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ON AUTOMORPHISMS OF COMPLETE ALGEBRAS 
AND THE ISOMORPHISM PROBLEM FOR 

MODULAR GROUP RINGS 

FRANK RÔHL 

1. Introduction. In [5], Roggenkamp and Scott gave an affirmative answer 
to the isomorphism problem for integral group rings of finite p-groups G and // , 
i.e. to the question whether ZG —-» ZH implies G —• H (in this case, G is said to 
be characterized by its integral group ring). Progress on the analogous question 
with Z replaced by the field F^ of p elements has been very little during the last 
couple of years; and the most far reaching result in this area in a certain sense -
due to Passi and Sehgal, see [8] - may be compared to the integral case, where 
the group G is of nilpotency class 2. 

Based on ideas developed in [6], we will generalize this last result to: Let 
F be a free group, M/(F) the z-th dimension subgroup of F with respect to Fp 

and R a normal subgroup with Mn+\(F) C R C Mn(F) for some n. Then F/R is 
characterized by Fp(F/R) (Actually, a slightly sharper version of this is true: see 
3.1.2 for the precise statement). Passi and Sehgal's result is included as the case 
n = 2. Note further that M[(F) — WF pk, where Fj is the y'-th term of the lower 
central series of F and the product is taken over all pairs (y, k) with jpk ^ /. In 
particular, F/YlF.pk is characterized by its modular group ring. 

It may be worthwhile mentioning a concrete class of groups G satisfying the 
above criterion (the author is indebted to C. Hobby for having this pointed out 
to him): Let G : = (ao)a((a\) x (#2) x («3)), all groups (at) of order p ^ 5 and 
a^laQlaiao = a\+\ for / ^ 1, «4 : = 1. 

To round off our above result from a methodical point of view, we then 
discuss a problem raised by Sehgal, and Roggenkamp and Scott's splitting of 
the automorphism group of Z^G, Zp denoting the ring of /7-adic integers. 

In [8], Problem 24 on p. 229, Sehgal asks, whether FPG —> FPH implies 
Z^G —> ZPH. In view of [5], this would imply G —-> // , and we will show 
here that such a /?-adic isomorphism will in general not induce the original 
isomorphism between FPG and FpH, demonstrating thereby that there is no 
"natural way" to pass from the modular to the p-adic situation. 

Furthermore, although a moments reflection already reveals that decisive parts 
of the methods of [5] are not available in the modular case, one might ask, 
whether at least the result from which Roggenkamp and Scott derived their 
solution of the integral isomorphism problem, carries over resp. how it could be 
modified: For finite p-groups G, every automorphism of Z^G is a product of an 
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inner automorphism of ZPG by an automorphism of G extended to the whole 
of ZPG (see [5], Ch. 2, Cor. 1). 

We will show that in the modular case this is no longer true; but that a 
promising modification might look as follows: 

Note that the decisive properties (for our purposes) of inner automorphisms 
are 

(i) Ideals are left invariant 
(ii) They induce identity on all augmentation quotients AGn/AGn+{. 

Due to a counterexample given by Sandling, it does not seem to be possible to 
save the first property. However, the second one is still rather useful. For the 
sake of brevity and in view of finite dimensional algebras, let us call UAut / : 
= {V> £ Aut / |gr0 = Id} the group of "unipotent automorphisms" of an 
algebra J. Our second main result (3.2.1) then reads as follows: Let J be the 
Magnus algebra over F^ of either a free group G or a finite /?-group G, which 
is relatively-free in some variety of groups. Then 

Aut J = Aut G • UAut / . 

This holds, in particular, for F a free group and R any product of pk-ih powers 
of lower central series terms such that G : = FJR is a finite /7-group. 

2. Remarks on complete algebras. For the reader's convenience, we pro­
vide a couple of facts on completions and graded algebras. Since some of them 
are new and of interest in their own right, they will be formulated slightly more 
general than necessary for use later on. Furthermore, some terminology will be 
introduced. 

2.1 Let AT be a field of arbitrary characteristic and A a /C-algebra. A is filtered 
by its powers A1, i G N, and becomes in the usual way a topological algebra. In 
this paper, we will be concerned only with algebras A, which are hausdorff in 
this A-adic topology. This amounts to the same as to say DjA1 = 0. 

The A-adic completion of A is defined by A : = lim<_/4/Aw+1. 
From now on, "—" denotes always the completion functor, which is exact in 

the following sense: For a short exact sequence 

0—•/ -+A++B —>0 

of /C-algebras A, B and / a (two sided) ideal of A equipped with the filtration 
induced from A, i.e., /, : = / HA1, the sequence 

(2.1.1) 0 - > 7 - + Â - ^ £ - + 0 

is exact (see for example [2], p. 291); in particular, ker/ = ker/, and if Ji is 
an ideal of B, J\ : =f~[(J2), one has 

(2.1.2) f~\72) = 7\. 
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By construction of inverse limits, there exist projections A —> A/A" for all 
« G N , whose kernel turns out to be An. Thus, we may identify A/An with 
A/An. For the associated graded algebra 

grÂ: = ©Â7Â / + 1 

this identification implies grnA : = An/An+l — gr„A, hence grA — grA. 
Furthermore, the A-adic topology on A coincides with the completion topol­

ogy, i.e. the topology inherited from TljA/A1 D A. Hence, completions are 
complete. Since for a finite p-group G the augmentation ideal AG of FPG is 
nilpotent, one has AG = AG. 

2.2. Is there a less trivial way to consider A as a completion of some other 
algebra than A itself? To answer this question (and for later applications), let us 
introduce "Burnside systems" of A: Let <2, G A, / G /, be such that {at +A ) i e I 

forms a AT-vectorspace base of A/A . Then (tf,-)/e/ is called a Burnside system 
of A (because of the Burnside Basis Theorem for groups). 

Since each Burnside system of A yields one of A/A , an easy limit argument 
gives 

LEMMA 2.2.1. As a complete algebra, A is generated by each of its Burnside 
systems. 

Thus, we may interpret a given complete algebra A as the completion of a 
subalgebra generated by a Burnside system. 

It is well-known that A is a Jacobson-radical algebra and that therefore A 
forms a group (A, o) under the circle composition 

x oy : = x +y + xy. 

Let G be a subgroup of (A, o) generated by a Burnside system (<z;)/e/ of A. 
Denote by M2(G) the second dimension subgroup of G with respect to K and 
by AG the augmentation ideal of the group ring KG. One then has 

PROPOSITION 2.2.2. 

(i)GHA2 =M2(G) 

(ii) G/M2(G) 0 Z K-^Â/Â2. 

Proof. The inclusion "D" in (i) holds always for subgroups of circle groups. 
We are going to establish the reverse inclusion. 

Let F be a group freely generated by (/•)/€/• The map// i—> at for all / G 
/ extends to a surjective homomorphism ir : F —* G and still further to a 
homomorphism of the group rings of F and G over K. This gives 
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(2.2.3) 

AF 

- • G < ^ M 

-> AG 

where the maps 8 are given by è(x) : = x — 1. 
For char K = p, one has M2(F) — F2 • Fp, where F2 is the commutator 

subgroup of F. Since the second dimension subgroup of F with respect to Z is 
F2, and F/F2 is an abelian group free on (fiF^)iei, one obtains for char K = 0 

M2(F) = {/ G F|3 « G N : / n G F2} = F2. 

In both cases, (/M2(F))/e/ forms a base of the F^-resp. Z-module F/M2(F). 
By the definition of dimension subgroups, the map F/M2(F) —• AF /AF2 

(resp. G/M2(G) —> AG /AG2) induced by 6 is injective. (2.2.3) now induces 

(2.2.4) 

F/M2(F) 0z A' 

/7Af9(F) 

-> AF/AF2 

-> G/M9(G) 

# 

AG/AG2 

AM2 

As we have seen above, F/NÎ2(F) 0z ^ is a ^-vector space with base 
(fMi{F) 0 l)/e/> a nd m e resulting isomorphism 

F/M2(F)®ZK^Â/Â2 

makes all the maps of the bottom row of (2.2.4) ending at A/A isomorphisms. 
In particular, the maps of the top row are injective. This gives A Pi G C M2(G), 
and (ii) is also clear by now. D 

The significance of (2.2.2) lies in the fact that for these groups G the rank 
of G, i.e. the number of elements in a minimal generating system, equals the 
rank of G/M2(G) - a condition, which will be of importance for the following 
investigations. 

The examples of complete algebras, which will concern us most in the sequel, 
are obtained by completing the augmentation ideal AG of a modular group ring 
KG: G is residually nilpotent - hausdorff in our terminology - if and only if 
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G is residually a "nilpotent p-group of bounded exponent" (see [4], 2.26 Thm. 
on p. 90). These are precisely the groups of residually "finite M-length": Let 
Mi(G) be the /-th dimension subgroup of G with respect to K, then G is said to 
be of M-length n, if Mn{G) ^ 1 = Mn+{(G). By (2.2.2)_(ii), in this situation G 
is - as a group - generated by a Burnside system of AG, and this is already a 
minimal generating system of G. Conversely, every minimal generating system 
of G is a Burnside system of AG, because G is of finite M-length. 

3. Automorphisms of complete algebras and applications. In this section, 
we generalize the automorphism lifting principle of [6] and discuss the auto­
morphism groups of certain group rings with respect to questions related to the 
modular isomorphism problem. 

3.1. We start by lifting automorphisms. 

PROPOSITION 3.1.1. Let K be an arbitrary field, A a K-algebra, which is com­
plete and hausdorff in its A-adic topology. Let (ai)iei be a Burnside system of 
A and F the free group on (/•)/€/• Then the following hold: 

(i) Every endomorphism of A is induced by an endomorphism of AF, i.e., for 
7 £ End A there exists Y G End AF such that 

AF —^-+ AF 

jt 8 
— - > Â, 

where AF —• A is obtained by extension off t—> a, for all i G /. 
(ii) The automorphisms of A are induced by automorphisms of AF, and the 

analogue applies to unipotent automorphisms. 

Proof. Let G be the subgroup of (A, o) generated by (#/)/e/ and A the sub-
algebra generated by the same elements. The map f t—• a, extends to a homo-
morphism F - > G C / 1 , giving thus a short exact sequence 

0 - > / ^ A F • 0 , 

(/ being just the kernel of AF —• A). This sequence remains exact under com­
pletions, and by (2.2.1), we are allowed to identify the completion of A with our 
original A. Thus 

0- AF- 0 
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is exact, and we may assume A — AF/J. 
Let 7 be an endomorphism of A with l{ai) = yi for / G /. If JC,- G AF is such 

that 7f(jc/) = j / , let 

r ^ ) : = x „ 

r then extends in the usual way to an endomorphism of AF. 
By construction of r , the diagram in (3.1.1) is clearly commutative, once we 

have shown that T leaves J invariant. Since F is continuous, it is sufficient to 
check r ( / ) C / . So let JC G / . Then l{x + / ) = / , and since T is an endomorph­
ism of algebras, 

r(jc) + 7 = 7(jc+7). 

(As an element of A/7, x can be written as a finite sum of products of finitely 
many/i's!) This establishes (i). 

The considerations following (2.2.4) have already shown AF/AF^ —> A/A , 
and this isomorphism was induced by If. Because of gri7 G Aut A/A , we thus 
obtain gv\F G Aut AF/AF . We are going to show that this implies grr G 
Aut grAF. 

Let T be a lifting of 7"1. Since ÂF/ÂF2 ^>Â/Â2, one has g r , r = (gi ï IT1 . 
Multiplication in AF provides a mapping ((g)" denoting the «-fold tensor product 
over K) 

®nÂF/ÂF2-» ÂFn/ÂFn+{, 

and we obtain 

(g>ngrT ® n g r , r 
înAF/AF2 ! • ®nAF/AF2 — • (g)nAF/AF2 

^ ^ 

AFn/AFn- grr AF7AF"+ 

grr 
; • AFn/AFn+ 

Since the maps of the top row compose to give the identity, the same applies 
to the maps of the bottom row. Hence, gr^rr • gr„T = Id, and - by symmetry 
- the same holds the other way round so that grr G Aut grAF. If one starts 
already with griT = Id, then the left half of the above diagram shows that 
grr = Id. Thus, T is unipotent, if 7 is. 

Now, grr G Aut grAF implies inductively that F induces an automorphism 
on each quotient AF/AF . Since AF is hausdorff, F is injective. But F is also 
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surjective: Let x = Yl*j- + AFj+l G AF, the Xj G AF'. Then there exists yj G AFj 

with 

Xj + AF^1 = gryrCyy- + AFj+l) and 

x = J2 &jT(yj + AF^'+1) = nj^yj + AF^'+1). 

Obviously, ^ vy + AFy+1 converges and is therefore contained in AF. • 

Note that the proof shows: An endomorphism T of AF with gv\T — Id is 
unipotent. And clearly the same holds true for endomorphisms of A instead of 
ÂF. 

Before we can give our main application of this theorem to the isomor­
phism problem for modular group rings, we have to say, what is meant by "a 
group G is characterized by FpG/AGn+l": Let H be any group of the same 
(finite) M-length as of G. If the M-length of G does not exceed n, and if 
FpG/AGn+l ^ FpH/AHn+l implies G ^ / / , we say that G is characterized by 
FPG/AG"+1. Clearly, that this implies G to be characterized by FPG, because 
gvG^grH. 

THEOREM 3.1.2. Let F be a free group, R a normal subgroup with Mn+\(F) C 
R 5 Mn(F), where M,(F) is the i-th dimension subgroup of F with respect to 

Fp. Then F/R is characterized by ¥p(F/R)/A(F/R)n+{. 

Remark. In general it is a rather difficult task to decide, whether a given 
"concrete" group has a system of generators and relators satisfying the conditions 
of 3.1.2. Hence it might not be such a good idea to use 3.1.2. as a criterion; but 
rather it provides a class of "concrete" - in a different way - examples: Taking 
R = Mn(F), 3.1.2 says that the free groups of those varieties of all groups of M-
length n are characterized by their modular group algebra; and the same holds 
for groups of such varieties, which are "sufficiently close" to being free in this 
variety. 

Before we turn to the proof, we look at a special case and a class of examples 
of groups G, which - by means of the Theorem - are characterized by their 
modular group ring: 

(1) let G be a group with A/3(G) = 1, and let (g/)/e/ be such that (giM2(G))iei 
forms a vectorspace base of G/MiiG). Then G is generated by (gi)iei, and if F is 
free on (f)iei, then/ \—* gi extends to a surjective homomorphism IT : F —• G. 
Moreover, ker 7r C M2(F), because of the isomorphism F/M2(F) —> G/M2(G) 
induced by IT. Since M^(G) — 1, we have M^(F) C ker7r. (3.1.2) implies that 
F/ker7r resp. G is characterized by FPG, which is precisely the content of Cor. 
6.25 (see [8], p. 117). 

(2) let G : = (a0)a((a\) x (a2) x (03)), all groups (#/) of prime order p ^ 5, 
(tf/,ao) : ~ aflaQlaiao — ai+\ for / ^ 1 and #4 : = 1. G then has order p4 , thus 
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G4 = 1. Furthermore, since (02,00) ~ a^i^3 ¥" 1- With a : = ao and b : = ci\, 
it is easy to see that G — (a,b\ap — If — (#,((/?, tf), <?)) = (/?,((/?, tf), a)) = 
(/?, (/?, a)) — 1). Let F be free on a and b and 7r : F —-> G the obvious map. Then 
kerTr £ Af3(F), since M3(G) = G ^ 7̂  1; and p ^ 5 implies Gp = 1; hence, 
ker7rDM4(F) = F 4 P \ 

The basic idea of the following proof is the same as in the integral case: 
Let G : = F/R and H a group with AG/AGn+l = AH/AHn+{ (since 
F/7G/AG/7+1 is an augmented /C-algebra, we may assume that the isomorphism 
¥pG/AGn+l -̂ > ¥pH /AHn+l is augmented so that we are allowed to identify the 
above mentioned augmentation ideal quotients). We proceed by induction on n: 
An automorphism of AG/AG" carrying the image of G onto the image of H in 
AH/AHn will then be lifted to an automorphism of AF, which finally induces 
the desired automorphism on AG/AGn+]. 

But the technicalities are harder, as is already apparent from the sketch of the 
basic idea. In order to survive among too many maps, we are forced to identify 
naturally isomorphic objects as often as possible. The verification that we are 
indeed allowed to do so are straightforward and left to the reader. Furthermore, 
there are several maps, which won't be given a name. For example, we will 
talk very often about "the image of G in some homomorphic image B of AG". 
It is to be understood that we mean a homomorphism of G into B induced by 
<5:G-^AG w i t h % ) : = g - \. 

Proof. With the above notations, let AG/AG"+1 = AH/AHn+]. By induction 
on n, we will show the existence of a unipotent automorphism carrying the 
iamge of G onto the image of H. Note that since Mn+\(F) C R, G embeds into 
AG/AGn+{, and since G and H have the same M-length, they will be isomorphic. 

Let n—\. Then everything is clear because of 

G^AG/AG2 = AH/AH2 ^-H. 

So let us assume that F/Mn(F) for n ^ 2 is characterized by FP(F/Mn(F))/ 
A(F/Mn(F))n by means of unipotent automorphisms. AG/AGn+x = AH/AHn+[ 

implies AGjAGn = AH/AH'\ and because of Mn(F/R) = Mn(F)R/R = 
Mn(F)/R, one has 

G/Mn(G) = (F/R)/Mn(F/R) = F/Mn(F). 

Hence. 

A(F/Mn(F))/A(F/M„(F)T = AH/AHf\ 

and by inductive hypothesis, there exists a unipotent automorphism l" carrying 
the images of the groups onto each other. 
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Let T be a unipotent lifting of 7" to AF. With the extension ix : AF —+ AG 
of the natural map n : F —» G, one obtains according to (2.1.2) 

7f~\ÂGn+l) = AF"+l+A(F,R), 

A(F7/?) denoting the kernel of n : AF —> AG. Because of /? C Mn{F), one has 

ÂF + 1 C AF"+1+A(F,/?) C ÂFW, 

and since T is unipotent, AF"+1 + A(F,/?) remains invariant under F. Thus, T 
induces a unipotent automorphism 7 ; on AG/AGn+]. 

The image of Mn(G) in AG/AGn+l is a vectorsubspace of AGn/AGn+l, and as 
such, it admits a vectorspace complement C. Since the images of gr G and gr 
H in gr AG/AGn+x coincide (same proof as for AG), C is a complement of the 
image of Mn(H) in AHn/AHn+\too. Moreover, being annihilated by AG/AG"+1, 
C is already an ideal. Thus, in A : = (AG/AG/7+1)/C, the images of Mn(G) and 
Mn(H) coincide; by the choice of C, one still has embeddings G c—> (A, o) and 
/ / ^ (A, o); and thus 

(3.1.3) An = Mn(G) = Mn{H). 

As a unipotent automorphism of AG/AG"+1, 7r leaves C invariant and induces 
therefore an automorphism 7 on A. The natural isomorphism A/An —* AG/An 

shows that the automorphism induced by 7 on AG/AG" is the same as our 
original 7/;. (3.1.3) makes it then clear that 7 sends the image of G in A isomor-
phically onto the image of H in A, and by restricting 7, we have constructed an 
isomorphism a : G —> // . 

a can now be extended via 

• A///A//n+1 = AG/AG1 

to an endomorphism a of AG/AGn+x. 
Because of grjG -̂ > griA -̂ > grjA and since a is a restriction of 7, one 

obtains griô- = gri7 = Id, and this implies that a is a unipotent automorphism 
ofAG/AG*+1. • 
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3.2. We now turn to the structure of the automorphism group of certain com­
pleted group rings. 

Let G be a relatively-free group of finite M-length with respect to some prime 
/?, or a free group. Then G possesses a system of free generators (#,),£/ in the 
sense that every map (g,-)/e/ —• G can be extended to an endomorphism of G 
(see [3] Ch. 1.3, p. 9), and this system forms already a Burnside system of AG. 

THEOREM 3.2.1. Under the above conditions, with AG the augmentation ideal 
ofFpG, 

Aut AG = Aut G • UAut AG. 

Proof, ij) G Aut AG induces an automorphism of AG/AG , and since this 
quotient is isomorphic to GJM^iG), we obtain an automorphism of G /A/2 (G) 
from ip. Since G is realtively-free, and a lifting of a base of G/A/2(G) to G is 
a set of free generators, this automorphism lifts to an endomorphism r of G, 
which can be extended to an endomorphism f of AG. Note that gnr = gri-0-

Since -0 is an automorphism, i/j~l exists, and it is easily seen that gri(0_1 -r) 
= Id. But then gr(0_ 1 • f) = Id, and for <p : = 0 _ l • r, one has <p G UAut AG. 
Obviously, f, too, has to be an automorphism. • 

Remarks. 1. Inducing automorphisms on AG/AG defines a homomorphism 
Aut AG —> Aut AG/AG , whose kernel is precisely UAut AG, showing thereby 
the normality of UAut AG in Aut AG. Furthermore, since every automorphism 
of AG/AG can be lifted to an automorphism of AG by the relative-freeness of 
G, the above homomorphism is surjective. 

2. Since every automorphism of the Magnus algebra ¥p 0 AG is augmented, 
the splitting given in (3.2.1) applies to Aut (Fp ® AG), too. 

3. Since quotients of a free group by a verbal subgroup are relatively-free, this 
splitting holds in particular for G : = F/ITFy,, k\ ^ 1, all other kj ^ 0, and 
thus for elementary abelian /^-groups (but see the following "counterexample"). 

Stronger than in (3.2.1), Roggenkamp and Scott have shown 

Aut ZPG = Aut G • InnZpG 

for finite p-group G (see [5]). The question arises, whether this holds also in 
the modular case. 

Counterexample. Let F be a group freely generated by (//),<=/ and p > 2 a 
prime. Then G : = F/A/2(F), where M2(F) is taken with respect to p, is an 
Fp-vectorspace and certainly relatively-free such that (3.2.1) holds for Aut AG, 
AG C FPG. For gt : — ftM2{F) for / G /, choose any elements Xj G AG2, not all 
equal to 0, and let H be the subgroup of (AG, o) generated by the 6(gi)oxj, i G /. 
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Then H forms a base of AG: Since linear combinations of the £(g/)ojt;'s involve 
only finitely many (g/)'s (xt G AG!), it is sufficient to check this for G finitely 
generated. But xp = 0 for all x G AG implies that / / , too, is an elementary 
abelian p-group, and as F^-vectorspaces dim// = dimG. Since H ^ AG /AG2, 
H generates AG; hence the result. Moreover, H ^ <5G, because SG D AG2 = 0 
by M2(G) = 1 and (2.2.2)1_and certainly, G-^H. 

The automorphism of AG defined by G ^> / / cannot split into a product of 
an extended automorphism of G by an inner automorphism of AG (which in our 
situation are all equal to the identity), because 6G ̂  H. 

A special case of the above example was pointed out to the author by R. 
Sandling in a private communication, where it was used as an example for the 
lack of ideal correspondence in the modular case (the interested reader may 
consider the ideal J generated by 6(g\), choose any x\ ^ 0 from AG2 and put 
all other xt = 0. Then / H H = 0, because H H AG2 = 0). 

The reason why we were not satisfied with a cyclic group in the above example 
is the following 

COROLLARY 3.2.2. For all free groups F Aut AF 3 Aut F • Inn AF. 

Proof. Let F be free and G and H as in the above example. Then the au­
tomorphism of AG coming from the isomorphism G —> H can be lifted to an 
automorphism T of AF. 

Suppose, r = T\ - T2 with T] G Aut F and T2 G InnAF. As an inner 
automorphism, T2 leaves the kernel of the natural map AF —+ AG invariant. 
Because this holds trivially for T, the same must be true for T/. But then Tz G 
Aut F induces already an automorphism of G, and the splitting T = T\ • ^ 
boils down to a splitting of the automorphism induced on AG by G —> // , which 
cannot hold, as we have just seen. D 

In the same spirit, we are now going to show that in general not every isomor­
phism ¥pG —• FPH is induced by an isomorphism ZpG —* ZpH (this contributes 
to a problem raised by Sehgal; see [8], Problem 24 on p. 229). 

Assume the contrary. We may identify FPG = FpH and also ZPG — ZPH, 
and the assertion now becomes: Every automorphism of FPG lifts to an auto­
morphism of ZPG. Because of 

Aut ZPG = Aut G-InnZPG 

for finite p-groups G, this splitting would induce 

Aut FPG = Aut GInnFpG, 

since p • ZPG is a fully invariant ideal of ZPG. But our example shows that this 
is not true. 
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