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DERIVATIONS AND INVARIANT FORMS
OF LIE ALGEBRAS GRADED BY FINITE ROOT SYSTEMS

GEORGIA BENKART

ABsTrRACT.  Liealgebrasgraded by finite reduced root systems have been classified
up to isomorphism. In this paper we describe the derivation algebras of these Lie alge-
bras and determine when they possess invariant bilinear forms. The results which we
develop to do this are much more general and apply to Lie algebrasthat are completely
reducible with respect to the adjoint action of afinite-dimensional subalgebra

1. Introduction.
1.1. Throughout this work F will denote a field of characteristic zero, and all tensor
productswill be over F. Unless specified otherwise, all algebrasexcept Lie algebraswill
be assumed to be unital.

1.2. LetAbeafiniteirreducible reduced root system, and assume A istheinteger lattice
generated by A. Following Berman and Moody [BeM], we say that aLie algebral over
F isgraded by A or is A-graded if

(i) L hasaA-gradationL = @,ca Ly inwhich Ly # (0) if and only if A € AU{0};

(if) thesplitsimpleLiealgebrag = ) © @,eca g) Whose root systemis A relative to
the split Cartan subalgebral) = gg isasubalgebraof L, andL, D g, foral A € AU{0};

(iii) for al h € § the operator ad h actsdiagonally on L, with eigenvalue A(h); and

(iv) Lisgenerated by itsroot spacesL, where A € A.

Theconditionsfor L to beaA-graded Lie algebraimply that it isadirect sum of finite-
dimensional irreducible g-modules whose highest weights are roots, hence are either the
highest long or highest short root or are zero. Thus, condition (iii) in the definition of a
A-graded Lie algebra can be replaced by:

(iii)) Asag-module, L isadirect sum of adjoint modules (modules isomorphicto g),
little adjoint modules (modulesisomorphic to the irreducible g-module V whose highest
weight is the highest short root), or one-dimensional g-modules; the latter being con-
tained in L.

By collecting isomorphic summands, we may suppose that

L=@geAeVeB&D,
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where D isthe sum of thetrivial g-modules, and where we may identify g withg ® 1 C
a®A. ClassifyingtheA-graded Lie al gebrashasnecessitated determining the possibilities
for the spaces A, B, and D and the multiplication between the various summands.

1.3. Itiseasy to seethat a A-graded Lie algebra L is perfect (i.e. L = [L,L]), and in
particular, Lo = > ea[Ly, L_,]. If acentral extension of a A-graded Lie algebrais per-
fect, then it is a A-graded Lie algebra relative to the same root system. For that reason
Berman and Moody [BeM] in the simply-laced case and Benkart and Zelmanov ([BZ1],
[BZ2]) in the doubly-laced case (see aso [N]) classified the Lie algebras graded by fi-
nite root systems up to central extensions. Any perfect Lie algebra L has a unique (up
to isomorphism) universal central extension which is also perfect, called its universal
covering algebra (see [Ga] or [MP, Section 1.9]). Recently, Allison, Benkart, and Gao
[ABGL1] have described the universal covering algebra of an arbitrary A-graded Lie al-
gebral, henceits central extensionsand its homology Ha (L, F) with trivial coefficients.
As a consequence, the Lie algebras graded by finite reduced root systems are now com-
pletely determined up to isomorphism.

1.4. Among the Lie algebras graded by finite root systems are many important exam-
ples. The non-twisted affine algebras (or more accurately their derived algebras) have
arealization, L = (q ® F[t*]) @ Fc, where F[t*1] is the algebra of Laurent poly-
nomials in the variable t over F and c is a central element, and so they are A-graded.
The twisted affine algebras of type D2, A? |, or E® can beredized asL = (g ®
F[t£2]) @ (V @ tF[t*?]) & Fc, where c is central and g is a split simple Lie algebra
of type By, C;, or F4, respectively. The twisted affine algebra DY has a realization as
L = (g @ F[t]) @ (V@ tF[t™] + 2F[t*%))) @ Fc where g is of type G, and c is
central (see [K, Chapter 8]). Conseguently, these twisted affine algebras are graded by
the doubly-laced root systems. The toroidal Lie algebras are the universal covering al-
gebras of the Lie algebras T (q) = g @ F[FL,61,...,t71, n = 2,3,..., so they too
are A-graded. More generally, any perfect Lie algebra which is a central extension of
one of theform g @ A, where A is a commutative associative algebra, is graded by the
root system of g. Other examples of A-graded Lie algebras include the cores of the ex-
tended affine (previously termed quasisimple) Lie algebras of reduced type (see [HT],
[BGK], [BGKN], [AABGH)]), certain of theintersection matrix algebras of Slodowy (see
[S1]), and dl the finite-dimensional simple Lie algebras containing a split maximal toral
subalgebrawith areduced root system (see [S]). Thus, the notion of a A-graded Lie al-
gebra provides a unifying concept which encompasses many important families of Lie
algebras.

1.5. After the finite-dimensional split simple Lie algebras, the most studied of the A-
graded Lie algebras are the affine algebras because of their significant role in statisti-
cal mechanics, conformal field theory, and string theory. The characters of their irre-
ducible highest weight representations give interesting combinatorial identities, and the
string functions and generalized string functions of these representations are modular
functions related to theta functions. The universal covering algebra of the loop algebra

https://doi.org/10.4153/CJM-1998-012-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-012-3

LIE ALGEBRASGRADED BY ROOT SYSTEMS 227

L(g) = g @ F[t™] isthe one-dimensional central extensionL = (g ® F[t*]) @ Fc (see
[W]). TheLiealgebral hasinfinite root spacesrelative to the Cartan subalgebra) & Fc,
henceinfiniteweight spacesinitsrepresentations. Creating auseful representation theory
and character theory for the affine algebra L has necessitated having finite-dimensional
weight spaces, and this has been accomplished by enlarging L by adjoining derivations.
The Casimir operator, acritical tool in proving the character formula, is constructed from
a nondegenerate symmetric invariant form on L. Developing a parallel representation
theory for arbitrary Lie algebras graded by finite root systems requires determining their
derivations and knowing when such an algebra possessesan invariant bilinear form. That
isthe goal of this present paper.

| take this opportunity to thank Yun Gao and Erhard Neher for their comments on a
preliminary version of this paper.

2. Thestructureof Liealgebrasgraded by finite root systems.
2.1. If LisalLie agebragraded by finite root system, then we can decompose L as a
g-module and collect isomorphic summandsto get

L=@oAd(NVeoBaD.

Thespacesg @ A,V ® B, and D are just the isotypic g-module components. The space
a X A Bisan algebra over A whose properties are summarized in (2.2) below, and
D acts as derivations on a which map A to A and B to B. When A is simply-laced, then
V = (0) = Band a = A. The coordinate algebras a listed in (2.2) have inner deriva-
tionsD,, 4 involving certain expressionsin theleft multiplication and right multiplication
operatorsL,, Lz and R,, R; and adz = L, — R; (in the associative case). The exact ex-
pressions for the derivations D, 3 have been determined in the classification results of
[BeM], [BZ2], [N], [S], and [ABGZ2], and this information is displayed below (compare
(2.39) of [ABG1)).

2.2. (@ A, (r > 3): aisanassociative algebraand
Dyg = ! ad
@8 =37 [, 3]
(b) Az: aisanaternative algebraand
1
Da,ﬁ = §(L[oz,(5] - R[o:,{)’] - 3[|—ou RB])
(¢) As: aisaJdordan algebraand
1
Doy = 5lLarLg]

(d) Dy, (r > 4), Eg, E7, Eg: a isacommutative, associative algebra and

Da,H == O
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(e) C: (r > 4): aisanassociative algebrawith involution o, A (resp. B) is the set of
symmetric (resp. skew-symmetric) elementsrelative to o, and

Doy = 7 (adler 4] + e, )

() Cs: aisanadlternative with involution o, A (resp. B) isthe set of symmetric (resp.
skew-symmetric) elements relative to o, A lies in the nucleus (associative center of «a)
and

1
o, — 12

(9) Cy: aisthe Peirce half space of aunital Jordan algebra containing atriangle T ;
o isthe restriction of the connection involution determined by T to a; A (resp. B) isthe
set of symmetric (resp. skew-symmetric) elementsin a with respect to o; the product is
givenin (2.47) of [ABG1] and

D (Lios] — Ris) — 3[Las Rs] + Ljor g — Riae 577 — 3[Las, Ree])

1
Dos = E([Maa M;] + [Moe, Mg-]),

where M,y = %(oﬂ +7ya) for al v € a (see 2.43 of [ABG1] for unexplained terminol-

ogy).
(h) B (r > 3): a = A® Bisthe Jordan algebra over A of a symmetric bilinear form
and
Doz,ﬂ = _[LOU LB]

() F4:a = A@ Bisan dternative algebra over A with a normalized trace mapping
satisfying chy, B is the set of elements of trace zero, and

1
Dy = Z(L[a,B] — Rias — 3[Las Rs])

() Gz:a = A® B isaJordan agebra over A with a normalized trace mapping
satisfying chs, B is the set of elements of trace zero, and

Do,s = [La, Lgl.

2.3. For types F4, Gy, B,r > 3, a = A @ B where A is a commutative associative
algebra. There is a normalized trace on the algebra a; that is, an A-linear functional
t:a — Asuch that

t(ad) = t(d' @)
t((oca')a") = f(a(a'a"))
1) =1

forall a, o/, & € a. The space B, which isthe set of elements of trace zero,

B={bealt) =0}
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isan A-module. Relative to the multiplication,

(2.4 bxb" = bb' —t(bb')1 € B, forb,b’ €B,

B is a (not necessarily unital) algebra. Moreover, the product on a can be expressed as
follows:

(2.5) (@+b)@ +b)=aa +(b,b)+ab’ +ab+bxb,

where (b, b’) = t(bb’) isthe associated symmetric A-bilinear form. Thetrace satisfiesthe
Cayley-Hamilton equation chy(x) = 0 of 2 x 2 matriceswhen A is of type B; or F4 and
the Cayley-Hamilton equation chz(x) = 0 of 3 x 3 matriceswhen A is of type G,.

2.6. Itisuseful to know that thefollowing properties hold for theinner derivations D, 4:
Do+ Dgo =0,
Dosy + Dgya + Dyas =0,
(2.7) [E,Dy.5] = Deqs + Doess
Dus(A) €A, Dys(B) CB,
Dap =0,

foral a,3,7 € aq,a€ A, b € B,and E € Der(a). For any algebraa = A @ B satisfying
(2.2) and (2.3) and having inner derivations asin (2.2), thespaceL = (g @ A) ¢ (V@
B) @ D, , can be given the structure of a A-graded Lie algebrawith trivial center using
the multiplication in (2.15) or (2.16) below with {a, 3} = Dy 4 for al o, 3 € a.

2.8. Leta = A® B beacoordinate algebra of an arbitrary A-graded Lie algebra, and
assume 3 isthe subspace of a ® a spanned by the elements

a@B+ERa
(2.9) afV+YQa+Ya @
a®b

where «, 3,7 are arbitrary elementsof a,anda € A, b € B. Let
(2.10) {a,a} L (a@a)/3
be the factor space, and for «, 3 € a, let {«, 3} denotethe coset « @ 3 + 3 in {a, a}.

2.11. ThespaceD,, = Daa+DggisaLiesubalgebraof Der(a) whichleavesinvariant
AandB. SinceaisaD, ,-module, soisthetensor product a ® a. The space s isinvariant
under Dq q, and so {a, a} isa D, ,-module under the induced action:

Da,a’{ﬂvﬂl} = {Do«a’ﬂaﬁ,} + {61 Da,a’ﬂl}'

This alows usto define a multiplication on {«a, a} by

(2 12) [{(X, O(/}, {57 ﬁ/}] = Da,a’{ﬁ! 6/} = {Da,a’ﬁvﬁl} + {61 Da,a’ﬁ/}v
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giving it the structure of aLie algebra (see [ABGL, Section 4]).
Themapping a ® a — Der(a), o ® 8 — Dy g has ¢ inits kernel because of (2.4), and
the induced mapping p: {a, a} — Der(a) given by

(2.13) p{a, '} — Dy

is a surjective Lie algebra homomorphism. The kernel of p is the full skew-dihedral
homology group of «,

HF(a) = kerp = {Z{ai,ﬁi} € {a,a} Z Do g = O}'

THEOREM 2.14(|ABG1, THEOREMS 4.13 AND 4.20]).  Let L= (aADVB)®
{a,a}, wherea = A@Bisasin (2.2), and definea multiplication on L by the following:
for A= A(r > 2),C(r > 2),

xeayoa] = () © 5@0a) + (xoy) @ S[adl+ (h)ad]}
(215 xX®au®bl =Xou® %[a,b] +[x U]l ® %ao b=—-[u®bx®ad]

[uebveb]=I[uve %(bo b') +(uov) ® %[b, bl + (uv){b,b'},
for A = A, B, (r > 3), Dy, (r > 4), Eg, E7, Eg, Fa, Gy,

x@ayeal =[xyl ®@ad +(x|y){aa}
(2.16) X@au®b =xu@ab=—-[u®bx®a]
U2 b veb]=0du @b b)+UxVv)® (b*b)+uv){bb},

and for all A,

Ho, o'}, x@al =x@Dypa=—[x®a {a,d'}]
(2.17) Ho,od'u@bl =u®@D,owb=—-[u®b,{a,d'}]
[{o, @'},{8,6'}] = {Dawf3, 8} + {6, D3},
for all a,@ € A/b,b' € B,o, o/ € a = A& B,xYy € g, u,v € V. (See(2.18) for an

explanation of the notation used in (2.15) and (2.16).) Then LisaLieal gebragraded by
the root systemA of g whose center is the full skew dihedral homology group

HF(@) = { e i} € {a,a} | 5 Day =0},

LetL = (g ® A) & (V® B) & D,, be a Lie algebra graded by the finite reduced
root system A and having the centralizer of g in L given by the inner derivations D, ,
and having multiplication given by (2.15) and (2.16) with D, 5 in place of {«, 3}. Then
(L, 7), where: L — Lisgivenby 7: x@a — x®a; : u®b — u@b; #: {a,d} — Dy,
is the universal covering algebra of L.
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If S is a subspace of HF(a), then
LS) L /S=@oA)®NVeB)®{aa}/S

isa A-graded Lie algebra. Every A-graded Lie algebra isisomorphic to L(S) for some
subspace S of HF(q).

2.18 Explanation of thetermsin (2.15) and (2.16). In Theorem 2.14 (x]y) istheKilling
form on g. When A = By, F4, and G,, the module V can be regarded as the space of
elements of trace zero with respect to anormalized traceT onanalgebraX = F14V (see
[BZ2, Section 3]). In the B;-case, X is the Jordan algebra of a nondegenerate symmetric
bilinear form; in the F4-case, X is the 27-dimensional split exceptional Jordan algebra
over F; and in the Gy-case, X is the alternative algebra of split octonions over F. In all
these casesd,,y € g isacertain multiple of the inner derivation determined by u,v € V,
and u x v and (u|v) are respectively the V and F1 components of the product uv in X.
The mappings0:V®@V — g, u®Vi— gy, andVRV — V,u® Vv i— ux*yv, are
g-module homomorphisms, (in [BZ2] these are denoted by = and p respectively), and
(u]v) is the unique (up to scalar multiple) g-invariant bilinear form on V with valuesin
F. Multiplication in X isgiven by (¢1 + u)(f1 + v) = (81 + (u|v) + (v + fu + u x v, where
us* v = uv—7(uv)l and (ulv) = 7(uv) is the associated bilinear form.

When g isof type Ar, r > 2, weview g asthe Liealgebrad (+1(F) of (r+1) x (r +1)
matrices of trace zero. For C;, r > 2, weregard g asthe Lie algebraspy, (F) of (2r) x (2r)
matrices which are skew-symmetric relative to the bilinear form whose matrix is E =
Y1 €2r+1—i — Xi_q Ex+1-i. (Here e j denotes the standard matrix unit.) We identify V
with the (2r) x (2r) matrices of trace zero that are symmetric relative to that same form.
In these casesthere isa symmetric product wo zon g & V specified by

Woz— {\I\/Z+Z\N—%tr(vvz)lr+l ifA=Aandw,ze g

wz+ 2w — L tr(wz)ly ifA=C,andw,z€ gorV,

which givesag-module homomorphism. Welet [w, Z] = wz— zw denote the usual matrix
commutator. Since we have matrix realizations, it is customary in these cases to assume
the forms are given by the matrix trace, (x|y) = tr(xy) and (u[v) = tr(uv). The Killing
formisjust ascalar multiple of the trace, so this changeis inconsequential.

In the C;-case, a = A @ Bis an agebrawith involution ¢ which is associative when
r > 4and alternativewhenr = 3, and A isthe set of symmetric elementsand B is the set
of skew-symmetric elementsrelativeto . Whenr = 3, the set of symmetric elements A
must lie in the nucleus (associative center) of the algebraa. Now whenr = 2, thereisa
unital Jordan algebra (J,-) and atriangle T = (p1, po, 0) of elementsin J such that

Pi=pL Po=P2 PL1-P2=0,
1 1 )
pl'qZEQy pzqziq and q:p1+p2:1.

The algebra J has the Peirce decomposition J = Ji; @ Ji2 ® Jop, Where Ji1,J12, and
Jx arethe 1,0, and 1/2 eigenspaces with respect to the left multiplication operator Lp,
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determined by the idempotent p;. The connectioninvolution o:J — J, given by o(X) =
2(g-X) - q— X, mapsthe Peirce half space a = Jyp intoitself, and a = A® B where Aand
B are the 1 and —1-eigenspaces respectively of o on a. The mapping Jiu — A given by
X11 — X1 - g isabijection. Using that fact, we can defineaproduct on a, asin [ABG2],

by
(2.19) aa' = xq1 - &,
ab = X11 - b,
ba=xj,-b, and
bb' = —(b-b")-q,

forala=xu-qg,& € A andb,b’ € B. The mapping ¢ is an involution with respect
to this multiplication. In [ABG2] it is shown that the coordinate algebraa = A B of a
Lie algebra graded by the root system C, is such a Peirce half space with multiplication
asin (2.19), and A and B are the symmetric and skew-symmetric elementsrelative to the
connection involution restricted to a.

2.20. Theclassification results of [ABG1], [BeM], [BZ2], [N] determine the A-graded
Lie algebras up to central isogeny, that is, they state that the universal covering algebra
of any A-graded Lie algebra is isomorphic to the universal covering algebra of L =
(@A) ®(V®B)®D,, (soisomorphicto L). Theorem 2.14 describes all the A-graded
Lie algebras up to isomorphism. Because each A-graded Lie algebrais isomorphic to a
covering algebra of L, wewill write L henceforth for an arbitrary A-graded Lie algebra.

3. Thederivationsof Lie algebrasgraded by finiteroot systems.
3.1. We begin by developing some very general results concerning derivations of Lie
algebras having the property that they are completely reduciblerelative to some subalge-
brag. These results apply to many different Lie algebras, but we content ourselves here
to use them to study A-graded Lie algebras.

PrROPOSITION 3.2.  Suppose L is a Lie algebra over a field F and g is a finite-
dimensional subalgebra of L. Relative to the adjoint action of g on L assume L decom-
posesinto a sum of g-modules, say L = @icy 50 Vi, Where Vo = . Assume H'(g, Vi) =
(0) for all i € 1 U{0}. Ifd € DerL, then there exists an element v € L so that if
d =d+adv, thend’(g) = 0.

PROOF. Let mi:L — V; denote the projection onto the g-module V; and assume
di = md. Thenfor x,y € g,

A Y1) = ma(@x,y1) = i ([0, 1) + i ([x, dy)])
= [mi(d09).y] + [x 7 ()] = [, ¥] + [x, h)].

Consequently, d; € Der(g, V;) for eachi. Since H(g, Vi) = (0), we have Der(g, Vi) =
Inder(g, Vi) for al i € | U{0}. Thus, thereexistsav; € V; suchthat di(x) = x- v, =
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[x,v] for dl x € g. Only finitely many v; are nonzero since g is assumed to be finite-
dimensional. Setv = 3¢ o) Vi- Thenclearly (d+adv)(X) = d(x) — Xi[x, vi] = Ofor all
Xeq. n

3.3. By callecting isomorphic summands in the decomposition of such a Lie algebra
L, we may assume there is some subset J of | and a vector space A; over F for each
j € JU {0} with basis {a?} such that

L= @ VoA,

jedu{o}

where V; ® @ = Vj as g-modules. We suppose 8 = 1 € Ay and identify g with
a®1=Vy® 1.Then[x®l,vj®a())] =XV ®a()) = [x,vj]®a’/foralIX6g.

PrROPOSITION 3.4.  Wth assumptions as in Proposition 3.2, suppose further that
dimHom, (i, Vj) = é; for all j,k € JU {0}. Assumed < Der(L) and d(g) = O.
Then for eachk € JU {0} there exists a linear transformation d®: A, — A, such that
d(vi @ @) = v @ d¥(a) for all a € A and vy € V.

PrOOF. Let 7r9): L—V® a(,j) denotethe projection of L onto the g-module V; ® a(pj).
Fix abasis element ak) of Ay. Since

d(x vl @ &) = d(x e Lw@al]) = x@ 1, 7dw @ a¥)),

for al x € g, the map 79d when restricted to Vi @ a¥) can be regarded as a g-module
homomorphism in Hom, (Vi, Vj). By assumption this homomorphism must be zero if
j # kand amultiple of the identity, say ¢ idy, if j = k. Thus, d(w ® al¢) =
> rdvic® ald) = £, v @ ¢ 2. Consequently for eachk € JU{0}, the derivation
d induces alinear transformation d®: A, — A, defined by

) = > cfal,
14

and d(v ® @) = v @ d®(a) for all a € A and v € Vi asclaimed. "

3.5. The hypotheses of these propositions are satisfied by the split simple Lie algebra
a, the little adjoint module V, the trivial g-module, and any A-graded Lie algebra[ =
LES) = (@A) & (V® B) @ {a,a}/S. The condition that the first cohomology group
vanishesisjust thefirst Whitehead lemmafor g. Therefore, we may apply theseresultsto
any A-graded Lie algebra. This brings usto the main result (Theorem 3.6) of this section.
| am grateful to Yun Gao for providing me with the calculation in (3.9) below.

THEOREM 3.6.  Supposel = L(S) = (@@ A) @ (V@ B) @ {a,a}/S isaLiealgebra
graded by the finite reduced root systemA. Let « = A® B. Then

Der(L) = adL + Der,(a,S)
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where Der,(a) = {D € Der(a) | D(A) C A, and D(B) C B} and Der.(a,S) = {D €
Der.(a) | D(S) C S}.

Proor. Supposel = L(S) = (g @ A) @ (V @ B) @ {a,a}/S is aA-graded Lie
algebra. For convenience of notation write D = {a,a}/S and set (, 3) = {a, 3} +S
for al «, 3 € a. Then the D-component of [x®@ a,y® @] is (x|y){a, &), and analogously
the D -component of [u® b,v® b'] is (u[v)(b,b’) in (2.15) and (2.16).

Assume d € Der(L). After adjusting by an inner derivation if necessary, we may
supposethat d(g) = 0. Thenby Proposition 3.4, d inducesatransformationona = A®B,
say di: a — a, suchthat d,: A— A, d.. B — B, and
(3.7) dx® a) = x® d.(a)

d(u®b) = u® d.(b)
forall x € g, u € V. Moreover, since D is a subalgebraof L, which by Proposition 3.4

must be d-invariant, d restricted to D is a derivation.
Now when A is not of type A;, C;,r > 2, we see upon applying d that

[x,y] @ d.(a&) + (x|y)d((a, &))
=d([x@ay®a])
=[x@d@. yed]+[x@ayod(@)]
=[x Y] @ (d.(a)a +ad.(&)) + (y)({d-(a), &) + (a,d«(&)))
for al x,y € g anda,a € A. From this it follows that d. is a derivation on A, and
d({a,a&)) = (d.(a),a) + (a,d.(@)) holds. We have similar calculations,
X-U® d.(ab) = d([x ® a,u® b))
= [x@d(a),u@b] +[x®a u® d.(b)]
= X-u® (d.(a)b +ad.(b)),
and
duy @ di((b, b)) + (U V) @ du(b x b) + (uv)d((b, b'))
=d(u®b,ve b)
=[u® d.(b),ve b]+[u®b,ve d.(b)]
= 0uy ® ((d*(b), b') + (b, d*(b/))) + (U V) @ (dao(b) * b’ + b * d.(0))
+ (UM)({di(b), B') + (b, d.(b))).
Whence it follows that d. is a derivation on a belonging to Der,(a) = {D € Der(a) |
D(A) C A, and D(B) C B} and satisfying
(38 d((a &)) = (d:(a),a') + (a, d.(@))
d((b,b")) = (d.(b),b’) + (b, d.(b'))
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for al a,a’ € A, b,b’ € B. Every derivation in Der,(a) has a natural action on {a, a}.
Let 1y denote the natural homomorphism n: {a, a} — (a,a) = {a,a}/S. Then by (3.8),

nd:({a, 8}) = n({dea, 8} + {, d.3})
= (dia, B) + (o, diB) = dn{e, B}

forall «, 5 € a. Thisshowsthat 10d, = don, and hencethat the kernel of 5, whichisS, is
d.-invariant. Conversely, any derivation d. € Der.(a,S) = {D € Der.(a) | D(S) C S}
gives rise to a corresponding derivation d on L by specifying that (3.7) and (3.8) hold.
Thus, we havethe desired result for all A-graded Lie algebraswhoseroot system A isnot
of types A or C; forr > 2.

In the remaining cases suppose

(3.9)

aof=af+pa
[, 8] = aff — B

forall «, 8 € a. Observe that

SIxY] @ d@oa) + S(xoy) @ du(faal) + (y)d((aa)
=d([x®@ax®al)

=[x®@d.@),yoa]+[x®ay® d.(@)]

(3.10) _ %[X, vl ® (d*(a) od +ao d*(a/))

+ (koY) © ([d.(a), ] + [a,d.(2)])
+(xIY)((d(a), @) + (a d(@))),

Now supposethat x = y = €11 — €2 when A is of type A. (Recall the identificationswe
have made in this case of g with the matrix Lie algebra dl 1+1(F).) Then [x,y] = 0, but
xoy = 0sincer > 2, and we may deducefrom (3.10) that

(3.11) d.([a,a]) = [d.(a), &] +[a,d.(@)].
Putting that back in (3.10) we seethat
(3.12 di(aod) =d.(a) oa +aod.(a)

must hold as well, and these relations can be combined to show that d, is a derivation
on a = A. Note that (3.8) holds also in this case. Consequently, Theorem 3.6 is true for
type A by the same arguments as before.

When Aistype C, thenthethree summandsof [x®a, y@a'] liein different components,
so the corresponding coefficients of [, y], x o y, and (x|y) on both sides of (3.10) can be
equated to give (3.8), (3.11), (3.12). Similarly, since all the summandsin the productsin
(2.15) lie in different components, the derivation d can be applied to those relations to
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deduce that d, is a derivation in Der.(a, S) and (3.8) holds. Once again, any derivation
d. € Der.(a,S) givesrise to one of L by (3.7) and (3.8), so we have all the desired
conclusions. n

3.13. Special cases of Theorem 3.6 have been known. WhenL = g ® A, where Aisa
commutative associative algebra, Der(L) = adL x Der(A) = (adg ® A) x Der(A) (see
for example, [K, Exercise 7.3-7.5]). In particular, when L(g) = g ® F[t™], the loop
algebracorresponding to g, then

Der(2(g)) = ad 2(g) x Der(F[t"!]) = (g @ F[t*]) x Der(F[t"]),

where the Lie algebra of “outer derivations’ Der(F[t*]) is a Witt algebra (centerless
Virasoro algebra) with basis {d; = t”l% | i € Z} and multiplication given by [d;, dj] =
(j — i)di+j. Benkart and Moody [BM] have determined the derivations of the toroidal
Lie algebras and their twisted counterparts. Since the derivation algebraof aLie algebra
that is perfect and centerless and the derivation algebra of its universal covering algebra
coincideaccordingto [BM, Theorem 2.2], thederivation algebraof atoroidal Liealgebra
isthe same as the derivation algebraof ¥ (g) = g @ F[t{?, ..., t5Y], whichisad T (g) x
Der(F[t:2,...,61]) &2 (g @ F[tiL, ..., t51) x Der(F[t{1, ..., t51]).

If A is any nonassociative algebra with 1, and N is the associative center (or what
is often called the nucleus) of A, then Benkart and Osborn [BO] have shown for the
algebra L/,,(A) generated by the elements aej under the commutator product that
Der(L/,1(A)) = adMra(N) +Der(A), where Mr.1(N) isthe (r +1) x (r +1)-matrices over
N, and the derivationsin Der(A) are applied to each matrix entry. In the special case that
Aistaken to satisfy the conditionsin (1.2), this result gives Theorem 3.6 for algebras of
type A, r > 2. The derivations of Lie algebras graded by root systems of type A; have
also been computed by Berman, Gao, and Kryliouk in [BGK] for r > 3 and by Berman,
Gao, Kryliouk, and Neher [BGKN] for r = 2.

3.14. In[BM]itisshownthat if L and K are perfect Lie algebraswith universal cover-
ing algebrasﬂ and K respectively, and if K acts on L by derivations, then the universal
covering algebraof L x K isL x K. In particular, since the Virasoro algebraV is the
universal covering algebra of Der(F[t*1]) (see for example, [GF], [BM], or [MP]), the
universal covering algebraof Der(2(q)) = (g @ F[t*']) x Der(F[t"!]) is the semidirect
product ((g QF[t )@ Fc) %'V of the affine algebrawith the Virasoro algebra. ThisLie
algebraappearsnaturally in representation theory dueto the fact that any restricted mod-
ulefor the affine algebrais also amodule for ((g QF[t )@ Fc) %'V viathe Sugawara
operators (see for example, [K, Section 12.8]).

More generaly, supposethat L = (g ® A) & (V@ B) @ D, . isaA-graded Lie algebra
whose D -component is given by the inner derivationsof « = A@ B. ThenL = L(S),
whereS = HF(a) in the notation of Theorem 2.14, and it is easy to seethat Der,(a,S) =
Der,(a) in this case. Assume Der,(a) = D, x K where K is Lie subalgebraof Der.,(a)
which is perfect. Then we can identify Der(L) with L + Der,(a) = L x K because L
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is centerless, and the universal covering algebra of Der(L) is L x K, where L is asin
Theorem 2.14.

3.15. The general nature of our arguments allow them to be adapted to variety of dif-
ferent settings. For example, the same methods can be used to compute Der(L) where L
isaLie algebra graded by the nonreduced root system BC; (see[ABGZ2] and [BS)]).

4. Invariant formson Lie algebrasgraded by finite root systems.
4.1. In this section we derive necessary and sufficient conditions for a Lie algebra L
graded by afinite root system to have an L-invariant bilinear form. Because L is perfect
such aform must be symmetric (see for example, the argument in [BZ2, (2.3)]), so we
will assume that from the outset. Our aim is to establish the following

THEOREM 4.2.  Assumel = L(S) = (s ® A) @ (V@ B) @ {a,a}/S isa A-graded
Liealgebra, wherea = A@ B. If L hasan L-invariant symmetric bilinear form(, ), then
there exists an a-invariant symmetric bilinear form(, ). on a suchthat (A, B), = 0 and

x@ayod) = (xy)(@ a).
(U@ b,v® b') = £(ulv)(b, b).
(d,{a,a)) = (da, ), = —(a,da).
4.3) (d, (b,b')) = £(db, b'), = —&(b, db),
X®au®b)=0
x®ad) =0
(u® b,d) =0,

forall a, @ € A, b,b’ € B, x,y € g, u,v € V,andd € D. WhenA = C,,r > 2,
then ¢ = 1,andwhen A = B;,r > 3, F4, or Gy, then £ is the nonzero scalar such that
(X|Ouy) = &(x- u|v) holdsfor all x € g, u,v € V whered,, isasin (2.10). The center
Z([) of L iscontained in the radical of the form. If the form (, )« on a is nondegener ate,
then the radical of (, ) is Z(L). Conversely, if the form (, ) on L is nondegenerate, then
theform(, ), on a isnondegenerateand Z(L) = (0). Any symmetric a-invariant bilinear
form(, ). such that (A, B), = 0 determines a symmetric L-invariant bilinear formon L
given by (4.3).

PROOF.  For the A-graded algebral. = (g ® A) @ (V @ B) @ {a,a}/S,weset D =
{a,a}/S andwrite (a, 3) for {o, 3} +S € D. We supposethat {a | i € i} isabasisfor
A {b|j€j}isabasisfor B,and {ds | k € {} isabasisfor D. ThenL isthedirect sum
of thefinite-dimensional g-modulesM € ¢ - {s@a,Vob,Fdd|i€i,jejkef}

Now suppose (, ) is an L-invariant form on L, and let M and N be any two (possibly
equal) modulesin J¢. Then the form restricts to amappingM ® N — F, which must be
ag-module homomorphism by the invariance. Since any modulein It isirreducible and
self-dual, (M, N) # OimpliesM = N.
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Fixindicesi,i’ € i and considerthe mapx®y — (x®a;, y®a;/). Thisgivesag-module
map g ® ¢ — F, which must be a multiple of the Killing form, say (X ® &,y ® &) =
6; »(X|y). Define a bilinear form (, ). on A by first specifying (aj,a)s = 6 and then
extending this bilinearly to all of A. Asaresult, X® a,y ® &) = (X|y)(@ &)e.

Sincethereis also aunique (up to scalar multiple) g-module homomorphismV®V —
F, the same argument shows there is aform on B, which we also denote (, )., such that
(U®b,ve b’) = (ujv)(b,b').. Becauseg ® Aand V & B are orthogonal, we may extend
theform (, ), to all of a by decreeing (A, B), = 0.

Therest of the argument amountsto using the invariance ([f, g], h) = (f,[g, h]) of the
form on L and the invariance of the Killing form on g to derive various properties of the
bilinear form on a. By first takingf = x®@ a,g=y® a,andh = z® a’, we see that
when A isnot of type A; or C; for r > 2 that the relation

4.4 (aa,a")e = (a,aa").

holdsfor al a,a’,a” € A. Nextwithf =x®a,g=u®b, h=v® b’ we seethat
(4.5) (x- ulv)(ab, b')s = (X|0uy)(a (b, b)), .

Thenwithf =u®b,g=v®b,h=w®b” we get

(4.6) (u*viw)(b*b',b")e = (U|v*W)(b, b’ *b"),.

Recall when A isof typesB,F,G that X = F @ V isan algebrawith anormalized trace
7:X — F and V is the space of elements of trace zero. Multiplication in X is given by
(CL+u)(01+v) = 91+ (u|v) +¢v+Ou+uxv, whereuxv = uv—7(uv)1 and (ulv) = 7(uv)
i the associated bilinear form. Then (u * viw) = 7((u)w) — r(uv)r(w) = 7((UWw) =
T(U(WV)) = (u|v * w) follows from the properties of the trace. As aresult, (4.6) implies
that (b x b’,b”)s = (b,b’ x b"),. Thisis equivalent to saying (bb’,b”), = (b,b'b"),
because A and B are orthogonal .

Themappingsg @ VeV — F givenby X@ u@vi— (X|0,y) and X@ U@V i— (X- u[V)
are g-module homomorphisms. They must be multiples of each other since the space
Hom,(g ® V ® V,F) is one-dimensional. Thus, there exists a scalar ¢ # 0 such that
(X|0uy) = &(x- u|v) for al x € g, u,v € V. Suppose (a, &), = (a,&)., (a,b). = 0, and
(b,b), = £€71(b,b"),, for al a,a € A, b,b’ € B. Then our calculationsin (4.4)—(4.6)
alow usto concludethat the form (, ). on a isinvariant. Substitutingf = d € D,g =
x®@aandh=y®a andthenf =d € D,g=u®b,andh = v® by shows that
(d,(a,@)) = (da, &), = —(a,da)s, (d, (b,b')) = £(db, b"), = —¢(b, db’).. as claimed.

When A is of type A, the substitutionf = x® a,g=y® &, andh = z® a” gives

(@.7) (x )2 ((@od,a"). — (@.a 0a’).) +(xoy2)((a.al.a"). — (a,[a,a"l.)) = 0.

Thus,whenx =y = €11 — &7, 2= &, — €33, Wwe seethat ([a,a'],a"). = (a,[a,a"])..
When this is put back into (4.7) and x,y, z are chosen so ([x,y]|2) # O, the condition
(aod,a”), = (a,a o a"), results. Combined these say (4.4) holds in this case. Since
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(d,{a,a)) = (da,a’)s = —(a,da’). holds exactly as before, all the same conclusionsare
validinthe A-casewith (, )« = (,, ).

Now when A is of type C;, the same initial substitutionf = x® a,g = y® &, and
h=z® a’ yields ([x, y]|z)((a od,a"), —(a,@ o a”).) = 0. Since[A,A] C B, weaso
have([a,a],a"). = 0 = (a,[a',@"]), for all a,a’,a” € A. Combining these results gives
(aa’,a"), = (a,a'a”),. Analogousargumentswith f, g, h taken from among the elements
X®@a,yead,u®b,veb/,web”, show that theform (, ), isinvariant on a. In particular,
settingf = x®a,g=u®b,andh = v® b’ shows

(Ix ullv)(@b, b'). = (x|[u,V])(alb o b)..

Since x, u, v are (2r) x (2r) matrices and the forms are given by the trace, (x|[u,Vv]) =
([x, u]|v) by the invariance of the trace. Thus, we may take ¢ = 1and (, ). = (, ) in
the C,-case. Therelations (d, (a,&’)) = (da, &). = —(a,da)., (d, {(b,b")) = (db,b’), =
—(b, db’), hold exactly asin the other cases.

To verify the statements about the radical, observethat the center Z(L) of L isthe sum
of trivial g-modules and so must liein D. Any d € Z(L) must satisfy da = 0 = db for
dl a € Aand b € B. Therefore, since D = (A A) + (B, B), it follows from (4.3) that
Z([) is contained in the radical of the form.

Now let {x } be abasisfor g, and suppose that {y;} is the dual basis with respect to
the form (|) on g. Similarly, assume {u;} and {v;} are dual bases of V with respect to
the form (|) on V. Assume initialy that the form on a is nondegenerate, and suppose
forz=Yix@a+Yueb+declthad = (zL). Then0 = zyw®a) =
(X |Y)(ax, @)« = (&, a). for al a € A. Since (A, B). = 0, and theform on a is assumed
to be nondegenerate, we must havea, = Ofor eachk. Hence, z = 37 uj@ by +d. A similar
argument with v, ® b showsthat b, = Ofor all £. Finally then0 = (d, (a,&')) = (da, &)
for al a,a € A. Sinceda € A and (A,B). = 0, the nondegeneracy of the form on a
forcesda = Ofor al a € A. Analogously, db = O for al b € B, and from this we see
d € z(L). Therefore, when (), is nondegenerate, the radical of the form on L is Z(L).
For the converse, note that if a + b isin the radical of the form on a, then so are a and
b. Moreover, then x ® aand u @ b are in the radical of the form on L for all x € q and
u € V. Consequently, if the form on L is nondegenerate, then so is the form on a, and
Z(L) must be (0).

Finally, supposethat (] ). isan a-invariant symmetric bilinear form on a. Thenit can
be verified using the expressions for the inner derivations in (2.2) that the derivations
D, are skew-symmetric relative to the form:

(Da,a’ﬁyﬁ/)* = _(,61 Da,a’ﬁ/)*-
This alows usto define an invariant form on the Lie algebra {a, a} by specifying

({o. '} {88 = (Do 3, 8)s-

Clearly, HF(a) is in the radical of this form, and so for any subspace S of HF(a) there
isaninduced formon D = {a,a}/S asin (4.3). Using the g-invariance of the bilinear
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forms (|) on g and V we seethat every form on L whichis specified by (4.3), where ( )«
i~s an a-invariant symmetric bilinear form on a such that (A, B). = 0, gives a symmetric
L-invariant form. ]

4.8. Because we have chosen (u|v) to be the symmetric bilinear form coming from the
normalized traceon F1$V, and becausein [BZ2] afixed choice of mappingu®@v — dyy
is made, the scalar ¢ must be included above. For example, when A is of type By, r > 3,
then V is just the natural representation of the Lie algebra g on a space of dimension
n=2r+1. Wecanassumethat V hasabasisv;,i = 1,...,n, such that (vi|Vj) = & n+1-i-
Thenfor x = e;; — €yn, U= vy, V= Vv, we have (x - ulv) = 1. In[BZ2, Theorem 3.53],
Ouv(W) = (u,wW)v — (v, wju for al u,v,w € V. For our choice of u,v, dyy = €n — er1.
Then (x|0yy) = (4r — 2) tr(xdyy) = —2(4r — 2) = —2(4r — 2)(x - u|v) (see[FH, p. 272]).

4.9. Not every possible coordinate algebra a has a nontrivial invariant form. For ex-
ample, consider the Weyl algebra a generated by a, b subject to the relation [a,b] =
ab — ba = 1. Since the Wey! algebrais an associative algebra with 1, it can serveas a
coordinate algebrawhen A = A, r > 2. Suppose (, ) is a symmetric a-invariant form
ona. Then

([a™b", b], 1) = (@™*b", [b,1]) = 0.

But the left side equals (m+1)(@™b", 1), so 1 is orthogonal to all the monomialsa™b" for
al m,n > 0. Because these monomials determine a basisfor a, 1 isin the radical of the
form. Theradical of aninvariant form isanideal, which in this case contains 1. Thus, it
must be all of a. Hence, the only invariant form on the Weyl algebraisthe trivial one.
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