FACTOR IDEALS OF SOME REPRESENTATION ALGEBRAS

W. D. WALLIS

(Received 19 December 1966)

Throughout this paper \mathscr{F} is an algebraically closed field of characteristic $p \ (\neq 0)$ and \mathscr{G} is a finite group whose order is divisible by p. We define in the usual way an \mathscr{F} -representation of \mathscr{G} (or $\mathscr{F}\mathscr{G}$ -representation) and its corresponding module. The isomorphism class of the $\mathscr{F}\mathscr{G}$ -representation module \mathscr{M} is written $\{\mathscr{M}\}$ or, where no confusion arises, M. $A(\mathscr{G})$ denotes the \mathscr{F} -representation algebra of \mathscr{G} over the complex field \mathscr{C} (as defined on pages 73 and 82 of [6]).

J. A. Green [6] and S. B. Conlon [5] have shown that $A(\mathscr{G})$ is semisimple if and only if the algebras $W_{\mathscr{G}}(\mathscr{G})$ (see Section 1) are all semisimple, where \mathscr{D} runs over the set of distinct (to within \mathscr{G} -conjugacy) p-subgroups of \mathscr{G} .

The semisimplicity of $W_{\mathcal{G}}(\mathscr{G})$ is known to hold when \mathscr{D} is cyclic and in the special case where p = 2 and \mathscr{D} is a sylow subgroup of \mathscr{G} and is isomorphic to the elementary abelian group on two generators \mathscr{V}_4 . I have considered the case where \mathscr{D} is this group but the sylow condition does not hold; it is shown that $W_{\mathcal{G}}(\mathscr{G})$ is semisimple when \mathscr{G} is the alternating group on six or seven symbols (\mathscr{A}_6 or \mathscr{A}_7). It is also shown that $A(\mathscr{A}_6)$ is semisimple if and only if $A(\mathscr{A}_7)$ is. Use is made of Conlon's results [3] on $A(\mathscr{V}_4)$ and $A(\mathscr{A}_4)$.

Section 1 of the paper is introductory. In the second section certain properties of alternating groups are indicated; the semisimplicity of $A(\mathscr{A}_5)$ is proven and those groups \mathscr{P} for which $W_{\mathscr{P}}(\mathscr{A}_6)$ is isomorphic to $W_{\mathscr{P}}(\mathscr{A}_7)$ are listed. The remainder of the paper is concerned with the semisimplicity of $W_{\mathscr{V}_4}(\mathscr{A}_k)$ for k = 6 or 7. Certain results derived in Section 3 concerning the decomposition of induced modules are applied in the next section to the \mathscr{V}_4 -projective \mathscr{N}_6 and \mathscr{N}_7 -modules (\mathscr{N}_k is the \mathscr{A}_k -normalizer of \mathscr{V}_4); the generators of $A_{\mathscr{V}_4}(\mathscr{N}_k)$ modulo the projective ideal are calculated. In the final sections the structures of $W_{\mathscr{V}_4}(\mathscr{N}_6)$ and $W_{\mathscr{V}_4}(\mathscr{N}_7)$ are found; semisimplicity follows.

This research was carried out at the University of Sydney. I wish to express my thanks to Dr. S. B. Conlon for his help with this work.

109

1. Properties of representation algebras

We shall say an algebra \mathscr{A} over the complex field \mathscr{C} is semisimple¹ if, for every non-zero element A of \mathscr{A} , there is an algebra homomorphism $\phi_A : \mathscr{A} \to \mathscr{C}$, with $A\phi_A \neq 0$.² If the radical of \mathscr{A} is defined as the intersection $\cap \mathscr{M}$ of the maximal ideals \mathscr{M} of \mathscr{A} , such that $\mathscr{A}/\mathscr{M} \cong \mathscr{C}$, then a necessary and sufficient condition for the semisimplicity of \mathscr{A} is that \mathscr{A} should have zero radical.³

If $A(\mathscr{G})$ is as defined above, and $\mathscr{D} \leq \mathscr{G}$, we define $A_{\mathscr{D}}(\mathscr{G})$ and $W_{\mathscr{D}}(\mathscr{G})$ as in [6]. We write $W_{\mathscr{J}}(\mathscr{G}) = A_{\mathscr{J}}(\mathscr{G})$ where \mathscr{I} is the group with one element. It should be noted that $W_{\mathscr{D}}(\mathscr{G})$ is trivial unless \mathscr{D} is a p-group.

If \mathscr{H} is a subgroup of \mathscr{G} , then the following results hold:

(1) THEOREM [5]. $A_{\mathscr{H}}(\mathscr{G}) \cong \bigoplus W_{\mathscr{G}}(\mathscr{G})$, where \oplus is the algebra direct sum over all the non- \mathscr{G} -conjugate p-subgroups \mathscr{D} of \mathscr{G} with $\mathscr{D} \leq {}_{\mathscr{H}}\mathscr{H}$.

(2) COROLLARY. $A_{\mathcal{F}}(\mathcal{G})$ is semisimple if and only if each $W_{\mathcal{G}}(\mathcal{G})$ is.

It follows from (1) and (2) that to discuss semisimplicity we need only discuss the semisimplicity of the algebras W. We make use of the following result.

(3) THEOREM [6, p. 81]. If $\mathscr{D} \leq \mathscr{N} \leq \mathscr{H} \leq \mathscr{G}$, where \mathscr{N} is the G-normalizer of \mathscr{D} , then

$$W_{\mathfrak{g}}(\mathscr{H}) \cong W_{\mathfrak{g}}(\mathscr{G}).$$

In other words we need only consider the normalizer of \mathscr{D} in \mathscr{G} , rather than \mathscr{G} .

 $W_{\mathcal{J}}(\mathscr{G})$ is always semisimple; in fact as \mathscr{F} is algebraically closed it is the direct sum of r copies of \mathscr{C} where r is the number of p-regular conjugacy classes in \mathscr{G} [3, p. 85].

Finally we note that there is no loss of generality in considering \mathscr{F} algebraically closed. If it were not, then let \mathscr{F}^* be the closure of \mathscr{F} , and write $A^*(\mathscr{G})$, $W^*_{\mathscr{D}}(\mathscr{G})$ for the algebras derived in this case. Then from p. 80 of [4] we see that the semisimplicity of A^* (or W^*) ensures that of A (or W).

2. Alternating groups

If we take \mathscr{A}_r as a permutation group on the first r positive integers in the usual way we can write $\mathscr{A}_{r-1} < \mathscr{A}_r$, where \mathscr{A}_{r-1} is obtained by omitting all elements of \mathscr{A}_r , which properly permute one specific integer.

⁸ See p. 84 of [3].

¹ Also called G-semisimple [3, p. 84].

² All mappings except permutations and representations are written on the right.

Suppose $\mathscr{D} \leq \mathscr{A}_{r-1}$ and suppose the normalizer $\mathscr{N}(\mathscr{D}; \mathscr{A}_r)$ of \mathscr{D} in \mathscr{A}_r satisfies $\mathscr{N}(\mathscr{D}; \mathscr{A}_r) \leq \mathscr{A}_{r-1}$. Then, by (3),

$$W_{\mathfrak{g}}(\mathscr{A}_r) \cong W_{\mathfrak{g}}(\mathscr{A}_{r-1}).$$

This sort of result interests us because it provides a link between $A(\mathscr{A}_r)$ and $A(\mathscr{A}_{r-1})$, so we will investigate when these conditions hold. To do this we introduce the idea of a permutation acting on an integer.

We say the permutation \mathcal{P} acts on the integer *i* if, when \mathcal{P} is considered as a mapping of the integers, $\mathcal{P}(i) \neq i$, and a subgroup $\mathcal{P} < \mathcal{A}_r$ acts on *i* if there is a member of \mathcal{P} which acts on *i*. Thus the positive integers $\leq r$ are divided into two disjoint classes: $\alpha_r(\mathcal{P})$, the set of integers acted on by \mathcal{P} , and $\beta_r(\mathcal{P})$, the set of integers invariant under \mathcal{P} . Then it is easy to see that $\mathcal{N}(\mathcal{P}; \mathcal{A}_r)$ consists those even permutations N of the form $N = N_1 N_2$, where $N_1 \in \mathcal{N}(\mathcal{P}; \mathcal{S}_a)$ and $N_2 \in \mathcal{S}_{r-a}$, *a* being the order of $\alpha_r(\mathcal{P})$, \mathcal{S}_a the symmetric group on the elements of $\alpha_r(\mathcal{P})$, and \mathcal{S}_{r-a} the symmetric group on the elements of $\beta_r(\mathcal{P})$.

If a = r-1 then \mathscr{S}_{r-a} consists the identity element only, and in this case $\mathscr{N}(\mathscr{P}; \mathscr{A}_r) = \mathscr{N}(\mathscr{P}; \mathscr{A}_{r-1}) \leq \mathscr{A}_{r-1}$. This is the condition we wanted.

(4) THEOREM. If \mathcal{P} is a subgroup of \mathcal{A}_{pn+1} which acts on pn symbols then

$$\mathcal{N}(\mathcal{P}; \mathscr{A}_{pn+1}) = \mathcal{N}(\mathcal{P}; \mathscr{A}_{pn})$$

and so

$$W_{\mathcal{P}}(\mathscr{A}_{pn+1}) \cong W_{\mathcal{P}}(\mathscr{A}_{pn}).$$

(\mathscr{A}_{pn} is the alternating group on the symbols acted on by \mathscr{P}).

We have considered \mathcal{P} acting on np symbols because of the following result:

(5) LEMMA. If \mathcal{P} is a permutation group of order p^m , where p is prime, then \mathcal{P} acts on exactly pn symbols for some integer n.

PROOF. Consider the orbit $\mathscr{P}(i)$ of the symbol *i* under \mathscr{P} .

$$\mathscr{P}(i) = \{j : P(i) = j \text{ for some } P \in \mathscr{P}\}.$$

Then, by theorem 3.2 on p. 5 of [9], the order $|\mathscr{P}(i)|$ of $\mathscr{P}(i)$ divides that of \mathscr{P} . From the fact that \mathscr{P} is a *p*-group, $|\mathscr{P}(i)|$ must be a power of *p*.

The set of symbols acted upon by \mathcal{P} is, by definition,

$$\{i:|\mathscr{P}(i)|\neq 1\},\$$

that is

$$\cup \mathscr{P}(j),$$

the union being taken over all j such that $|\mathscr{P}(j)| \neq 1$. Since any two distinct orbits are disjoint, this set has order

 $\sum |\mathcal{P}(j)|,$

and every term in the sum is a power of p, not p^0 . Thus p divides the sum, giving the result, except for the trivial case where \mathscr{P} acts on no symbols, in which case m = 0 and we can put n = 0.

In particular a sylow p- subgroup of \mathscr{A}_r must act on np symbols where n is the largest integer such that $np \leq r$, so a sylow p-subgroup of \mathscr{A}_{pn+1} acts on exactly pn symbols and satisfies the conditions of (4).

We shall consider the case p = 2. With n = 2 we can apply (4) to \mathcal{A}_4 and \mathcal{A}_5 . Every 2-subgroup of \mathcal{A}_5 except \mathcal{I} acts on 4(=pn) symbols, so if \mathcal{P} is such a group,

$$W_{\mathfrak{g}}(\mathscr{A}_5) \cong W_{\mathfrak{g}}(\mathscr{A}_4).$$

 $A(\mathscr{A}_4)$ is semisimple [3, p. 97], so each $W_{\mathscr{P}}(\mathscr{A}_4)$ is semisimple by (2), and so each $W_{\mathscr{P}}(\mathscr{A}_5)$ is semisimple. Moreover $W_{\mathscr{F}}(\mathscr{A}_5)$ is semisimple. As any 2-subgroup of \mathscr{A}_5 is of the same type as \mathscr{P} or is \mathscr{I} , we see by (2) that $A(\mathscr{A}_5)$ is semisimple.

If n = 3 we have \mathscr{A}_6 and \mathscr{A}_7 . If we write

$$U = (13)(24)$$
 $X = (123)$ $Z = (1234)(56)$
 $V = (14)(23)$ $Y = (567)$ $T = (12)(56)$

then the distinct 2-subgroups of \mathscr{A}_7 are \mathscr{I} , \mathscr{Z}_2 , \mathscr{V} , \mathscr{V}' , \mathscr{Z}_4 and \mathscr{P} , and their \mathscr{A}_7 -conjugates, where

$$\begin{split} \boldsymbol{\mathscr{Z}}_{2} &= \langle U \rangle \\ \boldsymbol{\mathscr{V}} &= \langle U, V \rangle \\ \boldsymbol{\mathscr{V}}' &= \langle UV, T \rangle \\ \boldsymbol{\mathscr{Z}}_{4} &= \langle Z \rangle \\ \boldsymbol{\mathscr{P}} &= \langle Z, V \rangle. \end{split}$$

These are also the 2-subgroups of \mathcal{A}_{6} .

We shall prove that $W_{\varphi}(\mathscr{A}_{6})$ and $W_{\varphi}(\mathscr{A}_{7})$ are semisimple. That $W_{\mathscr{G}}(\mathscr{G})$ is semisimple when $\mathscr{D} = \mathscr{I}$ has already been noted; that it is so when \mathscr{D} is cyclic has been shown in [8]. From (4) we see that

$$W_{\mathbf{r}'}(\mathscr{A}_6) \cong W_{\mathbf{r}'}(\mathscr{A}_7)$$
 and $W_{\mathbf{p}}(\mathscr{A}_6) \cong W_{\mathbf{p}}(\mathscr{A}_7)$,

since both these subgroups act on 6(=np) symbols. Collecting these results and applying (2) we see that $A(\mathcal{A}_7)$ is semisimple if and only if $A(\mathcal{A}_6)$ is.

Even more can be said. There is an isomorphism between $\mathcal{N}(\mathcal{V}; \mathscr{A}_6)$ and $\mathcal{N}(\mathcal{V}'; \mathscr{A}_6)$ which carries \mathcal{V} onto \mathcal{V}' , and so $W_{\mathcal{V}'}(\mathscr{A}_6) \cong W_{\mathcal{V}}(\mathscr{A}_6)$ and is semisimple. Therefore $A(\mathscr{A}_6)$ and $A(\mathscr{A}_7)$ are semisimple if and only if $W_{\mathcal{P}}(\mathscr{A}_6)$ is. As $\mathcal{N}(\mathcal{P}; \mathscr{A}_6)$ is \mathcal{P} , we can say $A(\mathscr{A}_6)$ and $A(\mathscr{A}_7)$ are semisimple if and only if $W_{\mathcal{P}}(\mathcal{P})$ is semisimple. It remains to show that $W_{\mathscr{V}}(\mathscr{A}_6)$ and $W_{\mathscr{V}}(\mathscr{A}_7)$ are semisimple. By (3) we need only consider $W_{\mathscr{V}}(\mathscr{N}_6)$ and $W_{\mathscr{V}}(\mathscr{N}_7)$ where \mathscr{N}_r is $\mathscr{N}(\mathscr{V}; \mathscr{A}_r)$ and

$$\mathcal{N}_{6} = \langle U, V, X, T \rangle, \\ \mathcal{N}_{7} = \langle U, V, X, T, Y \rangle.$$

3. Decomposition of induced modules

Suppose \mathscr{H} is a normal subgroup of \mathscr{G} , and let \mathscr{L} be an indecomposable $\mathscr{F}\mathscr{H}$ -representation module with \mathscr{G} -stabilizer \mathscr{S} . Then we know [2, p. 162] that $\mathscr{L}^{\mathscr{G}}$ decomposes as does a certain twisted group algebra $\mathscr{I}(\mathscr{G}/\mathscr{H})$ on \mathscr{S}/\mathscr{H} over \mathscr{F} . To be specific, suppose $\mathscr{L}^{\mathscr{G}} \cong \mathscr{L}_1 \oplus \mathscr{L}_2 \oplus \cdots \oplus \mathscr{L}_m$ and $\mathscr{I}(\mathscr{G}/\mathscr{H}) \cong \mathscr{I}_1 \oplus \mathscr{I}_2 \oplus \cdots \oplus \mathscr{I}_n$, where the \mathscr{L}_i are indecomposable submodules and the \mathscr{I}_i are indecomposable left ideals. Then we can reorder the \mathscr{I}_i so that

(6)

$$m = n$$

$$\mathscr{L}_{i} \cong \mathscr{L}_{j} \text{ if and only if } \mathscr{I}_{i} \cong \mathscr{I}_{j}$$

$$\dim_{\mathscr{F}} \mathscr{L}_{i} = \dim_{\mathscr{F}} \mathscr{I}_{i} \cdot \dim_{\mathscr{F}} \mathscr{L}.$$

Furthermore $\mathscr{L}_{i}^{\mathfrak{g}}$ is indecomposable.

(7) THEOREM. If
$$\mathscr{S} = \mathscr{H} \times \mathscr{W}$$
, then
$$\mathscr{L}^{\mathscr{G}} \cong \bigoplus_{i=1}^{h} \mathscr{W}_{i} \otimes \mathscr{F}_{\mathscr{F}}\mathscr{L}$$

is a decomposition into indecomposables, where

$$\mathscr{F}\mathscr{W}= \mathop{\oplus}\limits^{h}\mathscr{W}_{i}$$

is a decomposition into indecomposable left ideals. $(\mathcal{W}_i \otimes_{\mathcal{F}_{\mathcal{F}}} \mathcal{L})$ is defined as the subset of $\mathcal{F}\mathcal{S} \otimes_{\mathcal{F}_{\mathcal{F}}} \mathcal{L}$ consisting of the elements $W \otimes L$, where $W \in \mathcal{W}_i$ and $L \in \mathcal{L}$.)

PROOF. It is clear that the sum is direct and equals $\mathscr{L}^{\mathscr{G}}$ and that the summands are $\mathscr{F}\mathscr{G}$ -representation modules. $\mathscr{I}(\mathscr{G}/\mathscr{H})$ is $\mathscr{F}(\mathscr{G}/\mathscr{H})$ in this case, so by (6) $\mathscr{L}^{\mathscr{G}}$ must split into exactly h indecomposable parts. By the Krull-Schmidt theorem these must be the $\mathscr{W}_i \otimes \mathscr{L}$.

Write \mathscr{X} for the alternating group on $\{5, 6, \dots, k\}$. Then (7) applies when $\mathscr{G} = \mathscr{V} \times \mathscr{X}$ or $\mathscr{A}_4 \times \mathscr{X}$, which are the cases we will need.

4. \mathscr{V} -projective representations of \mathscr{N}_{k}

The indecomposable \mathscr{V} -projective \mathscr{FN}_k -representation modules are just the indecomposable parts of the modules $\mathscr{L}^{\mathscr{N}_k}$ where \mathscr{L} is an \mathscr{FV} -representation module.

The indecomposable \mathscr{FV} -representation module isomorphism classes are known ([1], [7]). In the notation of Conlon [3] the classes are A_0 , A_n , B_n , C_n (f) and D, where n ranges through the positive integers and f through $\mathscr{F} \cup \{\infty\}$. Typical representations are given on pp. 86-7 of [3]; we shall denote this representative of A_n by \mathscr{A}_n , and similarly for the others. The stabilizers are given in (8):

Module	Generators of Stabilizer		
	in N ₆	$\operatorname{in} \mathcal{N}_{7}$	
A _n , <i>B_n</i> , D	U, V, X, T	U, V, X, T, Y	
<i>C</i> _n (0)	U V, TX	U, V, TX, Y	
<i>C</i> _n (1)	U, V, T	U, V, T, Y	
C _n (∞)	U, V, TX ²	U, V, TX ² , Y	
$\mathscr{C}_{n}(\omega), \mathscr{C}_{n}(\omega^{2})$	U, V, X	U, V, X, Y	
<i>C</i> _a (f)	U, V	U, V, Y	

where ω is a primitive cube root of unity in \mathscr{F} and f ranges over all values not already listed. The stabilizer in \mathscr{N}_k may be derived from that in \mathscr{N}_6 as noted in Section 3.

The representations of \mathscr{A}_4 are also known [3]; their classes are \bar{A}_0^a , \bar{A}_n^a , \bar{B}_n^a , $\bar{C}_n^a(g)$, $\bar{C}_n^*(f)$, \bar{D}^a , where *n* ranges through the positive integers, *a* through the integers modulo 3, *g* through $\{\omega, \omega^2\}$ and *f* through a set of representatives of the equivalence classes of \mathscr{F} under the relation

$$f \sim 1 + \frac{1}{f} \sim \frac{1}{1+f}$$
,⁴ except ω and ω^2 .

If we write $\overline{\mathscr{A}}_n^a$ for a representative module of the class \overline{A}_n^a , and so on, then $\overline{\mathscr{A}}_n^a$ may be taken as an extension of \mathscr{L} ; $\overline{\mathscr{C}}_n^*(f)$ may be taken as $(\mathscr{C}_n(f))^{\mathscr{A}_0}$. We follow Conlon's convention that $\overline{\mathscr{A}}_0^a$ yields the representation

$$U \to 1, V \to 1, X \to \omega^a$$

 $\overline{\mathscr{A}}^a_0 \otimes \overline{\mathscr{Q}}^b \cong \overline{\mathscr{Q}}^{a+b}.$

and

Then if $\overline{\mathscr{G}}^0$ gives the representation $X \to \lambda(X)$, $\overline{\mathscr{G}}^a$ gives $X \to \omega^a \lambda(X)$. Suitable matrices $\lambda(X)$ are known [3] for all cases except $\mathscr{C}_n(\omega)$ and $\mathscr{C}_n(\omega^2)$; and the author has found that a suitable matrix to extend $\mathscr{C}_n(\omega)$ is $M_1 \oplus M_2$, where

$$\begin{split} M_1 \text{ has } (i, j) \text{ element } \omega^{i+j+1} \binom{i-2}{j-2} \\ M_2 \text{ has } (i, j) \text{ element } \omega^{i+j+2} \binom{i-1}{j-1}, \end{split}$$

⁴ 1∼0∼∞

(8)

the binomial coefficients being evaluated over characteristic 2 and \oplus being direct sum of matrices. We take $\mathscr{C}_0^n(\omega)$ to be the extension with

$$\lambda(X) = \omega^{2n+2} (M_1 \oplus M_2)$$

and otherwise follow Conlon's choice for the particular extension of \mathscr{L} which will be labelled $\overline{\mathscr{L}}^0$.

If \mathscr{L} is an \mathscr{FV} -representation module with stabilizer \mathscr{S} in \mathscr{N}_k , and \mathscr{X} is as before, the following conditions hold:

$$\begin{array}{ll} \text{if } X \in \mathcal{S}, \mathscr{V} \stackrel{d}{=} \mathscr{A}_{4} \stackrel{d}{=} \mathscr{A}_{4} \times \mathscr{X} \stackrel{d}{=} \mathscr{S}; \\ \text{if } X \notin \mathscr{S}, \qquad \mathscr{V} \stackrel{d}{=} \mathscr{V} \times \mathscr{X} \stackrel{d}{=} \mathscr{S}; \end{array}$$

in both series equality holds in the last place if and only if $T \notin \mathscr{S}$.

Suppose $\mathscr{FX} \cong \bigoplus \mathscr{X}_i$ is a decomposition into indecomposable left ideals. Then, from (7), $\mathscr{L}^{\mathscr{F} \times \mathscr{X}} \cong \bigoplus \mathscr{X}_i \otimes_{\mathscr{F}} \mathscr{L}$ is a decomposition into indecomposables. If $X \in \mathscr{S}$ then in every case

$$\mathscr{L}^{\mathscr{A}_{4}} \cong \overline{\mathscr{L}}^{0} \oplus \overline{\mathscr{L}}^{1} \oplus \overline{\mathscr{L}}^{2},$$

SO

$$\mathscr{L}^{\mathscr{A}_{4}\times\mathfrak{X}}\cong \bigoplus_{a=0}^{2}(\overline{\mathscr{L}}^{a})^{\mathscr{A}_{4}\times\mathfrak{X}},$$

so using (7),

$$\mathscr{L}^{\mathscr{A}_{4}\times\mathfrak{X}}\cong \bigoplus_{a=0}^{2} \bigoplus_{i}^{2} \mathscr{X}_{i}\otimes_{\mathscr{F}\mathscr{A}_{4}}\widetilde{\mathscr{L}}^{a}.$$

Again the direct summands are indecomposable.

Let \mathscr{M} be one of the direct summands in this last decomposition. $\mathscr{G}/(\mathscr{A}_4 \times \mathscr{X})$ has order 1 or 2, and so its group algebra over \mathscr{F} is indecomposable. So $\mathscr{M}^{\mathscr{G}}$ is indecomposable. A similar result holds if $X \notin \mathscr{G}$. We have the following decompositions into indecomposables:

(9)
$$\mathscr{L}^{\mathscr{G}} \cong \begin{cases} \bigoplus_{i} (\mathscr{X}_{i} \otimes_{\mathscr{F}^{\mathscr{G}}} \mathscr{L}) & \text{if } X \notin \mathscr{G} \\ \stackrel{i}{\underset{i}{\overset{\circ}{=} 0}} \\ \bigoplus_{i} \bigoplus_{a=0} (\mathscr{X}_{i} \otimes_{\mathscr{F}^{\mathscr{G}}} \overset{\widetilde{\mathcal{J}}^{a}}{\overset{\circ}{\mathcal{I}}})^{\mathscr{G}} & \text{if } X \in \mathscr{S} \end{cases}$$

The calculation of the isomorphism-classes of \mathscr{V} -projective \mathscr{FN}_{k} -representation modules is now an easy task, using the last part of (6).

For \mathscr{N}_7 we find that the classes are $A_0^{a,b}$, $A_n^{a,b}$, $B_n^{a,b}$, $C_n^{a,b}(\omega)$, $C_n^{*,b}(f)$ and $D^{a,b}$, where *a* and *b* range through the integers modulo 3, *n* through the positive integers and *f* through the elements of $\mathscr{F} \cup \{\infty\}$ other than ω and ω^2 . The following identities hold:

$$\begin{aligned} A_0^{a,b} &= A_0^{2a,2b}, \quad A_n^{a,b} = A_n^{2a,2b}, \quad B_n^{a,b} = B_n^{2a,2b}, \quad D^{a,b} = D^{2a,2b} \\ C_n^{*,b}(f) &= C_n^{*,b}(g) = C_n^{*,2b}(h) \text{ when } g = 1 + \frac{1}{f} \text{ or } \frac{1}{1+f}, \\ h &= \frac{1}{f} \text{ or } \frac{f}{1+f} \text{ or } 1+f^{5} \end{aligned}$$

The classes for \mathcal{N}_{6} are just those for \mathcal{N}_{7} with all reference to b dropped (we write, for example, $A_{0}^{a}, C_{n}^{*}(f)$) and with $L^{a} = L^{d}$ whenever $L^{a,0} = L^{d,0}$. We use the convention that

$$(L^{a,b})_{\mathcal{N}_{a}} = L^{a}, \quad (L^{a})_{\mathcal{A}_{a}} = L^{a} + L^{2a}.$$

The representation matrices for typical members of the \mathcal{FN}_7 -classes are shown in (10) in terms of the corresponding \mathcal{FA}_4 representation with superscript 0. These corresponding representation matrices are denoted by λ . The table also shows the \mathcal{FV} -class from which each \mathcal{FN}_7 -class is obtained and the dimension of square block-matrices involved. The \mathcal{FN}_6 representations are found by deleting the matrix for Y.

(10)

FN ₇ -class	$A_n^{a,b}, B_n^{a,b}$	$C_n^{a, b}(\omega)$	$C_n^{*,b}(f)$
Corresponding FY-class	A_n, B_n	$C_n(\omega)$	$C_n(f)$
Block size	2n+1	2 n	6n
Matrix for U	$\begin{bmatrix} \lambda(U) & 0 \\ 0 & \lambda(V) \end{bmatrix}$	$\begin{bmatrix} \lambda(U) & 0 \\ 0 & \lambda(V) \end{bmatrix}$	$\begin{bmatrix} \lambda(U) & 0 \\ 0 & \lambda(V) \end{bmatrix}$
V	$\begin{bmatrix} \lambda(V) & 0 \\ 0 & \lambda(U) \end{bmatrix}$	$\begin{bmatrix} \lambda(V) & 0 \\ 0 & \lambda(U) \end{bmatrix}$	$\begin{bmatrix} \lambda(V) & 0 \\ 0 & \lambda(U) \end{bmatrix}$
X	$\begin{bmatrix} \omega^a \lambda(X) & 0 \\ 0 & \omega^{2a} \lambda(X)^2 \end{bmatrix}$	$\begin{bmatrix} \omega^a \lambda(X) & 0 \\ 0 & \omega^{2a} \lambda(X)^2 \end{bmatrix}$	$\begin{bmatrix} \lambda(X) & 0 \\ 0 & \lambda(X)^2 \end{bmatrix}$
T	$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$
Y	$\begin{bmatrix} \omega^b I & 0 \\ 0 & \omega^{2b} I \end{bmatrix}$	$\begin{bmatrix} \omega^b I & 0 \\ 0 & \omega^{2b} I \end{bmatrix}$	$\begin{bmatrix} \omega^{b} I & 0 \\ 0 & \omega^{2b} I \end{bmatrix}$

⁵ In particular
$$C_n^{*,b}(1) = C_n^{*,2b}(1) = C_n^{*,b}(0) = C_n^{*,b}(\infty)$$

5. Multiplication of module classes

The multiplication of module classes is defined in the usual way: If L is $\{\mathcal{L}\}$ and M is $\{\mathcal{M}\}$, then LM is $\{\mathcal{L} \otimes \mathcal{M}\}$.

We shall consider the multiplication of \mathscr{FN}_6 -classes modulo $W_{\mathscr{G}}(\mathscr{G})$. The effect is that of putting $D^a = 0$, since $W_{\mathscr{G}}(\mathscr{G})$ is a direct summand of $A_{\mathscr{F}}(\mathscr{G})$ for any \mathscr{G} and any $\mathscr{H} \leq \mathscr{G}$, ⁶ so there is no confusion in writing L for $L+W_{\mathscr{G}}(\mathscr{N}_6)$.

The multiplications for \mathscr{V} and \mathscr{A}_4 are given in propositions 2-4 of [1] ⁷ and equations (6), (7), (9) and (11)-(16) of [3]. However we can be more specific about $\bar{C}^a_n(\omega)$. The convention of Section 4 yields upon a direct calculation the following result when $n \ge m \ge 1$:

(11)
$$\begin{split} \bar{C}^0_m(\omega)\bar{C}^0_n(\omega) &= 2\bar{C}^0_m(\omega) \quad \text{if } n \equiv 2 \pmod{3} \\ &= \bar{C}^1_m(\omega) + \bar{C}^2_m(\omega) \text{ if } n \not\equiv 2 \pmod{3}. \end{split}$$

(This replaces equations (13) and (14) of [3].)

From these results, the distributive law and the law

 $\mathscr{L}^{\mathscr{N}_{6}}\otimes\mathscr{M}\cong(\mathscr{L}\otimes\mathscr{M}_{\mathscr{A}_{4}})^{\mathscr{N}_{6}},$

where \mathscr{L} is an \mathscr{FA}_4 -representation module and \mathscr{M} is an \mathscr{FN}_6 -representation module, we can calculate the products of \mathscr{FN}_6 -classes. We introduce two points of notation: we write $L^{\mathscr{N}_6}$ for the class $\{\overline{\mathscr{L}}^{\mathscr{N}_6}\}$; and we write $f \approx g$ whenever $f \sim g$ or $f \sim 1/g$, that is whenever f and g are members of the same set of cross-ratios. Example calculations are

$$A_n^a A_m^b = [(\bar{A}_n^a + \bar{A}_n^{2a})\bar{A}_m^b]^{\mathscr{N}_6}$$

= $(\bar{A}_{n+m}^{a+b} + \bar{A}_{n+m}^{2a+b})^{\mathscr{N}_6}$
= $A_{n+m}^{a+b} + A_{n+m}^{2a+b}$

and, if $m \leq n$ and $f \not\approx 1$,

$$C_n^*(f)C_m^*(g) = [(\tilde{C}_n^*(f) + \tilde{C}_n^*(1/f))\tilde{C}_m^*(g)]^{\mathscr{N}_6} \\ = \begin{cases} 2C_m^*(f) & \text{if } f \approx g, \\ 0 & \text{if } f \approx g, \end{cases}$$

except

$$C_1^*(f)C_1^*(f) = C_2^*(f);$$

moreover

$$C_n^*(1)C_m^*(1) = (2\bar{C}_n^*(1)\bar{C}_m^*(1))^{\mathscr{I}_6}$$

= $4C_m^*(1).$

Similar calculations yield the following multiplication table:

⁶ This follows from Corollary 5 of [3].

⁷ There is an error in Bašev's work — see p. 88 of [3].

(12)

()				
$m \leq n$	A_m^b	B_m^b	$C_m^b(\omega)$	C [*] _m (g), g 75 ω
A_n^a	$A_{n+m}^{a+b} + A_{n+m}^{2a+b}$	$A_{n-m}^{a+b} + A_{n-m}^{2a+b}$	$C_m^{a+b+n}(\omega)+C_m^{2a+b+n}(\omega)$	$2C_m^*(g)$
B_n^a	$B_{n-m}^{a+b}+B_{n-m}^{2a+b}$	$B_{n+m}^{a+b}+B_{n+m}^{2a+b}$	$C_m^{a+b+2n}(\omega) + C_m^{2a+b+2n}(\omega)$	$2C_m^*(g)$
$C_n^a(\omega)$	$C_n^{a+b+m}(\omega)$	$C_n^{a+b+2m}(\omega)$	$C_2^{a+b}(\omega)$ if $m = n = 1$	
	$+C_n^{a+2b+m}(\omega)$	$+C_n^{a+2b+2m}(\omega)$	$\frac{2}{2C_m^{a+b}(\omega) \text{ if } n \equiv 2 \pmod{3}}$	0
			$C_m^{a+b+1}(\omega)+C_m^{a+b+2}(\omega)$	
			if $n \not\equiv 2 \pmod{3}$	
			when $n > 1$	
$C_n^*(f)$	$2C_n^*(f)$	$2C_n^*(f)$	0	0 if f a ∕≤ g
f ≉ ω				$\frac{1}{4C_m^*(1) \text{ if } f \approx g \approx 1}$
				$2C_m^*(f) \text{ if } n \neq 1$
				$C_2^*(f)$ if $m = n = 1$
				when $f \approx g \not\approx 1$

We see from (12) that $\frac{1}{2}A_0^0$ is an identity element for the algebra $\mathscr{R} = A_{\checkmark}(\mathscr{N}_6)/W_{\checkmark}(\mathscr{N}_6)$, and admits of the orthogonal idempotent decomposition $\frac{1}{2}A_0^0 = J_0 + J_1$, where

J,	-	$\frac{1}{6}A_0^0$	$+\frac{1}{3}A_{0}^{1}$),
J_1	=	$\frac{1}{3}A_{0}^{0}$	$-\frac{1}{3}A_{0}^{1}$	

Then

 $\mathscr{R} = \mathscr{R}J_0 \oplus \mathscr{R}J_1.$

Write $A_{n\alpha} = A_n^0 J_{\alpha}$, $B_{n\alpha} = B_n^0 J_{\alpha}$, $C_{n0} = C_n^0(\omega) J_0$, $C_{n1}^a = C_n^a(\omega) J_1$. Then the set of these elements (where α is 0 or 1 and α is any integer modulo 3), J_0 , J_1 and the distinct $C_n^*(f)$ together generate \mathscr{R} , since

$$A_n^0 = A_{n0} + A_{n1}$$

$$B_n^0 = B_{n0} + B_{n1}$$

$$A_n^1 = \frac{3}{4}A_{n0} - \frac{3}{8}A_{n1}$$

$$B_n^1 = \frac{3}{4}B_{n0} - \frac{3}{8}B_{n1}$$

$$C_n^a(\omega) = C_{n0} + C_{n1}^a.$$

Moreover the identity $C_{n1}^0 + C_{n1}^1 + C_{n1}^2 = 0$ holds, and so we can drop C_{n1}^0 from the list of generators.

Writing $X_{\alpha} = \frac{1}{2}A_{1\alpha}$ we see that $A_{n\alpha} = 2(X_{\alpha})^n$ and $B_{n\alpha} = 2(X_{\alpha})^{-n}$,

so the set generated by all the $A_{n\alpha}$ and $B_{n\alpha}$ for a given α is isomorphic to $\mathscr{C}[X_{\alpha}, 1/X_{\alpha}]$. If we write \mathscr{A}_{0} for the algebra generated by all the $C_{n}^{*}(f)$ and C_{n0} , and \mathscr{A}_{1} for that generated by the C_{n1}^{α} , then

$$\mathcal{R}J_0 \cong \mathscr{C}[X_0, 1/X_0] + \mathscr{A}_0,$$

$$\mathcal{R}J_1 \cong \mathscr{C}[X_1, 1/X_1] + \mathscr{A}_1,$$

where \mathscr{A}_{α} is an ideal of $\mathscr{R}J_{\alpha}$.

We next set up orthogonal idempotents which generate \mathscr{A}_0 and \mathscr{A}_1 . For \mathscr{A}_0 we use

$$\begin{split} I_1(1) &= \frac{1}{4}C_1^*(1), \\ I_n(1) &= \frac{1}{4}(C_n^*(1) - C_{n-1}^*(1)) & \text{if } n > 1, \\ I_n(\omega) &= \frac{1}{4}(C_{20} + (-1)^n \sqrt{2}C_{10}) & \text{if } n = 1 \text{ or } 2, \\ I_n(\omega) &= \frac{1}{2}(C_{n0} - C_{n-1,0}) & \text{if } n > 2, \\ I_n(f) &= \frac{1}{4}(C_2^*(f) + (-1)^n C_1^*(f)) & \text{if } n = 1 \text{ or } 2, f \not\approx 1, \\ I_n(f) &= \frac{1}{2}(C_n^*(f) - C_{n-1}^*(f)) & \text{if } n > 2, f \not\approx 1. \end{split}$$

In each case, $\mathscr{R}I_n(f) \cong \mathscr{C}I_n(f)$.

To consider \mathscr{A}_1 we set

$$\begin{split} K_n^a &= \frac{1}{4} (C_{21}^a + (-1)^n \sqrt{2} C_{11}^a) & \text{if } n = 1 \text{ or } 2, \\ K_n^a &= h_n C_{n1}^a - h_{n-1} C_{n-1,1}^a & \text{if } n > 2, \end{split}$$

where $h_n = \frac{1}{2}$ if $n \equiv 2 \pmod{3}$ and $h_n = -1$ otherwise.

The K_n^0 are orthogonal and $\mathscr{R}K_n^0 \cong \mathscr{C}[K_n^0, K_n^1, K_n^2]$. Since $K_n^a K_n^b = K_n^{a+b}$ and $K_n^0 + K_n^1 + K_n^2 = 0$ we see that if we put

$$L_{n0} = \frac{1}{3} (K_n^0 + u K_n^1 + u^2 K_n^2),$$

$$L_{n1} = \frac{1}{3} (K_n^0 + u^2 K_n^1 + u K_n^2),$$

where u is a primitive cube root of unity in \mathscr{C} , then

$$\mathscr{R}K_n^0 = \mathscr{R}L_{n0} \oplus \mathscr{R}L_{n1}$$
 and $\mathscr{R}L_{n\alpha} \cong \mathscr{C}L_{n\alpha}$.

From these we can find the structure of \mathscr{R} . $A_{\mathscr{V}}(\mathscr{N}_6) \cong \mathscr{R} \oplus W_{\mathscr{I}}(\mathscr{N}_6)$, and $W_{\mathscr{I}}(\mathscr{N}_6) \cong \mathscr{C} \oplus \mathscr{C}$, so $A_{\mathscr{V}}(\mathscr{N}_6)$ has the following form to within isomorphism:

(13)
$$A_{\mathscr{V}}(\mathscr{N}_{6}) \cong \{\mathscr{C}[X_{0}, 1/X_{0}] + \bigoplus_{1} \mathscr{C}I_{n}(f)\} \\ \oplus \{\mathscr{C}[X_{1}, 1/X_{1}] + \bigoplus_{2} \mathscr{C}L_{na}\} \\ \oplus \{\mathscr{C} \oplus \mathscr{C}\}$$

where \bigoplus_1 ranges over all positive integers n and all $f \in \mathscr{F} \cup \{\infty\}$ modulo the relation \approx , and \bigoplus_2 ranges over the positive integers n and $\alpha = 0, 1$. The $I_n(f)$ and the $L_{n\alpha}$ are sets of orthogonal idempotents, and $\begin{aligned} X_0 I_n(f) &= I_n(f), \\ X_1 L_{n\alpha} &= u^{2\alpha+2} L_{n\alpha}. \end{aligned}$

We work similarly in the \mathscr{N}_7 case. The \mathscr{V} -projective \mathscr{FN}_7 -representation module classes are considered modulo $W_{\mathscr{G}}(\mathscr{N}_7)$, and find the following multiplication table for $\mathscr{S} = A_{\mathscr{V}}(\mathscr{N}_7)/W_{\mathscr{G}}(\mathscr{N}_7)$:

(14)

$m \leq n$	$A_m^{b,d}$	$B_m^{b,d}$	$C_m^{b,d}(\omega)$	$C_m^{*,d}(g), g \not\approx \omega$
$A_n^{a,c}$	$A_{m+n}^{a+b, c+d} + A_{m+n}^{a+2b, c+2d}$	$A_{n-m}^{a+b, c+d} + A_{n-m}^{a+2b, c+2d}$	$C_m^{n+a+b, c+d}(\omega) + C_m^{n+2a+b, 2c+d}(\omega)$	$C_m^{\boldsymbol{*},\boldsymbol{c}+\boldsymbol{d}}(g) + C_m^{\boldsymbol{*},2\boldsymbol{c}+\boldsymbol{d}}(g)$
$B_n^{a, c}$	$B_{n-m}^{a+b, c+d} + B_{n-m}^{a+2b, c+2d}$	$B_{n+m}^{a+b, c+d} + B_{n+m}^{a+2b, c+2d}$	$C_m^{2n+a+b, c+d}(\omega) + C_m^{2n+2a+b, 2c+d}(\omega)$	$C_m^{*, c+d}(g) + C_m^{*, 2c+d}(g)$
$C_n^{a, c}(\omega)$	$C_n^{m+a+b, c+d}(\omega) + C_n^{m+a+2b, c+2d}(\omega)$	$C_n^{2m+a+b, c+d}(\omega) + C_n^{2m+a+2b, c+2d}(\omega)$	if $n = m = 1$, $C_2^{a+b, c+d}(\omega)$	0
			if $n \neq 1$, $n \equiv 2 \pmod{3}$ $\frac{2C_m^{a+b, c+d}(\omega)}{2C_m^{a+b, c+d}(\omega)}$	_
			if $n \neq 1$, $n \not\equiv 2 \pmod{3}$ $C_m^{a+b+1, c+d}(\omega)$ $+ C_m^{a+b+2, c+d}(\omega)$)
$C_n^{*,c}(f)$	$C_n^{*, c+d}(f) + C_n^{*, c+2d}(f)$	$C_n^{*, c+d}(f) + C_n^{*, c+2d}(f)$	0	0 if <i>† ≉ g</i>
†≉ω				$\frac{1}{2(C_m^{*,c+d}(1)+C_m^{*,2c+d}(1))}$ if $f \approx g \approx 1$
				$ \frac{C_2^{c+d}(f) \text{ if } f \approx g \not\approx 1,}{m=n=1} $
				$2C_m^{c+d}(f) \text{ if } f \approx g \not\approx 1,$ $n \neq 1$

Write $S = A_0^{0,1} + A_0^{1,0} + A_0^{1,2}$. The identity element $\frac{1}{2}A_0^{0,0}$ of \mathscr{S} admits of an orthogonal idempotent decomposition:

$$\begin{split} &\frac{1}{2}A_0^{0,0} = J_0 + J_{10} + J_{01} + J_{11} + J_{12}, \\ &J_0 = \frac{1}{18}(A_0^{0,0} + 2S) \\ &J_{ab} = \frac{1}{9}(A_0^{0,0} + 3A_0^{a,b} - S) \end{split}$$

We proceed much as before. It is clear that \mathscr{S} is generated by the J_x and the elements

$$\begin{aligned} A_{nx} &= A_n^{0,0} J_x & B_{nx} &= A_n^{0,0} J_x \\ C_{n,0}(f) &= C_n^{*,0}(f) J_0 & C_{n,10}^{a}(f) &= C_n^{*,a}(f) J_{10} \\ C_{n,0}(\omega) &= C_n^{0,0}(\omega) J_0 & C_{n,10}^{a}(\omega) &= C_n^{0,a}(\omega) J_{10} \\ C_{n,x}^{a}(\omega) &= C_n^{a,0}(\omega) J_x & (x \neq 0, 10), \end{aligned}$$

where a ranges through the integers modulo 3, x through $\{0, 01, 10, 11, 12\}$ and f through the non-equivalent members of \mathcal{F} other than ω under the relation \approx .

Putting $Y_x = \frac{1}{2}A_{1x}$ we obtain as before $A_{n,x} = 2(Y_x)^n$, $B_{n,x} = 2(Y_x)^{-n}$, and

$$\mathscr{S}J_x \cong \mathscr{C}[Y_x, 1/Y_x] + \mathscr{B}_x,$$

where \mathscr{B}_{x} is an ideal. We then write

$$\begin{split} I_n(f) &= \frac{1}{4} \big(C_{2,0}(f) + (-1)^n \sqrt{2} C_{1,0}(f) \big) & \text{if } n = 1 \text{ or } 2, \\ I_n(f) &= \frac{1}{2} \big(C_{n,0}(f) - C_{n-1,0}(f) \big) & \text{if } n > 2, \\ K_{n,10}^a(f) &= \frac{1}{4} \big(C_{2,10}^a(f) + (-1)^n \sqrt{2} C_{1,10}(f) \big) & \text{if } n = 1 \text{ or } 2 \text{ and } f \not\approx 1, \\ K_{n,10}^a(f) &= \frac{1}{2} \big(C_{n,10}^a(f) - C_{n-1,10}^a(f) \big) & \text{if } n > 2 \text{ and } f \not\approx 1, \\ K_{1,10}^a(1) &= \frac{1}{4} C_{1,10}^0(1) \\ K_{n,10}^a(1) &= \frac{1}{4} \big(C_{n,10}(1) - C_{n-1,10}(1) \big) & \text{if } n \neq 1, \\ K_{n,x}^a(\omega) &= \frac{1}{4} \big(C_{2,x}^a(\omega) + (-1)^n \sqrt{2} C_{1,x}^a(\omega) \big) & \text{if } n = 1 \text{ or } 2 \\ K_{n,x}^a(\omega) &= h_n C_{n,x}^a(\omega) - h_{n-1} C_{n-1,x}^a(\omega) & \text{if } n > 2, \end{split}$$

where x = 01, 11 or 12 and h_n is defined as before. It is found that $\{I_n(f)\}$, $\{K_{n,10}^0(f)\}$ and $\{K_{n,x}^0(\omega)\}$ are sets of orthogonal idempotents generating $\mathscr{B}_0, \mathscr{B}_{10}$ and $\mathscr{B}_x. \mathscr{SI}_n(f) \cong \mathscr{CI}_n(f)$ and $\mathscr{SK}_{n,10}^0(1) \cong \mathscr{CK}_{n,10}^0(1)$; in the other cases we find

 $\mathscr{S}K^0_{n,x}(f) \cong \mathscr{C}[K^0_{n,x}(f), K^1_{n,x}(f), K^2_{n,x}(f)]$

so we put

$$L_{n,\alpha,x}(f) = K^{0}_{n,x}(f) + u^{\alpha+1}K^{1}_{n,x}(f) + u^{2\alpha+2}K^{2}_{n,x}(f).$$

For convenience write $L_{n,0,10}(1) = K_{n,10}^{0}(1)$.

Proceeding as before we find $A_{\star}(\mathcal{N}_{7})$ is

(15)

$$A_{\mathscr{V}}(\mathscr{N}_{7}) \cong \{\mathscr{C}[Y_{0}, 1/Y_{0}] + \bigoplus_{1} \mathscr{C}I_{n}(f)\} \\ \oplus \{\mathscr{C}[Y_{10}, 1/Y_{10}] + \bigoplus_{2} \mathscr{C}L_{n,\alpha,10}(f)\} \\ \oplus \bigoplus_{3} \{\mathscr{C}[Y_{x}, 1/Y_{x}] + \bigoplus_{4} L_{n,\alpha,x}(\omega)\} \\ \oplus \{\mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C}\} \}$$

where \oplus_1 is over all elements f of \mathscr{F} , modulo \approx , and all positive integers n,

 \oplus_2 is as \oplus_1 , and also over $\alpha = 0$, 1, except for the case f = 1, $\alpha = 1$, \oplus_3 is over x = 01, 10, 12,

 \bigoplus_4 is over all $n \ge 1$ and $\alpha = 0$, 1, and we have

$$Y_0 I_n(f) = I_n(f)$$

$$Y_{10} L_{n,\alpha,10}(f) = L_{n,\alpha,10}(f)$$

$$Y_x L_{n,\alpha,x}(\omega) = u^{2\alpha+2} L_{n,\alpha,x}(\omega).$$

The classes of \mathscr{Z}_2 -projective \mathscr{V} -modules are D and $C_1(1)$. Therefore

$$\begin{array}{l} A_{\mathscr{X}_{2}}(\mathscr{N}_{6}) \cong \mathscr{C}I_{1}(1) \oplus \mathscr{C} \oplus \mathscr{C} \\ A_{\mathscr{X}_{2}}(\mathscr{N}_{7}) \cong \mathscr{C}I_{1,0}(1) \oplus \mathscr{C}L_{1,0,10}(1) \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C}, \end{array}$$

Thus $W_{\mathscr{V}}(\mathscr{N}_6) \cong \mathscr{R}/\mathscr{C}I_1(1)$. $I_1(1) \in \mathscr{R}J_0$, so we need only consider this factor. It can be split into two components, one of which is $\mathscr{C}I_1(1)$, by the idempotent decomposition

$$J_0 = I_1(1) + (J_0 - I_1(1))$$

= $I_1(1) + J_0$, say.

If we write $\bar{X}_0 = X_0 J_0$, then the decomposition of $\mathcal{R}J_0$ is just that of $\mathcal{R}J_0$ with X_0 replaced by \bar{X}_0 , and with the case f = 1, n = 1, dropped from the summation. Notice that $\bar{X}_0 I_n(f) = X_0 I_n(f)$ except when n = 1 and f = 1. The same considerations apply to the \mathcal{N}_7 case. Therefore when k = 6 or 7 the form of $W_{\gamma}(\mathcal{N}_k)$ is just that given in (13) or (15), provided that the final term consisting of copies of \mathscr{C} is omitted and that the case n = 1, f = 1, is dropped from all direct sums where it occurs.

6. Semisimplicity

It is now easy to see that $W_{\psi}(\mathcal{N}_6)$ and $W_{\psi}(\mathcal{N}_7)$ are semisimple. If \mathscr{A}_1 is any algebra of the form

(16)
$$\mathscr{A}_1 = \mathscr{C}[X, 1/X] + \mathscr{B}$$

where \mathscr{B} is an ideal of the form $\oplus \mathscr{C}I_{r}$ with r ranging through some indexing set, then \mathscr{A}_{1} is semisimple.⁸ It is clear that if $\mathscr{A}_{1} \oplus \mathscr{A}_{2} \oplus \cdots$ is a finite sum of semisimple algebras then it is semisimple. But both $W_{r}(\mathscr{N}_{6})$ and $W_{r}(\mathscr{N}_{7})$ are of this form, where each \mathscr{A}_{i} has the form of \mathscr{A}_{1} in (16). Therefore we have the following result.

(17) THEOREM. $W_r(\mathcal{N}_6)$ and $W_r(\mathcal{N}_7)$ are semisimple.

References

- V. A. Bašev, 'Representations of the group Z₂×Z₂ into a field of characteristic 2', (Russian) Dokl. Akad. Nauk SSSR 141 (1961), 1015-1018.
- [2] S. B. Conlon, 'Twisted group algebras and their representations', J. Aust. Math. Soc. 4 (1964), 152-173.

⁸ The proof is an easy generalization of the proof of the Theorem on p. 90 of [3].

- [3] S. B. Conlon, 'Certain representation algebras', J. Aust. Math. Soc. 5 (1965), 83-99.
- [4] S. B. Conlon, 'The modular representation algebra of groups with Sylow 2-subgroup $Z_2 \times Z_2$ ', J. Aust. Math. Soc. 6 (1966), 76–88.
- [5] S. B. Conlon, 'Structure in representation algebras', J. of Algebra 5 (1967), 274-279.
- [6] J. A. Green, 'A transfer theorem for modular representations', J. of Algebra 1 (1964), 73– 84.
- [7] A. Heller and I. Reiner, 'Indecomposable representations', Illinois J. Math. 5 (1961), 314– 323.
- [8] M. F. O'Reilly, 'On the semisimplicity of the modular representation algebra of a finite group', *Illinois J. Math.* 9 (1965), 261-276.
- [9] H. Wielandt, Finite permutation groups (Academic Press, 1964).

La Trobe University Melbourne

[15]