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§ 1. Introduction

Let X be a locally compact Hausdorff space with countable basis.
We denote by

M(X) the topological vector space of all real Radon measures in X
with the vague topology,

MK(X) the topological vector space of all real Radon measures in X
whose supports are compact with the usual inductive limit topology.

Their subsets of all non-negative Radon measures are denoted by
M+(X) and by M£(X), respectively.

In the paragraph 2, we shall prepare the terminology and the notation
which we shall use in the sequel.

A continuous linear operator T from MK(X) into M(X) is called a
diffusion kernel on X if T is positive, i.e., Tμ e M+(X) whenever μ e M£(X).
A semi-group (Tt)t^0 of diffusion kernels on X is called a diffusion semi-
group if TQ — I (the identity) and if, for any μ e MK(X), the mapping t —>
Ttμ is continuous in M(X).

We consider the infinitesimal generator A of a transient and regular
diffusion semi-group (Tt)t^0 on X. A Radon measure μ e M(X) is said to
be A-superharmonic (resp. A-harmonic) if it satisfies — AμeM+(X) (resp.
Aμ = 0).

In the paragraph 3, we shall show that every positive A-superharmonic
Radon measure is written uniquely as the sum of a V-potential of a non-
negative Radon measure and a non-negative A-harmonic measure, where
V is the Hunt diffusion kernel for (Tt)t>0, i.e.,
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(1.1) V = Γ Ttdt.
Jo

By generalizing the classical positive eigen equation with zero con-
ditions on the boundary and by defining that a Radon measure vanishes
V-n.e. on the boundary (Definition 21 in §2), we shall discuss, in the
paragraph 4, a positive eigen equation for A with zero conditions in the
following setting:

For a positive number c > 0,

(1.2) f
\ μ = 0 V-n.e. on the boundary.

Denote by E0(A;c) the set of all non-negative solutions of (1.2) and put
E0(A) = Uc^0E0(A;c). Under the assumption that A satisfies the condition
(j£?) (Definition 49 in § 4), we shall show that E0(A) is a Borel measurable
set in the metrizable space M+(X).

By generalizing the notion of the classical complete superharmonicity,
we define the complete A-superharmonicity of μ e M(X). A Radon measure
μeM(X) is said to be completely A-superharmonic if, for any integer
n >̂ 1, (—A)nμ e M+(X), where (—A)n denotes the λi-th iterate of —A. Let
SC(A) be the set of all non-negative completely A-superharmonic measures
in X and put

SC0(A) = {μ e SC(A); (-A)> = 0 V-n.e. on the boundary

for n = 0,1,-..}.

Under the condition (<£?) for A, SC(A) is a closed convex cone in M+(X)
and all extreme rays of SC(A) contained in SC(A) — SC0(A) are determined
whenever all extreme rays of SC(A) contained in H(A) are determined,
where H(A) is the convex cone formed by all non-negative A-harmonic
measures.

A main purpose of the paragraph 4 is to show that

SC0(A) = { f vdΦfy) e M + ( Z ) ; Φ e M*{

= { μtdσ(t) e M+(X) μt e E^A ;t),σe M6

+((0, oo)) [ ,

where M£(E0(A)) and M&

+((0, ex))) denote the set of all regular Borel non-

negative measures Φ on E0(A) with \ dΦ < oo and that of all Borel non-
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negative measures σ in (0, oo) with \dσ < oo, respectively. Let A = djdx

in (0, oo). Then (1.4) implies the Bernstein theorem.

M. V. Noviskiϊ [16] discussed a similar formula as in (1.4) for the in-

finitesimal generator of a contraction semi-group in a Banach space.

In the paragraph 5, for a given elliptic differential operator L of second

order on a subdomain D of an orientable C°°-manifold, we shall show that

the diffusion semi-group defined by the fundamental solution of d/dt — L

is regular if it is transient. Applying our theorem to completely L-super-

harmonic functions in D, we shall obtain the integral representation of

a completely L-superharmonic function in D. This is a generalization of

Noviskiϊ's result (see [15]).

§2. Basic notation and preliminaries

We denote by

C(X) the Frechet space of all real-valued continuous functions in X

with the topology of compact uniform convergence,

CK(X) the topological vector space of all real-valued continuous func-

tions in X whose supports are compact with the usual inductive limit

topology.

Their subsets of all non-negative functions are also denoted by C+(X)

and Cκ(X), respectively.

DEFINITION 1. (1) A continuous linear operator T from MK{X) into

M(X) is called a diffusion kernel if T is positive, i.e., Tμ e M+(X) when-

ever μ e M£(X).

(2) A linear operator T from CK{X) into C(X) is called a continuous

kernel if T is positive, i.e., Tfe C+(X) whenever fe C£(X).

Remark 2. A continuous kernel T is a continuous mapping from

CK{X) into C(X).

We see easily the following

Remark 3. (1) Let T be a diffusion kernel on X. For fe CK(X), we

put

(2.1) T*f(x) =

where εx denotes the Dirac measure at xeX. Then T*/e C(X) and

T*: Cκ(X)Bf-> T*/e C(X) is a continuous kernel on X.
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(2) Let T be a continuous kernel on X. For μ e MK(X), there exists
one and only one T*μeM(X) such that, for any fe CK(X),

(2.2)

and T*: MK{X)B μ~* T*μe M(X) is a diffusion kernel on X.
In (1), T7* is called the dual continuous kernel of T and in (2), T* is

the dual diffusion kernel of T.

Remark 4. Let T be a diffusion kernel or a continuous kernel on X
Then (Γ*)* = T.

In the sequel, for a diffusion kernel or a continuous kernel T, its dual
kernel is always denoted by T7*. For a diffusion kernel T on X, we put

(2.3) 9{T) = |μeM(X); Jτ*/tf|/ι| < oo for all fe C£(X)} ,

where |μ| denotes the total variation of//, and put @+(T) = ^(T) Π M+(X).
Then ^(T) is a linear subspace of M(X) and T can be extended to a posi-
tive linear operator from ®(T) into M(X). For μ e ^(T), T// is called the
Γ-potential of μ.

Let T be a continuous kernel on X. Put

(2.4)
= ίfe C(X); ί \f\dT*μ < oo for all μ e M£(X) and

MK(X) B μ —> \ fdT*μ is continuous > .

Then, by the following lemma and Remark 4, we see that Θ(T) is a linear
subspace of C(X) and that T can be extended to a positive linear operator

from 9{T) into C(X) by defining T/(x) = f fdT*εx.

LEMMA 5. Let T and Θ(T) be the same as above. If feC(X) and

I/I ̂  \g\ for some g e 3>(T\ then fe@(T).

In fact, Lemma 5 follows from the lower semi-continuity of the func-

tion {hdT*εx of x for all heC+(X).

Let Tj (j = 1,2) be a diffusion kernel (resp. a continuous kernel) on
X. If, for any /*eM*(X) (resp. feCκ{X)\ T2μe^{Tx) (resp. TJe^iZ))
and if the mapping μ-> Tx(Tzμ) (resp. /-> Ti(Γ2/)) defines a diffusion kernel
(resp. a continuous kernel), it is called the product of 7\ and T2 and
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denoted by T,T2.

Remark 6. Let Ti (j = 1,2) be a diffusion kernel (resp. a continuous
kernel) on X. K TX T2 is defined, then Tf-T? is defined and (Ti ϊD* =
rp*t rp*
±2 11 .

In particular, for a diffusion kernel T (resp. a continuous kernel) on
X and a positive integer n ^ 2, we denote by Tn the diffusion kernel (resp.
the continuous kernel) defined inductively by Tn~ι T provided that it is
defined, where T1 = T. In the case of T Φ 0, T° means the identity I.

DEFINITION 7. A family (T̂ X̂ o of diffusion kernels (resp. continuous
kernels) on X is called a diffusion semi-group (resp. continuous semi-group)
if it satisfies the following three conditions:

(2.5) T0 = I.

(2.6) Tt Ts = Tt+S for any t ^ 0, s ^ 0 .

For each μβMκ(X) (resp. feCκ(X)), the mapping t-^Ttμ (resp.

' ' £-> TJdμj is continuous in Λf(X) (resp. continuous for each

Evidently, for a diffusion semi-group (resp. a continuous semi-group)
t̂ o? (T?)tτ>o is a continuous semi-group (resp. a diffusion semi-group).
Let (Γt)ί̂ o be a diffusion semi-group (resp. a continuous semi-group)

on X. Putting

(2.8) @((Tt)tzo) = [μ € Π ^(T7*); * • 2 > is continuous in M(X)\
I ί̂ O J

(resp. Θ((Tt)t*d = f/e Π W , ) ; ί > ί Γι/S/« is continuous for

each

we call it the domain of {Tt)t^. We put also ^+((Γ£) ί fe0) = ®((Tt)tzo) Π

(resp. = S«2V)(w) Π

DEFINITION 8. Let (Tt)t^0 be a diffusion semi-group (resp. a continuous
semi-group) on X. We say that it is transient if the mapping V: MK(X) a μ

-* Γ Γrficft6M(X)(resp. Cκ(X)sf-> Γ TtfdteC(X)) is defined as a diffu-
Jo Jo
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sion kernel (resp. a continuous kernel) on X, where, for any fe CK(X),

In this case, we denote by

(2.9) V-

and call it the Hunt diffusion kernel for (Tt)t^0 (resp. the Hunt continuous

kernel for (Tt)t^0).

Evidently we see the following

Remark 9. Let (Tt)t^0 be a diffusion semi-group (resp. a continuous

semi-group) on X. Then (Tt)tzo is transient if and only if (Tf)t^ is

transient.

Furthermore, in the case that (Tt)t^Q is transient, we have

(2.10) (Γ TtdtY = Γ T*dt .

Let (Tt)t^0 be a transient diffusion semi-group (resp. a transient con-

tinuous semi-group) on X. For any p ^> 0, we put

(2.11) Vp= Γexv(-pt)Ttdt,
Jo

and call (Vp)p^0 the resolvent for (Tt)t>0. In this case, Vp is a diffusion

kernel (resp. a continuous kernel, because the Fatou lemma gives that,

for any fe Cκ(X)9 Vpf and Vf — Vpf are lower semi-continuous).

In the usual way, we see the following

PROPOSITION 10. (1) Let (Tt)t>0 and (T't)t^ be transient diffusion semi-
Λoo Λoo

groups (resp. transient continuous semi-groups) on X. If Ttdt = T'tdt9

Jo Jo

then Tt = T't for any t ^ 0.

(2) Let (Tt)t>t be the same as above and V be the Hunt diffusion kernel

(resp. the Hunt continuous kernel) for (Tt)t^0. If a family ( V p ) ^ of diffu-

sion kernels (resp. continuous kernels) satisfies the following

Vp— Vq = (q — p)Vp - Vq for any p^O and q>09 and
r

P=V0= V,

then (Vp)pfco is the resolvent for
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We remark here that l im^ 0 Vp = Vo means that, for any μ e MK(X),

^V,/£= Voμ in M(X) (resp. for any feCκ(X), limp_0Vpf = Vof in

C(X)). For a transient continuous semi-group (Tt)t^09 the Dini theorem

gives that limp_0 V , / = Vo/ in C(Z) if and only if limp_0 VJ(x) = VO/(JC)

for each x e l The first equality in (2.12) is called the resolvent equation.

Proof of Proposition 10. We shall show only Proposition 10 for

transient diffusion semi-groups, because the proof of the other case is

similar. Let (VlfP)p^0 and (V2fP)p^Q be the resolvent for (Tt)t^0 and that for

(T't)tlzQ, respectively. Evidently we have lim^ 0 VjtP = VJt0 (j = 1,2). For

each p ̂  0, we put Hp(t) = exp(—pt) on [0, oo) and = 0 in (— oo,0). Then,

for any p ^> 0 and q> 0, Hp — Hq = (q — p)Hp * jffg. By the Fubini theorem

and (2.7), (VJtP)p7ί0 satisfies the resolvent equation. Since, for any μ e MK(X),

the mappings t -> Ttμ and t —> Γ//̂  are continuous in M(X), the above

argument and the injectivity of the Laplace transformation show that (2)

implies (1). We shall show (2). It suffices to show that, for any p > 0 and

any integer n ̂  1, (Vp)
n and (Vhp)

n are defined and

(2.13) v + λi = λ

where (VΊ,^^ is the resolvent for (Tt)t^09 because (/ — pVp) (pV + J)

(I — p Vp) = (/ — p y p). ( p F + J) (I — pVltP). By using the resolvent equa-

tion, we see that (Vp)
n and (VltP)

n are defined (n = 1,2, •••)• We shall

show only the first equality in (2.13), because the other is similar. This

follows directly from

(2.14) vq + —L-i = —L- (i + έ (G> - q)vPy)
p — q p — q\ n=i /

for any q with 0 < q < p, because, for any μ e M£(X), Vqμ f Vμ with g | 0.

By the resolvent equation, we have

p -

(2.15) = — ^ — I +Vq- lim i—^-I + v) • ((p - q) V,)»
a — q n~~ \p — q I

-1+ Vq,

p - q

1
p - q

because, for any μ e
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(2.16) (p - q)nV(Vp)μ <S

This completes the proof.

DEFINITION 11. A continuous kernel V on X is said to satisfy the

domination principle if, for any f,ge C£(X), an inequality Vf(x) <Ξ Vg(x)

on the support of /, supp (f), implies the same inequality on X

PROPOSITION 12. Let (Tt)t^0 be a transient continuous semi-group and

V be the Hunt continuous kernel for (Tf)ί2>0 Then V satisfies the domina-

tion principle.

If X has a structure of an abelian group with which the topology of

X is compatible and if, for any t ̂ > 0, Tt is defined by a positive Radon

measure at as follows;

(2.17) Ttf(x) = at*f(x),

then (Tt)t>0 and V are said to be of convolution type. The assertion of

Proposition 12 is well-known in the case that (Tt)t^0 is of convolution type

(see, for example, [8]). Its proof is also valid in general case.

Proof of Proposition 12. Let (Vp)p^0 be the resolvent for (Tt)t^0 and

suppose that, for f,geC£(X), Vf(x)< Vg(x) on supp(/). Let heC£(X)

such that h(x) > 0 on supp (/). Then, for any x0 e supp (/), there exists

t0 > 0 such that Tth(*o) > 0 for all t with 0 < t < t0. Hence Vh(x0) > 0, i.e.,

Vh(x) > 0 on supp (/). For any integer n^>l, there exists p0 > 0 such

that, for any p > p09

(2.18) (V + ±ήf(x) £ (V + ! / ) ( # + 1Λ)(JC) on supp(/).

Put u = inf((V + (1/p)/)/, (V + 0-lp)I)(g + (Vή)h)). Then we have

(2.19) (l-PVj((v+ίl)f- u) =pV,(u - (V+ i/)/) S 0

on supp (/) .

Since (I-pV p)(V + (l/p)/)/= (l/p)f and (I-pVp)u^0 on X, we have

(I - pVp)((V + (l/p)I)f - u) £ 0, which gives that (V + (1/p)/)/^ u on X,

i.e., u = (V + (l/p)I)f on X Hence the inequality in (2.18) holds on X

Letting p->oo and n-^oo, we obtain that V/(#) <J V^(Λ:) on X Thus

Proposition 12 is shown.
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Remark 13. Let V be the same as above. If, for f,ge@+(V), Vf <* Vg
on supp(/), then the same inequality holds on X.

In fact, for any f e C£(X) with f <L /, there exists h e Cχ(X) such that
Vh{x) > 0 on supp (/'). Hence, for any integer n ^ 1, there exists
gn e Ci{X) such that gn ^ g and Vf ^ Vgn + (llή)Vh on supp(f). Pro-
position 12 gives that Vf ^ Vgn + (llή)Vh £ Vg + (llή)Vh on X Letting
/' f / and ra t °°, we have Vf <L Vg on X.

Similarly as in Definition 11, we define the domination principle for
a diffusion kernel.

DEFINITION 14. A diffusion kernel V on X is said to satisfy the
domination principle if, for any μ, v e M£(X), Vμ <S Vv in a certain neigh-
borhood of supp (μ) implies that the same inequality holds on Xυ.

PROPOSITION 15. Let (Tt)t^0 be a transient diffusion semi-group on X
and V be the Hunt diffusion kernel for (Tt)t^0. Then V satisfies the domi-
nation principle.

Proof. Assume that, for μ,υe M£(X), Vμ <I Vv in a certain open
neighborhood ω of supp(μ). Choose a relatively compact open set ωx in
X such that s u p p ^ C ^ C ^ C ύ ) . Let (Vp)p^0 be the resolvent for
(Tt)t^09 and put μp = pVpμ in ωx and μp = 0 on Ccwj (p > 0). Since
lim^ooP Vj,// = μ, liπip.^ μp = μ in M^(X). Hence lim^*, Vμp = V^ in M(X).
By p(V + (l/p)/) yp = V, we have (V + (l/p)I)μp ^ Vv in ω. Put

Since (V + (l/p)I)μp ^pVpλ and Vv^pV^, we have

(2.20) * ^ p F ^ and ^ = p(v + l j ) ( ^ -

Since

(2.21)
m

1) We denote also by supp(μ) the support of μ.
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we have λ ^ (V + (llp)I)μp on X, i.e., λ = (V + (llp)I)μp, so that

(2.22) (V + ±-l)μp £ Vv on X .

\ p I

Letting p-+ oo, we have Vμ <* Vv on X This completes the proof.

Propositions 12, 15 and the Choquet-Deny theorem50 implies the fol-

lowing

PROPOSITION 16. Let (Γ t) t2s0 be a transient diffusion semi-group on X

and V be the Hunt diffusion kernel for (Tt)t^0. For any μe@+(V) and

any relatively compact open set ω in X, there exists one and only one

μ'ωeM£(X) such that:

(2.23) supp (μi) C ω .

(2.24) Vμi ^VμonX.

(2.25) Vμi = Vμ in ω .

(2.26) If v e M£(X) satisfies Vv ^ Vμ in ω, then Vv ^ Vμ'ω on X.

Proof. First we assume that μ e M^(X). Choose an exhaustion (ωj^i

of ω3). The Choquet-Deny theorem2) (see [4]) and Proposition 12 give that

there exists μf

n e M£(X) such that supp (JJQ C ωn, Vμf

n ^ Vμ on X and

Vμ'n = Vμ in ωn. By Proposition 15, (V/4)~=1 is increasing. Since, for

any compact K in X, there exists h e C£(X) such that V*h(x) > 0 on ίΓ,

(μ'n)n=i is vaguely bounded, and hence we may assume that it converges

vaguely to μ'ωeMκ(X) as n-+oo. We shall show that μ'm is a required

measure. Evidently μl satisfies (2.23), (2.24) and (2.25), because Vμ'ω =

lim^oo V^. Let v e M£(X) satisfy Vv !Ξ> Vμ in ω. Then, for any n ^ 1,

Proposition 15 gives that Vμ'n ^ Fî  on X, so that Vμ'ω ^ V^ on X, i.e.,

^ is a required measure.

In general, we assume that μe@+(V). We can write μ = Σζ=1μn,

where μn e M£(X). Let ^, ω the non-negative Radon measure obtained

above for μn. Then J]ζ=ι μ'n,ω converges vaguely. Putting μ'ω = 2]»-i pi^

we see easily that μ'ω is a required measure.

2) This shows that F* satisfies the domination principle if and only if, for any
μ e Mχ(X) and any relatively compact open set ω in X, there exists μ' e Mg(X) satisfying
(2.23), (2.24) and (2.25) in Proposition 16.

3) For an open set ω in X, (ωn)~=1 is called an exhaustion of ω if, for each n ^ 1,

ωn is a relatively compact open set in ω, ωn c ωπ+1 (n = l,2, ) and U^ = i% = ffl.
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Finally we show the unicity of μ'ω. Let μ" be another non-negative

Radon measure satisfying the required four conditions. Then Vμ'ω = Vμ".

By virtue of the resolvent equation, we have, for any p > 0, Vpμ'ω = Vvμ".

By remarking that mappings t -> Ttμ'ω and t -> Ttμ" are vaguely continuous

and that the Laplace transformation is injective, we obtain that, for any

t :> 0, TtfiC = Ttμ", i.e., μi = μ". Thus the unicity of μ'ω is shown. This

completes the proof.

The above non-negative Radon measure μf

m is called the V-balayaged

measure of μ on ω. In general, the above assertion does not hold if ω

is not relatively compact. Proposition 16 gives the following

COROLLARY 17. Let (Tt)t±0 and V be the same as above. The mapping

V:@(V)Bμ->VμeM(X) is injective.

Proof. Assume that, for μje@+(V) (j = 1,2), Vμ1 = Vμ2. Let (ωn)~=1

be an exhaustion of X Put μUn = μs in ωn and μj>n = 0 on Cωn (j = 1,2,;

n = 1,2, •)• We denote by μ!'Un the V-balayaged measure of μs — μj>n on

ωn. Then μjt7l + ///tΛ is the V-balayaged measure of μ3 on ωn (j = 1,2;

n = 1,2, )• Evidently we have V(//ljn + μ!Q = V(μ2,n + μZn) for all n ^ 1.

In the same manner as above, we have

(2.27) μhn + μZn = μ2tn + &* (n = 1,2, . . . ) .

Since V///tn ^ V ^ - μjtn) and lirn,,..^ y ( ^ - μjtn) = 0, we have l i m ^ Vpί}%n

= 0 (vaguely), and hence l i m , ^ /^^ = 0 (vaguely) for j = 1,2. Letting

7i -» oo in (2.27), we obtain that μx = μ2. This completes the proof.

By generalizing the notion of associated families (see [7]), we define

the following

DEFINITION 18. Let (Tt)t>0 be a transient continuous semi-group on X

and V be the Hunt continuous kernel for (Tt)t>0. We say that (Tt)t>0

satisfies the condition (D) if, for any fe C£(X), there exists an associated

family of / with respect to (Tt)t^0.

Here, an associated family (fn)n=i of / with respect to (Tt)t^0 is, by

definition, a sequence in @+((Tt)t^0) (Ί ̂ + (V) satisfying the following two

conditions:

(2.28) Vf - Vfn 6 Cϊ(X) (n = 1,2, •)

(2.29) (Vfn)~=1 converges decreasingly to 0 as n f °°
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By the Dini theorem, the convergence in (2.29) is that in the sense

of C(X).

DEFINITION 19. Let (Tt)t±0 be a transient diffusion semi-group on X.

We say that (T t) t j50 satisfies the condition φ * ) if (Γf)^ 0 satisfies the con-

dition (D).

We denote by 3l(x) the totality of compact neighborhoods of x e X.

PROPOSITION 20. Let (Tt)t^0 be a transient diffusion semi-group on X

and V be the Hunt diffusion kernel for (Tt)w Assume that (T,)tS50 satisfies

the condition (D*). Then, for any μe@+(V) and any xeX,

(2.30)

where PCN(V; Vμ) denotes the vague closure of the set

(2.31) {Vv; v e Mί(X), supp (v) c CN, Vv £ Vμ in CN} .

Proof. Let Ne$l(x) and choose an exhaustion (ωn)~=1 of CN. Let μ'n
be the V-balayaged measure of μ on ωn. Since (F^)n=i is increasing and

(2.32) ηCN = \imVA (vaguely)
n—*oo

exists. Proposition 15 gives that ηCN does not depend on the choice of

(<*>„)£= i and that, for any η € PCN(V; Vμ), η ^ ηCN on X. Choose a sequence

(NX=1 C 9l(x) such that Nn c iVTO+1 and UΓ-i Wn = -Xi where Nn+1 denotes

the interior of Nn+ί. Proposition 15 gives that (ηCNn)n=Ί is also decreasing.

Put

(2.33) ηo = ]imηaNu.
n—*oo

Then ηoeΓ\Ne*<χ)PcN(V;Vμ) and, for any η'eΓ\Ne^x)PCNiV;Vμ\ ηf ^η0

on X. Let {ωnt^x be an exhaustion of CNn and ^ t f c be the F-balayaged

measure of μ on ωUt1c (n = 1,2, k = 1,2, •)• For any / e Cχ(X) and

any associated family (fm)Z=i of / with respect to (Γί*)ί̂ 0> we have, for any

0 ^ f fdVo = lim f(/ ~ / m ) d 9 c w . + lim f

(2.34) ίS lim lim ί (/ - fm)dVμi,k + \fmdVμ
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= lim lim f (V*f - V*fn)dμ'n,k + \v*fmdμ ^ f V*fmdμ .

Since V*/m ^ V*/, (2.29) gives that lim ί V*fmdμ = 0, which implies that
m-*oo J

fdη0 = 0. Thus Ύ]Q = 0, and hence our required equality (2.30) holds. This

completes the proof.

Let (Tt)t^0 be a transient diffusion semi-group on X and V be the

Hunt diffusion kernel for (Tt)tl>0. For λ e M(X) and an open set ω in X,

we put

(2.35) Pω(V;X) = {Vv v e Mi(X)9 supp(v) c ^ J ^ μ| in ω} ,

where the closure is in the sense of vague topology.

DEFINITION 21. Let (Tt)t^Q be a transient diffusion semi-group on X

and V be the Hunt diffusion kernel for (Tt)t^t. We say that λ e

vanishes V-n.e. on the boundary of X if, for any x e X,

( 2 ' 3 6 )

and if there exists μe@+(V) such that |jt| <̂  V>.

Evidently, for any x e X, (2.36) holds if and only if there exists an

x e X satisfying (2.36).

DEFINITION 22. A transient diffusion semi-group (Ti)ί5s0

 o n -3Γ i

to be weakly regular if, for each μ e Mχ(X), Vμ vanishes V-n.e. on the

boundary of X, where V is the Hunt diffusion kernel for

PROPOSITION 23. Let (Tt)t^0 be a transient diffusion semi-group on X

and V be the Hunt diffusion kernel for (Tt)t>0. Then the following two

statements are equivalent:

( 1 ) (Tt)tfco is weakly regular.

(2 ) For any μβ@+(V) and any open set ω in X, there exists one and

only one V-balayaged measure μf

ω of μ on ω4). Furthermore we have, for

any xeX,

(2.37) lim Vμ'0N = 0 {vaguely) .

4) This means also a positive Radon measure satisfying the analogous conditions
to (2.23M2.26).
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Proof. It suffices to show that (1) =̂> (2), because the domination prin-

ciple for V implies that, for any Ne %l(x) and any η e PCN(V; Vμ), η <* Vμ'CN

on X, and (2.37) gives that Γhr6«u> ^ ( V ; Vμ) = {0}.

Let xeX and choose a suquence (2Vn)~=1 c 3l(x) such that 2Vn c ίίn+1

and U?-i-^» = -3Γ. Then (ηCNn)n=i is decreasing. Since ηCNnePCNn(V; Vμ),

the weak regularity of V gives that lim^*, ηCNn = 0 (vaguely). Similarly

as in Proposition 16, it suffices to assume that μ e M£(X). Let (ωw)~=1 be

an exhaustion of ω and μ'n be the F-balayaged measure of j«onα) r Then

Qn-i is increasing and Vμ'n ^LVμ on X in = 1,2, •)•

(2.38) ? . = lim V/4 .
n-*oo

Then ^ω e Pω( V; Vμ) and j?ω does not depend on the choice of (ωn)^=1. Since

COn-i is vaguely bounded, we may assume that it converges vaguely to

μ'ωeM+(X) as n-^oo. Evidently ^ω ^ Vμ'ω on X We shall show the

inverse inequality. Let φkeCκ(X) such that 0 ̂  <pk <J 1, ^fc = 1 on iVfc

and supp(^fc) C Nk+1 (fe = 1,2, •)• Then, for any n ̂  1, V((l - p*+ 1K)

€ PW l(V; V/i) (A = 1,2, - λ and hence V((l - φk+1)μ'n) £ ηCNk on X There-

fore, for any fe Q(X),

(2 39) ί fdVμί - ί f d V { ( P ^ μ ί ) = l™ J fdV(φ*+ifQ ^ J A*7. - J/a?oιrfc

(A = 1,2, . . . ) .

Letting k-+ oo, we obtain that VX ^ ^ω on X Thus ^ = V^. Similarly

as in Proposition 16, μf

ω is a required measure. Its unicity follows directly

from Corollary 17.

Let (Tt)tzo be a transient diffusion semi-group on X and V be a Hunt

diffusion kernel for (Tt)tzo. Put

(2.40) my*) = {v*/;/e 9(ίτ?)κd n

Λ + ( V * ) = jB(y*) n c + (x) , i?^(y*) = my*) n c^(X) and

Π Cί(X). Then RK(V*) is a linear subspace of CK(X) and Bί(V*) is a

convex cone. Put

(2.41) S° = {^6M(X); J | / | d | / / | < oo for any V V e ί ^ V

and, for each μe@°, define the linear functional Aμ on 2ϊx(V*) by

(2.42) Aμ(V*f) = — Γ/a/« for any V*/ei?*(V*) .
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Precisely we write ®\A) = @°. Then we have easily the following

Remark 24. Let (Tt)t^0 and V be the same as above. Assume that
Ri(V*) is total in Cκ{Xf\ Then, for μe@°, a continuous extension of
Aμ to CK(X) is uniquely determined if it exists. Furthermore if, for μ e @°,
— Aμ is non-negative, i.e., —Aμ(g) ^ 0 if ge Rκ(V*), then a positive linear
extension of — Aμ to CK(X) exists.

DEFINITION 25. Let (Tt)t^0 be a transient diffusion semi-group on X
and V be the Hunt diffusion kernel for (Γ t) t i 0. If Ri(V*) is total in CK(X),
then (TίXfco is said to satisfy the condition (C*).

For a transient diffusion semi-group on X satisfying the condition
(C*), we denote by @(A) the set of all μ e @°(A) such that a continuous
linear extension to CK(X) exists. For μe@(A), we can write again Aμ
its continuous linear extension to CK(X) without confusion (see Remark
24). Evidently @(A) is a linear subspace of M(X) and the linear operator
A: @{A) Bμ->Aμe M(X) is defined.

DEFINITION 26. The above linear operator A is called the infinitesimal
generator of

DEFINITION 27. Let (Tt)t^0 be a transient diffusion semi-group on X.
If (Tt)t^o satisfies the conditions (D*) and (C*), it is said to be regular.

If a transient diffusion semi-group (Tt)t^0 is of convolution type, it is
always regular (see, for example, [7] and [8]).

Remark 28. Let (Tt)t±0 be a transient diffusion semi-group on X and

0 be the resolvent for (Tt)t^Q. Let p > 0 and put

(2.43) TPft = exp (~pt)(l + Σ Ml.(pVpy) (t > 0) and T,,o = I.
\ n=l HI /

Then (Tp}t)tτ>o is a transient diffusion semi-group on X and V + (1/p)/ =

r TPttdt, where Vo = V. Furthermore, if (Tt)t^0 is regular (resp. weakly

regular), then so is (TPtt)t^0 for any p > 0.
In fact, (2.13) gives directly the first part. Assume that (Tt)t^0 is re-

gular. Since p(V* + (l/p)J). (I - pV?) = I, C*(X) = JB^V* + (l/p)J), and
hence (ΓP f ί) t i 0 satisfies the condition (C*). Let fe C£(X) and (/n)n=i be an

5) T h i s m e a n s t h a t Rχ(V*) c Cκ(X) and, for a n y xeX a n d a n y neighborhood U

of a?, t h e r e exists a n / Φ 0 e # £ ( V * ) such t h a t supp (/) c C7.
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associated family of / with respect to (ϊ7**)^. ThenpV*fn e ®((T*t)^0) Π
^(V* + (l/p)I) and (V* + (l/p)I)(pV*/n) = V*fn. Thus we see that
(pV*fn)n=i is an associated family of / with respect to (T*t)t^Q. Hence
(TP,t)teo is regular for any p > 0. Next we assume that V is weakly re-
gular. Let p > 0 be fixed and μe M£(X). For any xeXand any Ne 9l(x)
with iV D supp (//), we have, in the same manner as in Proposition 15,

(2.44) (V + i-Λ, ^ V/4, on X
\ p /

whenever (V + (1/p)/)* e Pc*( V + (l/p)J; (V + (l/p)I)/4 where ^ is the
V-balayaged measure of μ on CN. By Proposition 23 and (2.44), V + (l/p)I
is weakly regular.

Remark 29. Let (Tt)t^0 be a transient diffusion semi-group on X satis-
fying the condition (C*), V be the Hunt diffusion kernel for (Tt)t±0 and
A be the infinitesimal generator of (Tt)t^0. Then, for any μe@(V), Vμe
S{A) and A(Vμ) = -μ.

In fact, we may assume that μ is non-negative. For any V*/e .KiKV*),

(2.45) lim i-(7 - T?XV*f) = lim -i Γ Γf/ds = / (pointwise).
ί-»0 ί i-0 ί Jo

Since supp(/+) c

(2.47)

which gives that Vμe@°(A), because, for any V*feRκ(V*)9 there exists
y*^ei?i(y*) such that V*g^\V*f\. Since, for any V*feRx(V*)9

V*fdμ = fdVμ, our assertion holds.

§3. The Riesz decomposition theorem

We begin by the following two lemmas:

LEMMA 30. Let (Tt)t^0 be a transient diffusion semi-group on X and
V be the Hunt diffusion kernel for (Tt)t^0. For a given positive Radon
measure μ in X, there exists h e ̂ +((T*)^0) Π ̂ + ( V*) such that V*h(x) > 0

on X and hdμ < oo.

Proof. Let (ωw)£=1 be an exhaustion of X. Then, for any n, there
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exists hn e C£(X) such that V*hn > 0 in ωn. We choose also gn e C£(X)

satisfying V*gn ^> hn on X. Since, for any t > 0,

(3.1) 0 £ T*hn £ T*(V*gn) = J" Γ*ί,Λ £ V*gn on X,

there exists a constant cn > 0 such that

cn V*hn £ -±-,cnT*hn £ - L on ωn (0 ^ ί < oo)

(3.2)
and cnj hndμ< — .

Then Λ = Σn-i cn^n is a required function.

LEMMA 31. Let (Tt)t^0 be a transient diffusion semi-group on X satis-

fying the condition (D*) and V be the Hunt diffusion kernel for (Tt)t^0.

For any fe^+((T^)t^0) Π ̂ +(V*), there exists also an associated family of

f with respect to (Γί*)ί^0

Proof Choose a sequence (/J ; a l C C£(X) such that / = Σ?-i/n a n d

an exhaustion (α>n)~βl of X. Let (fn,m)Z^i be an associated family of fn

with respect to (Tr

ί*)ί^0. We may assume that, for any m >̂ 1 and any k

with l^k^m, V*fktm £ 1/m2 on ωm. Put

(3.3) ^n = ±fktn + Σ /» (Λ = 1,2, -) ,

then gn e ^((Γ*)^o) Γi ^(V*). We see easily that (#n)£=1 is a required as-

sociated family of / with respect to

DEFINITION 32. Let (Tt)t^0 be a transient diffusion semi-group on X

satisfying the condition (C*) and A Ίbe the infinitesimal generator of

(Tt)w A real Radon measure μ in X is said to be A-superharmonic (resp.

A-harmonic) if μe@(A) and —AμeM+(X) (resp. Aμ = 0).

Clearly this is equivalent to μ e ^°(A) and fdμ ^ 0 1 resp. fdμ = 0)

for all V*fe Ri(V*), because Ri(V*) is total in CK(X) and forms a convex

cone.

DEFINITION 33. Let (Tt)t^0 be a diffusion semi-group on X. A real

Radon measure μ in X is said to be excessive (resp. invariant) with respect

to (Γλfco if, for any * ̂  0, μe^T 7,) and / ^ Ttμ (resp. μ =
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Remark 34. Let (Tt)t^0 be a transient diffusion semi-group satisfying

the condition (C*) and A be the infinitesimal generator of (Tt)t^Q. If

μeM+(X) is excessive with respect to (Tt)t^0, then μ is A-superharmonic.

In fact, for g = V*/e Ri(V*) and t > 0, we put /+ = 1/ίfer - T*gY and

/- = l/*(g - Tt*g)~. Then supp(Λ+) c supp(#) for all t > 0, and hence the

Lebesgue theorem gives that lim ft

+dμ — f*dμ. By the Fatou lemma
ί-0 J J

and limt_+oft~(x) — f~(χ) fc>r all Λ e X ,

0 ^ lim - f gd(I - Tt)μ = lim 1 f (J - Γ*
(3.4) M * J ^ ' J

= lim J (/t

+ - fΓ)dμ ^ jf+dμ - jf-dμ = j fdμ ,

which implies that μ is A-superharmonic.

The main theorem of this paragraph is the following Riesz decomposi-

tion theorem.

THEOREM 35. Let (Tt)t^0 be a transient and regular diffusion semi-group

on X, V be the Hunt diffusion kernel for (Tt)t>0 and A be the infinitesimal

generator of (Tt)t^0. Then every non-negative A-superharmonic measure μ

in X can be written uniquely as

(3.5) μ=Vv + μh

where ve^ + (V) and μh is a non-negative A-harmonic measure in X. Fur-

thermore v — —Aμ.

First we prepare the following two lemmas.

LEMMA 36. Let (27

ί)f̂ 0> V and A be the same as above, and let μ be a

positive A-superharmonic measure/ Then, for any /e^+((T ί*) ί^ 0) Π ̂ +(Vr*)

with fdμ < oo and an associated family (fn)n=ι of f with respect to ( ϊ 7 * ) ^ ,

( fndμ\ is decreasing, fndμ <̂  fdμ (n = 1,2, ) and lim fndμ does

not depend on the choice of

Proof. Since, for any n ^ 1, V*(f - fn) e J8£( V*), f fndμ ^ f fdμ and

( fndμ\ is decreasing. Let (gn)n=i be another associated family of/with

respect to (Γt*)^0. We choose h e ^ + ((Γ*)^ 0 ) Π ̂ + ( F * ) satisfying V*h > 0
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on X and hdμ < oo (see Lemma 30) and an associated family (Λn)n=i °f

h with respect to (T t*)^0 F ° r a n Y integer m >̂ 1 and any positive number

δ, there exists an integer n0 ^ 1 such that, for all π- ̂ > τι0,

(3.6) S V*(/> - hn) + W - V*Λ ^ V*/ - V*gm on X ,

Which implies that

(3.7) J (3(Λ - K) + gm - /n)dA ^ 0 .

Letting n—> oo and next δ—>0, m-*oo, we obtain that

(3.8) lim f gmdμ ^ lim ί fndμ .

In the same manner, we see the inverse inequality. Thus lim fndμ does
n-*oo J

not depend on (fn)n=i, and hence the proof is achieved.

LEMMA 37. Let (Tt)t^0, V, A and μ be the same as above. Assume

that, for any fe@+(V*) with \fdμ < oo and any associated family (fn)n=i

of f with respect to (T**)^, lim \fndμ = 0. Then, for any V*geR+(V*),

ί gdμ ^ 0 whenever \ g+dμ < oo.

Proof. It suffices to show that for any fe C£(X) with f^g', \g+dμ

g fdμ. Let (gn)ζ=! and (/„)«=! be an associated family of g+ with respect

to (T?)t±o and that of / with respect to (Tr

ί*)ί^0> respectively. Let h and

(hn)n=i be the same as in the above proof. Similarly as in Lemma 36, for

any integer n ^ 1 and any number δ > 0, there exists an integer m0 g 1

such thai, ΐoΐ aJl m ^ m0,

(3.9) 3(V*Λ - V*hm) + V*g+ - V*gm ̂  V * / - V*A on

and hence

(3.10) J δ(h - hm)dμ + J V - ί w + /w - /)cfy ̂  0 .

Letting m->oo and next δ-^0, n->oo, we obtain that \g+dμ^> \fdμ.
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Thus Lemma 37 is shown.

Proof of Theorem 35. By Lemma 36, there exists one and only one

μh € M+(X) such that, for any fe Ci(X),

(3.H)

where (fn)n=ι is an associated family of / with respect to (T?)t^Q. Put

μp = μ — μh. Then we shall show the following two statements:

(a) μh is A-harmonic.

(b) There exists ve@+(V) such that μp = Vv.

We begin by the proof of (a). Let V*fe Ri(V*). Then |/ | 6 9{(T?)t^

Π £&(V*) and supp(/+) is compact (see the proof of Remark 34). Let

(/n)£=i be an associated family of /" with respect to ( ϊ 7 * ) ^ . Then it is

also an associated family of /+ with respect to (Tr

ί*)ί^0 Hence (a) follows

from the equality

(3.12) \gdμh = lim[gndμ

for any ge@+{(T*)t^) Π 0+(V*) with [gdμ< oo, where (gn)~=1 is an as-

sociated family of g with respect to ( ϊ 7 * ) ^ - We remark that gdμh ^

\gdμ, because, for any gf e C£(X) with g' ^ gλgfdμh ^ J gfdμ ^ J gdμ.

Let h and (K)^ be the same as in the proof of Lemma 36, and let (fn)n=i

be an increasing sequence c C£(X) with limn_oo/π = ̂  in C(X). Then

(V'*/^)^! converges increasingly to V*g as n | °°> i e., limn..oo V'*/̂  = V*^

in C(X). For any integer n ;> 1 and any number § > 0, there exists an

integer m0 !Ξ> 1 such that, for all m ̂  m0,

(3.13) ί V*Λ + V*/m > F * ^ - V*gn on X .

Let (fn,k)k=ι be an associated family of fn with respect to (Tr

ί*)ί^0. By (3.13),

for any m ̂  m0, there exists km ̂  1 such that, for all k^>km,

(3.14) S V*(ft - Λfc) + V*(fm - fm,k) ̂  V*g - y*gn on X .

This implies that

(3.15) δ J (Λ - A ^ + J (/m - /TO,*)d/i ̂  J (g - gn)dμ .
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Letting &-»oo, m-^oo, 3-+0 and n-+oo9 we obtain that

(3.16) \gdμh^\im\gndμ.

On the other hand, for any integer n ̂ > 1, k ̂  1 and any positive number

δ > 0, there exists an integer m0 ̂  1 such that, for all m ^ 7w0,

(3.17) δ(V*h - V*ΛJ + V*(g - gm) ̂  V*(fn - fn,k) on X .

This gives that the inverse inequality of (3.16) holds, i.e., (3.12) holds.

Consequently (a) is shown.

Next we shall show (b). By (a) and (3.12), μp is a positive A-super-

harmonic measure and the assumption in Lemma 37 is satisfied. For any

feCi(X) and any t > 0, V*(I - T*)f = Γ Tffdse i?+(F*) and ί ( ( / -

T?)f)*dμ< oo. Hence Lemma 37 gives that

(3.18) 0 <ί I (J - Tftfdth = \fd(I - Tt)μp ,

and hence, (J — Tt)μp e M+(X) for any t > 0. For any fe C^(X), we choose

ge Q(X) such that / ^ V*g on X Since, for any t > 0,

1 Γ/cKJ - Γ,K ^ 1 f y^ci(/ - T
(3.19) < J i J

(Xlt(I — Tt)μp)t>o is vaguely bounded. Let v e M+(X) be its vaguely cluster

point as t -> 0 and choose a sequence (θ£=i °f positive numbers such that

lim^oo tn = 0 and limn^oo lltJJ — Ttn)μp = v (vaguely). By remarking (3.19)

and l im^o^ = 7, we have ve<3+(V) and μp ̂  Fî . On the other hand,

let fe C£(X) and (/n)^i be its associated family with respect to (T?)^.

Then, for any k ̂  1,

f/dVv = J V*fdv ̂  ί V*(/ - fk)dv

(3.20) = lim f V*(f - fύd(Ml - Γf

= Urn - i - Γ" (f (/ - fk)dTsμp)ds :> f / d ^ - \hdμp ,

because the vague boundedness of (l/t(I — Tt)μp)t>0 leads to lim^o Ttμp — μp

https://doi.org/10.1017/S0027763000019425 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019425


74 MASAYUKI ITO AND NORIAKI SUZUKI

(vaguely). Letting fe->oo in (3.20), we obtain that /tfVv >̂ fdμp, i.e.,

Vv JΞ> μp. Thus we have μp = Vv. We have also lim^o V^J ~ ^t)^ = ^

(vaguely), by the injectivity of V. Consequently we have μ = Vv + μh.

Let μ = W + μ!h be another decomposition satisfying our required condi-

tions. Then Remark 29 implies that — Aμ = v = v', and so μh = μ'h. Thus

we see the unicity of the decomposition of μ and v = —Aμ. This completes

the proof.

DEFINITION 38. The above Vv and μh are called the potential part of

μ and the harmonic part of μ, respectively. The decomposition of μ in

Theorem 35 is called the Riesz decomposition of μ.

Theorem 35 gives directly the following

COROLLARY 39. Let (Tt)t^0, V and A be the same as in Theorem 35.

Then we have;

(1) If μeM+(X) is invariant with respect to (Tt)t^0, then μ is A-

harmonic.

(2) Let μ e M+(X) be A-superharmonic. The harmonic part of μ is

the greatest A-harmonic minorant of μ.

Evidently (1) holds. Let v e M+(X) be an A-harmonic measure satisfy-

ing μ^v. Applying Theorem 35 to μ — ι>, we see that μh >̂ v, where μh

is the harmonic part of μ.

Now we consider A*-superharmonic functions and A*-harmonic func-

tions.

DEFINITION 40. Let (Tt)t^0 be a transient diffusion semi-group on X

satisfying the condition (C*), V be the Hunt diffusion kernel for (Tt)t^0

and A be the infinitesimal generator of (Tt)t^0. Let Ω be an open set in

X. A real-valued Borel function u in X is said to be A*-superharmonic

(resp. A*-harmonic) in Ω if | w | d | A μ | < o o and — \ udAμ ^ 0 ίresp.

I udAμ = Oj for any μ e @i(A; Ω), where

(3.21) St(A; Ω) = {Vμe Mi(X); μe@(V) and supp(Vμ) c Ω} .

LEMMA 41. Let (Tt)t^Q be a transient and weakly regular diffusion semi-

group on X and V be the Hunt diffusion kernel for (Tt)t^0. Let μe@+(V)

and F be a closed set in X. For an exhaustion (ωn)~=1 of CF, we denote

by μr

n the V-balayaged measure of μ on Cωn. Then (μ'n)n=i converges vaguely
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and its limit does not depend on the choice of (ωTO)~=1.

Proof. Evidently (VX)ί=i is decreasing and Vμ'n <L Vμ. This implies

also that (/4)«=i is vaguely bounded. Let μF be its vaguely cluster point

as 71—•oo. Similarly as in Proposition 23, we have

(3.22) V>; = limV/< (vaguely).

By Corollary 17, (/On=i converges vaguely to μF as π->oo. Let (α>0n=i be

another exhaustion of CF and μ" be the V-balayaged measure of μ on

Cα>̂ . Then it is easily seen that lim^oo Vfjζ, = lim^oo Vf/ή By using

Corollary 17 again, we have μF = lim^oo μ". Thus Lemma 41 is shown.

The above measure μF is also called the V-balayaged measure of μ

on F.

PROPOSITION 42. Let (Tt)t^09 V and A be the same as in Definition

40, and let Ω be an open set in X. Assume that (Tt)t^0 is weaklyr egular.

For fe CK(X), we put

(3.23) κ/*) = J/tfe£,c* in X,

where ε'XtCΩ is the V-balayaged measure of εx on CΩ. Then uf is A*-harmonic

in Ω.

Proof. First we shall show that uf is Borel measurable in X. By

Lemma 41, it is sufficient to show that, for any open set ω, the function

fdεXtΦ of x is Borel measurable, where e'Xtω is the V-balayaged measure

of εx on ω. Let V*ge RK(V*). Then j\g\deXtm<oo and J V*^dεi,ω =

^dVε^ω. Since RK(V*) is dence in CK(X)9 it suffices to show that, for

any ge C£(X), the function gdVεx^ω of Λ: is Borel measurable. Let xeX

and (xn)k=i be a sequence C X with l im^^ xn = x. We choose a sub-

sequence (xn{1c))k=1 such that εXnιk)>ω converges vaguely and

(3.24) lim f gdVε^ω = lim f gdVεXnιk),ω .

Put v = limk^ooεXn(kuω. Then supp(v)Cά> and, similarly as in Proposition

23, we have
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(3.25) Vv = ]imVe'Xnm<a (vaguely)
k-*oo

i.e., Vv — Vεx in ω. By the definition of V-balayaged measures, we have

Vv J> VεXi(ΰ, which implies that the function gdVεx,ω of x is lower semi-

continuous in X. Thus we see that uf is Borel measurable in X. Let

Vμ 6 ̂ MA; β). Choose h e C£{X) such that V*h{x) > 0 on supp (/) anά

that |MV r |//|<oo (see Lemma 30). Since RK(V*) is dense in CK(X),

there exists a sequence (V^gX=1 c RK(V*) such that |/(*) - V*gn(x)\ ^
(lln)V*h(x) on X Then we have

f (uf(x) - uv*gn(x))dμ(x) ^ 1 f W ^ Λ
J n J

(3-26)

where uv*gn and wΓ+ft are defined analogously to uf. Consequently, it suf-
fices to show that, for any V*ge RK(V*),

(3.27) f uv*gdμ = 0 .

By remarking the first part of this proof, we have

f urtg(x)dμ(x) = ff V*g(yWXιΰ0(y)dμ(x)

( 3 2 8 ) r r \ f /f \

Let (ωn)n=i be an exhaustion of Ω, and put μt = μ+

9 μ2 = μ~. We denote
by μj,n the V-balayaged measure of μ3 on Cωn (j = 1,2). Then, by virtue
of the domination principle for V and by Proposition 16,

(3.29) Vu,n+1 ^ v(J εU-AΦ)) ^ V//^., (j = 1,2; n = 2,3, •) ,

where εXiCωn is the F-balayaged measure of εx on Cωn. This shows that

I εχ,cΩdμj(x) is the F-balayaged measure of μs on C<0 0' = 1,2). Since

Vj"i = Vμ2 in a certain neighborhood of CΩ, we have

(3.30) J *s,ot4lh(x) = J eXtCΩdμ2(x) ,
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which implies (3.27). This completes the proof.

This implies the following

COROLLARY 43. Let (Tt)t^0, V and A be the same as above, Ω be an

open set in X, and let ge C+(X) and fe Cχ(X) with supp(/) c Ω. Assume

that there exists φβ@+(V*) such that V*φ^>g on X. If g is A*-super-

harmonic in Ω and iff= — A*g, i.e., for any Vμe@κ(A;Ω), \ gdμ =

[fdVμ, then

(3.31) g(x) = jfdiVε, - Vε^CΩ) + h(x)

on X, where εXiCΩ is the same as above and h is an A*-harmonic function

in Ω. In this case,

(3.32) h(x) = J g(y)de'XiCQ(y) on X.

Proof Let (ωTO)^=1 be an exhaustion of Ω and εXtCSn be the same as

above. Then, for any xeXand any n^ 1, Vex — VεXiC3ne@κ(A;Ω). This

implies that g(x) ^ g(y)deXiCo(y) on X. Let h be the function defined in

(3.32). By Proposition 42, h is A*-harmonic in Ω. By our assumption,

for any xeX and any n]Ξ> 1,

(3.33) g(x) - jg(y)deί,0M = jfd(Vex - Vε'x,Cΰn) .

Since limn_M ε'x,CiSn = ε'XtC0 (vaguely), we have

Um \gdε'x,omn^ [gdε'^oa and

(3.34) — J J
lim (V*φ - g)dε'x,CBn ^ (y*Ψ - g)dε'x,ΰa .
7l-*°o J J

Remarking that (Ve'x%c*)Z-i converges decreasingly to VεXiCΩ as n | oo, we

have

(3.35) lim f V*φdε'XtCmu = f V*φdeί,ca .

By combining (3.33), (3.34) and (3.35), we see the required equality.
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§4. Positive eigen elements for A and completely /1-superharmonic
measures

We begin by the following

DEFINITION 44. Let (Tt)ίS>0 be a transient diffusion semi-group on X

satisfying the condition (C*), V be the Hunt diffusion kernel for (Tt)t>0

and A be the infinitesimal generator of (Tt)t^0.

(1) Given a non-negative number c, the set of all non-negative solu-

tions of the equation

(4.1) — Aμ = cμ

is denoted by E(A;c) and called the eigen cone of c. Put E(A) = Uc^o

E(A c). We call μ e E(A) a non-negative eigen element of A.

(2) Given a non-negative number c, the set of all non-negative solu-

tions of the equations

(4.2) (
[ μ = 0 V-n.e. on the boundary of X

is denoted by E0(A;c) and called the eigen cone of c with zero conditions.

Put E0(A) = {JC^OEO(A; c). We call μ e E0(A) a non-negative eigen element

of A with zero conditions.

Now we denote by H(A) the set of all non-negative A-harmonic

measures in X.

PROPOSITION 45. Let (Tt)t^09 V, A, E(A;c) and E0(A;c) be the same

as above. Furthermore we assume that (Tt)t^0 is regular. Then, μ e E0(A;c)

if and only if

(4.3) μ

and we have

(4.4) E(A c) - E0(A c) Θ H(A),

where Θ denotes the direct sum.

In fact, Remark 29, Theorem 35 and Corollary 39 give the first equiva-

lence, and (4.3) and Theorem 35 give (4.4).

DEFINITION 46. Let (Tt)t^0 be a transient diffusion semi-group on X

satisfying the condition (C*) and A be the infinitesimal generator of

(Tt)t^0. A Radon measure μ e M+(X) is called a completely A-superharmonic

https://doi.org/10.1017/S0027763000019425 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019425


COMPLETELY SUPERHARMONIC MEASURES 79

if, for all n = 0,1,2, ••-, (-A)nμe@(A) and (-A)n+1μe M+(X), where

(-A) 0 = 7, (-A) 1 = - A and (~A)n+1μ = - A ( ( - A ) » . In particular, a

completely A-superharmonic measure μ is said to be with zero conditions

if, for all n = 0,1, •••, (—A)nμ vanishes V-n.e. on the boundary of X,

where V is the Hunt diffusion kernel for (Tt)t^0.

We denote by SC(A) the set of all completely A-superharmonic measures

in X and by SC0(A) the set of all completely A-superharmonic measures

in X with zero conditions.

Evidently SC(A) and SC0(A) are convex cones in M+(X), and SC(A)

3 E(A) and SC0(A) 3 E0(A).

PROPOSITION 47. Let (Tt)t^0 be a transient and regular diffusion semi-

group on X, V be the Hunt diffusion kernel for (Tt)t^Q and A be the in-

finitesimal generator of (Tt)tl>0. Assume that, for all n = 1,2, , Vn is

defined as a diffusion kernel on X. Then, for any μ e SC(A), we have the

following unique representation:

(4.5) μ = Σ Vnμn + μ~ ,
71 = 0

where μn e H(A) (n = 0,1, ) and μ^ e SC0(A).

Proof By Theorem 35, we have inductively, for any k >̂ 0 and any

n ^ k9

(4.6) {-Afμ = μk+ Vμk+1 +••• + V^-%., + F « - * ( ( - A ) » ,

where μk, • ,μB-i e H(A). This implies that (Vn"*((—A)»~=ί+i is decreas-

ing. Put

(4.7) μm,k = lim V - * ( ( - A ) » .
n-*co

Then we have ^̂ ,0 = VkμOO)k. Putting μ^ = μ^, then //«, 6 SCQ(A). Putting

k = 0 and letting ra -> oo in (4.6), we obtain a required representation of

μ. By virtue of the unicity of the Riesz decomposition of (—A)kμ (k =

0,1, ), we see the unicity of the representation (4.5) of μ. This com-

pletes the proof.

Now we denote by S(A) the set of all non-negative A-superharmonic

measures in X.

Remark 48. Let (Tt)t±0 and A be the same as in Proposition 47.

Then S(A) is a vaguely closed convex cone in M+(X).
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In fact, let V be the Hunt diffusion kernel for (Tt)w. For any V*f
e R£(V*), supp(/+) C supp(V*/), and hence, for any vaguely cluster point

μ of S(A), we have ί fdμ ̂  0. This gives that S(A) = S(A).

But, in order to discuss the closedness of SC(A) and that of E(A),
we need the following

DEFINITION 49. Let (Tt)t±0 be a transient diffusion semi-group on X
satisfying the condition (C*) and A be the infinitesimal generator of

0. We say that A satisfies the condition (&) if, for any (/O~=i C S(A),

(4.8) lim μn = μ 6 S(A) (vaguely) implies lim Aμn = Aμ (vaguely).
Π-*oo W-»oo

PROPOSITION 50. Let (Tt)t^0 and A be the same as in Proposition 47.
If A satisfies the condition (££), then, for any constant c ̂  0, H(A), E(A;c),
E{A) and SC(A) are vaguely closed convex cones in M*(X).

Proof. It is easy to see the vague closedness of H(A) and that of
E(A;c). We remark here H(A) = E(A;0). Let (μn)n=i be a sequence in
E(A) tending vaguely to μeM+(X) as n->oo. Then there exists a se-
quence of non-negative numbers (cw)~=1 such that — Aμn = cnμn. By E(A) 3
H(A), we may assume that — Aμ Φ 0. The condition (J£P) for A gives that
(cnμn)n=i converges vaguely to —Aμ as n—>oo. Hence (cn)~=1 converges to
a non-negative number c as n -» oo, which implies that μ e E(A; c) c J5(A).
Thus we see the vague closedness of E(A). Let (μn)n=i be a sequence of
SC(A) tending vaguely to μβM+(X) as ^-^oo. Inductively we have, for
any integer k ̂  0,

(4.9) lim {-Afμn = (-Afμ 6 M+(X) (vaguely),

which implies that μ e SC(A), and hence the vague closedness of SC(A)
is shown. This completes the proof.

The above proposition gives the following

PROPOSITION 51. Let (Tt)t^0, V and A be the same as above. Assume
that A satisfies the condition (β) and that, for all n = 1,2, -,Vn is defined
as a diffusion kernel on X. Then, for any number c ̂  0, SC0(A), E0(A)
and EQ(A;c) are Borel measurable convex cones in the metrίzable space

Proof. Since X is with countable basis, M+(X) is metrizable. Choose
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(fn)~=ί c C£(X) such that (/n)~=1 is total in CK(X). For each integer m ^ 0,

n >̂ 1 and p >̂ 1, we put

(4.10) Bm,n,p =

where μΛ,TO = (-A)mμ - V((- A)m+1μ) The condition (Se) for A gives that

Bm,n,p is vaguely closed. Since

sCo(A) = n n n (CBm,n,p n

is Borel measurable. Remarking that E0(A) — E{A) Π SC0(A) and

EQ(A;c) = E(A;c) Π SC0(A), we see that E0(A) and E0(A;c) are Borel

measurable. Their convexities are evident, so we achieve the proof.

The following remark shows that the condition (if) for A does not

always imply the compactness of the support of A*, where A* denotes

the dual operator of A.

Remark 52. Let (Tt)t^0 and A be the same as in Proposition 47.

(1) If A* is with compact support, i.e., if, for any V*/e RK(V*),

supp(/) is compact, then A satisfies the condition (j£f).

(2) Assume that (Tt)t^0 be of convolution type and A satisfies the

condition (if). For a positive number p, let Ap be the infinitesimal gene-

rator of the semi-group (TPft)t^0 defined in (2.43). Then Ap also satisfies

the condition (if).

In fact, clearly we have (1). We shall show (2). Denote by (Vp)p^0

the resolvent for (Tt)t>0. Then, for any p > 0, @(AP) D MK(X) and Ap =

pCί — pVp). Let (μn)n=i be a sequence in S(AP) satisfying limn_>oo//w = μ e

S(AP) (vaguely). By Theorem 35, we have

μn = (V+ —l)vn + μnth (n = 1,2, . •) and
(4.12) X * 7

where vn = p(/ - p Vp)μn, v = p(I - p Vp)/£, //n,Λ e H(AP) and ^Λ

Since μn>h = pVpμnth9 the resolvent equation gives that, for any q > 0,

μ*,Λ = QVqμn>hf which implies that μUth is invariant with respect to (Tt)t^0.

Similarly μh is also invariant with respect to (Tt)t^0. Since (Vvn + μn,h)n=i

is vaguely bounded, we may assume that it converges vaguely. By Theorem
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35, its limit is of the form Vλ + μL where λe@+(V) and μί,eH(A). The

condition (=£?) for A implies that l im^^ vn = v (vaguely). Hence

(4.13) (V + ±ϊ)v + μh = (v+ λήt + μ'h .

Since (Tt)t^Q is of convolution type, it is known that μ[h is also invariant

with respect to (Tt)t^0 (see [8], p. 343). By virtue of the unicity of the

Riesz decomposition of μ, we have v = λ and μh = μ!h. Thus (2) is shown.

Hereafter in this paragraph, for any nonzero element μ of M+(X), we

choose a fixed fμ e C+(X) such that fμ(x) > 0 on X and fμdμ < oo. For

a transient and regular diffusion semi-group (Tt)t^0 on X and its infini-

tesimal generator A, we put, for μeM+(X),

(4.14) SC(A;μ) = Le SC(A) ίfμdv ^ 1J .

It is easily seen that if A satisfies the condition (=£?), then SC(A;μ)

is vaguely compact convex set in M+(X).

In general, for a convex set C in a locally convex space, we denote

by ex C the set of all extreme points of C and, for a convex cone K in a

locally convex space, we denote by exr K the set of all extreme rays in

Our main theorem is the following

THEOREM 53. Let (Tt)t^t be a transient and regular diffusion semi-

group on X, V be the Hunt diffusion kernel for (Tt)t^0 and A be the in-

finitesimal generator of (Tt)t>0. Assume that, for all integer n^>l, Vn is

defined as a diffusion kernel and that A satisfies the condition (<&). Then

we have:

(1) The set of all extreme rays in SC(A) is represented as follows:

Π @(V"))) U
/

(4.15) ^SC(A) = ( 0
\n=0

where Vn ((exr H(A)) Π $(Vn)) = {Vnp;pe (exr H(A)) IΊ ®(Vn)} and Vnp =

{λVnv;λe R+} with nonzero element v of p, and SC(A) is the closed convex

6) A ray p in K is a set of the form {λx Λ e R+}, where 0 Φ x e K, and we say that
p is an extreme ray if, for any x ep and any y,zeK, y,zep whenever x — ty + (1 — λ)z
for λ > 0. We denote here by JR+ the totality of all non-negative numbers.
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hull of exr SC(A)Ί).

(2) For any μ e SC0(A), there exists a regular Borel non-negative measure

Φ on E0(A) with \ dΦ < oo carried by (J ί 2 s 0 exr E0(A; t)8) such that

(4.16) μ = \λdΦ(X) (i.e., \fdμ = ί (j"/(ϋ)dΦ(ί) /or all fe CK(X)\ .

Furthermore, for any μ e SC0(A), there exists a Borel non-negative measure

σ in (0, oo) with finite total mass and a bounded σ-measurable mapping

(0, oo) a t->μt e EQ(A) with μt e E0(A; t)9) such that

(4.17) μ = J~ ftAK0 (i.e., \fdμ = £ (J/ϋ^AKfl /or all fe Cκ(xή .

To prove our main theorem, we use the following three Choquet

theorems.

PROPOSITION 54 (see [17], p. 7 and p. 19). Let C be a metrizable compact

convex subset of a locally convex space. Then ex C forms a Gδ-set and9 for

any xe C, there exists a regular Borel probability measure μ on C carried

by exC which represents xm.

PROPOSITION 55 (see [17], p. 88-89). Let K be a closed convex cone in

a locally convex space and suppose that K is union of its capsn\ Then K

is the closed convex hull of exrK.

PROPOSITION 56 (see [17], p. 88). Let K be a closed convex cone in a

locally convex space and C be its cap. Then every extreme points of C lies

on an extreme ray in K.

7) In this case, exrSC(A) means {y e p p e exr SC(A)} and exrE0(A;t) means the
analogous set.

8) We say that a regular Borel measure Φ on E0(A) is carried by a set Y c E0(A)
if, there exists a Borel set B such that B dY and Φ(CB) = 0.

9) We say that f —• μt is σ-measurable if, for any / e Cκ(X)f the function I fdμt of

t is ^-measurable and that is bounded if, for any / e C#(X), | fdμt is bounded in (0, oo).

10) A point x e C is said to be represented by μ if, for any continuous linear func-
tional /,

/(*) = \f(v)dμ(y).

11) A non-empty subset C of K is called a cap of K if C is a compact convex
subset and if K — C is also convex.
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Proof of Theorem 53. (a) First we shall show that, for any

(4.18) (exSC(A; μ0)) Π SC0(A) c E0(A) .

Let OΦμeSC(A;μo) Π SC0(A). Theorem 35 and Corollary 39 give that
μ = V(-Aμ). Let t > 0. Remarking that Tt(-Aμ) <-Aμ and V- Tt =
Tf V, we obtain that 7> e @+(A) and - A(2» = Tt(-Aμ). Hence we have

(4.19) ( - A)n{Ttμ) = Tt((-A)nμ) e M+(X) (n = 0,1, ) ,

because μ = Vn((-A)nμ). This implies that TtμeSC(A). Since ( I - T,)/*

= Γ Ts(-Aμ)ds, we have also (I - Tt)μ e SC(A). Let 0 Φ μ e (ex SC(A;μ0))

Π SCo(A) and put

(4.20) c M = J/ .odϊ 7 ^ and c2>ί =

Then cjft > 0 (j = 1,2), because — A/ι ψ 0, and ί/^cί^ = 1. From Ttμe

SC(A;μo)9 (I-Tt)μeSC(A;μ0),

(4.21) μ = c M ( - ^ ) + cJ{I-Tt)ή and cM + c2fί = 1 ,

V cht I \ c2tt )

it follows that, with a constant 0 < ct < 1,

(4.22) μ = c.ϊ7^ ,

which implies that, with a constant a > 0,

(4.23) - Aμ = lim ^ ~ Ttμ = lim
ί - 0

Thus we see (4.18).
(b) Let 0φ μoe M+(X). We shall show that, for any μ e SC(A;μo) Γϊ

SC0(A), there exists a regular Borel probability measure Φ on E0(A) carried
by (exSC(A;μ0)) Γ) SC0(A) such that the analogous equality to (4.16) holds.
Put, for each integer n ^ 1,

(4.24) Hn(A) = {Vnμ;μΦOe®+(Vn) Π fl(A)}

and iϊo(A) = H(A). The condition (if) for A implies that, for any n ^ 0,
®%=0Hk(A) is vaguely closed and, similarly as in Proposition 51, we see
that Hn(A) is Borel measurable. Remarking that (Hn(A))ζ=1 and SC0(A) —
{0} are mutually disjoint, we have
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= ( U (ex SC(A Λ ) ) Π H.(A)) U ((ex SC(A μj>) Π SC,(A)) ,
\n=0 /

(4.25)

and (ex SC(A μ0)) Π fl»(A) (Λ = 0,1, ) and (ex SC(A μ0)) Π (SC0(A) - {0})

are mutually disjoint Borel measurable sets (see Propositions 51 and 54).

By Proposition 54, there exists a regular Borel probability measure on

exSC(A;μ0) such that μ = \λdΦ{λ). Put

(4.26) #

(0 otherwise
Then we have

<4.27) μ=± [λdΦn(λ) + f
n=o J J

By (a), Φoo is a regular Borel non-negative measure on E0(A) carried by

(exSC(A;μQ)) Π SC0(A). For any λi^O, the closedness of ®ϊ=0Hk(A) im-

plies that Σϊ-o λdΦk(λ) e Θ?=o -ff*C4.)> and hence Proposition 47 gives that

λdΦn(λ) — 0. Hence we may assume that Φ = Φ^, which gives our as-

sertion.
(c) We shall show that, for any nonzero element μ0 of M+(X),

(4.28) (ex SC(A μ0)) ΓΊ SC0(A) = U ex (J5?0(A ί) Π SC(A

Evidently we have the inclusion c , and so we shall show the inverse

inclusion. Let 0 Φ μ e ex(E0(A; c) Π SC(A;μ0)). Then c Φθ. Assume that,

for μj e SCiA μo) (j = 1,2), μ - l/2(^ + μd Then μ3 e SC0(A) (j = 1,2).

By (b), there exists a regular Borel probability measure Φ} on ISoCA) carried

by (exSCίA;^)) Π SC0(A) such that μ, = {idΦ^λ) (j = 1,2). By using

Propositions 50 and 51, we see that E0(A; c), IJc>ί^o^o(A; t) and (J«>c Ĵ o(A; ί)

are Borel measurable, because, similarly as in Proposition 50, we see that,

for any s > 0, \Jt^sE(A;t) is closed in M+(X) and that (\Jt^sE{A;t)) Π

SC0(A) = U*.E 0 (A; t). Put, for j = 1,2 and ft = 0,1,2,

(4 29) Φ o , \ Φi \
\θ otherwise, llj \θ otherwise,

2,i = Φj- ΦOtj - Φi,̂  and Φi = l (φ f c l + φ, 2) .
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For any integer n >̂ 1, we have, by the condition (££) for A,

(4.30) + ^-±yλdΦ'2(X)

= j Wow + j (—^-)^dΦίw+j (--ϊLyMΦzx) >

where cλ is a positive constant satisfying — Aλ — cλλ. We remark here

that the mapping (E0(A) — {0}) Bλ->cλ is continuous. By letting n -• oo

in (4.30), we see that μ = ί λdΦ'Q{λ). This implies that ^ = f λdΦQtj(X)

(j — 1,2). Since fμodμ = 1, we have μ — μ3 (j = 1,2), Thus we see that

(4.28) holds.

(d) Since SC(A) = Uo*«escu) SC(A;μ)> Proposition 55 gives that SC(A)

is the closed convex hull of exrSC(A). Evidently we have

S i SC(A) c ( 0 Vn ((Sί H(A)) Π 9(Vn))) U (U ^ E0(A; t))

and

Π

by Proposition 47. Let t>0 and /) e exr E0(A;t). We choose a nonzero

element μ of p. Then μβex(E0(A;t) Π iSC(A;//)), and hence (c) implies

that μ 6 (ex SC(A; μ)) Π SC0(A). By Proposition 56, we have p e exr SC(A).

This implies that (4.15) holds. Proposition 56, (b) and (c) give also (4.16).

(e) Finally, we shall show (4.17). Let μ e SC0(A) and Φ be a regular

Borel non-negative measure with dΦ < oo defined by (4.16). By (b) and

(c), Φ is carried by (exSC(A;μ)) Π (U^o^o(A;<)) For any t > 0, we put

(Φ on U E0(A;s) c r /C
(4.31) Φt = ^ o and v(t) = \ dΦt = (

[0 otherwise J J V J[0 otherwise

because fμdλ = 1 for any nonzero element λ of exSC(A; μ). Then v(t) is

a bounded non-negative increasing function on (0, oo). Let σ be a non-

https://doi.org/10.1017/S0027763000019425 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019425


COMPLETELY SUPERHARMONIC MEASURES 87

negative Borel measure in (0, oo) such that v(t) = dσ. Then da < oo.
Jo Jo

For fe CK(X), we put

(4.32) vf(t)

Then there exists a real Borel measure σf in (0, oo) such that vf(t) = dσf.
Jo

We have also d\σf\ < oo. Since |/ | ^ cffμ on Xfor some positive number
Jo

cf, we have, for any t > s > 0,

(4.33) I vf(t) - 0,001 ^

which shows that σf is absolutely continuous with respect to σ. By the

Radon-Nikodym theorem, there exists a σ-integrable function / on (0, oo)

such that dσf = fdσ. We have also |/| <ί cf σ-a.e.. By (4.32), we have, for

any f,ge C£(X), and any constants α, 6,

(4.34) af+bg = af+ bg σ-a.e..

We choose a countable set of continuous functions (fn)ζ=ι C Cκ(X) such

that (/„)„-! is total in CK(X). By (4.34), there exists a Borel set F in

(0, oo) such that σ(CF) = 0 and that, for any t e F, any rational number

r and any integers n ^ 1 and m ^ 1,

(/OG) = */n(*), l i m l Γ+7.dσ = Λ(0 and
(4.35) δl° δ J ί

For any ί e CF, the mapping /n —> fn(t) can be extended to a positive linear

form on CK(X) in the usual way, and hence there exists a uniquely de-

termined non-negative Radon measure μt in X such that fn(t) = fndμt

for all n ^ 1. By defining ^ = 0 for all t e CF, we see that (0, oo) B t -•

/£ί e M+(X) is immeasurable. Since /^d^ <̂  1 for all ί e (0, oo), (0, oo) B t ->

jMβ e M + (Z) is bounded. Furthermore we have

(4.36) μ= Γ μtdσ(t).
Jo

The condition (J£?) for A and the second equality in (4.35) give that
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μteE(A;t) for all te(O, oo). By Theorem 35 and (4.36), we may assume

that μteE0(A;t). This completes the proof.

Now we notice the following equality:

SC0(A) = ( Γ μtdσ(t);σ 6 Mδ

+((0, oo», t-+μte E0(A; t): bounded and
(4.37) U°

σ-measurable > ,

where M6

+((0, oo)) denotes the totality of all non-negative Borel measures

in (0, oo) with finite total mass. In fact, let σ e M6

+((0, oo)) and (0, oo) B t

—•ft 6 E0(A; t) be a bounded σ-measurable mapping. Put σn = σ on [1/τz, n]

and σn = 0 otherwise (n — 1,2, ). Then the condition («£?) for A gives

that, for all n = 1,2, and m = 0,1,2, ,

( - A)w Γ ftdσκ(ί) = Γ tmμtdσn(t) and
(4.38) J : J°

£ μtdσn(t) - V- (j Q tmμtdσn(t)) .

By letting τι —• oo in (4.38) and using the condition (££) for A, we have,

for any m ^ 0, Γ tmμtdσ(t) e M+(X) and
Jo

(—A)m Γ ^ tdσ(0 = Γ tmμtdσ(t) and

(4.39) J l J°

By combining Theorem 53 and (4.39), we have (4.37).

For μ e M(X), we write p(μ) = {cμ; c e i?+}. In particular, we have the

following

PROPOSITION 57. Let X be a locally compact abelian group with count-

able basis and ξ be a Haar measure on X. Let (Tt)t^0 be a transient diffu-

sion semi-group of convolution type on X and at be the non-negative Radon

measure on X defining Tt (see (2.17)). Assume that the infinitesimal gener-

ator A of (Tt)t>Q satisfies the condition (£f) and let Exp (X) be the totality

of all positive continuous exponential functions on Xί2). Then we have:

12) A real-valued function φ on X is said to be exponential if, for any %,yeX,
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(1) exr H{A) c L(φξ); ψ e Exp (X), [ φdat = 1 for all t ^ oj c H(A)13>

(2) For any c > 0, exr#0(A;c) C ί/>(?£);φe Exp(X), c Γ(JV<ίαtW = l}

cE0(A;c).

Proof. It is known that

= {μ e M+(X);μ = μ*at for all t ^ 0}

= {μ e M+(X);μ = μ*at0 for some t0 > 0}

(see [8], p. 343). This implies the second inclusion in (1). By the Choquet-

Deny theorem (see [5])13), we see the first inclusion in (1). Similarly we

see the assertion (2). Lastly in this paragraph, we shall discuss the Bern-

stein theorem. Put

(4.41) Tt: Mκ((0, oo)) B μ -> the restriction of τ.tμ to (0, oo) e M((0, oo))

for all t >̂ 0, where τ_t is the translation of — t. Then (Tt)t>0 is transient

and regular diffusion semi-group on (0, oo), and its infinitesimal generator

A is equal to djdL Denote by dt the Lebesgue measure in (0, oo). Since

the Hunt diffusion kernel V for (Tt)t^0 satisfies

(4.42) Vμ = ( Γ dμ\dt for all μ 6 Mκ((0, oo))

and

(4.43) H(-^-) = p(dt) and #«/— c) = p(exp(-ct)dt) for all c > 0 .

\ dt / \ dt /

Hence, our main theorem implies the Bernstein theorem. We remark here

that

(4.44)

for all μ e Mκ((0, oo)) and n = 1,2, ,

and that

13) This shows that, for a non-negative Radon measure σ in X, the solution // of
the convolution equation μ = μ*σ is of form

where λ is a regular Borel measure with finite total mass on Up € Exp (X) I ψdσ = l\.
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(4.45) dt z @+(Vn) for all n = 1,2, . .

§5. Application to elliptic differential operators

In this paragraph, we consider the same setting as in S. Itό's paper

[10]. Let D be a subdomain of an orientable iV-dimensional C00-manifold

(iVl> 2) and L be an elliptic differential operator of the form:

Lu(x)= Σ - 7 ^ — ( V ^ α * ' ( * ) —
i,yi Va(x) dxΛ dxj

ΣΣ V{x)-^-(x) + c(x)u(x)
dx1

for u e C2(D)U) and x = (x\ •.•,/)e f l , where (aίj(x))lJ=1 is a contra-

variant tensor of class C°° in D and is symmetric and strictly positive-

definite for each xeD, a(x) = det(a^(x)) = det(aίj(x))-\ (tfix))?^ is a

contravariant vector of class C°° in D and φ;) is a non-positive function

of class C°° in D. We shall denote by dx the volume element with re-

spect to the Riemannian metric defined by the tensor (aiό(x))^j=1. The

formally adjoint operator L* of L is defined by

N 1 d
Li V\X) = / , .

/ i.i-i Va(x) dx1

(5.2) v :

for ι;eC2(JD).

Evidently we have the following

Remark 58. Let u and v be in C2(D). If w e C|(Z)) ori; e C1(D), then

we have

(5.3) ί Lu(x)v(x)dx = f u(x)L*v(x)dx .

DEFINITION 59 (see [10]). Let Ω be a subdomain of D. We say that

Ω satisfies the condition (S) if its closure Ω is contained in D and its

boundary dΩ consists of finite number of simple closed hypersurfaces of

class C\

PROPOSITION 60 (see [9], Theorem 1). Let Ω be a subdomain of D

14) We denote by Cn(D) = {f eC(D);f is of class Cn in D} for n ^ 1 and by C°°(D)

= Π ~=1 C
n(D). We write also Cn

κφ) = Cn(D) π CKΦ) and C%(D) = C~(D) n C*Φ).

https://doi.org/10.1017/S0027763000019425 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019425


COMPLETELY SUPERHARMONIC MEASURES 91

satisfying the condition (S). Then there exists one and only one funda-

mental solution UΩ(t,x,y) of the initial-boundary value problem:

Given u0 e C(Ω) and φ e C((0, oo) x dΩ),

(5.4)

— ( t , x) = Lu(t, x) for each (t, x) e (0, oo) x Ω
dt

u(09x) = uo(x) for each xeΏ

u(t9 x) = φ(t, x) for each (t, x) e (0, oo) x dΩ .

Furthermore UΩ(t, x9 y) satisfies the following five conditions:

(5.5) UΩ(t9 x,y) is a non-negative finite continuous function on (0, oo) x

Ώ X Ω and UΩ(t, x, y) = 0 if and only if xedΩ or ye dΩ.

(5.6) J UΩ(t9 x, y)dy ^ 1 for any (ί, x) e (0, oo) x Ω.

(5.7) UΩ(t, x9y)UΩ(s,y, z)dy = UΩ(t + s, x, z) for any t > 0, s > 0 and any

(x, z) e Ω x Ω.

(5.8) For any uoeC(Ω), we put u(t,x)= UΩ(t,x9y)uo(y)dy. Then u(t,x)

is the unique solution of (5.4) with φ = 0.

(5.9) For any u0 e C(Ώ\ we put u*(ί, x) = ί UΩ(t,y9 x)uo(y)dy. Then u*(t, x)

is the unique solution of the initial-boundary value problem:

(5.10)

^-{t, x) = L*w(ί, x) for each (t, x) e (0, oo) x Ω
dt

w(0,x) = uo(x) for each xeΏ

u(t, x) = 0 for each (t9 x) e (0, oo) x dΩ .

The following remark is elementary.

Remark 61. Let Ω be a subdomain of D. Then there exists a sequence

)n=! of subdomains in Ω satisfying the condition (S) such that Ωn C

We call regular exhaustion of Ω.

PROPOSITION 62 (see [9], Lemma 5.4). Let Ω and (Ωn)^=ί be the same

as above. Then {UΩn{t9x9y))n=i converges increasingly to a continuous func-
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tίon UΩ(t,x9y) in (0, o o ) χ f l χ β15>.

We remark here that UΩn(t, x, y) -+ UΩ(t, x, y) in C((0, oo) x Ω X Ω) as

τz-»oo and that UΩ(t,x9y) does not depend on the choice of (fln)?βl.

COROLLARY 63. Let Ω and UΩ(t, x, y) be the same as above. Then we

have:

(1) For t > 0, s > 0 and (x, z) e Ω X Ω,

<5.11) J UΩ(t9 x, y) UΩ(s, y, z)dy = UΩ(t + s, x, z) .

(2) For any fe Cκ(Ω)y we put

if UΩ(t, x,y)f(y)dy in (0, oo) x Ω
u(t9x)

\f(x) on {0} X Ω

and

,,, v ί f U0(t, y, x)f(y)dy in (0, oo) x Ω
(5.13) u*(t,x) = <J

\f(x) on {0} X Ω .

Then u(t, x) and w*(ί, x) are finite continuous in [0, oo) x Ω.

Proof. Since UΩn(t9 x9 y) f UΩ(t, x, y) as n\ oof (5.7) gives (5.11). To

show (2), we may assume that / is non-negative. Put

= ί [ UΩn(t, x,y)f(y)dy in (0, oo) x Ω
un(t9x)

[f(x) on {0} X Ω .

Then un is finite continuous on [0, oo) x Ω. Since (un(t, #))~=1 converges

increasingly to u(t, x) as n—> oo, w is lower semi-continuous on [0, oo) x Ω.

Evidently u(t, x) is finite continuous in (0, oo) x Ω. Let t0 be a fixed

positive number. Then there exists a constant c > 0 such that

UΩ(t0, x, y)f(y)dy ^ /(#) on Ω. Hence cu(t0 + t, x) — u(t, x) is also lower

semi-continuous on [0, oo) x Ω. This implies that u(t, x) is finite continuous

on [0, oo) x Ω. By the similar argument, we see that w*(ί, x) is also finite

continuous on [0, oo) x Ω. This completes the proof.

15) We may assume that Uon(t,x,y) is a finite continuous function in (0,oo) x Ω x Ω,
l>y denning that Uon(t,x,y) = 0 if xeCΩn or yeCΩn.
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Let Ω be a subdomain of D. For any t > 0, we define linear op-

erators TLfΩ}t and TL*fΩtt from MK(Ω) into M(i3) as follows:

(5.15) TLtΩ>tμ = (J E7Λ(ί, x,y)dμ(yήdx and 2^ f l l i r fi = (J UΩ(t,y, x)dμ(yήdx .

By Corollary 63, we have the following

Remark 64. Putt ing TL>Ωf0 = TL*tΩtQ = I, we see t h a t (TL>Ωit)t^0 and

(TL*,Ωyt)t>o are diffusion semi-groups on β.

For the sake of simplicity, we write TLtt = TLtDft and TL*,t = TL*tDit

PROPOSITION 65. 7%e diffusion semi-group (TLtt)t^0 on D is transient

if and only if the Green function G(x, y) of L on Dm exists. If G(x, y)<

exists, then G(x, y) = UD(t, x, y)dt.
Jo

This follows from the following

PROPOSITION 66. The Green function G(x, y) of L on D exists if and

only if there exists a non-constant lower semi-continuous and locally in-

tegrable function f satisfying 0 < ^ / < ^ o o , / ^ o o and —Lf^>0 in the sense

of distributions in D. Furthermore, if G(x,y) exists, we have G(x,y) =
Λoo

UD(t, x, y)dt. For any yeD, the functions G(x, y) and G(y, x) of x belong

to C~(D - {y}), and for any fe C£(D), Gf(x) = J G(x, y)f(y)dy e C"(D) and

(5.16) LGf=G(Lf)= -f.

S. Itό shows the above assertion in the case of c(x) = 0 (see [10])..

In the case that c(x) φ. 0, we see, in the same manner as in [10], that

there exists the Green function of L on D (see also [9] and [12]).

Remark 67 (see [9], § 10 and [10]). If G(x, y) exists, then G*(x, y) =
Λoo

G(y, x) = UD(t, y, x)dt is the Green function of L* on D and, for any
Jo

16) For an open set Ω in D, the Green function GΩ(x,y) of L on Ω means a non-
negative continuous function in Ω x Ω in the extended sense satisfying the following
conditions:

(a) GΩ(x,y) < oo if x Φ y.
(b) LxGΩ(x,y)——εy in the sense of distributions.
(c) For any y e Ω and any non-negative function h e C\Ω) with Lh = 0 in Ωy

Go(x,y) ̂  h(x) in Ω implies h = 0.
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fe C;(D), G*f(x) = J G*(*, y)f(y)dy e C~(D) and

(5.17) L*G*f = G*(L*f) = -f.

Proof of Proposition 65. We remark that, if (TLpt)t^0 is transient, then,

for any nonzero element μ of M£(D), UD(t, x, y)dμ(y)dt is a non-con-

stant lower semi-continuous and locally integrable function in D satisfy-

ing — £( UD(t, x, y)dμ(y)dt\^> 0 in the sense of distributions in D. If

G(x, y) exists, Proposition 66 and Remark 67 give that, for any fe Cχ(D),

Tttfdt is a non-negative lower semi-continuous function in D and that,
Jo

for any fe Cf (D), Γ Tttfdt = G*/e C°°(D), and hence (TL t ) ^ 0 is transient.
Jo

Hereafter, we shall always assume that the Green function G(x,y) of

L on D exists. Define the linear operators VL and VL* from MK(D) into

M(D) as follows:

(5.18) VLμ = (Gμ)dx and VLψ = (G*μ)dx ,

where G^x) = J G(x, y)dA<y) and G*/<x) = J G*(x, y)d/ι(y). Then VL and

VL* respectively are the Hunt diffusion kernel for (TL>t)t^0 and that for

{•*• L*,t)f§:0

Remark 68. Let μ e MK(D). Then

(5.19) LGμ = -μ and L*G*μ = -μ

in the sense of distributions in D.

In fact, VL and V̂  are defined, so that Gμ and G*μ are locally in-

tegrable. The two equalities in (5.19) follow from (5.16) and (5.17). The

two equalities (5.16) and (5.17) imply also the following

Remark 69. We have Rκ(Vί) 3 C£(D) and Rκ(Vg) 3 C£(Z>), i.e.,

(TL>t)t>o and (TL*yt)t^0 satisfy the condition (C*). Let AL and AL* be the

infinitesimal generator of (TLft)t^0 and that of (TL*tt)t±0, respectively. Then,

for any μ e @(AL) (resp.

(5.20) ALμ = Lμ (resp. AL*μ = L*//)

in the sense of distributions.
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Let Ω be a subdomain of D satisfying the condition (S). It is well-

known that, for any yeΩ, there exists the V^-balayaged measure εyiCΩ

(resp. y^-balayaged measure εy\CΩ) of εy on CΩ. We have s u p p ( ε ^ ) C dΩ,

supp (εy[CΩ) c dΩ,

= G(x,y) - Gε^CΩ{x) and

(5.2D J° Γoo

C7Λ(ί, y, x)Λ = G*(x, y) - Ge£σ ι J(*)
Jo

(see, for example, [11], p. 333). Put GQ(x,y) = Γ UΩ(t,x,y)dt. Then G0(x,y)
Jo

is the Green function of L on Ω. In this case,

(5.22) lim G0(x,y) = lim G0(y, x) = 0 for all x e β .
2/-»3fl y—ax?

To apply our main theorem to L, we need the following

THEOREM 70. Two diffusion semi-groups (TLtt)&0 and (TL*ιt)t±0 are

regular.

Proof. We shall show only that (TLtt)t^0 is regular, because the other

is proved similarly. By Remark 69, it suffices to show that (TLtt)&o satisfies

the condition (D*). By Proposition 62, Remark 61 and (5.21), (TLtt)tZ0 is

weakly regular. Let (Dn)ζ=ί be a regular exhaustion of D and put TΛtt

= TL,Dntt (ί ̂  0; n = 1,2, . . . ) . Since, for any // e Mί(D), Tnttμ ^ 7^,^ in

^n> (ϊ7τz,«)ί̂ o is also a transient and weakly regular diffusion semi-group

on Dn. Let VLfU the Hunt diffusion kernel for (Γn f t)^ 0 Then VL>nμ =

(GDnμ)dx for any n ̂ > 1. First we shall show that if, for any n ̂ > 1, (Tn>t)t^0

satisfies the condition (D*), then so is (TL>t)t^0. For each fe Cχ(D), we

choose an integer nf I> 1 such that /e C£(Dn) for all τι ̂  %. Let (fn,m)Z=i

be an associated family of / with respect to (T*t)t^0 (n ̂  nf). By Proposi-

tion 62, we have

(5.23) ViJ ^ Vtn+if in D and lim V£J = Vtf in C(Z>)17> .

Hence we can choose inductively a sequence (fnk,mk)k=i satisfying the fol-

lowing conditions (5.24), (5.25) and (5.26), where nx ̂  nf and nk<nk+1:

(5.24) Vtf- VtJ< 1 on 5^., ,

17) We put V*J=0 on CDn. Then y j ,J e Cί(D) by (5.21) and (5.22).
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(5.25) VtJnk,mk < 1 on D^ ,

(5.26) Vtnk_J- VZ^fn^^-i ^ VtJ- VtJnk,mk in D .

We shall show that (fnk,mk)k=i is an associated family of / with respect to

(ϊ?,Λ*o Since, for any n^nf and any m ̂  1, L* VL*W(/ - /π,m) = - / + /n.m

in the sense of distributions in Dn, fn>m e C£(Dn)9 and hence we may assume

that A,m e C£(D). We have

(5.27) Vtf - V£fnk,mk = Vj^/ - ViJnktmk (k ̂  1),

because L*(VgynΛf — V^nkfnjctmk) = /— /n*fm* in the sense of distributions in

D. This implies that V£f^ V£fnk>mk and supp(V^/- Vgfnkin]) is compact.

By (5.24), (5.25), (5.26) and (5.27), we have Vϊfnk_τ,mh_x ^ Vifnt9iΛΛ in D and

V£fnktW,k ^ 2/Λ on Dnk^. Thus we see that (fnk,mj)ΐ-i is an associated family

of / with respect to (Tξtt)t±0. Consequently, it suflBices to show that, for

any subdomain Ω of D satisfying the condition (S), (TLtOtt)t^0 satisfies the

condition (D*). For a fixed y0 e CΩ, we put h(x) = G*(x, y0) for each x e Ω.

Then iΏίxeΩ h(x) > 0, h e C~{Ω) and L*h = 0 in Ω. Let fe Cί(fl), and put

G*Ω{x,y) = GΩ{y,x) and

(5.28) α = min G ^ * > > 0 .

We choose a sequence (^n)^=i C C^(EX) such that, for each n ̂  1, supp(^)

C (α/(n + 2), α/(ra + 1)) and ί ψn{r)dr = 1. For any 0 < r < α, we put

(5.29) i2r = {x 6 fl; GJ/(Λ) > rh(x)} .

Then β r is an open set with Ώr c β, because G^/(x)->0 as x->3£?. Let

VtfΛ and AL>Ω be the Hunt diffusion kernel for (TLtΩtt)t^o and the infini-

tesimal generator oΐ(TLtΩ)t)t>0, respectively. Then, for any VLlΩμ e @κ(ALfΩ; Ωr),

(5.30) J (G*/- r/>)+d// = J/dVM/ι - r^G(y0, x)dμ{x) =

because supp (μ) c β r. Hence Corollary 43 and (5.21) give that

(5.31) (G*f~ rhY(x) = jfd(VLιOεx - VL,aε'x,COr) = G*αf(x) - GtfΌΌXx) in 0,

where ε^CΩr is the V^-balayaged measure of ε̂  on CΩr and fc'Ωr is the

measure of fdx on CΩr. Put
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(5.32) gn(x) = I G*f'c'ar{x)φn(r)dr (n = 1,2, ) .

Then we have

(5.33) gn(x) = Gtftx) - ^^^{—Ά) in Ω ,

where ψ(t) = * in (0, oo) and ψ(ί) = 0 in (-00, 0]. By (5.32), gn e C^(Ωa/2)

and, by (5.33), gn e C"(Ω - supp(/)), i.e., gn e C~ψ) (n = 1,2, . . •). By

(5.32), (gn)n=i converges decreasingly to 0 as n-+ 00. Since supp(G$/ — gn)

^ flα/(»+i)) G*f — gn is with compact support in β. Since, for any xeΩ9

the function Gifί'Ωf(x) of r is finite continuous in (0, α), (5.17) gives that

(0, ά)ar-^fcΩr is vaguely continuous, and hence j foΩrψn(r)dr is defined.

Putting Λ - -L*gnf we see that fΛ e C£(Ω) and /, = \f"Ωrφn{r)dr in the

sense of distributions. Thus (fn)ζ=ί is an associated family of / with re-

spect to (T£Ω,t)t%o This completes the proof.

In the usual way, we define the L-superharmonicity and the i-har-

monicity.

DEFINITION 71. A function u in D is said to be L-superharmonic

(resp. L-harmonic) if u satisfies the following three conditions:

(5.34) u is lower semi-continuous (resp. continuous).

(5.35) — 00 < w <: 00, u ^ 00 (resp. — 00 < u < 00).

(5.36) u is a locally integrable function in D and —Lμ^>0 (resp. Lu = 0)

in the sense of distributions.

Similarly we define the L*-superharmonicity and the L*~harmonicity.

PROPOSITION 72. Let u be a lower semi-continuous function in D satis-

fying — 00 < u <̂  00 and u^ oo% Then the following three conditions are

equivalent:

(1) u is L-superharmonic.

(2) If Ω is a relatively compact subdomain in D and if v is continuous

on Ω, L-harmonίc in Ω and satisfies v(x) ^ u(x) on dΩ, then v(x) <I u(x) in

Ω.

(3) For any relatively compact subdomain Ω in D and any x e Ω9
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(5.37)

where e"iCΩ is the VL*-bαlαyαged measure of εx on CΩ.

Proof. The equivalence between (1) and (2) is shown by S. Itό (see,
[12], Theorem 2).

(2)φ(3). Let (Ωn)^i be a regular exhaustion of Ω such that Ωx 3 x.

It is well-known that, for any fe C(dΩn), the function fdε'JiCΩn of x is in-

harmonic in Ωn (see, for example, [11]). In particular, if /<^ u on dΩn9

then (2) gives that u(x) ^ fdε^CΩn. By letting / | u and ra-»oo, we obtain

the required inequality.

The implication (3)φ(2) is directly followed from Proposition 42 and

Corollary 43. This completes the proof.

COROLLARY 73. Let u and v be L-superharmonic functions in D. If

u = v dx-a.e. in D, then u — v everywhere.

Proof. First we remark that, for any xeD, G(x,x) = oo. Let Ω be

a subdomain of D satisfying the condition (S). For a fixed y e CΩ, put

h(x) = G*(x, y) on Ω. For any xQ e Ω and r > 0, we denote by Ωr the con-

nected component of {x e Ω; G*(x0, x) > rh(x)} with Ωr 9 x0 and choose

£>n β Cκ{B}) such that pn ̂  0, φjj)dr — 1 and supp (<pn) d(n,n + 1) (n =

1,2, •)• Similarly as in Theorem 70, z"0,cQr<Pn{r)dr€ C£(Ω) in the sense

of distributions, and hence

(5.38) I (J udε^^(r)dr = J (J

Since ί ] εJ^cΩrΨni^dr j converges vaguely to e^ as n -» oo, the lower semi-

continuity of w, that of v and (3) in Proposition 72 imply that u(x0) — v(x0).

The subdomain Ω and x0 being arbitrary, we see Corollary 73.

By the above corollary, we obtain the following

PROPOSITION 74. Let μ e M(D). If μ is AL-superharmonic (resp. AL*-

superharmonίc), then there exists one and only one L-superharmonic (resp.

L*-superharmonίc) function u in D such that μ = udx.

Conversely, for an L-superharmonic (resp. L-superharmonic) function
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u in D, udx is AL-superharmonic (resp. AL*-superharmonic).

In order to prove Proposition 74, we use the following known lemma.

LEMMA 75 (see [18], p. 143). Let Ω be a domain in the N-dimensional

Euclidean space RN (N >̂ 1) and L be an elliptic differential operator of the

analogous form to (5.1). //, for μ e M(Ω), Lμ e C°°(Ω) in the sense of dis-

tributions, then μ e C°°(Ω) in the sense of distributions. In particular, Lμ = 0

in Ω implies μ e C°°(Ω) in the sense of distributions.

Proof of Proposition 74. Let μ e M(D) be AL-superharmonic. Then

Remark 69 gives that —Lμ^>0 in the sense of distributions. Let ω be a

subdomain of D satisfying the condition (S) and λω be the restriction of

the positive measure — Lμ to ω. Put λ = μ — (Gλω)dx in ω. Then Lλ = 0

in ω, and hence λ = φdx in ω by Lemma 75, where φ e C°°(ω). The sub-

domain ω being arbitrary, we obtain that μ = udx, where u is an L-super-

harmonic function in D. By Corollary 73, u is uniquely determined. Let

u be an L-superharmonic function in D and put μ = udx. Since —Lμ^>0

in the sense of distributions in D, Remark 69 gives that μ is AL-super-

harmonic if μ 6 @°(AL). Let Vξfe RK(AL). Then supp(/) is compact, and

hence |/ | dμ < oo, which implies μ e @°(AL). Thus μ is AL-superharmonic.

The rest of proof is similar. This completes the proof.

This implies evidently the following

COROLLARY 76. The infinitesimal generators AL and AL* satisfy the

condition {£?).

We denote by S(L) the convex cone of all non-negative L-superharmonic

functions in D and by H(L) the convex cone of all non-negative L-har-

monic functions in D.

By Theorem 35, Corollary 73 and Proposition 74, we obtain the well-

known Riesz decomposition theorem.

Remark 77. For each ue S(L), there exists uniquely (v,h)eM+(D) X

H(L) such that μ = Gv + h.

Now we discuss the Martin compactification of D for L.

PROPOSITION 78. The Martin compactification D* of D for L is defined.

Let ©i be the essential part of the Martin boundary Γ = D* — Dm and

18) @i = {ξ e Γ; the harmonic function K(x, ξ) of x is minimal}. A positive harmonic
function u in D is said to be minimal if, for any positive harmonic function v in D,
v = cu with a positive constant c whenever u ^ v in D.
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K(x, ξ) be the Martin kernel on D X Γ. If h is positive L-harmonic in D,

then there exists one and only one regular Borel positive measure μ on ©j

with \ dμ < oo such that

(5.39) h(x) = f K(x,ξ)dμ(ξ) in D .

In the case of c(x) = 0, the same assertion is obtained by S. Itό (see,

[11], Theorem 5.3). Similarly we can prove Proposition 79 (see also [6],

Chapter 11 and [18]).

For a constant c > 0, we discuss non-negative solution of the follow-

ing ideal boundary value problem:

I—Lu(x) = cu(x) for any xe D

lim u(y) = 0 λxo - a.e. on Γ ,

where λXo is the harmonic measure for a certain x0 e D.

Denote by E0(L;c) the set of non-negative functions of class C°° in D

satisfying (5.40) and by E0(L) = Uc

PROPOSITION 79. Let cbea non-negative constant. For each μ e E0(AL; c),

there exists one and only one ueE0(L;c) such that μ = udx. Conversely,

for any ueE0(L;c), we have udx e E0(AL; c).

Proof. Since E0(AL;0) = {0} and E0(L;0) = {0}, it suffices to show our

conclusion in the case c > 0. Let μ be a nonzero element of E0(AL;c).

Then, by Propositions 45, 74, Corollary 73 and Remark 77, there exists

one and only one u e S(L) such that μ = udx and u = cGu. Since the

function

flimsy) f:x'ξldλxo(ξ)

of x is L-harmonic and <Lu in D, the second equality in (5.40) holds.

Hence it suffices to show that ue C^iD). We put inductively Gn+ί(x,y) =

f Gn(x, z)G(z, y)dz and Gnu(x) = f Gn(x, y)u(y)dy for n = 1,2, , where

G\x, y) — G(x9 y). Then we have u = cnGnu. Let Ω be a relatively com-

pact subdomain of D. When we consider L a s a differential operator in

Ω, L is uniformly elliptic and all coefficients of L are of class C00 on Ω.

https://doi.org/10.1017/S0027763000019425 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019425


COMPLETELY SUPERHARMONIC MEASURES 101

Hence, for any n ^ iV/2 + 1, GΩ(x, y) is finite continuous in Ω X Ω (see,

for example, [15], p. 1288), where the function G%(x, y) is defined analogously

to Gn(x, y). Let Ωx be another subdomain of D such that Ώ1d Ω and / be

in C£(D) such that 0 ̂  / ^ 1, f(x) = 1 on fit and supp (/) C β. Put ux = /a

and w2 = (1 — /)w. Then GQUX is finite continuous in Ω whenever n ^

N/2 + 1. By remarking that, for any & jj> 1,

(5.41) Gk+ίux - Gl+1ux = G{Gkux - Gk

Ωux) + G{Gk

Ωux) - GΩ{Gk

Ωux)

and that, for any non-negative locally integrable function g with g ί^u,

Gg — GQg is of class C00 in Ω (see Lemma 75 and Corollary 73), we obtain

inductively that Gnux — Gn

Ωux e C°°(Ω) (n = 1,2, •)• On the other hand,

Gu2 is of class C°° in Ωx by Lemma 75. Let Ω2 be a subdomain of Z) such

that Ω2 c βi and ^ be in C£{D) such that 0 ̂  9 ^ 1, φ(x) = 1 on i32 and

supp (φ) c βj. Then G((l - )̂)Gw2) is of class C°° in β 2 and G(φGu2) e C°°(JD),

because £>Gw2 e C£(D). The subdomain β 2 being arbitrary, G2u2 is of class

C°° in βj. Inductively we see that, for any n ^ 1, Gww2 is of class C°° in

βj. Thus Gnu is finite continuous in Ωx if τι ̂  2V/2 + 1. The subdomain

Ω and Ωt being arbitrary, w e C(D). Since Wj e Q(D), Gn

Ωux e Cn(Ω) (n =

1,2, . •), and hence Gnut e Cn(Ω). Consequently Gnu e Cn(Ω) (n = 1,2, . •),

and so we C°°(D).

Let ueE0(L;c). Then, by Remark 77, u = cGzz + Λ, where heH(L).

Since, for any x e D, lim^s w(y) = 0 ^-a.e. on Γ> the harmonic part /ι
yeD

of w is equal to 0, which implies that udxe E0(AL;c). This completes the

proof.

DEFINITION 80. A function u in D is said to be completely L-super-

harmonic in D if, for any integer n^>0, (—L)nu is L-superharmonic in

D, where (—L)°u = u and (—L)nu is in the sense of distributions.

In particular, a completely L-superharmonic function u in D is said

to be with zero conditions if l i m ^ (—L)nu(y) = 0 for any xe<Bt and any
2?

We denote by SC(L) the convex cone formed by all non-negative com-

pletely L-superharmonic functions in D and by SC0(L) the convex cone

formed by all non-negative completely L-superharmonic functions in D

with zero conditions.

Similarly as above, we see the following

PROPOSITION 81. For each μ e SC(AL) (resp. e SC0(AL))9 there exists one
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and only one u e SC{L) (resp. e SC0(L)) such that μ = udx. Conversely, for

any u e SC(L) (resp. e SC0(L)), udx e SC(AL) (resp. e SC0(AL)).

Applying Theorem 53 to completely L-superharmonic functions, we
obtain the following

THEOREM 82. We have SC(L) c C°°(D) and the following assertions

hold:

(1) If there exists an integer k^l such that, for any n with l^n

ύ k> (Vi)n is defined as a diffusion kernel in D and that (VL)k+1 is not

defined, then, for each u e SC(L), there exists uniquely a finite family (λjYjZl

of non-negative regular Borel measures on ©! with dλ3 < oo (j = 0,1, ,

k — 1) such that

(5.42) φ)=
n

where G° - K(x, ξ) = K(x, ζ) and Gn. K(x, ξ) = J Gn(x, y)K(y, ξ)dy.

(2) //, for any integer n JΞ> 1, (VL)n is defined as a diffusion kernel on

D, then, for each u e SC(L), there exist a sequence (λn)%=0 of non-negative

regular Borel measures on ©j with dλn < oo (n = 0,1, ), a non-nega-

tive Borel measure σ on (0, oo) with \ dσ < oo and a σ-measurable mapping

(0, oo) a t -> ut e C°°(D) with ut e E(L; t)19) such that, for any yeD,

(5.43) u(y) = Σ ί G«*K(y,ξ)dλn(ξ) + Γ ut(y)dσ(t) .
w=0 J @i JO

Furthermore (λn)~=0 is uniquely determined.

Proof. We first consider the case where the assumption of (1) holds.

Let u € SC(L). Similarly as in Proposition 47, there exist uniquely a finite
family (hn)

k
nz\ c H(L) and ve@+((VL)k) such that

(5.44) udx = Σ (VL)n(hndx) + (VLfv .
w=0

Since vβS(AL), Theorem 35 gives that v — VL(—ALv) + hkdx, where hke

H(L). Assume that v Φ 0. Let μ e M£(D) and Ω be a subdomain of D

19) We say that £-» Wj e C«,(.D) is tf-measurable if, for any xeD, the function ut(x)
of t is σ-measurable.

https://doi.org/10.1017/S0027763000019425 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019425


COMPLETELY SUPERHARMONIC MEASURES 103

satisfying the condition (S) and supp (μ) c Ω. We denote by μ'co the VL-

balayaged measure of μ on CΩ. Then VLμ — VLμ'CΩ e@((VL)k) and, by

supp (μίo) CI di2 and the domination principle for VL, there exists a con-

stant c > 0 such that VLμ'CQ<Lcι>. Since ve^((VJ f c), V^e0 + ((VJ f c ), and

hence the mapping MK(D) 9 μ -> (VZ/)
fc( V^ )̂ € M(ϋ) is defined and continuous,

i.e., (Vχ)fc+1 is defined as a diffusion kernel, which contradicts our assump-

tion. This, Proposition 78 and (5.44) give (5.42), and (5.42) gives that

SC(L) c C~(D).

Next we consider the case where the assumption of (2) holds. We

remark that, for any yeD, the mapping

(5.45) M+(D) 3 {υdx; v e E0(L)} e vdx -> v(y) e R+

is lower semi-continuous. This follows from the existence of a sequence

(/,)£.! C Q(D) satisfying \\mn^fndx = εy (vaguely) and v(y) ̂  J v{z)fn{z)dz

for all i; e S(L) (see the proof of Corollary 73). Let u e SC(L). By using

Theorem 53, there exist a sequence (hn)^o C £Γ(L), a non-negative Borel

measure σ on (0, oo) with \dσ < oo and a bounded σ-measurable mapping

(0, oo) a ί -> wtcix e JE?0(AL) with Wί e E0(L; t) such that

(5.46) udx = Σ (V^A^dx) + Γ (utdx)dσ(t) .
71=0 JO

Hence Corollary 73 and (5.45) give that, for any x e D, (0, oo) 9 t ->

is σ-measurable and that

(5.47) u(x) = Σ GwAn(^) + Γ ut(x)dσ(t) .
0 JO

This fact, Proposition 78 and the unicity of (hn)n=0 imply the assertion (2).

It remains to show SC(L) c C°°(D) under the assumption of (2). Let n be

an integer ^iV/2 + 1 and put uw = ί tnutdσ(t). Then (-L) n ( f utdσ(t)dx)
Jo \ J o /

= vndx in the sense of distributions in D, i.e., vn is locally integrable.

Similarly as in Proposition 79, Gnvn e C(D)9 and | utdσ(t) = Gnvn (see
Jo

corollary 73). In the same manner, (—L)nue C(D) in the sense of distri-

buttons for all n ^ 1. This implies that utd(t) e C°°(D), and also, in the
Jo

same manner as in Proposition 79, Σn=& Gn~khn(x) is finite continuous in
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D (k = 0,1, •), Σn=o Gnhn e C°°(D). This completes the proof.

M. V. Noviskiϊ [15] discusses completely L-superharmonic functions in

the following setting. Let D be a bounded domain in RN (N ̂  2) of class

C M (λ > 0)20) and L be a uniformly elliptic differential operator of the

form

(5.48) Lu(x) = Σ aiJ(x)-^(x) + Σ bAx)^L(x) + c(x)u(x)

with coefficients e C°°(D), for u e C\D) and x = (xί9 x2, , Λ^) e D, where

αί;(x) = α^(x) and c(x) <; 0.

Evidently there exists the Green function G(x,y) oΐ L on D and we

have l i r n ^ G(x, y) = lima;^2 G(y, x) — 0 for any y € D and any 2 e 3D.
XQD xβD

Theorem 82 gives the main theorem of M.V. Noviskiϊ's paper [15].

COROLLARY 83. Let D be a bounded domain in RN (N^>2) of class

C M (λ > 0) and L be given in (5.58). Denote by φx a first eigen function

:>0, Φ 0 of L with zero conditions on 3D. A completely L-superharmonic

function u in D21) has the form

(5.49) u(x) = Σ\ - ~^—(χ,y)dμk(y) + cΨl(x),
k=o J dD dny

where d\dny denotes the outer normal derivative on 3D, μk is a non-nega-

tive measure on 3D (k = 0,1, ) and c is a non-negative constant. Further-

more (μk)ΐ=0 and c are uniquely determined.

LEMMA 84 (see, [15], Lemma 3). Under the same conditions as above,

a non-negative L-superharmonic function f in D is integrable if fe C2(D).

Proof of Corollary 83. Similarly as in [11], § 6, we may assume that

the kernel —(dldnv)G(x,y) on D X 3D is the Martin kernel for L and that

3D is the essential part of the Martin boundary. We remark that

(5.50) -l^^(χ,y) = - f Gk(x, z)^-(z,y)dz on D X 3D (k = 1,2, . . •)
on,, J on,,dny J dny

20) The domain D belongs to the class Ck>λ (λ > 0) if for an arbitrary #0 e dD there
exists a neighborhood of x0 in which dD is specified by an equation #i = /(#i,ίC2> ,
%i-i,Xi+i, ",%N)> where % = (xli%2> >%N)edD and / is a λ -times continuously differ-
entiable function, the fc-th derivatives of which satisfy a Holder condition with ex-
ponent λ > 0.

21) By Noviskii's definition, it is an infinitely differentiable function which satisfies
the condition (—L)nu(x) Ξ> 0, xeD, n = 0,1, .
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and that there exists a first eigen function φ^O, Φθ of L with zero
conditions on 3D (see [13], Theorem 7.10). Hence it suffices to show that
E0(L) = {aφ^aeR*}. Evidently E0(L)Bφ. By Proposition 79 and Lemma

84, we have, for any veE0(L), vdx< oo, so that Gnv is bounded if n^

Nj2 + 1, i.e., v is bounded, and hence lim^.^ Gv(y) — 0 for any x e 3D, i.e.,
yeD

l i m ^ v(y) = 0 for any x e 3D. Thus we see that, for any v e E0(L), v2dx < oo.
yeD J

It is also known that there exists a first eigen function ψf ^ 0, Φθ of L*

(see also [13], Theorem 7.10). Evidently ί (φΐfdx < oo. Let c* > 0 be the

eigen value of <p?. Then <pf = c*G*φf. For any υ ΦθeE0(L), there exists
c > 0 such that v = cGv, which implies that O O o n f l , Since

(5.51) f φ* vdx = c* f G*pf I ̂ Λ: = c* ί p*. Gi dx = — f pf vdx ,

we have c = c*, this implies that JEΌ(L) = ^(L c*). Thus we see that, for
any v e EJJL) and any real number t, φx — tv is also a first eigen function
of L with zero conditions on 3D. By remarking that any first eigen func-
tion of L with zero conditions on D takes always non-negative values or
non-positive values (see [13]), we obtain that, for any v e E0(L) v = aφι

with aeR+. This completes the proof.
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