -A((-A)^n \mu)$. In particular, a completely A-superharmonic measure μ is said to be with zero conditions if, for all $n = 0, 1, \dots, (-A)^n \mu$ vanishes V-n.e. on the boundary of X, where V is the Hunt diffusion kernel for $(T_i)_{i\geq 0}$.

We denote by SC(A) the set of all completely A-superharmonic measures in X and by $SC_0(A)$ the set of all completely A-superharmonic measures in X with zero conditions.

Evidently SC(A) and $SC_0(A)$ are convex cones in $M^+(X)$, and $SC(A) \supset E(A)$ and $SC_0(A) \supset E_0(A)$.

PROPOSITION 47. Let $(T_t)_{t\geq 0}$ be a transient and regular diffusion semigroup on X, V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$ and A be the infinitesimal generator of $(T_t)_{t\geq 0}$. Assume that, for all $n = 1, 2, \dots, V^n$ is defined as a diffusion kernel on X. Then, for any $\mu \in SC(A)$, we have the following unique representation:

(4.5)
$$\mu = \sum_{n=0}^{\infty} V^n \mu_n + \mu_{\infty} ,$$

where $\mu_n \in H(A)$ $(n = 0, 1, \cdots)$ and $\mu_{\infty} \in SC_0(A)$.

Proof. By Theorem 35, we have inductively, for any $k \ge 0$ and any $n \ge k$,

$$(4.6) \qquad (-A)^{k}\mu = \mu_{k} + V\mu_{k+1} + \cdots + V^{n-k-1}\mu_{n-1} + V^{n-k}((-A)^{n}\mu),$$

where $\mu_k, \dots, \mu_{n-1} \in H(A)$. This implies that $(V^{n-k}((-A)^n \mu)_{n=k+1}^{\infty})$ is decreasing. Put

(4.7)
$$\mu_{\infty,k} = \lim_{n \to \infty} V^{n-k}((-A)^n \mu) .$$

Then we have $\mu_{\infty,0} = V^k \mu_{\infty,k}$. Putting $\mu_{\infty} = \mu_{\infty,0}$, then $\mu_{\infty} \in SC_0(A)$. Putting k = 0 and letting $n \to \infty$ in (4.6), we obtain a required representation of μ . By virtue of the unicity of the Riesz decomposition of $(-A)^k \mu$ ($k = 0, 1, \cdots$), we see the unicity of the representation (4.5) of μ . This completes the proof.

Now we denote by S(A) the set of all non-negative A-superharmonic measures in X.

Remark 48. Let $(T_t)_{t\geq 0}$ and A be the same as in Proposition 47. Then S(A) is a vaguely closed convex cone in $M^+(X)$. In fact, let V be the Hunt diffusion kernel for $(T_i)_{i\geq 0}$. For any $V^*f \in R^+_{\mathcal{K}}(V^*)$, $\operatorname{supp}(f^+) \subset \operatorname{supp}(V^*f)$, and hence, for any vaguely cluster point μ of S(A), we have $\int fd\mu \geq 0$. This gives that $\overline{S(A)} = S(A)$.

But, in order to discuss the closedness of SC(A) and that of E(A), we need the following

DEFINITION 49. Let $(T_t)_{t\geq 0}$ be a transient diffusion semi-group on X satisfying the condition (C^*) and A be the infinitesimal generator of $(T_t)_{t\geq 0}$. We say that A satisfies the condition (\mathscr{L}) if, for any $(\mu_n)_{n=1}^{\infty} \subset S(A)$,

(4.8) $\lim_{n\to\infty} \mu_n = \mu \in S(A)$ (vaguely) implies $\lim_{n\to\infty} A\mu_n = A\mu$ (vaguely).

PROPOSITION 50. Let $(T_t)_{t\geq 0}$ and A be the same as in Proposition 47. If A satisfies the condition (\mathcal{L}) , then, for any constant $c \geq 0$, H(A), E(A; c), E(A) and SC(A) are vaguely closed convex cones in $M^+(X)$.

Proof. It is easy to see the vague closedness of H(A) and that of E(A; c). We remark here H(A) = E(A; 0). Let $(\mu_n)_{n=1}^{\infty}$ be a sequence in E(A) tending vaguely to $\mu \in M^+(X)$ as $n \to \infty$. Then there exists a sequence of non-negative numbers $(c_n)_{n=1}^{\infty}$ such that $-A\mu_n = c_n\mu_n$. By $E(A) \supset H(A)$, we may assume that $-A\mu \neq 0$. The condition (\mathscr{L}) for A gives that $(c_n\mu_n)_{n=1}^{\infty}$ converges vaguely to $-A\mu$ as $n \to \infty$. Hence $(c_n)_{n=1}^{\infty}$ converges to a non-negative number c as $n \to \infty$, which implies that $\mu \in E(A; c) \subset E(A)$. Thus we see the vague closedness of E(A). Let $(\mu_n)_{n=1}^{\infty}$ be a sequence of SC(A) tending vaguely to $\mu \in M^+(X)$ as $n \to \infty$. Inductively we have, for any integer $k \ge 0$,

(4.9)
$$\lim_{k\to\infty} (-A)^k \mu_n = (-A)^k \mu \in M^+(X) \text{ (vaguely)},$$

which implies that $\mu \in SC(A)$, and hence the vague closedness of SC(A) is shown. This completes the proof.

The above proposition gives the following

PROPOSITION 51. Let $(T_t)_{t\geq 0}$, V and A be the same as above. Assume that A satisfies the condition (\mathscr{L}) and that, for all $n = 1, 2, \dots, V^n$ is defined as a diffusion kernel on X. Then, for any number $c \geq 0$, $SC_0(A)$, $E_0(A)$ and $E_0(A; c)$ are Borel measurable convex cones in the metrizable space $M^+(X)$.

Proof. Since X is with countable basis, $M^+(X)$ is metrizable. Choose

 $(f_n)_{n=1}^{\infty} \subset C_{\kappa}^+(X)$ such that $(f_n)_{n=1}^{\infty}$ is total in $C_{\kappa}(X)$. For each integer $m \ge 0$, $n \ge 1$ and $p \ge 1$, we put

$$(4.10) B_{m,n,p} = \left\{ \mu \in SC(A); \int f_n d\mu_{h,m} \geq \frac{1}{p} \right\},$$

where $\mu_{h,m} = (-A)^m \mu - V((-A)^{m+1}\mu)$. The condition (\mathscr{L}) for A gives that $B_{m,n,p}$ is vaguely closed. Since

(4.11)
$$SC_0(A) = \bigcap_{m=0}^{\infty} \bigcap_{n=1}^{\infty} \bigcap_{p=1}^{\infty} (CB_{m,n,p} \cap SC(A)),$$

 $SC_0(A)$ is Borel measurable. Remarking that $E_0(A) = E(A) \cap SC_0(A)$ and $E_0(A;c) = E(A;c) \cap SC_0(A)$, we see that $E_0(A)$ and $E_0(A;c)$ are Borel measurable. Their convexities are evident, so we achieve the proof.

The following remark shows that the condition (\mathscr{L}) for A does not always imply the compactness of the support of A^* , where A^* denotes the dual operator of A.

Remark 52. Let $(T_t)_{t\geq 0}$ and A be the same as in Proposition 47.

(1) If A^* is with compact support, i.e., if, for any $V^*f \in R_{\kappa}(V^*)$, supp(f) is compact, then A satisfies the condition (\mathscr{L}).

(2) Assume that $(T_t)_{t\geq 0}$ be of convolution type and A satisfies the condition (\mathscr{L}). For a positive number p, let A_p be the infinitesimal generator of the semi-group $(T_{p,t})_{t\geq 0}$ defined in (2.43). Then A_p also satisfies the condition (\mathscr{L}).

In fact, clearly we have (1). We shall show (2). Denote by $(V_p)_{p\geq 0}$ the resolvent for $(T_t)_{t\geq 0}$. Then, for any p>0, $\mathscr{D}(A_p)\supset M_{\mathbb{K}}(X)$ and $A_p=p(I-pV_p)$. Let $(\mu_n)_{n=1}^{\infty}$ be a sequence in $S(A_p)$ satisfying $\lim_{n\to\infty}\mu_n=\mu\in S(A_p)$ (vaguely). By Theorem 35, we have

(4.12)
$$\mu_n = \left(V + \frac{1}{p}I\right)\nu_n + \mu_{n,h} \ (n = 1, 2, \cdots) \text{ and}$$
$$\mu = \left(V + \frac{1}{p}I\right)\nu + \mu_h,$$

where $\nu_n = p(I - pV_p)\mu_n$, $\nu = p(I - pV_p)\mu$, $\mu_{n,h} \in H(A_p)$ and $\mu_h \in H(A_p)$. Since $\mu_{n,h} = pV_p\mu_{n,h}$, the resolvent equation gives that, for any q > 0, $\mu_{n,h} = qV_q\mu_{n,h}$, which implies that $\mu_{n,h}$ is invariant with respect to $(T_t)_{t\geq 0}$. Similarly μ_h is also invariant with respect to $(T_t)_{t\geq 0}$. Since $(V\nu_n + \mu_{n,h})_{n=1}^{\infty}$ is vaguely bounded, we may assume that it converges vaguely. By Theorem 35, its limit is of the form $V\lambda + \mu'_h$, where $\lambda \in \mathscr{D}^+(V)$ and $\mu'_h \in H(A)$. The condition (\mathscr{L}) for A implies that $\lim_{n\to\infty} \nu_n = \nu$ (vaguely). Hence

(4.13)
$$\left(V+\frac{1}{p}I\right)\nu+\mu_{h}=\left(V+\frac{1}{p}I\right)\lambda+\mu_{h}'$$

Since $(T_t)_{t\geq 0}$ is of convolution type, it is known that μ'_h is also invariant with respect to $(T_t)_{t\geq 0}$ (see [8], p. 343). By virtue of the unicity of the Riesz decomposition of μ , we have $\nu = \lambda$ and $\mu_h = \mu'_h$. Thus (2) is shown.

Hereafter in this paragraph, for any nonzero element μ of $M^+(X)$, we choose a fixed $f_{\mu} \in C^+(X)$ such that $f_{\mu}(x) > 0$ on X and $\int f_{\mu} d\mu < \infty$. For a transient and regular diffusion semi-group $(T_t)_{t\geq 0}$ on X and its infinitesimal generator A, we put, for $\mu \in M^+(X)$,

(4.14)
$$SC(A;\mu) = \left\{\nu \in SC(A); \int f_{\mu} d\nu \leq 1\right\}.$$

It is easily seen that if A satisfies the condition (\mathcal{L}) , then $SC(A; \mu)$ is vaguely compact convex set in $M^+(X)$.

In general, for a convex set C in a locally convex space, we denote by ex C the set of all extreme points of C and, for a convex cone K in a locally convex space, we denote by exr K the set of all extreme rays in K^{6} .

Our main theorem is the following

THEOREM 53. Let $(T_t)_{t\geq t}$ be a transient and regular diffusion semigroup on X, V be the Hunt diffusion kernel for $(T_t)_{t\geq 0}$ and A be the infinitesimal generator of $(T_t)_{t\geq 0}$. Assume that, for all integer $n \geq 1$, V^n is defined as a diffusion kernel and that A satisfies the condition (\mathscr{L}). Then we have:

(1) The set of all extreme rays in SC(A) is represented as follows:

$$(4.15) \qquad \widetilde{\operatorname{exr}} SC(A) = \left(\bigcup_{n=0}^{\infty} V^n \left((\widetilde{\operatorname{exr}} H(A)) \cap \mathscr{D}(V^n) \right) \right) \cup \left(\bigcup_{t \ge 0} \widetilde{\operatorname{exr}} E_0(A; t) \right),$$

where $V^n((exr H(A)) \cap \mathscr{D}(V^n)) = \{V^n\rho; \rho \in (exr H(A)) \cap \mathscr{D}(V^n)\}$ and $V^n\rho = \{\lambda V^n\nu; \lambda \in R^+\}$ with nonzero element ν of ρ , and SC(A) is the closed convex

⁶⁾ A ray ρ in K is a set of the form $\{\lambda x; \lambda \in R^+\}$, where $0 \neq x \in K$, and we say that ρ is an extreme ray if, for any $x \in \rho$ and any $y, z \in K$, $y, z \in \rho$ whenever $x = \lambda y + (1 - \lambda)z$ for $\lambda > 0$. We denote here by R^+ the totality of all non-negative numbers.

hull of $exr SC(A)^{\tau}$.

(2) For any $\mu \in SC_0(A)$, there exists a regular Borel non-negative measure Φ on $E_0(A)$ with $\int d\Phi < \infty$ carried by $\bigcup_{t\geq 0} \exp E_0(A;t)^{s_0}$ such that

(4.16)
$$\mu = \int \lambda d\Phi(\lambda) \left(\text{i.e., } \int f d\mu = \int \left(\int f d\lambda \right) d\Phi(\lambda) \text{ for all } f \in C_{\kappa}(X) \right).$$

Furthermore, for any $\mu \in SC_0(A)$, there exists a Borel non-negative measure σ in $(0, \infty)$ with finite total mass and a bounded σ -measurable mapping $(0, \infty) \ni t \to \mu_t \in E_0(A)$ with $\mu_t \in E_0(A; t)^{\mathfrak{g}_1}$ such that

(4.17)
$$\mu = \int_0^\infty \mu_t d\sigma(t) \left(i.e., \int f d\mu = \int_0^\infty \left(\int f d\mu_t \right) d\sigma(t) \text{ for all } f \in C_K(X) \right).$$

To prove our main theorem, we use the following three Choquet theorems.

PROPOSITION 54 (see [17], p. 7 and p. 19). Let C be a metrizable compact convex subset of a locally convex space. Then ex C forms a G_{δ} -set and, for any $x \in C$, there exists a regular Borel probability measure μ on C carried by ex C which represents x^{10} .

PROPOSITION 55 (see [17], p. 88–89). Let K be a closed convex cone in a locally convex space and suppose that K is union of its caps¹¹). Then K is the closed convex hull of exr K.

PROPOSITION 56 (see [17], p. 88). Let K be a closed convex cone in a locally convex space and C be its cap. Then every extreme points of C lies on an extreme ray in K.

9) We say that $t \to \mu_t$ is σ -measurable if, for any $f \in C_K(X)$, the function $\int f d\mu_t$ of t is σ -measurable and that is bounded if, for any $f \in C_K(X)$, $\int f d\mu_t$ is bounded in $(0, \infty)$.

10) A point $x \in C$ is said to be represented by μ if, for any continuous linear functional f,

$$f(x) = \int f(y) d\mu(y) \, .$$

11) A non-empty subset C of K is called a cap of K if C is a compact convex subset and if K-C is also convex.

⁷⁾ In this case, exr SC(A) means $\{y \in \rho; \rho \in exr SC(A)\}$ and $exr E_0(A; t)$ means the analogous set.

⁸⁾ We say that a regular Borel measure Φ on $E_0(A)$ is carried by a set $Y \subset E_0(A)$ if, there exists a Borel set B such that $B \subset Y$ and $\Phi(CB) = 0$.

Proof of Theorem 53. (a) First we shall show that, for any $\mu_0 \neq 0 \in M^+(X),$

$$(4.18) \qquad (\operatorname{ex} SC(A; \mu_0)) \cap SC_0(A) \subset E_0(A) .$$

Let $0 \neq \mu \in SC(A; \mu_0) \cap SC_0(A)$. Theorem 35 and Corollary 39 give that $\mu = V(-A\mu)$. Let t > 0. Remarking that $T_t(-A\mu) \leq -A\mu$ and $V \cdot T_t = T_t \cdot V$, we obtain that $T_t \mu \in \mathscr{D}^+(A)$ and $-A(T_t\mu) = T_t(-A\mu)$. Hence we have

(4.19)
$$(-A)^n(T_t\mu) = T_t((-A)^n\mu) \in M^+(X) \ (n = 0, 1, \cdots) ,$$

because $\mu = V^n((-A)^n\mu)$. This implies that $T_t\mu \in SC(A)$. Since $(I - T_t)\mu = \int_t^{\infty} T_s(-A\mu)ds$, we have also $(I - T_t)\mu \in SC(A)$. Let $0 \neq \mu \in (\operatorname{ex} SC(A; \mu_0))$ $\cap SC_0(A)$ and put

(4.20)
$$c_{1,t} = \int f_{\mu_0} dT_t \mu \text{ and } c_{2,t} = \int f_{\mu_0} d(I - T_t) \mu$$

Then $c_{j,t} > 0$ (j = 1, 2), because $-A\mu \neq 0$, and $\int f_{\mu_0} d\mu = 1$. From $T_t \mu \in SC(A; \mu_0)$, $(I - T_t)\mu \in SC(A; \mu_0)$,

(4.21)
$$\mu = c_{1,t} \left(\frac{T_t \mu}{c_{1,t}} \right) + c_{2,t} \left(\frac{(I-T_t) \mu}{c_{2,t}} \right) \text{ and } c_{1,t} + c_{2,t} = 1$$
,

it follows that, with a constant $0 < c_i < 1$,

which implies that, with a constant a > 0,

(4.23)
$$-A\mu = \lim_{t\to 0} \frac{\mu - T_t\mu}{t} = \lim_{t\to 0} \left(\frac{1-c_t}{t}\right)\mu = a\mu .$$

Thus we see (4.18).

(b) Let $0 \neq \mu_0 \in M^+(X)$. We shall show that, for any $\mu \in SC(A; \mu_0) \cap SC_0(A)$, there exists a regular Borel probability measure Φ on $E_0(A)$ carried by $(\exp SC(A; \mu_0)) \cap SC_0(A)$ such that the analogous equality to (4.16) holds. Put, for each integer $n \geq 1$,

$$(4.24) H_n(A) = \{V^n \mu; \mu \neq 0 \in \mathscr{D}^+(V^n) \cap H(A)\}$$

and $H_0(A) = H(A)$. The condition (\mathscr{L}) for A implies that, for any $n \ge 0$, $\bigoplus_{k=0}^{n} H_k(A)$ is vaguely closed and, similarly as in Proposition 51, we see that $H_n(A)$ is Borel measurable. Remarking that $(H_n(A))_{n=1}^{\infty}$ and $SC_0(A) - \{0\}$ are mutually disjoint, we have

(4.25)
$$\begin{array}{l} \displaystyle \exp SC(A;\mu_0) \\ \displaystyle = \left(\bigcup_{n=0}^{\infty} \left(\exp SC(A;\mu_0) \right) \cap H_n(A) \right) \cup \left(\left(\exp SC(A;\mu_0) \right) \cap SC_0(A) \right) \,, \end{array}$$

and $(\exp SC(A; \mu_0)) \cap H_n(A)$ $(n = 0, 1, \dots)$ and $(\exp SC(A; \mu_0)) \cap (SC_0(A) - \{0\})$ are mutually disjoint Borel measurable sets (see Propositions 51 and 54). By Proposition 54, there exists a regular Borel probability measure on $\exp SC(A; \mu_0)$ such that $\mu = \int \lambda d\Phi(\lambda)$. Put

$$(4.26) \quad \varPhi_n = \begin{cases} \varPhi \text{ on } (\operatorname{ex} SC(A;\mu_0)) \cap H_n(A) \ (n \ge 0) \\ 0 \text{ otherwise} \end{cases} \quad \text{and} \quad \varPhi_\infty = \varPhi - \sum_{n=0}^\infty \varPhi_n \ .$$

Then we have

(4.27)
$$\mu = \sum_{n=0}^{\infty} \int \lambda d\Phi_n(\lambda) + \int \lambda d\Phi_{\infty}(\lambda)$$

By (a), Φ_{∞} is a regular Borel non-negative measure on $E_0(A)$ carried by $(\operatorname{ex} SC(A; \mu_0)) \cap SC_0(A)$. For any $n \geq 0$, the closedness of $\bigoplus_{k=0}^n H_k(A)$ implies that $\sum_{k=0}^n \int \lambda d\Phi_k(\lambda) \in \bigoplus_{k=0}^n H_k(A)$, and hence Proposition 47 gives that $\int \lambda d\Phi_n(\lambda) = 0$. Hence we may assume that $\Phi = \Phi_{\infty}$, which gives our assertion.

(c) We shall show that, for any nonzero element μ_0 of $M^+(X)$,

(4.28)
$$(\operatorname{ex} SC(A; \mu_0)) \cap SC_0(A) = \bigcup_{t \ge 0} \operatorname{ex} (E_0(A; t) \cap SC(A; \mu_0))$$

Evidently we have the inclusion \subset , and so we shall show the inverse inclusion. Let $0 \neq \mu \in \text{ex} (E_0(A; c) \cap SC(A; \mu_0))$. Then $c \neq 0$. Assume that, for $\mu_j \in SC(A; \mu_0)$ (j = 1, 2), $\mu = 1/2(\mu_1 + \mu_2)$. Then $\mu_j \in SC_0(A)$ (j = 1, 2). By (b), there exists a regular Borel probability measure Φ_j on $E_0(A)$ carried by $(\text{ex} SC(A; \mu_0)) \cap SC_0(A)$ such that $\mu_j = \int \lambda d\Phi_j(\lambda)$ (j = 1, 2). By using Propositions 50 and 51, we see that $E_0(A; c)$, $\bigcup_{c>t\geq 0} E_0(A; t)$ and $\bigcup_{t>c} E_0(A; t)$ are Borel measurable, because, similarly as in Proposition 50, we see that, for any s > 0, $\bigcup_{t\geq s} E(A; t)$ is closed in $M^+(X)$ and that $(\bigcup_{t\geq s} E(A; t)) \cap$ $SC_0(A) = \bigcup_{t\geq s} E_0(A; t)$. Put, for j = 1, 2 and k = 0, 1, 2,

(4.29)
$$\Phi_{0,j} = \begin{cases} \Phi_j \text{ on } E_0(A;c) \\ 0 \text{ otherwise,} \end{cases} \quad \Phi_{1,j} = \begin{cases} \Phi_j \text{ on } (\bigcup_{c>t\geq 0} E_0(A;t)) - \{0\} \\ 0 \text{ otherwise,} \end{cases}$$
$$\Phi_{2,j} = \Phi_j - \Phi_{0,j} - \Phi_{1,j} \quad \text{and} \quad \Phi'_k = \frac{1}{2}(\Phi_{k,1} + \Phi_{k,2}) .$$

For any integer $n \ge 1$, we have, by the condition (\mathscr{L}) for A,

(4.30)

$$\mu = \left(-\frac{1}{c}A\right)^{n}\mu = \int \left(-\frac{1}{c}A\right)^{n}\lambda d\Phi_{0}'(\lambda) + \int \left(-\frac{1}{c}A\right)^{n}\lambda d\Phi_{1}'(\lambda) + \int \left(-\frac{1}{c}\right)^{n}\lambda d\Phi_{2}'(\lambda) = \int \lambda d\Phi_{0}'(\lambda) + \int \left(-\frac{c_{\lambda}}{c}\right)^{n}\lambda d\Phi_{1}'(\lambda) + \int \left(-\frac{c_{\lambda}}{c}\right)^{n}\lambda d\Phi_{2}'(\lambda) ,$$

where c_{λ} is a positive constant satisfying $-A\lambda = c_{\lambda}\lambda$. We remark here that the mapping $(E_0(A) - \{0\}) \ni \lambda \to c_{\lambda}$ is continuous. By letting $n \to \infty$ in (4.30), we see that $\mu = \int \lambda d\Phi'_0(\lambda)$. This implies that $\mu_j = \int \lambda d\Phi_{0,j}(\lambda)$ (j = 1, 2). Since $\int f_{\mu_0} d\mu = 1$, we have $\mu = \mu_j$ (j = 1, 2), Thus we see that (4.28) holds.

(d) Since $SC(A) = \bigcup_{0 \neq \mu \in SC(A)} SC(A; \mu)$, Proposition 55 gives that SC(A) is the closed convex hull of exr SC(A). Evidently we have

$$\widetilde{\operatorname{exr}} \operatorname{SC}(A) \subset \left(\bigcup_{n=0}^{\infty} V^n \left((\widetilde{\operatorname{exr}} \operatorname{H}(A)) \, \cap \, \mathscr{D}(V^n) \right) \right) \cup \left(\bigcup_{t \geq 0} \widetilde{\operatorname{exr}} \operatorname{E}_0(A; t) \right)$$

and

$$\widetilde{\operatorname{exr}} \operatorname{SC}(A) \supset \bigcup_{n=0}^{\infty} V^n ((\widetilde{\operatorname{exr}} H(A)) \cap \mathscr{D}(V^n))$$

by Proposition 47. Let t > 0 and $\rho \in exr E_0(A; t)$. We choose a nonzero element μ of ρ . Then $\mu \in ex(E_0(A; t) \cap SC(A; \mu))$, and hence (c) implies that $\mu \in (ex SC(A; \mu)) \cap SC_0(A)$. By Proposition 56, we have $\rho \in exr SC(A)$. This implies that (4.15) holds. Proposition 56, (b) and (c) give also (4.16).

(e) Finally, we shall show (4.17). Let $\mu \in SC_0(A)$ and Φ be a regular Borel non-negative measure with $\int d\Phi < \infty$ defined by (4.16). By (b) and (c), Φ is carried by $(\exp SC(A; \mu)) \cap (\bigcup_{t \ge 0} E_0(A; t))$. For any t > 0, we put

$$(4.31) \quad \varPhi_{\iota} = \begin{cases} \varPhi \text{ on } \bigcup_{\iota \ge s \ge 0} E_0(A;s) \\ 0 \text{ otherwise} \end{cases} \quad \text{and} \quad v(t) = \int d\varPhi_{\iota} = \int \left(\int f_{\mu} d\lambda \right) d\varPhi_{\iota}(\lambda) \;,$$

because $\int f_{\mu}d\lambda = 1$ for any nonzero element λ of ex $SC(A; \mu)$. Then v(t) is a bounded non-negative increasing function on $(0, \infty)$. Let σ be a nonnegative Borel measure in $(0, \infty)$ such that $v(t) = \int_0^t d\sigma$. Then $\int_0^\infty d\sigma < \infty$. For $f \in C_{\mathbb{K}}(X)$, we put

(4.32)
$$v_{j}(t) = \int \left(\int f d\lambda\right) d\Phi_{i}(\lambda) \ .$$

Then there exists a real Borel measure σ_f in $(0, \infty)$ such that $v_f(t) = \int_0^t d\sigma_f$. We have also $\int_0^\infty d|\sigma_f| < \infty$. Since $|f| \le c_f f_\mu$ on X for some positive number c_f , we have, for any t > s > 0,

(4.33)
$$|v_{f}(t) - v_{f}(s)| \leq c_{f}(v(t) - v(s))$$

which shows that σ_f is absolutely continuous with respect to σ . By the Radon-Nikodym theorem, there exists a σ -integrable function \tilde{f} on $(0, \infty)$ such that $d\sigma_f = \tilde{f} d\sigma$. We have also $|\tilde{f}| \leq c_f \sigma$ -a.e.. By (4.32), we have, for any $f, g \in C^+_{\kappa}(X)$, and any constants a, b,

(4.34)
$$\widetilde{af + bg} = a\tilde{f} + b\tilde{g}$$
 σ -a.e..

We choose a countable set of continuous functions $(f_n)_{n=1}^{\infty} \subset C_K^+(X)$ such that $(f_n)_{n=1}^{\infty}$ is total in $C_K(X)$. By (4.34), there exists a Borel set F in $(0, \infty)$ such that $\sigma(CF) = 0$ and that, for any $t \in F$, any rational number r and any integers $n \ge 1$ and $m \ge 1$,

(4.35)
$$(r\tilde{f}_n)(t) = t\tilde{f}_n(t), \lim_{\delta \downarrow 0} \frac{1}{\delta} \int_{t}^{t+\delta} \tilde{f}_n d\sigma = \tilde{f}_n(t) \text{ and} \\ (\widetilde{f_n + f_m})(t) = \tilde{f}_n(t) + \tilde{f}_m(t) .$$

For any $t \in CF$, the mapping $f_n \to \tilde{f}_n(t)$ can be extended to a positive linear form on $C_{\kappa}(X)$ in the usual way, and hence there exists a uniquely determined non-negative Radon measure μ_t in X such that $\tilde{f}_n(t) = \int f_n d\mu_t$ for all $n \ge 1$. By defining $\mu_t = 0$ for all $t \in CF$, we see that $(0, \infty) \ni t \to$ $\mu_t \in M^+(X)$ is σ -measurable. Since $\int f_{\mu} d\mu_t \le 1$ for all $t \in (0, \infty), (0, \infty) \ni t \to$ $\mu_t \in M^+(X)$ is bounded. Furthermore we have

(4.36)
$$\mu = \int_0^\infty \mu_t d\sigma(t) \; .$$

The condition (\mathscr{L}) for A and the second equality in (4.35) give that

 $\mu_t \in E(A; t)$ for all $t \in (0, \infty)$. By Theorem 35 and (4.36), we may assume that $\mu_t \in E_0(A; t)$. This completes the proof.

Now we notice the following equality:

(4.37)
$$SC_{0}(A) = \left\{ \int_{0}^{\infty} \mu_{t} d\sigma(t); \sigma \in M_{b}^{+}((0,\infty)), t \to \mu_{t} \in E_{0}(A;t): \text{ bounded and} \\ \sigma\text{-measurable} \right\},$$

where $M_b^+((0,\infty))$ denotes the totality of all non-negative Borel measures in $(0,\infty)$ with finite total mass. In fact, let $\sigma \in M_b^+((0,\infty))$ and $(0,\infty) \ni t$ $\rightarrow \mu_t \in E_0(A;t)$ be a bounded σ -measurable mapping. Put $\sigma_n = \sigma$ on [1/n, n]and $\sigma_n = 0$ otherwise $(n = 1, 2, \cdots)$. Then the condition (\mathscr{L}) for A gives that, for all $n = 1, 2, \cdots$ and $m = 0, 1, 2, \cdots$,

(4.38)
$$(-A)^{m} \int_{0}^{\infty} \mu_{t} d\sigma_{n}(t) = \int_{0}^{\infty} t^{m} \mu_{t} d\sigma_{n}(t) \text{ and} \\ \int_{0}^{\infty} \mu_{t} d\sigma_{n}(t) = V^{m} \left(\int_{0}^{\infty} t^{m} \mu_{t} d\sigma_{n}(t) \right)$$

By letting $n \to \infty$ in (4.38) and using the condition (\mathscr{L}) for A, we have, for any $m \ge 0$, $\int_0^\infty t^m \mu_t d\sigma(t) \in M^+(X)$ and

(4.39)
$$(-A)^{m} \int_{0}^{\infty} \mu_{t} d\sigma(t) = \int_{0}^{\infty} t^{m} \mu_{t} d\sigma(t) \quad \text{and} \\ \int_{0}^{\infty} \mu_{t} d\sigma(t) = V^{m} \left(\int_{0}^{\infty} t^{m} \mu_{t} d\sigma(t) \right).$$

By combining Theorem 53 and (4.39), we have (4.37).

For $\mu \in M(X)$, we write $\rho(\mu) = \{c\mu; c \in R^+\}$. In particular, we have the following

PROPOSITION 57. Let X be a locally compact abelian group with countable basis and ξ be a Haar measure on X. Let $(T_i)_{i\geq 0}$ be a transient diffusion semi-group of convolution type on X and α_i be the non-negative Radon measure on X defining T_i (see (2.17)). Assume that the infinitesimal generator A of $(T_i)_{i\geq 0}$ satisfies the condition (\mathcal{L}) and let Exp(X) be the totality of all positive continuous exponential functions on X^{12}). Then we have:

88

¹²⁾ A real-valued function φ on X is said to be exponential if, for any $x, y \in X$, $\varphi(x+y) = \varphi(x) \cdot \varphi(y)$.

(1)
$$\operatorname{exr} H(A) \subset \left\{ \rho(\varphi\xi); \varphi \in \operatorname{Exp} (X), \int \varphi d\alpha_t = 1 \text{ for all } t \geq 0 \right\} \subset H(A)^{13}$$

(2) For any $c > 0$, $\operatorname{exr} E_0(A; c) \subset \left\{ \rho(\varphi\xi); \varphi \in \operatorname{Exp} (X), c \int_0^\infty \left(\int \varphi d\alpha_t \right) dt = 1 \right\}$
 $\subset E_0(A; c).$

Proof. It is known that

(4.40)
$$H(A) = \{ \mu \in M^+(X); \mu = \mu * \alpha_t \text{ for all } t \ge 0 \} \\ = \{ \mu \in M^+(X); \mu = \mu * \alpha_{t_0} \text{ for some } t_0 > 0 \}$$

(see [8], p. 343). This implies the second inclusion in (1). By the Choquet-Deny theorem (see [5])¹³⁾, we see the first inclusion in (1). Similarly we see the assertion (2). Lastly in this paragraph, we shall discuss the Bernstein theorem. Put

$$(4.41) \quad T_t: M_{\mathbb{K}}((0,\infty)) \ni \mu \to \text{the restriction of } \tau_{-\iota}\mu \text{ to } (0,\infty) \in M((0,\infty))$$

for all $t \ge 0$, where τ_{-t} is the translation of -t. Then $(T_t)_{t\ge 0}$ is transient and regular diffusion semi-group on $(0, \infty)$, and its infinitesimal generator A is equal to d/dt. Denote by dt the Lebesgue measure in $(0, \infty)$. Since the Hunt diffusion kernel V for $(T_t)_{t\ge 0}$ satisfies

(4.42)
$$V\mu = \left(\int_{t}^{\infty} d\mu\right) dt \text{ for all } \mu \in M_{\kappa}((0, \infty))$$

and

(4.43)
$$H\left(\frac{d}{dt}\right) = \rho(dt)$$
 and $E_0\left(\frac{d}{dt};c\right) = \rho\left(\exp\left(-ct\right)dt\right)$ for all $c > 0$.

Hence, our main theorem implies the Bernstein theorem. We remark here that

(4.44)
$$V^{n}\mu = \left(\int_{t}^{\infty} \frac{1}{(n-1)!} (x-t)^{n-1} d\mu(x)\right) dt$$
for all $\mu \in M_{\kappa}((0,\infty))$ and $n = 1, 2, \cdots$,

and that

13) This shows that, for a non-negative Radon measure σ in X, the solution μ of the convolution equation $\mu = \mu * \sigma$ is of form

$$\mu = \left(\int \varphi d\lambda(\varphi)\right) \xi ,$$

where λ is a regular Borel measure with finite total mass on $\left\{\varphi \in \operatorname{Exp}(X); \int \varphi d\sigma = 1\right\}$.

MASAYUKI ITÔ AND NORIAKI SUZUKI

 $(4.45) dt \notin \mathscr{D}^+(V^n) \text{ for all } n = 1, 2, \cdots.$

§5. Application to elliptic differential operators

In this paragraph, we consider the same setting as in S. Itô's paper [10]. Let D be a subdomain of an orientable N-dimensional C^{∞} -manifold $(N \ge 2)$ and L be an elliptic differential operator of the form:

(5.1)
$$Lu(x) = \sum_{i,j=1}^{N} \frac{1}{\sqrt{a(x)}} \frac{\partial}{\partial x^{i}} \left(\sqrt{a(x)} \cdot a^{ij}(x) \frac{\partial u}{\partial x^{j}}(x) \right) + \sum_{i=1}^{N} b^{i}(x) \frac{\partial u}{\partial x^{i}}(x) + c(x)u(x)$$

for $u \in C^2(D)^{1(i)}$ and $x = (x^1, \dots, x^N) \in D$, where $(a^{ij}(x))_{i,j=1}^N$ is a contravariant tensor of class C^{∞} in D and is symmetric and strictly positivedefinite for each $x \in D$, $a(x) = \det(a_{ij}(x)) = \det(a^{ij}(x))^{-1}$, $(b^i(x))_{i=1}^N$ is a contravariant vector of class C^{∞} in D and c(x) is a non-positive function of class C^{∞} in D. We shall denote by dx the volume element with respect to the Riemannian metric defined by the tensor $(a_{ij}(x))_{i,j=1}^N$. The formally adjoint operator L^* of L is defined by

(5.2)
$$L^*v(x) = \sum_{i,j=1}^N \frac{1}{\sqrt{a(x)}} \frac{\partial}{\partial x^i} \left(\sqrt{a(x)} \cdot a^{ij}(x) \frac{\partial v}{\partial x^j}(x) \right) \\ - \sum_{i=1}^N \frac{1}{\sqrt{a(x)}} \frac{\partial}{\partial x^i} \left(\sqrt{a(x)} \cdot b^i(x) \cdot v(x) \right) + c(x)v(x)$$

for $v \in C^2(D)$.

Evidently we have the following

Remark 58. Let u and v be in $C^2(D)$. If $u \in C^2_K(D)$ or $v \in C^2_K(D)$, then we have

(5.3)
$$\int Lu(x)v(x)dx = \int u(x)L^*v(x)dx .$$

DEFINITION 59 (see [10]). Let Ω be a subdomain of D. We say that Ω satisfies the condition (S) if its closure $\overline{\Omega}$ is contained in D and its boundary $\partial \Omega$ consists of finite number of simple closed hypersurfaces of class C^3 .

PROPOSITION 60 (see [9], Theorem 1). Let Ω be a subdomain of D14) We denote by $C^n(D) = \{f \in C(D); f \text{ is of class } C^n \text{ in } D\}$ for $n \ge 1$ and by $C^{\infty}(D)$ $= \bigcap_{n=1}^{\infty} C^n(D)$. We write also $C_K^n(D) = C^n(D) \cap C_K(D)$ and $C_K^{\infty}(D) = C^{\infty}(D) \cap C_K(D)$.

satisfying the condition (S). Then there exists one and only one fundamental solution $U_a(t, x, y)$ of the initial-boundary value problem:

Given $u_0 \in C(\overline{\Omega})$ and $\varphi \in C((0, \infty) \times \partial \Omega)$,

(5.4)
$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = Lu(t,x) \text{ for each } (t,x) \in (0,\infty) \times \Omega\\ u(0,x) = u_0(x) \text{ for each } x \in \overline{\Omega}\\ u(t,x) = \varphi(t,x) \text{ for each } (t,x) \in (0,\infty) \times \partial\Omega . \end{cases}$$

Furthermore $U_{\varrho}(t, x, y)$ satisfies the following five conditions:

(5.5) $U_{\mathfrak{g}}(t, x, y)$ is a non-negative finite continuous function on $(0, \infty) \times \overline{\Omega} \times \overline{\Omega}$ and $U_{\mathfrak{g}}(t, x, y) = 0$ if and only if $x \in \partial \Omega$ or $y \in \partial \Omega$.

(5.6)
$$\int U_{\varrho}(t, x, y) dy \leq 1 \text{ for any } (t, x) \in (0, \infty) \times \overline{\Omega}.$$

- $(5.7) \quad \int U_{\varrho}(t,x,y)U_{\varrho}(s,y,z)dy = U_{\varrho}(t+s,x,z) \text{ for any } t > 0, \ s > 0 \ and \ any \\ (x,z) \in \overline{\Omega} \times \overline{\Omega}.$
- (5.8) For any $u_0 \in C(\overline{\Omega})$, we put $u(t, x) = \int U_{\rho}(t, x, y)u_0(y)dy$. Then u(t, x) is the unique solution of (5.4) with $\varphi = 0$.
- (5.9) For any $u_0 \in C(\overline{\Omega})$, we put $u^*(t, x) = \int U_{\rho}(t, y, x)u_0(y)dy$. Then $u^*(t, x)$ is the unique solution of the initial-boundary value problem:

(5.10)
$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = L^* u(t,x) \text{ for each } (t,x) \in (0,\infty) \times \Omega\\ u(0,x) = u_0(x) \text{ for each } x \in \overline{\Omega}\\ u(t,x) = 0 \text{ for each } (t,x) \in (0,\infty) \times \partial \Omega \end{cases}.$$

The following remark is elementary.

Remark 61. Let Ω be a subdomain of D. Then there exists a sequence $(\Omega_n)_{n=1}^{\infty}$ of subdomains in Ω satisfying the condition (S) such that $\overline{\Omega}_n \subset \Omega_{n+1}, \bigcup_{n=1}^{\infty} \Omega_n = \Omega$.

We call $(\Omega_n)_{n=1}^{\infty}$ a regular exhaustion of Ω .

PROPOSITION 62 (see [9], Lemma 5.4). Let Ω and $(\Omega_n)_{n=1}^{\infty}$ be the same as above. Then $(U_{\Omega_n}(t, x, y))_{n=1}^{\infty}$ converges increasingly to a continuous func-

tion $U_{\varrho}(t, x, y)$ in $(0, \infty) \times \Omega \times \Omega^{15}$.

We remark here that $U_{\mathcal{Q}_n}(t, x, y) \to U_{\mathcal{Q}}(t, x, y)$ in $C((0, \infty) \times \Omega \times \Omega)$ as $n \to \infty$ and that $U_{\mathcal{Q}}(t, x, y)$ does not depend on the choice of $(\Omega_n)_{n=1}^{\infty}$.

COROLLARY 63. Let Ω and $U_{\Omega}(t, x, y)$ be the same as above. Then we have:

(1) For
$$t > 0$$
, $s > 0$ and $(x, z) \in \Omega \times \Omega$,

(5.11)
$$\int U_{\varrho}(t,x,y)U_{\varrho}(s,y,z)dy = U_{\varrho}(t+s,x,z)$$

(2) For any $f \in C_{\kappa}(\Omega)$, we put

(5.12)
$$u(t,x) = \begin{cases} \int U_{\varrho}(t,x,y)f(y)dy \ in \ (0,\infty) \times \Omega \\ f(x) \ on \ \{0\} \times \Omega \end{cases}$$

and

(5.13)
$$u^*(t,x) = \begin{cases} \int U_{\varrho}(t,y,x)f(y)dy \ in \ (0,\infty) \times \Omega \\ f(x) \ on \ \{0\} \times \Omega \end{cases}.$$

Then u(t, x) and $u^*(t, x)$ are finite continuous in $[0, \infty) \times \Omega$.

Proof. Since $U_{g_n}(t, x, y) \uparrow U_g(t, x, y)$ as $n \uparrow \infty$, (5.7) gives (5.11). To show (2), we may assume that f is non-negative. Put

(5.14)
$$u_n(t,x) = \begin{cases} \int U_{\varrho_n}(t,x,y)f(y)dy \ in \ (0,\infty) \times \Omega \\ f(x) \ on \ \{0\} \times \Omega \end{cases}.$$

Then u_n is finite continuous on $[0, \infty) \times \Omega$. Since $(u_n(t, x))_{n=1}^{\infty}$ converges increasingly to u(t, x) as $n \to \infty$, u is lower semi-continuous on $[0, \infty) \times \Omega$. Evidently u(t, x) is finite continuous in $(0, \infty) \times \Omega$. Let t_0 be a fixed positive number. Then there exists a constant c > 0 such that $c \int U_{\Omega}(t_0, x, y)f(y)dy \ge f(x)$ on Ω . Hence $cu(t_0 + t, x) - u(t, x)$ is also lower semi-continuous on $[0, \infty) \times \Omega$. This implies that u(t, x) is finite continuous on $[0, \infty) \times \Omega$. By the similar argument, we see that $u^*(t, x)$ is also finite continuous on $[0, \infty) \times \Omega$. This completes the proof.

:92

¹⁵⁾ We may assume that $U_{\Omega_n}(t,x,y)$ is a finite continuous function in $(0,\infty) \times \Omega \times \Omega$, by defining that $U_{\Omega_n}(t,x,y) = 0$ if $x \in C\Omega_n$ or $y \in C\Omega_n$.

Let Ω be a subdomain of D. For any t > 0, we define linear operators $T_{L,\Omega,t}$ and $T_{L^*,\Omega,t}$ from $M_K(\Omega)$ into $M(\Omega)$ as follows:

(5.15)
$$T_{L,\varrho,\iota}\mu = \left(\int U_{\varrho}(t,x,y)d\mu(y)\right)dx \text{ and } T_{L^{*},\varrho,\iota}\mu = \left(\int U_{\varrho}(t,y,x)d\mu(y)\right)dx.$$

By Corollary 63, we have the following

Remark 64. Putting $T_{L,\varrho,0} = T_{L^*,\varrho,0} = I$, we see that $(T_{L,\varrho,l})_{l\geq 0}$ and $(T_{L^*,\varrho,l})_{l\geq 0}$ are diffusion semi-groups on Ω .

For the sake of simplicity, we write $T_{L,t} = T_{L,D,t}$ and $T_{L^*,t} = T_{L^*,D,t}$ $(t \ge 0).$

PROPOSITION 65. The diffusion semi-group $(T_{L,t})_{t\geq 0}$ on D is transient if and only if the Green function G(x, y) of L on D^{16} exists. If G(x, y) exists, then $G(x, y) = \int_0^\infty U_D(t, x, y) dt$.

This follows from the following

PROPOSITION 66. The Green function G(x, y) of L on D exists if and only if there exists a non-constant lower semi-continuous and locally integrable function f satisfying $0 \le f \le \infty$, $f \not\equiv \infty$ and $-Lf \ge 0$ in the sense of distributions in D. Furthermore, if G(x, y) exists, we have G(x, y) = $\int_0^{\infty} U_D(t, x, y) dt$. For any $y \in D$, the functions G(x, y) and G(y, x) of x belong to $C^{\infty}(D - \{y\})$, and for any $f \in C_K^{\infty}(D)$, $Gf(x) = \int G(x, y)f(y) dy \in C^{\infty}(D)$ and (5.16) LGf = G(Lf) = -f.

S. Itô shows the above assertion in the case of $c(x) \equiv 0$ (see [10]). In the case that $c(x) \neq 0$, we see, in the same manner as in [10], that there exists the Green function of L on D (see also [9] and [12]).

Remark 67 (see [9], § 10 and [10]). If G(x, y) exists, then $G^*(x, y) = G(y, x) = \int_0^\infty U_D(t, y, x) dt$ is the Green function of L^* on D and, for any

(a) $G_{\mathcal{Q}}(x,y) < \infty$ if $x \neq y$.

¹⁶⁾ For an open set Ω in D, the Green function $G_{\Omega}(x,y)$ of L on Ω means a nonnegative continuous function in $\Omega \times \Omega$ in the extended sense satisfying the following conditions:

⁽b) $L_x G_{\mathcal{Q}}(x,y) = -\varepsilon_y$ in the sense of distributions.

⁽c) For any $y \in \Omega$ and any non-negative function $h \in C^2(\Omega)$ with Lh = 0 in Ω , $G_{\Omega}(x,y) \ge h(x)$ in Ω implies $h \equiv 0$.

$$f \in C^{\infty}_{\kappa}(D), \ G^*f(x) = \int G^*(x, y)f(y)dy \in C^{\infty}(D) \text{ and}$$

(5.17) $L^*G^*f = G^*(L^*f) = -f.$

Proof of Proposition 65. We remark that, if $(T_{L,t})_{t\geq 0}$ is transient, then, for any nonzero element μ of $M_{\kappa}^{+}(D)$, $\int_{0}^{\infty} \int U_{D}(t, x, y)d\mu(y)dt$ is a non-constant lower semi-continuous and locally integrable function in D satisfying $-L\left(\int_{0}^{\infty} \int U_{D}(t, x, y)d\mu(y)dt\right) \geq 0$ in the sense of distributions in D. If G(x, y) exists, Proposition 66 and Remark 67 give that, for any $f \in C_{\kappa}^{+}(D)$, $\int_{0}^{\infty} T_{L,t}^{*}fdt$ is a non-negative lower semi-continuous function in D and that, for any $f \in C_{\kappa}^{\infty}(D)$, $\int_{0}^{\infty} T_{L,t}^{*}fdt = G^{*}f \in C^{\infty}(D)$, and hence $(T_{L,t})_{t\geq 0}$ is transient.

Hereafter, we shall always assume that the Green function G(x, y) of L on D exists. Define the linear operators V_L and V_{L^*} from $M_{\kappa}(D)$ into M(D) as follows:

(5.18)
$$V_{L}\mu = (G\mu)dx \text{ and } V_{L*}\mu = (G^*\mu)dx$$
,

where $G\mu(x) = \int G(x, y)d\mu(y)$ and $G^*\mu(x) = \int G^*(x, y)d\mu(y)$. Then V_L and V_{L^*} respectively are the Hunt diffusion kernel for $(T_{L,t})_{t\geq 0}$ and that for $(T_{L^*,t})_{t\geq 0}$.

Remark 68. Let $\mu \in M_{\kappa}(D)$. Then

(5.19)
$$LG\mu = -\mu \text{ and } L^*G^*\mu = -\mu$$

in the sense of distributions in D.

In fact, V_L and V_{L^*} are defined, so that $G\mu$ and $G^*\mu$ are locally integrable. The two equalities in (5.19) follow from (5.16) and (5.17). The two equalities (5.16) and (5.17) imply also the following

Remark 69. We have $R_{\kappa}(V_{L}^{*}) \supset C_{\kappa}^{\infty}(D)$ and $R_{\kappa}(V_{L^{*}}^{*}) \supset C_{\kappa}^{\infty}(D)$, i.e., $(T_{L,t})_{t\geq 0}$ and $(T_{L^{*},t})_{t\geq 0}$ satisfy the condition (C^{*}) . Let A_{L} and $A_{L^{*}}$ be the infinitesimal generator of $(T_{L,t})_{t\geq 0}$ and that of $(T_{L^{*},t})_{t\geq 0}$, respectively. Then, for any $\mu \in \mathscr{D}(A_{L})$ (resp. $\mu \in \mathscr{D}(A_{L^{*}})$),

(5.20)
$$A_{L}\mu = L\mu \text{ (resp. } A_{L*}\mu = L^*\mu)$$

in the sense of distributions.

Let Ω be a subdomain of D satisfying the condition (S). It is wellknown that, for any $y \in \Omega$, there exists the V_L -balayaged measure $\varepsilon'_{y,C\Omega}$ (resp. V_{L^*} -balayaged measure $\varepsilon''_{y,C\Omega}$) of ε_y on $C\Omega$. We have $\operatorname{supp}(\varepsilon'_{y,C\Omega}) \subset \partial\Omega$, $\operatorname{supp}(\varepsilon''_{y,C\Omega}) \subset \partial\Omega$,

(5.21)
$$\int_{0}^{\infty} U_{\varrho}(t, x, y) dt = G(x, y) - G\varepsilon'_{y,C\varrho}(x) \text{ and}$$
$$\int_{0}^{\infty} U_{\varrho}(t, y, x) dt = G^{*}(x, y) - G\varepsilon''_{y,C\varrho}(x)$$

(see, for example, [11], p. 333). Put $G_{\varrho}(x, y) = \int_{0}^{\infty} U_{\varrho}(t, x, y) dt$. Then $G_{\varrho}(x, y)$ is the Green function of L on Ω . In this case,

(5.22)
$$\lim_{y\to\partial\Omega}G_{\varrho}(x,y)=\lim_{y\to\partial\Omega}G_{\varrho}(y,x)=0 \text{ for all } x\in\Omega.$$

To apply our main theorem to L, we need the following

THEOREM 70. Two diffusion semi-groups $(T_{L,t})_{t\geq 0}$ and $(T_{L^*,t})_{t\geq 0}$ are regular.

Proof. We shall show only that $(T_{L,t})_{t\geq 0}$ is regular, because the other is proved similarly. By Remark 69, it suffices to show that $(T_{L,t})_{t\geq 0}$ satisfies the condition (D^*) . By Proposition 62, Remark 61 and (5.21), $(T_{L,t})_{t\geq 0}$ is weakly regular. Let $(D_n)_{n=1}^{\infty}$ be a regular exhaustion of D and put $T_{n,t}$ $= T_{L,D_n,t}$ $(t\geq 0; n = 1, 2, \cdots)$. Since, for any $\mu \in M_K^+(D)$, $T_{n,t}\mu \leq T_{L,t}\mu$ in D_n , $(T_{n,t})_{t\geq 0}$ is also a transient and weakly regular diffusion semi-group on D_n . Let $V_{L,n}$ the Hunt diffusion kernel for $(T_{n,t})_{t\geq 0}$. Then $V_{L,n}\mu =$ $(G_{D_n}\mu)dx$ for any $n\geq 1$. First we shall show that if, for any $n\geq 1$, $(T_{n,t})_{t\geq 0}$ satisfies the condition (D^*) , then so is $(T_{L,t})_{t\geq 0}$. For each $f \in C_K^+(D)$, we choose an integer $n_f \geq 1$ such that $f \in C_K^+(D_n)$ for all $n\geq n_f$. Let $(f_{n,m})_{m=1}^{\infty}$ be an associated family of f with respect to $(T_{n,t}^*)_{t\geq 0}$ $(n\geq n_f)$. By Proposition 62, we have

(5.23)
$$V_{L,n}^* f \leq V_{L,n+1}^* f$$
 in D and $\lim_{n \to \infty} V_{L,n}^* f = V_L^* f$ in $C(D)^{1}$.

Hence we can choose inductively a sequence $(f_{n_k,m_k})_{k=1}^{\infty}$ satisfying the following conditions (5.24), (5.25) and (5.26), where $n_1 \ge n_f$ and $n_k < n_{k+1}$:

(5.24)
$$V_L^*f - V_{L,n_k}^*f < \frac{1}{k} \text{ on } \overline{D}_{n_{k-1}}$$

https://doi.org/10.1017/S0027763000019425 Published online by Cambridge University Press

17) We put $V_{L,n}^* f = 0$ on CD_n . Then $V_{L,n}^* f \in C_K^+(D)$ by (5.21) and (5.22).

MASAYUKI ITÔ AND NORIAKI SUZUKI

(5.25)
$$V_{L,n_k}^* f_{n_k,m_k} < \frac{1}{k} \text{ on } \overline{D}_{n_{k-1}}$$

(5.26)
$$V_{L,n_{k-1}}^*f - V_{L,n_{k-1}}^*f_{n_{k-1},m_{k-1}} \leq V_{L,n_k}^*f - V_{L,n_k}^*f_{n_k,m_k}$$
 in D .

We shall show that $(f_{n_k,m_k})_{k=1}^{\infty}$ is an associated family of f with respect to $(T_{L,t}^*)_{t\geq 0}$. Since, for any $n\geq n_f$ and any $m\geq 1$, $L^*V_{L,n}^*(f-f_{n,m})=-f+f_{n,m}$ in the sense of distributions in $D_n, f_{n,m} \in C_K^+(D_n)$, and hence we may assume that $f_{n,m} \in C_K^+(D)$. We have

(5.27)
$$V_L^*f - V_L^*f_{n_k,m_k} = V_{L,n_k}^*f - V_{L,n_k}^*f_{n_k,m_k} \ (k \ge 1) ,$$

because $L^*(V_{L,n_k}^*f - V_{L,n_k}^*f_{n_k,m_k}) = f - f_{n_k,m_k}$ in the sense of distributions in *D*. This implies that $V_L^*f \ge V_L^*f_{n_k,m_k}$ and $\operatorname{supp}(V_L^*f - V_L^*f_{n_k,m_k})$ is compact. By (5.24), (5.25), (5.26) and (5.27), we have $V_L^*f_{n_{k-1},m_{k-1}} \ge V_L^*f_{n_k,m_k}$ in *D* and $V_L^*f_{n_k,m_k} \le 2/k$ on $\overline{D}_{n_{k-1}}$. Thus we see that $(f_{n_k,m_k})_{k=1}^{\infty}$ is an associated family of *f* with respect to $(T_{L,t}^*)_{t\ge 0}$. Consequently, it suffices to show that, for any subdomain Ω of *D* satisfying the condition (*S*), $(T_{L,\varrho,t})_{t\ge 0}$ satisfies the condition (*D**). For a fixed $y_0 \in C\Omega$, we put $h(x) = G^*(x, y_0)$ for each $x \in \Omega$. Then $\inf_{x \in \varrho} h(x) > 0$, $h \in C^{\infty}(\Omega)$ and $L^*h = 0$ in Ω . Let $f \in C_K^+(\Omega)$, and put $G_{\varrho}^*(x, y) = G_{\varrho}(y, x)$ and

(5.28)
$$a = \min_{x \in \text{supp}(f)} \frac{-\frac{G_a^* f(x)}{h(x)}}{h(x)} > 0.$$

We choose a sequence $(\varphi_n)_{n=1}^{\infty} \subset C_K^{\infty}(R^1)$ such that, for each $n \ge 1$, $\operatorname{supp}(\varphi_n) \subset (a/(n+2), a/(n+1))$ and $\int \varphi_n(r) dr = 1$. For any 0 < r < a, we put

(5.29)
$$\Omega_r = \{x \in \Omega; G^*_{\mathfrak{g}} f(x) > rh(x)\}.$$

Then Ω_r is an open set with $\overline{\Omega}_r \subset \Omega$, because $G^*_{\mathfrak{g}}f(x) \to 0$ as $x \to \partial \Omega$. Let $V_{L,\mathfrak{g}}$ and $A_{L,\mathfrak{g}}$ be the Hunt diffusion kernel for $(T_{L,\mathfrak{g},t})_{t\geq 0}$ and the infinitesimal generator of $(T_{L,\mathfrak{g},t})_{t\geq 0}$, respectively. Then, for any $V_{L,\mathfrak{g}}\mu \in \mathscr{D}^+_K(A_{L,\mathfrak{g}};\Omega_r)$,

(5.30)
$$\int (G^*f - rh)^+ d\mu = \int f dV_{L,a\mu} - r \int G(y_0, x) d\mu(x) = \int f dV_{L,a\mu},$$

because supp $(\mu) \subset \Omega_r$. Hence Corollary 43 and (5.21) give that

$$(5.31) \quad (G^*f - rh)^*(x) = \int f d(V_{L,\mathcal{Q}}\varepsilon_x - V_{L,\mathcal{Q}}\varepsilon'_{x,\mathcal{C}}) = G^*_{\mathcal{Q}}f(x) - G^*_{\mathcal{Q}}f''_{\mathcal{C}}(x) \text{ in } \mathcal{Q},$$

where $\varepsilon'_{x,C\rho_r}$ is the $V_{L,\rho}$ -balayaged measure of ε_x on $C\Omega_r$ and $f''_{C\rho_r}$ is the $V_{L^*,\rho}$ -balayaged measure of fdx on $C\Omega_r$. Put

COMPLETELY SUPERHARMONIC MEASURES

(5.32)
$$g_n(x) = \int G^* f_{CQ_r}''(x) \varphi_n(r) dr \ (n = 1, 2, \cdots) \ .$$

Then we have

(5.33)
$$g_n(x) = G_{\varrho}^* f(x) - h(x) \varphi_n * \psi \left(\frac{G^* f(x)}{h(x)} \right) \text{ in } \Omega ,$$

where $\psi(t) = t$ in $(0, \infty)$ and $\psi(t) = 0$ in $(-\infty, 0]$. By (5.32), $g_n \in C^{\infty}(\Omega_{a/2})$ and, by (5.33), $g_n \in C^{\infty}(\Omega - \operatorname{supp}(f))$, i.e., $g_n \in C^{\infty}(\Omega)$ $(n = 1, 2, \cdots)$. By (5.32), $(g_n)_{n=1}^{\infty}$ converges decreasingly to 0 as $n \to \infty$. Since $\operatorname{supp}(G_2^*f - g_n)$ $\subset \overline{\Omega}_{a/(n+1)}, G^*f - g_n$ is with compact support in Ω . Since, for any $x \in \Omega$, the function $G_2^*f_{Ca_r}'(x)$ of r is finite continuous in (0, a), (5.17) gives that $(0, a) \ni r \to f_{Ca_r}''$ is vaguely continuous, and hence $\int f_{Ca_r}' \varphi_n(r) dr$ is defined. Putting $f_n = -L^*g_n$, we see that $f_n \in C_{\mathcal{K}}^+(\Omega)$ and $f_n = \int f_{Ca_r}' \varphi_n(r) dr$ in the sense of distributions. Thus $(f_n)_{n=1}^{\infty}$ is an associated family of f with respect to $(T_{L,q,t}^*)_{t\geq 0}$. This completes the proof.

In the usual way, we define the L-superharmonicity and the L-harmonicity.

DEFINITION 71. A function u in D is said to be L-superharmonic (resp. L-harmonic) if u satisfies the following three conditions:

- (5.34) *u* is lower semi-continuous (resp. continuous).
- (5.35) $-\infty < u \leq \infty, \ u \neq \infty$ (resp. $-\infty < u < \infty$).
- (5.36) u is a locally integrable function in D and $-L\mu \ge 0$ (resp. Lu = 0) in the sense of distributions.

Similarly we define the L^* -superharmonicity and the L^* -harmonicity.

PROPOSITION 72. Let u be a lower semi-continuous function in D satisfying $-\infty < u \leq \infty$ and $u \equiv \infty$. Then the following three conditions are equivalent:

(1) u is L-superharmonic.

(2) If Ω is a relatively compact subdomain in D and if v is continuous on $\overline{\Omega}$, L-harmonic in Ω and satisfies $v(x) \leq u(x)$ on $\partial\Omega$, then $v(x) \leq u(x)$ in Ω .

(3) For any relatively compact subdomain Ω in D and any $x \in \Omega$,

(5.37)
$$u(x) \ge \int u(y) d\varepsilon_{x,Ca}'(y)$$

where $\varepsilon_{x,C\rho}^{\prime\prime}$ is the V_{L^*} -balayaged measure of ε_x on $C\Omega$.

Proof. The equivalence between (1) and (2) is shown by S. Itô (see, [12], Theorem 2).

(2) \Rightarrow (3). Let $(\Omega_n)_{n=1}^{\infty}$ be a regular exhaustion of Ω such that $\Omega_1 \ni x$. It is well-known that, for any $f \in C(\partial \Omega_n)$, the function $\int f d\varepsilon''_{x,C\Omega_n}$ of x is L-harmonic in Ω_n (see, for example, [11]). In particular, if $f \leq u$ on $\partial \Omega_n$, then (2) gives that $u(x) \geq \int f d\varepsilon''_{x,C\Omega_n}$. By letting $f \uparrow u$ and $n \to \infty$, we obtain the required inequality.

The implication $(3) \Rightarrow (2)$ is directly followed from Proposition 42 and Corollary 43. This completes the proof.

COROLLARY 73. Let u and v be L-superharmonic functions in D. If $u = v \, dx$ -a.e. in D, then u = v everywhere.

Proof. First we remark that, for any $x \in D$, $G(x, x) = \infty$. Let Ω be a subdomain of D satisfying the condition (S). For a fixed $y \in C\Omega$, put $h(x) = G^*(x, y)$ on Ω . For any $x_0 \in \Omega$ and r > 0, we denote by Ω_r the connected component of $\{x \in \Omega; G^*(x_0, x) > rh(x)\}$ with $\Omega_r \ni x_0$ and choose $\varphi_n \in C^{\infty}_K(R^1)$ such that $\varphi_n \ge 0$, $\int \varphi_n(r)dr = 1$ and $\operatorname{supp}(\varphi_n) \subset (n, n + 1)$ (n = $1, 2, \cdots)$. Similarly as in Theorem 70, $\int \varepsilon_{x_0, C\Omega_r}^{\prime\prime} \varphi_n(r)dr \in C^{\infty}_K(\Omega)$ in the sense of distributions, and hence

(5.38)
$$\int \left(\int u d\varepsilon_{x_0, Cg_r}'' \right) \varphi_n(r) dr = \int \left(\int v d\varepsilon_{x_0, Cg_r}'' \right) \varphi_n(r) dr$$

Since $\left(\int \varepsilon_{x_0,CB_r}^{\prime\prime}\varphi_n(r)dr\right)_{n=1}^{\infty}$ converges vaguely to ε_{x_0} as $n \to \infty$, the lower semicontinuity of u, that of v and (3) in Proposition 72 imply that $u(x_0) = v(x_0)$. The subdomain Ω and x_0 being arbitrary, we see Corollary 73.

By the above corollary, we obtain the following

PROPOSITION 74. Let $\mu \in M(D)$. If μ is A_L -superharmonic (resp. A_{L^*} -superharmonic), then there exists one and only one L-superharmonic (resp. L*-superharmonic) function u in D such that $\mu = udx$.

Conversely, for an L-superharmonic (resp. L*-superharmonic) function

u in D, udx is A_L -superharmonic (resp. A_{L*} -superharmonic).

In order to prove Proposition 74, we use the following known lemma.

LEMMA 75 (see [18], p. 143). Let Ω be a domain in the N-dimensional Euclidean space \mathbb{R}^N ($N \ge 1$) and L be an elliptic differential operator of the analogous form to (5.1). If, for $\mu \in M(\Omega)$, $L\mu \in C^{\infty}(\Omega)$ in the sense of distributions, then $\mu \in C^{\infty}(\Omega)$ in the sense of distributions. In particular, $L\mu = 0$ in Ω implies $\mu \in C^{\infty}(\Omega)$ in the sense of distributions.

Proof of Proposition 74. Let $\mu \in M(D)$ be A_L -superharmonic. Then Remark 69 gives that $-L\mu \geq 0$ in the sense of distributions. Let ω be a subdomain of D satisfying the condition (S) and λ_{ω} be the restriction of the positive measure $-L\mu$ to ω . Put $\lambda = \mu - (G\lambda_{\omega})dx$ in ω . Then $L\lambda = 0$ in ω , and hence $\lambda = \varphi dx$ in ω by Lemma 75, where $\varphi \in C^{\infty}(\omega)$. The subdomain ω being arbitrary, we obtain that $\mu = udx$, where u is an L-superharmonic function in D. By Corollary 73, u is uniquely determined. Let u be an L-superharmonic function in D and put $\mu = udx$. Since $-L\mu \geq 0$ in the sense of distributions in D, Remark 69 gives that μ is A_L -superharmonic if $\mu \in \mathscr{D}^0(A_L)$. Let $V_L^* f \in R_K(A_L)$. Then $\sup p(f)$ is compact, and hence $\int |f| d\mu < \infty$, which implies $\mu \in \mathscr{D}^0(A_L)$. Thus μ is A_L -superharmonic. The rest of proof is similar. This completes the proof.

This implies evidently the following

COROLLARY 76. The infinitesimal generators A_L and A_{L^*} satisfy the condition (\mathscr{L}).

We denote by S(L) the convex cone of all non-negative L-superharmonic functions in D and by H(L) the convex cone of all non-negative L-harmonic functions in D.

By Theorem 35, Corollary 73 and Proposition 74, we obtain the wellknown Riesz decomposition theorem.

Remark 77. For each $u \in S(L)$, there exists uniquely $(\nu, h) \in M^+(D) \times H(L)$ such that $\mu = G\nu + h$.

Now we discuss the Martin compactification of D for L.

PROPOSITION 78. The Martin compactification D^* of D for L is defined. Let \mathfrak{S}_1 be the essential part of the Martin boundary $\Gamma = D^* - D^{18}$ and

¹⁸⁾ $\mathfrak{S}_1 = \{\xi \in \Gamma\}$ the harmonic function $K(x,\xi)$ of x is minimal}. A positive harmonic function u in D is said to be minimal if, for any positive harmonic function v in D, v = cu with a positive constant c whenever $u \ge v$ in D.

 $K(x,\xi)$ be the Martin kernel on $D \times \Gamma$. If h is positive L-harmonic in D, then there exists one and only one regular Borel positive measure μ on \mathfrak{S}_1 with $\int d\mu < \infty$ such that

(5.39)
$$h(x) = \int_{\mathfrak{S}_1} K(x,\xi) d\mu(\xi) \text{ in } D.$$

In the case of $c(x) \equiv 0$, the same assertion is obtained by S. Itô (see, [11], Theorem 5.3). Similarly we can prove Proposition 79 (see also [6], Chapter 11 and [18]).

For a constant c > 0, we discuss non-negative solution of the following ideal boundary value problem:

(5.40)
$$\begin{cases} -Lu(x) = cu(x) \text{ for any } x \in D\\ \lim_{\substack{y \to e \\ y \in D}} u(y) = 0 \ \lambda_{x_0} - \text{ a.e. on } \Gamma , \end{cases}$$

where λ_{x_0} is the harmonic measure for a certain $x_0 \in D$.

Denote by $E_0(L;c)$ the set of non-negative functions of class C^{∞} in D satisfying (5.40) and by $E_0(L) = \bigcup_{c \ge 0} E_0(L;c)$.

PROPOSITION 79. Let c be a non-negative constant. For each $\mu \in E_0(A_L; c)$, there exists one and only one $u \in E_0(L; c)$ such that $\mu = udx$. Conversely, for any $u \in E_0(L; c)$, we have $udx \in E_0(A_L; c)$.

Proof. Since $E_0(A_L; 0) = \{0\}$ and $E_0(L; 0) = \{0\}$, it suffices to show our conclusion in the case c > 0. Let μ be a nonzero element of $E_0(A_L; c)$. Then, by Propositions 45, 74, Corollary 73 and Remark 77, there exists one and only one $u \in S(L)$ such that $\mu = udx$ and u = cGu. Since the function

$$\int \underbrace{\lim_{\substack{y \to \xi \\ y \in D}}}_{y \in D} u(y) \underbrace{K(x,\xi)}_{K(x_0,\xi)} d\lambda_{x_0}(\xi)$$

of x is L-harmonic and $\leq u$ in D, the second equality in (5.40) holds. Hence it suffices to show that $u \in C^{\infty}(D)$. We put inductively $G^{n+1}(x, y) = \int G^n(x, z)G(z, y)dz$ and $G^nu(x) = \int G^n(x, y)u(y)dy$ for $n = 1, 2, \dots$, where $G^1(x, y) = G(x, y)$. Then we have $u = c^n G^n u$. Let Ω be a relatively compact subdomain of D. When we consider L as a differential operator in Ω , L is uniformly elliptic and all coefficients of L are of class C^{∞} on $\overline{\Omega}$. Hence, for any $n \ge N/2 + 1$, $G_{\mathcal{D}}^n(x, y)$ is finite continuous in $\Omega \times \Omega$ (see, for example, [15], p. 1288), where the function $G_{\mathcal{D}}^n(x, y)$ is defined analogously to $G^n(x, y)$. Let Ω_1 be another subdomain of D such that $\overline{\Omega}_1 \subset \Omega$ and f be in $C_{\mathcal{K}}^+(D)$ such that $0 \le f \le 1$, f(x) = 1 on $\overline{\Omega}_1$ and $\operatorname{supp}(f) \subset \Omega$. Put $u_1 = fu$ and $u_2 = (1 - f)u$. Then $G_{\mathcal{D}}^n u_1$ is finite continuous in Ω whenever $n \ge$ N/2 + 1. By remarking that, for any $k \ge 1$,

$$(5.41) \qquad G^{k+1}u_1 - G^{k+1}u_1 = G(G^k u_1 - G^k_{\rho} u_1) + G(G^k_{\rho} u_1) - G_{\rho}(G^k_{\rho} u_1)$$

and that, for any non-negative locally integrable function g with $g \leq u$, $Gg - G_{g}g$ is of class C^{∞} in Ω (see Lemma 75 and Corollary 73), we obtain inductively that $G^{n}u_{1} - G_{g}^{n}u_{1} \in C^{\infty}(\Omega)$ $(n = 1, 2, \cdots)$. On the other hand, Gu_{2} is of class C^{∞} in Ω_{1} by Lemma 75. Let Ω_{2} be a subdomain of D such that $\overline{\Omega}_{2} \subset \Omega_{1}$ and φ be in $C_{\kappa}^{\infty}(D)$ such that $0 \leq \varphi \leq 1$, $\varphi(x) = 1$ on $\overline{\Omega}_{2}$ and $\operatorname{supp}(\varphi) \subset \Omega_{1}$. Then $G((1 - \varphi)Gu_{2})$ is of class C^{∞} in Ω_{2} and $G(\varphi Gu_{2}) \in C^{\infty}(D)$, because $\varphi Gu_{2} \in C_{\kappa}^{\infty}(D)$. The subdomain Ω_{2} being arbitrary, $G^{2}u_{2}$ is of class C^{∞} in Ω_{1} . Inductively we see that, for any $n \geq 1$, $G^{n}u_{2}$ is of class C^{∞} in Ω_{1} . Thus $G^{n}u$ is finite continuous in Ω_{1} if $n \geq N/2 + 1$. The subdomain Ω and Ω_{1} being arbitrary, $u \in C(D)$. Since $u_{1} \in C_{\kappa}^{+}(D)$, $G_{g}^{n}u_{1} \in C^{n}(\Omega)$ (n = $1, 2, \cdots)$, and hence $G^{n}u_{1} \in C^{n}(\Omega)$. Consequently $G^{n}u \in C^{n}(\Omega)$ $(n = 1, 2, \cdots)$, and so $u \in C^{\infty}(D)$.

Let $u \in E_0(L; c)$. Then, by Remark 77, u = cGu + h, where $h \in H(L)$. Since, for any $x \in D$, $\lim_{\substack{y \to \xi \\ y \in D}} u(y) = 0$ λ_x -a.e. on Γ , the harmonic part h of u is equal to 0, which implies that $udx \in E_0(A_L; c)$. This completes the proof.

DEFINITION 80. A function u in D is said to be completely *L*-superharmonic in D if, for any integer $n \ge 0$, $(-L)^n u$ is *L*-superharmonic in D, where $(-L)^0 u = u$ and $(-L)^n u$ is in the sense of distributions.

In particular, a completely *L*-superharmonic function u in D is said to be with zero conditions if $\lim_{\substack{y \to x \\ y \in D}} (-L)^n u(y) = 0$ for any $x \in \mathfrak{S}_1$ and any $n = 0, 1, \cdots$.

We denote by SC(L) the convex cone formed by all non-negative completely L-superharmonic functions in D and by $SC_0(L)$ the convex cone formed by all non-negative completely L-superharmonic functions in Dwith zero conditions.

Similarly as above, we see the following

PROPOSITION 81. For each $\mu \in SC(A_L)$ (resp. $\in SC_0(A_L)$), there exists one

and only one $u \in SC(L)$ (resp. $\in SC_0(L)$) such that $\mu = udx$. Conversely, for any $u \in SC(L)$ (resp. $\in SC_0(L)$), $udx \in SC(A_L)$ (resp. $\in SC_0(A_L)$).

Applying Theorem 53 to completely L-superharmonic functions, we obtain the following

THEOREM 82. We have $SC(L) \subset C^{\infty}(D)$ and the following assertions hold:

(1) If there exists an integer $k \ge 1$ such that, for any n with $1 \le n \le k$, $(V_L)^n$ is defined as a diffusion kernel in D and that $(V_L)^{k+1}$ is not defined, then, for each $u \in SC(L)$, there exists uniquely a finite family $(\lambda_j)_{j=0}^{k-1}$ of non-negative regular Borel measures on \mathfrak{S}_1 with $\int d\lambda_j < \infty$ $(j = 0, 1, \dots, k-1)$ such that

(5.42)
$$u(x) = \sum_{n=0}^{k-1} \int_{\mathfrak{S}_1} G^n \cdot K(x,\xi) d\lambda_n(\xi) ,$$

where $G^0 \cdot K(x,\xi) = K(x,\xi)$ and $G^n \cdot K(x,\xi) = \int G^n(x,y)K(y,\xi)dy$.

(2) If, for any integer $n \ge 1$, $(V_L)^n$ is defined as a diffusion kernel on D, then, for each $u \in SC(L)$, there exist a sequence $(\lambda_n)_{n=0}^{\infty}$ of non-negative regular Borel measures on \mathfrak{S}_1 with $\int d\lambda_n < \infty$ $(n = 0, 1, \cdots)$, a non-negative tive Borel measure σ on $(0, \infty)$ with $\int d\sigma < \infty$ and a σ -measurable mapping $(0, \infty) \ni t \to u_t \in C^{\infty}(D)$ with $u_t \in E(L; t)^{19}$ such that, for any $y \in D$,

(5.43)
$$u(y) = \sum_{n=0}^{\infty} \int_{\mathfrak{S}_1} G^n \cdot K(y,\xi) d\lambda_n(\xi) + \int_0^{\infty} u_t(y) d\sigma(t) \, d$$

Furthermore $(\lambda_n)_{n=0}^{\infty}$ is uniquely determined.

Proof. We first consider the case where the assumption of (1) holds. Let $u \in SC(L)$. Similarly as in Proposition 47, there exist uniquely a finite family $(h_n)_{n=0}^{k-1} \subset H(L)$ and $\nu \in \mathscr{D}^+((V_L)^k)$ such that

(5.44)
$$udx = \sum_{n=0}^{k-1} (V_L)^n (h_n dx) + (V_L)^k \nu .$$

Since $\nu \in S(A_L)$, Theorem 35 gives that $\nu = V_L(-A_L\nu) + h_k dx$, where $h_k \in H(L)$. Assume that $\nu \neq 0$. Let $\mu \in M_k^+(D)$ and Ω be a subdomain of D

¹⁹⁾ We say that $t \to u_t \in C_{\infty}(D)$ is σ -measurable if, for any $x \in D$, the function $u_t(x)$ of t is σ -measurable.

satisfying the condition (S) and $\supp(\mu) \subset \Omega$. We denote by $\mu'_{C_{\theta}}$ the V_L balayaged measure of μ on $C\Omega$. Then $V_L\mu - V_L\mu'_{C_{\theta}} \in \mathscr{D}((V_L)^k)$ and, by $\supp(\mu'_{C_{\theta}}) \subset \partial\Omega$ and the domination principle for V_L , there exists a constant c > 0 such that $V_L\mu'_{C_{\theta}} \leq c\nu$. Since $\nu \in \mathscr{D}((V_L)^k)$, $V_L\mu \in \mathscr{D}^+((V_L)^k)$, and hence the mapping $M_K(D) \ni \mu \to (V_L)^k(V_L\mu) \in M(D)$ is defined and continuous, i.e., $(V_L)^{k+1}$ is defined as a diffusion kernel, which contradicts our assumption. This, Proposition 78 and (5.44) give (5.42), and (5.42) gives that $SC(L) \subset C^{\infty}(D)$.

Next we consider the case where the assumption of (2) holds. We remark that, for any $y \in D$, the mapping

$$(5.45) M^+(D) \supset \{vdx; v \in E_0(L)\} \in vdx \to v(y) \in R^+$$

is lower semi-continuous. This follows from the existence of a sequence $(f_n)_{n=1}^{\infty} \subset C_K^+(D)$ satisfying $\lim_{n\to\infty} f_n dx = \varepsilon_v$ (vaguely) and $v(y) \ge \int v(z)f_n(z)dz$ for all $v \in S(L)$ (see the proof of Corollary 73). Let $u \in SC(L)$. By using Theorem 53, there exist a sequence $(h_n)_{n=0}^{\infty} \subset H(L)$, a non-negative Borel measure σ on $(0, \infty)$ with $\int d\sigma < \infty$ and a bounded σ -measurable mapping $(0, \infty) \ni t \to u_t dx \in E_0(A_L)$ with $u_t \in E_0(L; t)$ such that

(5.46)
$$udx = \sum_{n=0}^{\infty} (V_L)(h_n dx) + \int_0^{\infty} (u_t dx) d\sigma(t) d\sigma(t)$$

Hence Corollary 73 and (5.45) give that, for any $x \in D$, $(0, \infty) \ni t \to u_t(x)$ is σ -measurable and that

(5.47)
$$u(x) = \sum_{n=0}^{\infty} G^n h_n(x) + \int_0^{\infty} u_t(x) d\sigma(t)$$

This fact, Proposition 78 and the unicity of $(h_n)_{n=0}^{\infty}$ imply the assertion (2). It remains to show $SC(L) \subset C^{\infty}(D)$ under the assumption of (2). Let n be an integer $\geq N/2 + 1$ and put $v_n = \int_0^{\infty} t^n u_i d\sigma(t)$. Then $(-L)^n \left(\int_0^{\infty} u_i d\sigma(t) dx\right)$ $= v_n dx$ in the sense of distributions in D, i.e., v_n is locally integrable. Similarly as in Proposition 79, $G^n v_n \in C(D)$, and $\int_0^{\infty} u_i d\sigma(t) = G^n v_n$ (see corollary 73). In the same manner, $(-L)^n u \in C(D)$ in the sense of distributions for all $n \geq 1$. This implies that $\int_0^{\infty} u_i d(t) \in C^{\infty}(D)$, and also, in the same manner as in Proposition 79, $\sum_{n=k}^{\infty} G^{n-k} h_n(x)$ is finite continuous in D $(k = 0, 1, \dots)$, $\sum_{n=0}^{\infty} G^n h_n \in C^{\infty}(D)$. This completes the proof.

M. V. Noviskii [15] discusses completely *L*-superharmonic functions in the following setting. Let *D* be a bounded domain in \mathbb{R}^N ($N \ge 2$) of class $C^{1,\lambda}$ ($\lambda > 0$)²⁰⁾ and *L* be a uniformly elliptic differential operator of the form

(5.48)
$$Lu(x) = \sum_{i,j=1}^{N} a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j}(x) + \sum_{i=1}^{N} b_i(x) \frac{\partial u}{\partial x_i}(x) + c(x)u(x)$$

with coefficients $\in C^{\infty}(\overline{D})$, for $u \in C^2(D)$ and $x = (x_1, x_2, \dots, x_N) \in D$, where $a_{ij}(x) = a_{ji}(x)$ and $c(x) \leq 0$.

Evidently there exists the Green function G(x, y) of L on D and we have $\lim_{\substack{x \to z \\ x \in D}} G(x, y) = \lim_{\substack{x \to z \\ x \in D}} G(y, x) = 0$ for any $y \in D$ and any $z \in \partial D$.

Theorem 82 gives the main theorem of M.V. Noviskii's paper [15].

COROLLARY 83. Let D be a bounded domain in \mathbb{R}^{N} $(N \geq 2)$ of class $C^{1,\lambda}$ $(\lambda > 0)$ and L be given in (5.58). Denote by φ_{1} a first eigen function $\geq 0, \neq 0$ of L with zero conditions on ∂D . A completely L-superharmonic function u in D^{21} has the form

(5.49)
$$u(x) = \sum_{k=0}^{\infty} \int_{\partial D} - \frac{\partial G^{k+1}}{\partial n_y}(x, y) d\mu_k(y) + c\varphi_1(x) ,$$

where $\partial/\partial n_v$ denotes the outer normal derivative on ∂D , μ_k is a non-negative measure on ∂D ($k = 0, 1, \dots$) and c is a non-negative constant. Furthermore $(\mu_k)_{k=0}^{\infty}$ and c are uniquely determined.

LEMMA 84 (see, [15], Lemma 3). Under the same conditions as above, a non-negative L-superharmonic function f in D is integrable if $f \in C^2(D)$.

Proof of Corollary 83. Similarly as in [11], § 6, we may assume that the kernel $-(\partial/\partial n_y)G(x, y)$ on $D \times \partial D$ is the Martin kernel for L and that ∂D is the essential part of the Martin boundary. We remark that

(5.50)
$$-\frac{\partial G^{k+1}}{\partial n_{y}}(x,y) = -\int G^{k}(x,z) \frac{\partial G}{\partial n_{y}}(z,y) dz \text{ on } D \times \partial D \ (k=1,2,\cdots)$$

21) By Noviskii's definition, it is an infinitely differentiable function which satisfies the condition $(-L)^n u(x) \ge 0$, $x \in D$, $n = 0, 1, \cdots$.

²⁰⁾ The domain D belongs to the class $C^{k,\lambda}(\lambda > 0)$ if for an arbitrary $x_0 \in \partial D$ there exists a neighborhood of x_0 in which ∂D is specified by an equation $x_i = f(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_N)$, where $x = (x_1, x_2, \dots, x_N) \in \partial D$ and f is a k-times continuously differentiable function, the k-th derivatives of which satisfy a Hölder condition with exponent $\lambda > 0$.

and that there exists a first eigen function $\varphi_1 \ge 0, \neq 0$ of L with zero conditions on ∂D (see [13], Theorem 7.10). Hence it suffices to show that $E_0(L) = \{a\varphi_1; a \in R^+\}$. Evidently $E_0(L) \ni \varphi$. By Proposition 79 and Lemma 84, we have, for any $v \in E_0(L), \int v dx < \infty$, so that $G^n v$ is bounded if $n \ge N/2 + 1$, i.e., v is bounded, and hence $\lim_{\substack{y \to x \\ y \in D}} Gv(y) = 0$ for any $x \in \partial D$. Thus we see that, for any $v \in E_0(L), \int v^2 dx < \infty$. It is also known that there exists a first eigen function $\varphi_1^* \ge 0, \neq 0$ of L^* (see also [13], Theorem 7.10). Evidently $\int (\varphi_1^*)^2 dx < \infty$. Let $c^* > 0$ be the eigen value of φ_1^* . Then $\varphi_1^* = c^* G^* \varphi_1^*$. For any $v \neq 0 \in E_0(L)$, there exists c > 0 such that v = cGv, which implies that v > 0 on D. Since

(5.51)
$$\int \varphi_1^* \cdot v dx = c^* \int G^* \varphi_1^* \cdot v dx = c^* \int \varphi_1^* \cdot G v dx = \frac{c^*}{c} \int \varphi_1^* \cdot v dx ,$$

we have $c = c^*$, this implies that $E_0(L) = E_0(L; c^*)$. Thus we see that, for any $v \in E_0(L)$ and any real number $t, \varphi_1 - tv$ is also a first eigen function of L with zero conditions on ∂D . By remarking that any first eigen function of L with zero conditions on D takes always non-negative values or non-positive values (see [13]), we obtain that, for any $v \in E_0(L)$ $v = a\varphi_1$ with $a \in R^+$. This completes the proof.

BIBLIOGRAPHY

- C. Berg and G. Forst, Potential theory on locally compact abelian group, Springer-Verlag, Berlin, 1975.
- [2] M. Brelot, Eléments de la théorie classique du potential, Les cours de Sorbonne, Paris, 1959.
- [3] G. Choquet, Lectures on analysis, vol. 1, 2 and 3, W. A. Benjamin, 1969.
- [4] G. Choquet and J. Deny, Aspects linéaires de la théorie du potentiel. Théorème de dualité et applications, C. R. Acad. Sci. Paris, 243 (1959), 764–767.
- [5] G. Choquet and J. Deny, Sur l'équation de convolution $\mu = \mu * \sigma$, C. R. Acad. Sci. Paris, 250 (1960), 799-801.
- [6] C. Constantinescue and A. Cornea, Potential theory on harmonic space, Springer-Verlag, Berlin, 1972.
- [7] J. Deny, Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier, Grenoble, 12 (1962), 643-667.
- [8] M. Itô, Sur le principle relatif de domination pour les noyaux de convolution, Hiroshima Math. J., 5 (1975), 293-350.
- [9] S. Itô, Fundamental solution of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102.
- [10] S. Itô, On existence of Green function and positive superharmonic functions for

linear elliptic operators of second order, J. Math. Soc. Japan 16 (1964), 299-306.

- [11] S. Itô, Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334.
- [12] S. Itô, On definitions of superharmonic functions, Ann. Inst. Fourier, Grenoble, 25 (1975), 309-316.
- [13] M. A. Krasnosel'skii, Positive solution of operator equations, P. Noodfoff Ltd. Groningen, The Netherlands, 1960.
- [14] C. Miranda, Partial differential equations of elliptic type, Springer-Verlag, Berlin, 1970.
- [15] M. V. Noviskii, Representation of completely L-superharmonic functions, Math. Nauk. Izv., 9 (1975), no. 6, 1279-1296.
- [16] M. V. Noviskii, Integral representation of totally excessive elements, Soviet Math. Dokl., 16 (1975), no. 6, 1510–1514.
- [17] R. R. Phelps, Lecture on Choquet's theorem, Van Nostrand, Princeton, N. J., 1966.
- [18] L. Schwarts, Théorie des distributions, Hermann, Paris, 1966.
- [19] M. G. Šur, The Martin boundary for a linear elliptic second-order operator, Izv. Akad Nauk. SSSR, ser Math., 27 (1963), 45-60.

Department of Mathematics Faculty of Science Nagoya University Nagoya, Japan