FACTOR IDEALS OF SOME REPRESENTATION ALGEBRAS

W. D. WALLIS

(Received 19 December 1966)

Throughout this paper \mathscr{F} is an algebraically closed field of characteristic $p(\neq 0)$ and \mathscr{G} is a finite group whose order is divisible by p. We define in the usual way an \mathscr{F}-representation of \mathscr{G} (or $\mathscr{F} \mathscr{G}$-representation) and its corresponding module. The isomorphism class of the $\mathscr{F} \mathscr{G}$-representation module \mathscr{M} is written $\{\mathscr{M}\}$ or, where no confusion arises, $M . A(\mathscr{G})$ denotes the \mathscr{F}-representation algebra of \mathscr{G} over the complex field \mathscr{C} (as defined on pages 73 and 82 of [6]).
J. A. Green [6] and S. B. Conlon [5] have shown that $A(\mathscr{G})$ is semisimple if and only if the algebras $W_{\mathscr{G}}(\mathscr{G})$ (see Section 1) are all semisimple, where \mathscr{D} runs over the set of distinct (to within \mathscr{G}-conjugacy) p-subgroups of \mathscr{G}.

The semisimplicity of $W_{\mathscr{G}}(\mathscr{G})$ is known to hold when \mathscr{D} is cyclic and in the special case where $p=2$ and \mathscr{D} is a sylow subgroup of \mathscr{G} and is isomorphic to the elementary abelian group on two generators \mathscr{V}_{4}. I have considered the case where \mathscr{D} is this group but the sylow condition does not hold; it is shown that $W_{\mathscr{G}}(\mathscr{G})$ is semisimple when \mathscr{G} is the alternating group on six or seven symbols $\left(\mathscr{A}_{6}\right.$ or $\left.\mathscr{A}_{7}\right)$. It is also shown that $A\left(\mathscr{A}_{6}\right)$ is semisimple if and only if $A\left(\mathscr{A}_{7}\right)$ is. Use is made of Conlon's results. [3] on $A\left(\mathscr{V}_{4}\right)$ and $A\left(\mathscr{A}_{4}\right)$.

Section 1 of the paper is introductory. In the second section certain properties of alternating groups are indicated; the semisimplicity of $A\left(\mathscr{A}_{5}\right)$ is proven and those groups \mathscr{P} for which $W_{\mathscr{F}}\left(\mathscr{A}_{6}\right)$ is isomorphic to $W_{\mathscr{F}}\left(\mathscr{A}_{7}\right)$ are listed. The remainder of the paper is concerned with the semisimplicity of $W_{\boldsymbol{r}_{4}}\left(\mathscr{A}_{k}\right)$ for $k=6$ or 7 . Certain results derived in Section 3 concerning the decomposition of induced modules are applied in the next section to the \mathscr{V}_{4}-projective \mathscr{N}_{6} and \mathscr{N}_{7}-modules $\left(\mathscr{N}_{k}\right.$ is the \mathscr{A}_{k}-normalizer of $\left.\mathscr{V}_{4}\right)$; the generators of $A_{\mathscr{r}_{t}}\left(\mathscr{N}_{k}\right)$ modulo the projective ideal are calculated. In the final sections the structures of $W_{\boldsymbol{V}_{4}}\left(\mathscr{N}_{6}\right)$ and $W_{\boldsymbol{r}_{4}}\left(\mathscr{N}_{7}\right)$ are found; semisimplicity follows.

This research was carried out at the University of Sydney. I wish to express my thanks to Dr. S. B. Conlon for his help with this work.

1. Properties of representation algebras

We shall say an algebra \mathscr{A} over the complex field \mathscr{C} is semisimple ${ }^{1}$ if, for every non-zero element A of \mathscr{A}, there is an algebra homomorphism $\phi_{A}: \mathscr{A} \rightarrow \mathscr{C}$, with $A \phi_{A} \neq 0 .{ }^{2}$ If the radical of \mathscr{A} is defined as the intersection $\cap \mathscr{M}$ of the maximal ideals \mathscr{M} of \mathscr{A}, such that $\mathscr{A} / \mathscr{M} \cong \mathscr{C}$, then a necessary and sufficient condition for the semisimplicity of \mathscr{A} is that \mathscr{A} should have zero radical. ${ }^{3}$

If $A(\mathscr{G})$ is as defined above, and $\mathscr{D} \leqq \mathscr{G}$, we define $A_{\mathscr{G}}{ }^{(\mathscr{G})}$ and $W_{\mathscr{G}}(\mathscr{G})$ as in [6]. We write $W_{s}(\mathscr{G})=A_{s}(\mathscr{G})$ where \mathscr{I} is the group with one element. It should be noted that $W_{\mathscr{g}}(\mathscr{G})$ is trivial unless \mathscr{D} is a p-group.

If \mathscr{H} is a subgroup of \mathscr{G}, then the following results hold:
(1) Theorem [5]. $A_{\nrightarrow}(\mathscr{G}) \cong \oplus W_{\mathscr{g}}(\mathscr{G})$, where \oplus is the algebra direct sum over all the non- \mathscr{G}-conjugate p-subgroups \mathscr{D} of \mathscr{G} with $\mathscr{D} \leqq{ }_{g} \mathscr{H}$.
(2) Corollary. $A_{\nsim}(\mathscr{G})$ is semisimple if and only if each $W_{\mathscr{G}}(\mathscr{G})$ is.

It follows from (1) and (2) that to discuss semisimplicity we need only discuss the semisimplicity of the algebras W. We make use of the following result.
(3) Theorem [6, p. 81]. If $\mathscr{D} \leqq \mathscr{N} \leqq \mathscr{H} \leqq \mathscr{G}$, where \mathscr{N} is the \mathscr{G} normalizer of \mathscr{D}, then

$$
W_{\mathscr{G}}(\mathscr{H}) \cong W_{\mathscr{G}}(\mathscr{G}) .
$$

In other words we need only consider the normalizer of \mathscr{D} in \mathscr{G}, rather than \mathscr{G}.
$W_{\mathscr{S}}(\mathscr{G})$ is always semisimple; in fact as \mathscr{F} is algebraically closed it is the direct sum of r copies of \mathscr{C} where r is the number of p-regular conjugacy classes in $\mathscr{G}[3, \mathrm{p} .85]$.

Finally we note that there is no loss of generality in considering \mathscr{F} algebraically closed. If it were not, then let $\mathscr{F} *$ be the closure of \mathscr{F}, and write $A^{*}(\mathscr{G}), W_{\mathscr{Q}}^{*}(\mathscr{G})$ for the algebras derived in this case. Then from p. 80 of [4] we see that the semisimplicity of A^{*} (or W^{*}) ensures that of A (or W).

2. Alternating groups

If we take \mathscr{A}_{r} as a permutation group on the first r positive integers in the usual way we can write $\mathscr{A}_{r-1}<\mathscr{A}_{r}$, where \mathscr{A}_{r-1} is obtained by omitting all elements of \mathscr{A}_{r} which properly permute one specific integer.

[^0]Suppose $\mathscr{D} \leqq \mathscr{A}_{r-1}$ and suppose the normalizer $\mathscr{N}\left(\mathscr{D} ; \mathscr{A}_{r}\right)$ of \mathscr{D} in \mathscr{A}_{r} satisfies $\mathscr{N}\left(\mathscr{D} ; \mathscr{A}_{r}\right) \leqq \mathscr{A}_{r-1}$. Then, by (3),

$$
W_{\mathscr{G}}\left(\mathscr{A}_{r}\right) \cong W_{\mathscr{A}}\left(\mathscr{A}_{r-1}\right) .
$$

This sort of result interests us because it provides a link between $A\left(\mathscr{A}_{r}\right)$ and $A\left(\mathscr{A}_{r-1}\right)$, so we will investigate when these conditions hold. To do this we introduce the idea of a permutation acting on an integer.

We say the permutation P acts on the integer i if, when P is considered as a mapping of the integers, $P(i) \neq i$, and a subgroup $\mathscr{P}<\mathscr{A}_{r}$ acts on i if there is a member of \mathscr{P} which acts on i. Thus the positive integers $\leqq r$ are divided into two disjoint classes: $\alpha_{r}(\mathscr{P})$, the set of integers acted on by \mathscr{P}, and $\beta_{r}(\mathscr{P})$, the set of integers invariant under \mathscr{P}. Then it is easy to see that $\mathscr{N}\left(\mathscr{P} ; \mathscr{A}_{r}\right)$ consists those even permutations N of the form $N=N_{1} N_{2}$, where $N_{1} \in \mathscr{N}\left(\mathscr{P} ; \mathscr{S}_{a}\right)$ and $N_{2} \in \mathscr{S}_{r-a}, a$ being the order of $\alpha_{r}(\mathscr{P}), \mathscr{S}_{a}$ the symmetric group on the elements of $\alpha_{r}(\mathscr{P})$, and \mathscr{S}_{r-a} the symmetric group on the elements of $\beta_{r}(\mathscr{P})$.

If $a=r-1$ then \mathscr{S}_{r-a} consists the identity element only, and in this case $\mathscr{N}\left(\mathscr{P} ; \mathscr{A}_{r}\right)=\mathscr{N}\left(\mathscr{P} ; \mathscr{A}_{r-1}\right) \leqq \mathscr{A}_{r-1}$. This is the condition we wanted.
(4) Theorem. If \mathscr{P} is a subgroup of $\mathscr{A}_{p n+1}$ which acts on $p n$ symbols then

$$
\mathscr{N}\left(\mathscr{P} ; \mathscr{A}_{p n+1}\right)=\mathscr{N}\left(\mathscr{P} ; \mathscr{A}_{p n}\right)
$$

and so

$$
W_{\mathscr{g}}\left(\mathscr{A}_{p n+1}\right) \cong W_{\mathscr{g}}\left(\mathscr{A}_{p n}\right) .
$$

$\left(\mathscr{A}_{p n}\right.$ is the alternating group on the symbols acted on by $\left.\mathscr{P}\right)$.
We have considered \mathscr{P} acting on $n p$ symbols because of the following result:
(5) Lemma. If \mathscr{P} is a permutation group of order p^{m}, where p is prime, then \mathscr{P} acts on exactly pn symbols for some integer n.

Proof. Consider the orbit $\mathscr{P}(i)$ of the symbol i under \mathscr{P}.

$$
\mathscr{P}(i)=\{j: P(i)=j \text { for some } P \in \mathscr{P}\} .
$$

Then, by theorem 3.2 on p. 5 of [9], the order $|\mathscr{P}(i)|$ of $\mathscr{P}(i)$ divides that of \mathscr{P}. From the fact that \mathscr{P} is a p-group, $|\mathscr{P}(i)|$ must be a power of p.

The set of symbols acted upon by \mathscr{P} is, by definition,

$$
\{i:|\mathscr{P}(i)| \neq 1\},
$$

that is

$$
\cup \mathscr{P}(j),
$$

the union being taken over all j such that $|\mathscr{P}(j)| \neq 1$. Since any two distinct orbits are disjoint, this set has order

$$
\sum|\mathscr{P}(j)|,
$$

and every term in the sum is a power of p, not p^{0}. Thus p divides the sum, giving the result, except for the trivial case where \mathscr{P} acts on no symbols, in which case $m=0$ and we can put $n=0$.

In particular a sylow p - subgroup of \mathscr{A}_{r} must act on $n p$ symbols where n is the largest integer such that $n p \leqq r$, so a sylow p-subgroup of $\mathscr{A}_{p n+1}$ acts on exactly $p n$ symbols and satisfies the conditions of (4).

We shall consider the case $p=2$. With $n=2$ we can apply (4) to \mathscr{A}_{4} and \mathscr{A}_{5}. Every 2 -subgroup of \mathscr{A}_{5} except \mathscr{I} acts on $4(=p n)$ symbols, so if \mathscr{P} is such a group,

$$
W_{\mathscr{F}}\left(\mathscr{A}_{5}\right) \cong W_{\mathscr{g}}\left(\mathscr{A}_{4}\right) .
$$

$A\left(\mathscr{A}_{4}\right)$ is semisimple [3, p. 97], so each $W_{g}\left(\mathscr{A}_{4}\right)$ is semisimple by (2), and so each $W_{\mathscr{g}}\left(\mathscr{A}_{5}\right)$ is semisimple. Moreover $W_{\mathcal{F}}\left(\mathscr{A}_{5}\right)$ is semisimple. As any 2-subgroup of \mathscr{A}_{5} is of the same type as \mathscr{P} or is \mathscr{I}, we see by (2) that $A\left(\mathscr{A}_{5}\right)$ is semisimple.

If $n=3$ we have \mathscr{A}_{6} and \mathscr{A}_{7}. If we write

$$
\begin{array}{lll}
U=(13)(24) & X=(123) & Z=(1234)(56) \\
V=(14)(23) & Y=(567) & T=(12)(56)
\end{array}
$$

then the distinct 2 -subgroups of \mathscr{A}_{7} are $\mathscr{I}, \mathscr{Z}_{2}, \mathscr{V}, \mathscr{V}^{\prime}, \mathscr{X}_{4}$ and \mathscr{P}, and their \mathscr{A}_{7}-conjugates, where

$$
\begin{aligned}
\mathscr{P}_{2} & =\langle U\rangle \\
\mathscr{V} & =\langle U, V\rangle \\
\mathscr{V}^{\prime} & =\langle U V, T\rangle \\
\mathscr{P}_{4} & =\langle Z\rangle \\
\mathscr{P} & =\langle Z, V\rangle .
\end{aligned}
$$

These are also the 2 -subgroups of \mathscr{A}_{6}.
We shall prove that $W_{\mathscr{r}}\left(\mathscr{A}_{6}\right)$ and $W_{\mathscr{r}}\left(\mathscr{A}_{7}\right)$ are semisimple. That $W_{\mathscr{g}}(\mathscr{G})$ is semisimple when $\mathscr{D}=\mathscr{I}$ has already been noted; that it is so when \mathscr{D} is cyclic has been shown in [8]. From (4) we see that

$$
W_{\boldsymbol{\gamma}^{\prime}}\left(\mathscr{A}_{6}\right) \cong W_{\boldsymbol{\vartheta}^{\prime}}\left(\mathscr{A}_{7}\right) \text { and } W_{\mathscr{g}}\left(\mathscr{A}_{6}\right) \cong W_{\mathscr{g}}\left(\mathscr{A}_{7}\right),
$$

since both these subgroups act on $\mathbf{6}(=n p)$ symbols. Collecting these results and applying (2) we see that $A\left(\mathscr{A}_{7}\right)$ is semisimple if and only if $A\left(\mathscr{A}_{6}\right)$ is.

Even more can be said. There is an isomorphism between $\mathscr{N}\left(\mathscr{V} ; \mathscr{A}_{6}\right)$ and $\mathscr{N}\left(\mathscr{V}^{\prime} ; \mathscr{A}_{6}\right)$ which carries \mathscr{V} onto \mathscr{V}^{\prime}, and so $W_{\mathscr{V}^{\prime}}\left(\mathscr{A}_{6}\right) \cong W_{\mathscr{V}}\left(\mathscr{A}_{6}\right)$ and is semisimple. Therefore $A\left(\mathscr{A}_{6}\right)$ and $A\left(\mathscr{A}_{7}\right)$ are semisimple if and only if $W_{\mathscr{F}}\left(\mathscr{A}_{6}\right)$ is. As $\mathscr{N}\left(\mathscr{P} ; \mathscr{A}_{6}\right)$ is \mathscr{P}, we can say $A\left(\mathscr{A}_{6}\right)$ and $A\left(\mathscr{A}_{7}\right)$ are semisimple if and only if $W_{\mathscr{g}}(\mathscr{P})$ is semisimple.

It remains to show that $W_{\mathscr{V}}\left(\mathscr{A}_{6}\right)$ and $W_{\mathscr{V}}\left(\mathscr{A}_{7}\right)$ are semisimple. By (3) we need only consider $W_{\mathscr{r}}\left(\mathscr{N}_{8}\right)$ and $W_{\boldsymbol{r}}\left(\mathscr{N}_{7}\right)$ where \mathscr{N}_{r} is $\mathscr{N}\left(\mathscr{V} ; \mathscr{A}_{r}\right)$ and

$$
\begin{aligned}
& \mathscr{N}_{6}=\langle U, V, X, T\rangle, \\
& \mathscr{N}_{7}=\langle U, V, X, T, Y\rangle .
\end{aligned}
$$

3. Decomposition of induced modules

Suppose \mathscr{H} is a normal subgroup of \mathscr{G}, and let \mathscr{L} be an indecomposable $\mathscr{F} \mathscr{H}$-representation module with \mathscr{G}-stabilizer \mathscr{S}. Then we know [2, p. 162] that $\mathscr{L}^{\mathscr{S}}$ decomposes as does a certain twisted group algebra $\mathscr{I}(\mathscr{S} \mid \mathscr{H})$ on $\mathscr{S} \mid \mathscr{H}$ over \mathscr{F}. To be specific, suppose $\mathscr{L}^{\mathscr{y}} \cong \mathscr{L}_{1} \oplus \mathscr{L}_{2} \oplus \cdots \oplus \mathscr{L}_{m}$ and $\mathscr{I}(\mathscr{S} \mid \mathscr{H}) \cong \mathscr{I}_{1} \oplus \mathscr{I}_{2} \oplus \cdots \oplus \mathscr{I}_{n}$, where the \mathscr{L}_{i} are indecomposable submodules and the \mathscr{I}_{i} are indecomposable left ideals. Then we can reorder the \mathscr{I}_{i} so that

$$
\begin{align*}
m & =n \\
\mathscr{L}_{i} & \cong \mathscr{L}_{j} \text { if and only if } \mathscr{I}_{i} \cong \mathscr{I}_{j} \tag{6}\\
\operatorname{dim}_{\mathscr{F}} \mathscr{L}_{i} & =\operatorname{dim}_{\mathscr{F}} \mathscr{I}_{i} \cdot \operatorname{dim}_{\mathscr{F}} \mathscr{L} .
\end{align*}
$$

Furthermore \mathscr{L}_{i}^{*} is indecomposable.
(7) Theorem. If $\mathscr{S}=\mathscr{H} \times \mathscr{W}$, then

$$
\mathscr{L}^{\mathscr{L}} \cong \stackrel{n}{\oplus} \mathscr{W}_{i} \otimes_{\mathcal{F}} \mathbb{L}^{\mathscr{L}}
$$

is a decomposition into indecomposables, where

$$
\mathscr{F} \mathscr{W}=\stackrel{h}{\oplus} \mathscr{1}_{i}
$$

is a decomposition into indecomposable left ideals. $\left(\mathscr{W}_{i} \otimes_{{ }_{\mathcal{F}} \mathscr{X}^{\mathscr{L}}}\right.$ is defined as the subset of $\mathscr{F} \mathscr{S} \otimes \mathscr{F}_{\mathscr{L}} \mathscr{L}$ consisting of the elements $W \otimes L$, where $W \in \mathscr{W}_{i}$ and $L \in \mathscr{L}$. .)

Proof. It is clear that the sum is direct and equals $\mathscr{L}^{\mathscr{S}}$ and that the summands are $\mathscr{F} \mathscr{S}$-representation modules. $\mathscr{I}(\mathscr{T} \mid \mathscr{H})$ is $\mathscr{F}(\mathscr{S} \mid \mathscr{H})$ in this case, so by (6) $\mathscr{L}^{\mathscr{G}}$ must split into exactly h indecomposable parts. By the Krull-Schmidt theorem these must be the $\mathscr{W}_{i} \otimes \mathscr{L}$.

Write \mathscr{X} for the alternating group on $\{5,6, \cdots, k\}$. Then (7) applies when $\mathscr{G}=\mathscr{V} \times \mathscr{X}$ or $\mathscr{A}_{4} \times \mathscr{X}$, which are the cases we will need.

4. \mathscr{V}-projective representations of $\mathscr{N}_{\boldsymbol{k}}$

The indecomposable \mathscr{V}-projective $\mathscr{F} \mathscr{N}_{k}$-representation modules are just the indecomposable parts of the modules $\mathscr{L}^{\mathfrak{N}_{k}}$ where \mathscr{L} is an $\mathscr{F} \mathscr{V}$ representation module.

The indecomposable $\mathscr{F} \mathscr{V}$-representation module isomorphism classes are known ([1], [7]). In the notation of Conlon [3] the classes are A_{0}, $A_{n}, B_{n}, C_{n}(f)$ and D, where n ranges through the positive integers and f through $\mathscr{F} \cup\{\infty\}$. Typical representations are given on pp. 86-7 of [3]; we shall denote this representative of A_{n} by \mathscr{A}_{n}, and similarly for the others. The stabilizers are given in (8):

Module	Generators of Stabilizer	
	$\operatorname{in} \mathscr{N}_{0}$	$\operatorname{in} \mathscr{N}_{7}$
$\mathscr{A}_{n}, \mathscr{B}_{n}, \mathscr{O}$	U, V, X, T	U, V, X, T, Y
$\mathscr{C}_{n}(0)$	$U V, T X$	$U, V, T X, Y$
$\mathscr{C}_{n}(1)$	U, V, T	U, V, T, Y
$\mathscr{C}_{n}(\infty)$	$U, V, T X^{2}$	$U, V, T X^{2}, Y$
$\mathscr{C}_{n}(\omega), \mathscr{C}_{n}\left(\omega^{2}\right)$	U, V, X	U, V, X, Y
$\mathscr{C}_{n}(f)$	U, V	U, V, Y

where ω is a primitive cube root of unity in \mathscr{F} and f ranges over all values not already listed. The stabilizer in \mathscr{N}_{k} may be derived from that in \mathscr{N}_{6} as noted in Section 3.

The representations of \mathscr{A}_{4} are also known [3]; their classes are \bar{A}_{0}^{a}, $\bar{A}_{n}^{a}, B_{n}^{a}, \bar{C}_{n}^{a}(g), C_{n}^{*}(f), D^{a}$, where n ranges through the positive integers, a through the integers modulo $3, g$ through $\left\{\omega, \omega^{2}\right\}$ and f through a set of representatives of the equivalence classes of \mathscr{F} under the relation

$$
f \sim 1+\frac{1}{f} \sim \frac{1}{1+f}, \quad \text { except } \omega \text { and } \omega^{2} .
$$

If we write $\overline{\mathscr{A}}_{n}^{a}$ for a representative module of the class \bar{A}_{n}^{a}, and so on, then $\overline{\mathscr{L}}^{a}$ may be taken as an extension of $\mathscr{L} ; \overline{\mathscr{C}}_{n}^{*}(f)$ may be taken as $\left(\mathscr{C}_{n}(f)\right)^{\mathscr{C}_{4}}$. We follow Conlon's convention that $\overline{\mathcal{A}}_{0}^{a}$ yields the representation
and

$$
U \rightarrow 1, V \rightarrow 1, X \rightarrow \omega^{a}
$$

$$
\overline{\mathscr{A}}_{0}^{a} \otimes \overline{\mathscr{L}}^{b} \cong \overline{\mathscr{L}}^{a+b} .
$$

Then if $\overline{\mathscr{L}}^{0}$ gives the representation $X \rightarrow \lambda(X)$, $\overline{\mathscr{L}}^{a}$ gives $X \rightarrow \omega^{a} \lambda(X)$. Suitable matrices $\lambda(X)$ are known [3] for all cases except $\mathscr{C}_{n}(\omega)$ and $\mathscr{C}_{n}\left(\omega^{2}\right)$; and the author has found that a suitable matrix to extend $\mathscr{C}_{n}(\omega)$ is $M_{1} \oplus M_{2}$, where

$$
\begin{aligned}
& M_{1} \text { has }(i, j) \text { element } \omega^{i+j+1}\binom{i-2}{j-2} \\
& M_{2} \text { has }(i, j) \text { element } \omega^{i+j+2}\binom{i-1}{j-1}
\end{aligned}
$$

the binomial coefficients being evaluated over characteristic 2 and \oplus being direct sum of matrices. We take $\mathscr{C}_{0}^{n}(\omega)$ to be the extension with

$$
\lambda(X)=\omega^{2 n+2}\left(M_{1} \oplus M_{2}\right)
$$

and otherwise follow Conlon's choice for the particular extension of \mathscr{L} which will be labelled $\overline{\mathscr{L}}^{0}$.

If \mathscr{L} is an $\mathscr{F} \mathscr{V}$-representation module with stabilizer \mathscr{S} in \mathscr{N}_{k}, and \mathscr{X} is as before, the following conditions hold:

$$
\begin{aligned}
& \text { if } X \in \mathscr{S}, \mathscr{V} \triangleq \mathscr{A}_{4} \triangleq \mathscr{A}_{4} \times \mathscr{X} \triangleq \mathscr{P} \text {; } \\
& \text { if } X \notin \mathscr{S}, \quad \mathscr{V} \triangleq \mathscr{N} \times \mathscr{X} \triangleq \mathscr{S} \text {; }
\end{aligned}
$$

in both series equality holds in the last place if and only if $T \nsubseteq \mathscr{S}$.
Suppose $\mathscr{F X} \cong \oplus \mathscr{X}_{i}$ is a decomposition into indecomposable left ideals. Then, from (7), $\mathscr{L}^{\mathscr{} \times \mathscr{E}} \cong \oplus \mathscr{X}_{i} \otimes_{\mathscr{F}} \mathscr{L}$ is a decomposition into indecomposables. If $X \in \mathscr{S}$ then in every case

$$
\mathscr{L}^{\mathscr{N}_{4}} \cong \overline{\mathscr{L}}^{0} \oplus \overline{\mathscr{L}}^{1} \oplus \overline{\mathscr{L}}^{2}
$$

so

$$
\mathscr{L}^{x_{1} \times x} \cong \oplus_{a=0}^{2}\left(\overline{\mathscr{L}}^{a}\right)^{\mathscr{A}_{4} \times x}
$$

so using (7),

Again the direct summands are indecomposable.
Let \mathscr{M} be one of the direct summands in this last decomposition. $\mathscr{S} /\left(\mathscr{A}_{4} \times \mathscr{X}\right)$ has order 1 or 2 , and so its group algebra over \mathscr{F} is indecomposable. So $\mathscr{M}^{\mathscr{S}}$ is indecomposable. A similar result holds if $X \notin \mathscr{P}$. We have the following decompositions into indecomposables:

$$
\mathscr{L}^{\mathscr{S}} \cong \begin{cases}\oplus\left(\mathscr{X}_{i} \otimes_{\mathscr{F}} \mathscr{L}\right) & \text { if } X \notin \mathscr{S} \tag{9}\\ \underset{i=0}{\oplus} \underset{a=0}{2}\left(\mathscr{X}_{i} \otimes_{\mathscr{F} \mathscr{A}_{4}} \overline{\mathscr{L}}^{a}\right)^{\mathscr{S}} & \text { if } X \in \mathscr{S}\end{cases}
$$

The calculation of the isomorphism-classes of \mathscr{V}-projective $\mathscr{F}_{\mathcal{N}_{k}}$-representation modules is now an easy task, using the last part of (6).

For \mathscr{N}_{7} we find that the classes are $A_{0}^{a, b}, A_{n}^{a, b}, B_{n}^{a, b}, C_{n}^{a, b}(\omega), C_{n}^{*, b}(f)$ and $D^{a, b}$, where a and b range through the integers modulo $3, n$ through the positive integers and f through the elements of $\mathscr{F} \cup\{\infty\}$ other than ω and ω^{2}. The following identities hold:

$$
\begin{aligned}
& A_{0}^{a, b}=A_{0}^{2 a, 2 b}, \quad A_{n}^{a, b}=A_{n}^{2 a, 2 b}, \quad B_{n}^{a, b}=B_{n}^{2 a, 2 b}, D^{a, b}=D^{2 a, 2 b} \\
& C_{n}^{*, b}(f)=C_{n}^{*, b}(g)=C_{n}^{*, 2 b}(h) \text { when } g=1+\frac{1}{f} \text { or } \frac{1}{1+f} \\
& h=\frac{1}{f} \text { or } \frac{f}{1+f} \text { or } 1+f^{5}
\end{aligned}
$$

The classes for \mathscr{N}_{6} are just those for \mathscr{N}_{7} with all reference to b dropped (we write, for example, $A_{0}^{a}, C_{n}^{*}(f)$) and with $L^{a}=L^{d}$ whenever $L^{a, 0}=L^{d, 0}$. We use the convention that

$$
\left(L^{a, b}\right)_{\mathscr{N}_{B}}=L^{a}, \quad\left(L^{a}\right)_{\mathscr{A}_{4}}=L^{a}+L^{2 a}
$$

The representation matrices for typical members of the $\mathscr{F}_{\mathscr{N}_{7}}$-classes are shown in (10) in terms of the corresponding $\mathscr{F} \mathscr{A}_{4}$ representation with superscript 0 . These corresponding representation matrices are denoted by λ. The table also shows the $\mathscr{F} \mathscr{V}$-class from which each $\mathscr{F} \mathscr{N}_{7}$-class is obtained and the dimension of square block-matrices involved. The $\mathscr{F} \mathscr{N}_{6}$ representations are found by deleting the matrix for Y.

$\mathscr{F} \mathscr{N}_{7}$-class	$A_{n}^{a, b}, \quad B_{n}^{a, b}$	$C_{n}^{a, b}(\omega)$	$C_{n}^{*, b}(f)$
Corresponding $\mathscr{F} \mathscr{V}$-class	A_{n}, B_{n}	$C_{n}(\omega)$	$C_{n}(f)$
Block size	$2 n+1$	$2 n$	$6 n$
Matrix for U	$\left[\begin{array}{ll}\lambda(U) & 0 \\ 0 & \lambda(V)\end{array}\right]$	$\left[\begin{array}{ll}\lambda(U) & 0 \\ 0 & \lambda(V)\end{array}\right]$	$\left[\begin{array}{ll}\lambda(U) & 0 \\ 0 & \lambda(V)\end{array}\right]$
V	$\left[\begin{array}{ll}\lambda(V) & 0 \\ 0 & \lambda(U)\end{array}\right]$	$\left[\begin{array}{ll}\lambda(V) & 0 \\ 0 & \lambda(U)\end{array}\right]$	$\left[\begin{array}{ll}\lambda(V) & 0 \\ 0 & \lambda(U)\end{array}\right]$
X	$\left[\begin{array}{ll}\omega^{a} \lambda(X) & 0 \\ 0 & \omega^{2 a} \lambda(X)^{2}\end{array}\right]$	$\left[\begin{array}{ll}\omega^{a} \lambda(X) & 0 \\ 0 & \omega^{2 a} \lambda(X)^{2}\end{array}\right]$	$\left[\begin{array}{ll}\lambda(X) & 0 \\ 0 & \lambda(X)^{2}\end{array}\right]$
T	$\left[\begin{array}{ll}0 & I \\ I & 0\end{array}\right]$	$\left[\begin{array}{ll}0 & I \\ I & 0\end{array}\right]$	$\left[\begin{array}{ll}0 & I \\ I & 0\end{array}\right]$
Y	$\left[\begin{array}{ll}\omega^{b} I & 0 \\ 0 & \omega^{2 b} I\end{array}\right]$	$\left[\begin{array}{ll}\omega^{\text {b }} I & 0 \\ 0 & \omega^{2 b}{ }^{2}\end{array}\right]$	$\left[\begin{array}{ll}\omega^{b} I & 0 \\ 0 & \omega^{2 b} I\end{array}\right]$

[^1]
5. Multiplication of module classes

The multiplication of module classes is defined in the usual way: If L is $\{\mathscr{L}\}$ and M is $\{\mathscr{M}\}$, then $L M$ is $\{\mathscr{L} \otimes \mathscr{M}\}$.

We shall consider the multiplication of $\mathscr{F} \mathscr{N}_{6}$-classes modulo $W_{\boldsymbol{g}}(\mathscr{G})$. The effect is that of putting $D^{a}=0$, since $W_{\mathscr{S}}(\mathscr{G})$ is a direct summand of $A_{\nsim}(\mathscr{G})$ for any \mathscr{G} and any $\mathscr{H} \leqq \mathscr{G},{ }^{6}$ so there is no confusion in writing L for $L+W_{g}\left(\mathscr{N}_{6}\right)$.

The multiplications for \mathscr{V} and \mathscr{A}_{4} are given in propositions 2-4 of [1] ${ }^{7}$ and equations (6), (7), (9) and (11)-(16) of [3]. However we can be more specific about $\bar{C}_{n}^{a}(\omega)$. The convention of Section 4 yields upon a direct calculation the following result when $n \geqq m \geqq 1$:

$$
\begin{align*}
\bar{C}_{m}^{0}(\omega) \bar{C}_{n}^{0}(\omega) & =2 \bar{C}_{m}^{0}(\omega) & \text { if } n \equiv 2(\bmod 3) \tag{11}\\
& =\bar{C}_{m}^{1}(\omega)+\bar{C}_{m}^{2}(\omega) & \text { if } n \neq 2(\bmod 3) .
\end{align*}
$$

(This replaces equations (13) and (14) of [3].)
From these results, the distributive law and the law

$$
\mathscr{L}^{r_{0}} \otimes \mathscr{M} \cong\left(\mathscr{L} \otimes \mathscr{M}_{s_{4}}\right)^{N_{s}},
$$

where \mathscr{L} is an $\mathscr{F} \mathscr{A}_{4}$-representation module and \mathscr{M} is an $\mathscr{F} \mathscr{N}_{6}$-representation module, we can calculate the products of $\mathscr{F} \mathscr{N}_{6}$-classes. We introduce two points of notation: we write $L^{N_{s}}$ for the class $\left\{\overline{\mathscr{L}}^{r_{0}}\right\}$; and we write $f \approx g$ whenever $f \sim g$ or $f \sim 1 / g$, that is whenever f and g are members of the same set of cross-ratios. Example calculations are

$$
\begin{aligned}
A_{n}^{a} A_{m}^{b} & =\left[\left(\bar{A}_{n}^{a}+\bar{A}_{n}^{2 a}\right) \bar{A}_{m}^{b}\right]^{\mathscr{N}_{s}} \\
& =\left(\bar{A}_{n+m}^{a+b}+\bar{A}_{n+m}^{2 a+b}\right)^{\mathcal{N}_{0}} \\
& =A_{n+m}^{a+b}+A_{n+m}^{2 a+b}
\end{aligned}
$$

and, if $m \leqq n$ and $\dagger \not \approx 1$,

$$
\begin{aligned}
C_{n}^{*}(f) C_{m}^{*}(g) & =\left[\left(\bar{C}_{n}^{*}(f)+\bar{C}_{n}^{*}(1 / f)\right) \bar{C}_{m}^{*}(g)\right]^{N_{0}} \\
& = \begin{cases}2 C_{m}^{*}(f) & \text { if } f \approx g, \\
0 & \text { if } f \not \approx g,\end{cases}
\end{aligned}
$$

except

$$
C_{1}^{*}(f) C_{\mathbf{1}}^{*}(f)=C_{2}^{*}(f) ;
$$

moreover

$$
\begin{aligned}
C_{n}^{*}(1) C_{m}^{*}(1) & =\left(2 C_{n}^{*}(1) C_{m}^{*}(1)\right)^{N_{0}} \\
& =4 C_{m}^{*}(1) .
\end{aligned}
$$

Similar calculations yield the following multiplication table:

[^2]| $m \leqq n$ | $A_{m}^{\text {b }}$ | B_{m}^{b} | $c_{m}^{b}(\omega)$ | $C_{m}^{*}(g), g \not \approx \omega \omega$ |
| :---: | :---: | :---: | :---: | :---: |
| A_{n}^{a} | $A_{n+m}^{a+b}+A_{n+m}^{2 a+b}$ | $A_{n-m}^{a+b}+A_{n-m}^{2 a+b}$ | $C_{m}^{a+b+n}(\omega)+C_{m}^{2 a+b+n}(\omega)$ | $2 C_{m}^{*}(g)$ |
| B_{n}^{a} | $B_{n-m}^{a+b}+B_{n-m}^{2 a+b}$ | $B_{n+m}^{a+b}+B_{n+m}^{2 a+b}$ | $C_{m}^{a+b+2 n}(\omega)+C_{m}^{2 a+b+2 n}(\omega)$ | $2 C_{m}^{*}(g)$ |
| $C_{n}^{a}(\omega)$ | $\begin{aligned} & C_{n}^{a+b+m}(\omega) \\ & \quad+C_{n}^{a+2 b+m}(\omega) \end{aligned}$ | $\begin{aligned} & C_{n}^{a+b+2 m}(\omega) \\ & +C_{n}^{a+2 b+2 m}(\omega) \end{aligned}$ | $\frac{C_{2}^{a+b}(\omega) \text { if } m=n=1}{2 C_{m}^{a+b}(\omega) \text { if } n \equiv 2(\bmod 3)}$
 if $n \not \equiv 2(\bmod 3)$
 when $n>1$ | 0 |
| $C_{n}^{*}(f)$ | $2 C_{n}^{*}(f)$ | $2 C_{n}^{*}(f)$ | 0 | 0 if $f \nsim \chi^{\prime}$ |
| $f \not \approx \omega$ | | | | 4C ${ }_{m}^{*}(1)$ if $f \approx g \approx 1$ |
| | | | | $\begin{aligned} & 2 C_{m}^{*}(f) \text { if } n \neq 1 \\ & C_{2}^{*}(f) \text { if } m=n=1 \\ & \text { when } t \approx g \not \approx 1 \end{aligned}$ |

We see from (12) that $\frac{1}{2} A_{0}^{0}$ is an identity element for the algebra $\mathscr{R}=A_{\mathscr{\gamma}}\left(\mathscr{N}_{6}\right) / W_{\boldsymbol{s}}\left(\mathscr{N}_{6}\right)$, and admits of the orthogonal idempotent decomposition $\frac{1}{2} A_{0}^{0}=J_{0}+J_{1}$, where

$$
\begin{gathered}
J_{0}=\frac{1}{6} A_{0}^{0}+\frac{1}{3} A_{0}^{1}, \\
J_{1}=\frac{1}{3} A_{0}^{0}-\frac{1}{3} A_{0}^{1} .
\end{gathered}
$$

Then

$$
\mathscr{R}=\mathscr{R} J_{0} \oplus \mathscr{R} J_{1} .
$$

Write $A_{n \alpha}=A_{n}^{0} J_{\alpha}, B_{n \alpha}=B_{n}^{0} J_{\alpha}, C_{n 0}=C_{n}^{0}(\omega) J_{0}, C_{n 1}^{a}=C_{n}^{a}(\omega) J_{1}$. Then the set of these elements (where α is 0 or 1 and a is any integer modulo 3), J_{0}, J_{1} and the distinct $C_{n}^{*}(f)$ together generate \mathscr{R}, since

$$
\begin{aligned}
A_{n}^{0} & =A_{n 0}+A_{n 1} \\
B_{n}^{0} & =B_{n 0}+B_{n 1} \\
A_{n}^{1} & =\frac{3}{4} A_{n 0}-\frac{3}{8} A_{n 1} \\
B_{n}^{1} & =\frac{3}{4} B_{n 0}-\frac{3}{8} B_{n 1} \\
C_{n}^{a}(\omega) & =C_{n 0}+C_{n 1}^{a} .
\end{aligned}
$$

Moreover the identity $C_{n 1}^{0}+C_{n 1}^{1}+C_{n 1}^{2}=0$ holds, and so we can drop $C_{n 1}^{0}$ from the list of generators.

Writing $X_{\alpha}=\frac{1}{2} A_{1 \alpha}$ we see that $A_{n \alpha}=2\left(X_{\alpha}\right)^{n}$ and $B_{n \alpha}=2\left(X_{\alpha}\right)^{-n}$,
so the set generated by all the $A_{n \alpha}$ and $B_{n \alpha}$ for a given α is isomorphic to $\mathscr{C}\left[X_{\alpha}, 1 / X_{\alpha}\right]$. If we write \mathscr{A}_{0} for the algebra generated by all the $C_{n}^{*}(f)$ and $C_{n 0}$, and \mathscr{A}_{1} for that generated by the $C_{n 1}^{a}$, then

$$
\begin{aligned}
& \mathscr{R} J_{0} \cong \mathscr{C}\left[X_{0}, 1 / X_{0}\right]+\mathscr{A}_{0} \\
& \mathscr{R} J_{1} \cong \mathscr{C}\left[X_{1}, 1 / X_{1}\right]+\mathscr{A}_{1},
\end{aligned}
$$

where \mathscr{A}_{α} is an ideal of $\mathscr{R} J_{\alpha}$.
We next set up orthogonal idempotents which generate \mathscr{A}_{0} and \mathscr{A}_{1}. For \mathscr{A}_{0} we use

$$
\begin{aligned}
I_{1}(1) & =\frac{1}{4} C_{1}^{*}(1), & & \\
I_{n}(1) & =\frac{1}{4}\left(C_{n}^{*}(1)-C_{n-1}^{*}(1)\right) & & \text { if } n>1, \\
I_{n}(\omega) & =\frac{1}{4}\left(C_{20}+(-1)^{n} \sqrt{ } 2 C_{10}\right) & & \text { if } n=1 \text { or } 2, \\
I_{n}(\omega) & =\frac{1}{2}\left(C_{n 0}-C_{n-1,0}\right) & & \text { if } n>2, \\
I_{n}(f) & =\frac{1}{4}\left(C_{2}^{*}(f)+(-1)^{n} C_{1}^{*}(f)\right) & & \text { i } n=1 \text { or } 2, f \not \approx 1, \\
I_{n}(f) & =\frac{1}{2}\left(C_{n}^{*}(f)-C_{n-1}^{*}(f)\right) & & \text { if } n>2, f \not \approx 1 .
\end{aligned}
$$

In each case, $\mathscr{R} I_{n}(f) \cong \mathscr{C} I_{n}(f)$.
To consider \mathscr{A}_{1} we set

$$
\begin{aligned}
& K_{n}^{a}=\frac{1}{4}\left(C_{21}^{a}+(-1)^{n} \sqrt{ } 2 C_{11}^{a}\right) \text { if } n=1 \text { or } 2, \\
& K_{n}^{a}=h_{n} C_{n 1}^{a}-h_{n-1} C_{n-1,1}^{a} \quad \text { if } n>2,
\end{aligned}
$$

where $h_{n}=\frac{1}{2}$ if $n \equiv 2(\bmod 3)$ and $h_{n}=-1$ otherwise.
The K_{n}^{0} are orthogonal and $\mathscr{R} K_{n}^{0} \cong \mathscr{C}\left[K_{n}^{0}, K_{n}^{1}, K_{n}^{2}\right]$. Since $K_{n}^{a} K_{n}^{b}=K_{n}^{a+b}$ and $K_{n}^{0}+K_{n}^{1}+K_{n}^{2}=0$ we see that if we put

$$
\begin{aligned}
& L_{n 0}=\frac{1}{3}\left(K_{n}^{0}+u K_{n}^{1}+u^{2} K_{n}^{2}\right), \\
& L_{n 1}=\frac{1}{3}\left(K_{n}^{0}+u^{2} K_{n}^{1}+u K_{n}^{2}\right),
\end{aligned}
$$

where u is a primitive cube root of unity in \mathscr{C}, then

$$
\mathscr{R} K_{n}^{0}=\mathscr{R} L_{n 0} \oplus \mathscr{R} L_{n 1} \text { and } \mathscr{R} L_{n \alpha} \cong \mathscr{C} L_{n \alpha} .
$$

From these we can find the structure of $\mathscr{R} . A_{\mathscr{\vartheta}}\left(\mathscr{N}_{6}\right) \cong \mathscr{R} \oplus W_{\boldsymbol{s}}\left(\mathscr{N}_{6}\right)$, and $W_{\boldsymbol{f}}\left(\mathscr{N}_{6}\right) \cong \mathscr{C} \oplus \mathscr{C}$, so $A_{\mathscr{V}}\left(\mathscr{N}_{6}\right)$ has the following form to within isomorphism:

$$
\begin{align*}
A_{\Downarrow}\left(\mathscr{N}_{6}\right) \cong & \left\{\mathscr{C}\left[X_{0}, 1 / X_{\mathbf{0}}\right]+\oplus_{\mathbf{1}} \mathscr{E} I_{n}(f)\right\} \\
& \oplus\left\{\mathscr{C}\left[X_{1}, 1 / X_{\mathbf{1}}\right]+\oplus_{\mathbf{2}} \mathscr{C} L_{n a}\right\} \tag{13}\\
& \oplus\{\mathscr{C} \oplus \mathscr{C}\}
\end{align*}
$$

where \oplus_{1} ranges over all positive integers n and all $f \in \mathscr{F} \cup\{\infty\}$ modulo the relation \approx, and \oplus_{2} ranges over the positive integers n and $\alpha=0,1$. The $I_{n}(f)$ and the $L_{n \alpha}$ are sets of orthogonal idempotents, and

$$
\begin{aligned}
X_{0} I_{n}(f) & =I_{n}(f), \\
X_{1} L_{n \alpha} & =u^{2 \alpha+2} L_{n \alpha} .
\end{aligned}
$$

We work similarly in the \mathscr{N}_{7} case. The \mathscr{V}-projective $\mathscr{F} \mathscr{N}_{7}$-representation module classes are considered modulo $W_{s}\left(\mathscr{N}_{7}\right)$, and find the following multiplication table for $\mathscr{S}=A_{\boldsymbol{r}}\left(\mathscr{N}_{7}\right) / W_{\boldsymbol{s}}\left(\mathscr{N}_{7}\right)$:

$m \leqq n$	$A_{m}^{\text {b,d }}$	$B_{m}^{b, d}$	$C_{m}^{b, d}(\omega)$	$C_{m}^{*, d}(g), g \not \approx \omega$
$A_{n}^{a, c}$	$A_{m+n}^{a+b, c+d}$	$A_{n-m}^{a+b, c+d}$	$C_{m}^{n+a+b, c+d}(\omega)$	$C_{m}^{*, c+d}(g)+C_{m}^{*, 2 c+d}(g)$
	$+A_{m+n}^{a+2 b, c+2 d}$	$+A_{n-m}^{a+2 b, c+2 d}$	$+C_{m}^{n+2 a+b, 2 c+d}(\omega)$	
$B_{n}^{a, c}$	$B_{n-m}^{a+b, c+d}$	$B_{n+m}^{a+b, c+d}$	$C_{m}^{2 n+a+b, c+d}(\omega)$	$C_{m}^{*, c+d}(g)+C_{m}^{*, 2 c+d}(g)$
	$+B_{n-m}^{a+2 b, c+2 d}$	$+B_{n+m}^{a+2 b, c+2 d}$	$+C_{m}^{2 n+2 a+b, 2 c+d}(\omega)$	
$C_{n}^{a, c}(\omega)$	$C_{n}^{m+a+b, c+d}(\omega)$	$C_{n}^{2 m+a+b, c+d}(\omega)$	if $n=m=1$,	0
	$+C_{n}^{m+a+2 b, c+2 d}(\omega)$	$+C_{n}^{2 m+a+2 b, c+2 d}(\omega)$	$C_{2}^{a+b, c+d}(\omega)$	
			$\begin{aligned} & \text { if } n \neq 1, n \equiv 2(\bmod 3) \\ & 2 C_{m}^{a+b, c+d}(\omega) \end{aligned}$	
			if $n \neq 1, n \neq 2(\bmod 3)$	
			$C_{m}^{a+b+1, c+d}(\omega)$	
			$+C_{m}^{a+b+2, c+d}(\omega)$	
$\begin{aligned} & C_{n}^{*, c}(f) \\ & t \neq \omega \end{aligned}$	$C_{n}^{*, c+d}(f)+C_{n}^{*, c+2 d}(f)$	$C_{n}^{*, c+d}(f)+C_{n}^{*, c+2 d}(f)$	0	0 if $f \not \approx \approx g$
				$2\left(C_{m}^{*, c+d}(1)+C_{m}^{*, 2 c+d}(1)\right)$
				if $t \approx g \approx 1$
				$\begin{gathered} C_{2}^{c+d}(f) \text { if } f \approx g \not \approx 1, \\ m=n=1 \end{gathered}$
				$\begin{aligned} & 2 C_{m}^{c+d}(f) \text { if } f \approx g \not \approx 1, \\ & n \neq 1 \end{aligned}$

Write $S=A_{0}^{0,1}+A_{0}^{1,0}+A_{0}^{1,2}$. The identity element $\frac{1}{2} A_{0}^{0,0}$ of \mathscr{S} admits of an orthogonal idempotent decomposition:

$$
\begin{aligned}
\frac{1}{2} A_{0}^{0,0} & =J_{0}+J_{10}+J_{01}+J_{11}+J_{12}, \\
J_{0} & =\frac{1}{18}\left(A_{0}^{0,0}+2 S\right) \\
J_{a b} & =\frac{1}{9}\left(A_{0}^{0,0}+3 A_{0}^{a, b}-S\right)
\end{aligned}
$$

We proceed much as before. It is clear that \mathscr{S} is generated by the J_{x} and the elements

$$
\begin{array}{rlrl}
A_{n x} & =A_{n}^{0,0} J_{x} & B_{n x} & =A_{n}^{0,0} J_{x} \\
C_{n, 0}(f) & =C_{n}^{*, 0}(f) J_{0} & C_{n, 10}^{a}(f) & =C_{n}^{*, a}(f) J_{10} \\
C_{n, 0}(\omega) & =C_{n}^{0,0}(\omega) J_{0} & C_{n, 10}^{a}(\omega) & =C_{n}^{0, a}(\omega) J_{10} \\
C_{n, x}^{a}(\omega) & =C_{n}^{a, 0}(\omega) J_{x}(x \neq 0,10), &
\end{array}
$$

where a ranges through the integers modulo $3, x$ through $\{0,01,10,11,12\}$ and f through the non-equivalent members of \mathscr{F} other than ω under the relation \approx.

Putting $Y_{x}=\frac{1}{2} A_{1 x}$ we obtain as before $A_{n, x}=2\left(Y_{x}\right)^{n}, B_{n, x}=2\left(Y_{x}\right)^{-n}$, and

$$
\mathscr{S} J_{x} \cong \mathscr{C}\left[Y_{x}, 1 / Y_{x}\right]+\mathscr{B}_{x}
$$

where \mathscr{B}_{x} is an ideal. We then write

$$
\begin{aligned}
I_{n}(f) & =\frac{1}{4}\left(C_{2,0}(f)+(-1)^{n} \sqrt{ } 2 C_{1,0}(f)\right) & & \text { if } n=1 \text { or } 2, \\
I_{n}(f) & =\frac{1}{2}\left(C_{n, 0}(f)-C_{n-1,0}(f)\right) & & \text { if } n>2, \\
K_{n, 10}^{a}(f) & =\frac{1}{4}\left(C_{2,10}^{a}(f)+(-1)^{n} \sqrt{ } 2 C_{1,10}(f)\right) & & \text { if } n=1 \text { or } 2 \text { and } f \nsim 1, \\
K_{n, 10}^{a}(f) & =\frac{1}{2}\left(C_{n, 10}^{a}(f)-C_{n-1,10}^{a}(f)\right) & & \text { if } n>2 \text { and } f \nsim 1, \\
K_{1,10}^{0}(1) & =\frac{1}{4} C_{1,10}^{0}(1) & & \\
K_{n, 10}^{0}(1) & =\frac{1}{4}\left(C_{n, 10}(1)-C_{n-1,10}(1)\right) & & \text { if } n \neq 1, \\
K_{n, x}^{a}(\omega) & =\frac{1}{4}\left(C_{2, x}^{a}(\omega)+(-1)^{n} \sqrt{ } 2 C_{1, x}^{a}(\omega)\right) & & \text { if } n=1 \text { or } 2 \\
K_{n, x}^{a}(\omega) & =h_{n} C_{n, x}^{a}(\omega)-h_{n-1} C_{n-1, x}^{a}(\omega) & & \text { if } n>2,
\end{aligned}
$$

where $x=01,11$ or 12 and h_{n} is defined as before. It is found that $\left\{I_{n}(f)\right\}$, $\left\{K_{n, 10}^{0}(f)\right\}$ and $\left\{K_{n, x}^{0}(\omega)\right\}$ are sets of orthogonal idempotents generating $\mathscr{B}_{0}, \mathscr{B}_{10}$ and $\mathscr{B}_{x} . \mathscr{S} I_{n}(f) \cong \mathscr{C} I_{n}(f)$ and $\mathscr{S} K_{n, 10}^{0}(1) \cong \mathscr{C} K_{n, 10}^{0}(1) ;$ in the other cases we find

$$
\mathscr{S} K_{n, x}^{0}(f) \cong \mathscr{C}\left[K_{n, x}^{0}(f), K_{n, x}^{1}(f), K_{n, x}^{2}(f)\right]
$$

so we put

$$
L_{n, \alpha, x}(f)=K_{n, x}^{0}(f)+u^{\alpha+1} K_{n, x}^{1}(f)+u^{2 \alpha+2} K_{n, x}^{2}(f)
$$

For convenience write $L_{n, 0,10}(1)=K_{n, 10}^{0}(1)$.
Proceeding as before we find $A_{\mathscr{r}}\left(\mathscr{N}_{7}\right)$ is

$$
\begin{align*}
A_{\boldsymbol{r}}\left(\mathscr{N}_{7}\right) & \cong\left\{\mathscr{C}\left[Y_{0}, 1 / Y_{0}\right]+\oplus_{1} \mathscr{C} I_{n}(f)\right\} \\
& \oplus\left\{\mathscr{C}\left[Y_{10}, 1 / Y_{10}\right]+\oplus_{2} \mathscr{C} L_{n, \alpha, 10}(f)\right\} \\
& \oplus \oplus_{3}\left\{\mathscr{C}\left[Y_{x}, 1 / Y_{x}\right]+\oplus_{4} L_{n, \alpha, x}(\omega)\right\} \tag{15}\\
& \oplus\{\mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C}\}
\end{align*}
$$

where \oplus_{1} is over all elements f of \mathscr{F}, modulo \approx, and all positive integers n,
\oplus_{2} is as \oplus_{1}, and also over $\alpha=0,1$, except for the case $f=1, \alpha=1$,
\oplus_{3} is over $x=01,10,12$,
\oplus_{4} is over all $n \geqq 1$ and $\alpha=0,1$, and we have

$$
\begin{aligned}
Y_{0} I_{n}(f) & =I_{n}(f) \\
Y_{10} L_{n, \alpha, 10}(f) & =L_{n, \alpha, 10}(f) \\
Y_{x} L_{n, \alpha, x}(\omega) & =u^{2 \alpha+2} L_{n, \alpha, x}(\omega) .
\end{aligned}
$$

The classes of \mathscr{Z}_{2}-projective \mathscr{V}-modules are D and $C_{1}(\mathbf{1})$. Therefore

$$
\begin{aligned}
& A_{\mathscr{F}_{2}}\left(\mathscr{N}_{6}\right) \cong \mathscr{C} I_{1}(1) \oplus \mathscr{C} \oplus \mathscr{C} \\
& A_{\mathscr{F}_{2}}\left(\mathscr{N}_{7}\right) \cong \mathscr{C} I_{1,0}(1) \oplus \mathscr{C} L_{1,0,10}(1) \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C},
\end{aligned}
$$

Thus $W_{\mathscr{r}}\left(\mathscr{N}_{6}\right) \cong \mathscr{R} \mid \mathscr{C} I_{1}(1) . I_{1}(1) \in \mathscr{R} J_{0}$, so we need only consider this factor. It can be split into two components, one of which is $\mathscr{C} I_{1}(1)$, by the idempotent decomposition

$$
\begin{aligned}
J_{0} & =I_{1}(1)+\left(J_{0}-I_{1}(1)\right) \\
& =I_{1}(1)+J_{0}, \text { say. }
\end{aligned}
$$

If we write $\bar{X}_{0}=X_{0} J_{0}$, then the decomposition of $\mathscr{R} J_{0}$ is just that of $\mathscr{R} J_{0}$ with X_{0} replaced by \bar{X}_{0}, and with the case $t=1, n=1$, dropped from the summation. Notice that $X_{0} I_{n}(f)=X_{0} I_{n}(f)$ except when $n=1$ and $f=1$. The same considerations apply to the \mathscr{N}_{7} case. Therefore when $k=6$ or 7 the form of $W_{\nu}\left(\mathcal{N}_{k}\right)$ is just that given in (13) or (15), provided that the final term consisting of copies of \mathscr{C} is omitted and that the case $n=1, t=1$, is dropped from all direct sums where it occurs.

6. Semisimplicity

It is now easy to see that $W_{\boldsymbol{\gamma}}\left(\mathscr{N}_{6}\right)$ and $W_{\boldsymbol{\gamma}}\left(\mathscr{N}_{7}\right)$ are semisimple. If \mathscr{A}_{1} is any algebra of the form

$$
\begin{equation*}
\mathscr{A}_{1}=\mathscr{C}[X, 1 / X]+\mathscr{B} \tag{16}
\end{equation*}
$$

where \mathscr{B} is an ideal of the form $\oplus \mathscr{C} I_{r}$ with r ranging through some indexing set, then \mathscr{A}_{1} is semisimple. ${ }^{8}$ It is clear that if $\mathscr{A}_{1} \oplus \mathscr{A}_{2} \oplus \cdots$ is a finite sum of semisimple algebras then it is semisimple. But both $W_{\mathscr{\gamma}}\left(\mathscr{N}_{6}\right)$ and $W_{\boldsymbol{\psi}}\left(\mathscr{N}_{7}\right)$ are of this form, where each \mathscr{A}_{i} has the form of \mathscr{A}_{1} in (16). Therefore we have the following result.
(17) Theorem. $W_{\boldsymbol{v}}\left(\mathscr{N}_{6}\right)$ and $W_{\boldsymbol{v}}\left(\mathscr{N}_{7}\right)$ are semisimple.

References

[1] V. A. Bašev, 'Representations of the group $Z_{\mathbf{2}} \times Z_{\mathbf{2}}$ into a field of characteristic 2', (Russian) Dokl. Akad. Nauk SSSR 141 (1961), 1015-1018.
[2] S. B. Conlon, 'Twisted group algebras and their representations', J. Aust. Math. Soc. 4 (1964), 152-173.

[^3][3] S. B. Conlon, 'Certain representation algebras', J. Aust. Math. Soc. 5 (1965), 83-99.
[4] S. B. Conlon, 'The modular representation algebra of groups with Sylow 2-subgroup $Z_{2} \times Z_{2}^{\prime}, J$. Aust. Math. Soc. 6 (1966), 76-88.
[5] S. B. Conlon, 'Structure in representation algebras', J. of Algebra 5 (1967), 274-279.
[6] J. A. Green, 'A transfer theorem for modular representations', J. of Algebra 1 (1964), 7384.
[7] A. Heller and I. Reiner, 'Indecomposable representations', Illinois J. Math. 5 (1961), 314323.
[8] M. F. O'Reilly, 'On the semisimplicity of the modular representation algebra of a finite group', Illinois J. Math. 9 (1965), 261-276.
[9] H. Wielandt, Finite permutation groups (Academic Press, 1964).

La Trobe University
 Melbourne

[^0]: ${ }^{1}$ Also called G-semisimple [3, p. 84].
 ${ }^{2}$ All mappings except permutations and representations are written on the right.
 ${ }^{3}$ See p. 84 of [3].

[^1]: 5 In particular $C_{n}^{*, b}(1)=C_{n}^{*, 2 b}(1)=C_{n}^{*, b}(0)=C_{n}^{*, b}(\infty)$

[^2]: ${ }^{6}$ This follows from Corollary 5 of [3].
 7 There is an error in Bašev's work - see p. 88 of [3].

[^3]: 8 The proof is an easy generalization of the proof of the Theorem on p. 90 of [3].

