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Free Groups Generated by Two Heisenberg
Translations
BaoHua Xie, JieYan Wang, and YuePing Jiang

Abstract. In this paper, we will discuss the groups generated by two Heisenberg translations of
PU(2, 1) and determine when they are free.

1 Introduction

Many authors have studied a subgroup G of PSL(2,C) generated by two non-com-
muting, parabolic, linear fractional transformations

A =

(
1 µ
0 1

)
, B =

(
1 0
µ 1

)
in an attempt to determine when G is free. As is easily seen, the elements A,B can
also be simultaneously transformed into the forms

A =

(
1 2
0 1

)
, B =

(
1 0
λ 1

)
.

The problem then becomes to find the set of complex numbers µ or λ such that the
corresponding group G is free. It is a well-known result of Sanov [8] that G is free
when λ = 2. Brenner [1] showed that G is free provided |µ| ≥ 2. This is equivalent to
the condition |λ| ≥ 2. By using a variant of the Klein combination theorem, Chang,
Jennings, and Ree [2] improved this to the weaker condition that all of |λ|, |λ − 1|,
and |λ+ 1| are at least 1. By a more detailed analysis, Lyndon and Ullman [5] showed
that the exterior of an “eye” formed by the circle |z| = 1 and two of its tangents from
the point±2 consist entirely of free points.

In [10], we studied the group 〈 f , g〉 generated by two elliptic elements f and g
in PU(2, 1) and gave a condition to guarantee that the group 〈 f , g〉 is discrete, non-
elementary, and isomorphic to the free product 〈 f 〉 ∗ 〈g〉. In this paper, we will
discuss the groups generated by two non-commuting parabolic transformations of
PU(2, 1) and determine when they are free. First, we study the groups generated by
two Heisenberg vertical translations.
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Theorem 1.1 Suppose the subgroup G ⊂ PU(2, 1) is generated by

A =

1 0 ti
0 1 0
0 0 1

 , B =

1 0 0
0 1 0
ti 0 1

 ,

where t ∈ R. If |t| ≥ 2, then G is free.

Second, we use Schwartz’s result concerning ideal triangle groups that proved a
conjecture of Goldman and Parker [4] and some results of a free group to show the
following theorem.

Theorem 1.2 Suppose the subgroup G ⊂ PU(2, 1) is generated by

A =

1 2
√

2 −4
0 1 −2

√
2

0 0 1

 and B =

 1 0 0
2
√

2µ 1 0
−4|µ|2 −2

√
2µ 1

 ,

where µ ∈ C. If

|µ| ≥ 1√
1 + (tan−1(

√
125/3))2

,

then G is freely generated by A and B.

2 Complex Hyperbolic Space

First, we recall some terminologies. More details can be found in [3]. Let C2,1 denote
the complex vector space of dimension 3, equipped with a non-degenerate Hermitian
form of signature (2, 1). There are several such forms. We use the following form,
called the second Hermitian form,

〈z,w〉 = w∗Hz,

where z,w are column vectors in C2,1, the Hermitian transpose is denoted by ∗ and
H is the Hermitian matrix

H =

0 0 1
0 1 0
1 0 0

 .

Consider the following subsets of C2,1:

V− =
{

v ∈ C2,1 : 〈v, v〉 < 0
}
,

V0 =
{

v ∈ C2,1 : 〈v, v〉 = 0
}
.

Let P : C2,1 − {0} → CP2,1 be the canonical projection onto complex projec-
tive space. Then H2

C = P(V−), associated with the Bergman metric, is a complex
hyperbolic space. The biholomorphic isometry group of H2

C is PU(2, 1) acting by
linear projective transformations. Here PU(2, 1) is the projective unitary group with
respect to the Hermitian form defined on C2,1. As in real hyperbolic geometry, a
holomorphic complex hyperbolic isometry g is said to be:
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(a) loxodromic if it fixes no point in H2
C but exactly two points of ∂H2

C;
(b) parabolic if it fixes fixes no point in H2

C but exactly one point of ∂H2
C;

(c) elliptic if it fixes at least one point of H2
C.

A finite point z lies in the boundary of the Siegel domain if its standard lift to C2,1

is

z =

z1

z2

1

 , where z1 + z1 + |z2|2 = 0.

We write ξ = z2/
√

2 ∈ C, and this condition becomes 2<(z1) = −2|ξ|2. Hence
we may write z1 = −|ξ|2 + iν for ν ∈ R. That is, for ξ ∈ C and ν ∈ R,

z =

−|ξ|2 + iν√
2ξ
1

 .

Thus we may identify the boundary of the Siegel domain with the one point com-
pactification of C× R.

Consider the map T from C× R to GL(3,C) given by

T(ξ, ν) =

1 −
√

2 ξ −|ξ|2 + iν
0 1

√
2 ξ

0 0 1

 .

It is easy to see that T(ξ, ν) sends the origin to the point (ξ, ν). It is also easy to
see that T(ξ, ν) is in PU(2, 1). Multiplying two matrices of T(ξ, ν) and T(ζ, τ ), we
have

T(ξ, ν)T(ζ, τ ) = T
(
ξ + ζ, ν + τ + 2=(ξζ)

)
.

This means that T is a group homomorphism from C × R to PU(2, 1) with the
group law

(ξ, ν) ∗ (ζ, τ ) =
(
ξ + ζ, ν + τ + 2=(ξζ)

)
.

This group law gives C× R the structure of the 3 dimensional Heisenberg group N.
Geometrically, we think of the C factor of N as being horizontal and the R fac-

tor as being vertical. We refer to T(ξ, ν) as a Heisenberg translation by (ξ, ν). A
Heisenberg translation by (0, t) is called a vertical translation by t . The Heisenberg
translations are ordinary translations in the horizontal direction and shears in the
vertical direction.

Next, we define a metric on the Heisenberg group called the Cygan metric. The
Heisenberg norm assigns to (ξ, ν) the non-negative real number

|(ξ, ν)|0 =
(
‖ξ‖4 + ν2

) 1
4 =

∣∣‖ξ‖2 − iν
∣∣ 1

2 ,

where ‖ξ‖2 = 〈〈ξ, ξ〉〉 =
∑
|ξi |2. This enables us to define the Cygan metric on the

Heisenberg group:

ρ0

(
(ξ1, ν1), (ξ2, ν2)

)
=
∣∣∣ (ξ1−ξ2, ν1−ν2 +2=〈〈ξ1, ξ2〉〉

) ∣∣∣
0

=
∣∣ (ξ1, ν1)−1 ∗(ξ2, ν2)

∣∣
0
.
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The Heisenberg group acts on itself by Heisenberg translation. For (ξ0, ν0) ∈ N,
this is

T(ξ0, ν0) : (ξ, ν) 7−→
(
ξ + ξ0, ν + ν0 + 2=〈〈ξ0, ξ〉〉

)
= (ξ0, ν0) ∗ (ξ, ν).

We now discuss the Cygan sphere. The Cygan sphere of centre z0 = (ξ0, ν0) ∈
∂H2

C with radius r is defined as

Sr(z0) =
{

z ∈ ∂H2
C : ρ0(z, z0) = r

}
.

In terms of coordinates, Sr(z0) is given by

Sr(z0) =
{

z = (ξ, ν) :
∣∣ |ξ − ξ0|2 + iν − iν0 − 2i=(ξξ0)

∣∣ = r2
}
.

Suppose that J be the element in PU(2, 1), then

J =

 0 0 −1
0 −1 0
−1 0 0

 .

We investigate the effect of J on Heisenberg coordinates:

J

−|ξ|2 + iν√
2ξ
1

 =

 −1
−
√

2ξ
|ξ|2 − iν

 ≈

−|ξ|2−iν
|ξ|4+ν2

−
√

2ξ
|ξ|2−iν

1

 .

Thus the map J carries the point (ξ, ν) of ∂H2
C with coordinates

J(ξ, ν) =
( −ξ
|ξ|2 − iν

,
−ν

|ξ|4 + ν2

)
.

Similarly, elements of PU(2, 1) fixing 0 may be obtained from those fixing ∞ by
conjugating by J. Thus we may speak of Heisenberg translation by (τ , t) fixing 0.
This is just the conjugation by J of the translation by (τ , t) fixing ∞. It has the
following matrix representation: 1 0 0√

2τ 1 0
−|τ |2 + it −

√
2τ 1

 .

3 The Proof of Theorem 1.1

We first consider a simple case, that is, the group G generated by two Heisenberg
vertical translations. For convenience, we need the following normalizations

A =

1 0 it
0 1 0
0 0 1

 , B =

1 0 0
0 1 0
it 0 1

 ,
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where t ∈ R.
It is easy to get J2 = Id and JB J = A. We prove this result by the similar argument

in [2]. We define two Heisenberg balls

S1 = ρ0

(
(ξ, ν), (0, 1)

)
≤ 1

S2 = ρ0

(
(ξ, ν), (0,−1)

)
≤ 1

and two unbound sets

∆1 =
{

(ξ, ν) : |ν| ≤ 1/2
}

∆2 =
{

(ξ, ν) : |ν| ≥ 1/2
}
.

Lemma 3.1 If Z = (ξ, ν) ∈ ∆2, then JZ ∈ S1 or JZ ∈ S2. If, on the other hand,
Z = (ξ, ν) is not in S1 ∪ S2, then JZ ∈ ∆1.

Proof Suppose that Z = (ξ, ν) ∈ ∆2, then |ν| ≥ 1/2. By a simple calculation, the
Cygan distance between JZ and (0, 1) is

ρ2
0( JZ, (0, 1)) =

∣∣∣∣ ∣∣∣ −ξ
|ξ|2 − iν

∣∣∣ 2
+ i
( −ν
|ξ|4 + ν2

− 1
)∣∣∣∣

=

√( |ξ|2
|ξ|4 + ν2

) 2
+
(

1 +
ν

|ξ|4 + ν2

) 2

=

√
|ξ|4 + (|ξ|4 + ν2 + ν)2

|ξ|4 + ν2
.

Then JZ ∈ S1 is equal to √
|ξ|4 + (|ξ|4 + ν2 + ν)2

|ξ|4 + ν2
≤ 1.

Thus we get (|ξ|4 + ν2)(1 + 2ν) ≤ 0. That is 1 + 2ν ≤ 0. So if ν ≤ − 1
2 , then we have

ρ0( JZ, (0, 1)) ≤ 1. Similarly, if ν ≥ 1
2 , then we have ρ0( JZ, (0,−1)) ≤ 1. If Z /∈ S1,

then
ρ2

0

(
Z, (0, 1)

)
=
∣∣ |ξ|2 + i(ν − 1)

∣∣ =
√
|ξ|4 + (ν − 1)2 ≥ 1.

That is,
−ν

|ξ|4 + ν2
≥ −1

2
.

At the same time, Z /∈ S2 implies

ρ2
0

(
Z, (0,−1)

)
=
∣∣ |ξ|2 + i(ν + 1)

∣∣ =
√
|ξ|4 + (ν + 1)2 ≥ 1.

This means that
−ν

|ξ|4 + ν2
≤ 1

2
.

Therefore, JZ ∈ ∆1.
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Lemma 3.2 If t ≥ 2, then Z ∈ ∆2 implies Bn(Z) ∈ ∆1 for a non-zero integer n.

Proof We first note that

Bn = J

1 0 nti
0 1 0
0 0 1

 J.

We write
Z1 = JZ, Z2 = Z1 ∗ (0, nt), Bn(Z) = JZ2.

By Lemma 3.1, Z1 ∈ S1 or Z1 ∈ S2. Suppose that Z1 = (ξ1, ν1). If Z1 ∈ S1, then
|ξ1|4 + (ν1 − 1)2 ≤ 1. It is easy to see that |ξ1|4 + (ν1 + nt − 1)2 ≥ 1 for t ≥ 2. Thus
Z2 = Z1 ∗ (0, nt) = (ξ1, ν1 + nt) is not in S1. Similarly, if Z1 ∈ S2, then we have
Z2 /∈ S2. Then, again by Lemma 3.1, we have Bn(Z) = JZ ∈ ∆1.

Proof of Theorem 1.1 If group 〈A,B〉 is not free, there must exist a non-trivial word
g such that

g = Bnr Amr · · ·Bn1 Am1 = Id,

where we can always assume that the integers nr,mr, . . . , n1,m1 are all not zero.
Define

Z1 = Am1 (0),Z ′1 = Bn1 (Z1), . . . ,Zk = Amk (Z ′k−1),Z ′k = Bnk (Zk)(k ≤ r − 1);

and Zr = A−mr B−nr (0). Then we have Z ′r−1 = Zr.
Since Z1 = (0,m1) ∈ ∆2, |m1| ≥ 1. By Lemma 3.1, we get Bn1 (Z1) ∈ ∆1. We

may write Bn1 (Z1) = (ξ1, ν1). Now we have Z2 = Z1 ∗ (0,m2) = (ξ1, ν1 + m2). Then
Bn1 (Z1) ∈ ∆1 implies |ν1| ≤ 1

2 . Since

|ν1 + m1| ≥ |m1| − |ν1| ≥ 1− 1

2
,

we have Z2 ∈ ∆2. Thus Z ′2 = Bn2 (Z2) ∈ ∆1. Repeating this argument, we find
Z ′r−1 ∈ ∆1.

On the other hand, Zr = A−mr B−nr (0) = A−mr (0) = (0,−mr), |mr| ≥ 1
2 , so

Zr ∈ ∆2. Therefore we get a contradiction. Since G is also generated by A−1 and
JA−1 J, we can see that G is also free for−t < 2.

Remark 3.3 In fact, G is also free in other values of t . By an elementary calculation,
any word of G has the form

gt =

P1(t) 0 P2(t)i
0 1 0

P3(t)i 0 P4(t)

 ,

where P1(t), P2(t), P3(t), P4(t) are integer polynomials of t . Then one can obtain the
following results as in [2, 5]:

(a) If t is a transcendental number, then G = 〈A,B〉 is free.
(b) Any point in the real line is a limit of algebraic free points.
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4 The Proof of Theorem 1.2

All of the results in this section about free groups can be found in [7]. We include
them here for completeness, as they will be used in the proof of our second main
result. The subgroups of a free product group have a particularly simple structure as
described in the following lemma.

Lemma 4.1 (Kurosh Subgroup Theorem) Let G = ∗i∈IHi be the free product of a
collection of group Hi . If A is a subgroup of G, then A decomposes as a free product of
the form

A = F ∗
(
∗i∈I

(
∗ j∈ J(i)A ∩ u jHiu

−1
j

))
,

where F is a free group. That is, A is the free product of a free group and of various
subgroups that are the intersections of A with conjugates of the Hi .

For a very simple “topological proof” in terms of fundamental group of graphs
and of coverings, see Massey’s text [6]. Note that applying the Kurosh Subgroup
Theorem to the free product of infinite cyclic groups implies that subgroups of free
groups are free. Here are a few other special cases.

Lemma 4.2 Let G = 〈a, b, c|a2, b2, c2〉 and H = 〈ab, bc〉. If G = 〈a〉 ∗ 〈b〉 ∗ 〈c〉, then
H is free.

Proof Since G is the free product of the three cyclic groups of order 2 and H is a
subgroup of G, the Kurosh Subgroup Theorem tells us that H is a free product of
conjugates of these three cyclic groups and a free group. We claim that H = 〈ab, bc〉
is to be the free group in the letters ab and bc. We know that an element in a free
product of groups has finite order if and only if it is conjugated to some element
of finite order in some of the free factors. This is not the case for ab and bc, and
thus H is a torsion-free subgroup. It follows that H is free by the Kurosh Subgroup
Theorem.

Next, we recall a few basic facts of complex ideal triangle group that we shall need
in the proof of Theorem 1.2. We refer to a triple of distinct points (p1, p2, p3) in ∂H2

C
as an ideal triangle and define its Cartan’s angular invariant

A(p1, p2, p3) = arg
(
−〈p1, p2〉〈p2, p3〉〈p3, p1〉

)
∈ [−π/2, π/2].

This invariant characterizes the triple (p1, p2, p3) up to the equivalence

(p1, p2, p3) ∼ g(p1, p2, p3), g ∈ PU(2, 1).

The points p1, p2, p3 determine complex geodesics C1,C2,C3 that are fixed by the
inversions l1, l2, l3, respectively. In [4], Goldman and Parker used A to parametrize
the homomorphism representation

ρA : Z/2 ∗ Z/2 ∗ Z/2 −→ PU(2, 1),

(a, b, c) 7−→ (ι1, ι2, ι3).

Their main result is that for |A| < tan−1(35), ρA is a discrete embedding and not a
discrete embedding for |A| > tan−1(

√
125/3). The latter necessary condition was

conjectured to be sufficient. Schwartz [9] proved this conjecture.
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Lemma 4.3 Let ι1, ι2, ι3 be as stated above. Then ι1, ι2, ι3 generate a discrete group
if and only if |A| ≤ tan−1(

√
125/3). Furthermore, in this case, ι1, ι2, ι3 freely generate

the free product 〈ι1〉 ∗ 〈ι2〉 ∗ 〈ι3〉 of the three cyclic groups of order 2.

Proof of Theorem 1.2 The fixed points of A and B are p0 = 0, p1 =∞, respectively.
Next, we choose another point p2 = (ξ, ν) ∈ ∂H2

C. Then p = (p0, p1, p2) be a
triple of points in ∂H2

C. Let C0 be the complex geodesic −−→p1 p2 spanned by p1 and p2.
Similarly let C1 =

−−→p0 p2 and C2 =
−−→p0 p1. We denote inversion in C j by ι j ∈ PU(2, 1),

j = 0, 1, 2. We will determine the coordinate of p2 such that A = ι0ι1, B = ι1ι2.
Choose coordinates so that p0, p1, p2 lift to the following null vectors in C2,1

p0 =

0
0
1

 , p1 =

1
0
0

 , p2 =

−|ξ|2 − iν√
2ξ
1

 ,

and
−−→
p1 p2,

−−→
p0 p2,

−−→
p0 p1 are respectively determined by the polar vectors

c0 =

√2 ξ
−1
0

 , c1 =


0

−|ξ|2−iν√
|ξ|4+ν2

−
√

2 ξ√
|ξ|4+ν2

 , c2 =

0
1
0


in the sense that C j is the image in projective space of the linear subspace comprising
z ∈ C2,1 such that 〈z, c j〉 = 0. The corresponding inversion is given by

ι j = −Z +
2〈Z, c j〉
〈c j , c j〉

.

The inversion generators in PU(2, 1) are

ι0 =

−1 −2
√

2 ξ −4|ξ|2
0 1 −2

√
2 ξ

0 0 −1

 , ι1 =

 −1 0 0
2
√

2(|ξ|2+iν)
|ξ|4+ν2 1 0

4
|ξ|4+ν2

−2
√

2(−|ξ|2+iν)
|ξ|4+ν2 −1

 ,

and

ι2 =

−1 0 0
0 1 0
0 0 −1

 .

Comparing the entries of ι0ι2, ι2ι1 with A,B, we know that

ξ = 1, µ =
1 + iν

1 + ν2
.

By a simple calculation, we have

tan A(p) = tan A((p0, p1, p2)) = − tan(ν).

https://doi.org/10.4153/CMB-2012-042-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-042-0


Free Groups Generated by Two Heisenberg Translations 889

By Lemma 4.3, we get that the group 〈ι0, ι1, ι2〉 freely generates the free product 〈ι1〉∗
〈ι2〉 ∗ 〈ι3〉 when | tan(ν)| ≤

√
125/3. That is,

|ν| ≤ tan−1(
√

125/3).

By Lemma 4.2, we show that 〈ι0ι2, ι1ι2〉 is free if |ν| ≤ tan−1(
√

125/3). Therefore
we get

1

|µ|2
− 1 ≤ (tan−1

√
125/3)2.

That is,

|µ| ≥ 1/
√

1 + (tan−1(
√

125/3))2.
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