
JFP 22 (3): 225–274, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000135 First published online 29 May 2012

225

Contracts made manifest�

MICHAEL GREENBERG, BENJAMIN C. P IERCE

and STEPHANIE WEIRICH

University of Pennsylvania, Philadelphia, PA 19104, USA

(e-mail:)mgree@seas.upenn.edu)

Abstract

Since Findler and Felleisen (Findler, R. B. & Felleisen, M. 2002) introduced higher-order

contracts, many variants have been proposed. Broadly, these fall into two groups: some

follow Findler and Felleisen (2002) in using latent contracts, purely dynamic checks that

are transparent to the type system; others use manifest contracts, where refinement types

record the most recent check that has been applied to each value. These two approaches

are commonly assumed to be equivalent—different ways of implementing the same idea, one

retaining a simple type system, and the other providing more static information. Our goal is

to formalize and clarify this folklore understanding. Our work extends that of Gronski and

Flanagan (Gronski, J. & Flanagan, C. 2007), who defined a latent calculus λC and a manifest

calculus λH, gave a translation φ from λC to λH, and proved that if a λC term reduces to

a constant, so does its φ-image. We enrich their account with a translation ψ from λH to

λC and prove an analogous theorem. We then generalize the whole framework to dependent

contracts, whose predicates can mention free variables. This extension is both pragmatically

crucial, supporting a much more interesting range of contracts, and theoretically challenging.

We define dependent versions of λH and two dialects (“lax” and “picky”) of λC, establish

type soundness—a substantial result in itself, for λH – and extend φ and ψ accordingly.

Surprisingly, the intuition that the latent and manifest systems are equivalent now breaks

down: the extended translations preserve behavior in one direction, but in the other, sometimes

yield terms that blame more.

1 Introduction

The idea of contracts—arbitrary program predicates acting as dynamic pre- and

post-conditions—was popularized by Eiffel (Meyer 1992). More recently, Findler and

Felleisen (2002) introduced a λ-calculus with higher-order contracts. This calculus

includes terms like 〈{x :Int | pos x}〉l ,l ′
1, in which a boolean predicate, pos, is

applied to a run-time value 1. This term evaluates to 1, since pos 1 returns true.

On the other hand, the term 〈{x :Int | pos x}〉l ,l ′
0 evaluates to blame, written ⇑l ,

signaling that a contract with label l has been violated. The other label on the

� This is a longer version of a POPL 2010 paper (Greenberg, M., Pierce, B. C. & Weirich, S.
(2010) Contracts made manifest. Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on
the Principles of Programming Languages (POPL), Madrid, Spain, pp. 353–364) with proofs and
extended discussion.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

226 M. Greenberg et al.

contract, l ′, comes into play with function contracts, c1 �→ c2. For example, the term

〈{x :Int | nonzero x} �→ {x :Int | pos x}〉l ,l ′
(λx :Int. x − 1)

“wraps” the function λx :Int. x − 1 in a pair of checks: whenever the wrapped

function is called, the argument is checked to see whether it is nonzero; if not,

the blame term ⇑l ′ is produced, signaling that the context of the contracted term

violated the expectations of the contract. If the argument check succeeds, then the

function is run and its result is checked against the contract pos x , raising ⇑l if this

fails (e.g., if the wrapped function is applied to 1).

Findler and Felleisen’s work (2002) sparked a resurgence of interest in contracts,

and in the intervening years a bewildering variety of related systems has been studied.

Broadly, these come in two different sorts. In systems with latent contracts, types

and contracts are orthogonal features. Examples of this style include Findler and

Felleisen’s original system (2002) , Blume and McAllester (2006), Hinze et al. (2006),

Chitil and Huch (2007), Guha et al. (2007), and Tobin-Hochstadt and Felleisen

(2008). By contrast, manifest contracts are integrated into the type system, which

tracks, for each value, the most recently checked contract. Hybrid types (Flanagan

2006) are a well-known example in this style; others include the works of Ou et al.

(2004), Knowles et al. (2006), and Wadler and Findler (2009).

A key feature of manifest systems is that descriptions like {x :Int | nonzero x}
are incorporated into the type system as refinement types. Values of refinement type

are introduced via casts like 〈{x :Int | true} ⇒ {x :Int | nonzero x}〉l n, which has

static type {x :Int | nonzero x} and checks, dynamically, that n really is nonzero,

raising ⇑l otherwise. Similarly, 〈{x :Int | nonzero x} ⇒ {x :Int | pos x}〉l n casts an

integer that is statically known to be nonzero to one that is statically known to be

positive.

The manifest analogue of function contracts is casts between function types. For

example, consider

f = 〈	Int
 → 	Int
 ⇒ {x :Int | pos x} → {x :Int | pos x}〉l (λx :	Int
. x − 1),

where 	Int
 = {x :Int | true}. The sequence of events when f is applied to some

argument n (of type P) is similar to what we saw before:

f n −→h 〈	Int
 ⇒ {x :Int | pos x}〉l ((λx :	Int
. x − 1) (〈{x :Int | pos x} ⇒ 	Int
〉l n))

First, n is cast from {x :Int | pos x} to 	Int
 (it happens that in this case the cast

cannot fail, since the target predicate is just true, but if it did, it would raise ⇑l);

then the function body is evaluated; and finally its result is cast from 	Int
 to

{x :Int | pos x}, raising ⇑l if this fails. The domain cast is contravariant and the

codomain cast is covariant.

One point to note here is that casts in the manifest system have just one label, while

contract checks in the latent system have two. This difference is not fundamental to

the latent/manifest distinction—both latent and manifest systems can be given more

or less rich algebras of blame—but rather a question of the pragmatics of assigning

responsibility: contract checks (called obligations in Findler & Felleisen 2002) use

two labels, while casts use one. Informally, a function contract check 〈c1 �→ c2〉l ,l ′
f

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 227

divides responsibility for f ’s behavior between its body and its environment: the

programmer is saying “If f is ever applied to an argument that does not pass c1, I

refuse responsibility (⇑l ′), whereas if f ’s result for good arguments does not satisfy

c2, I accept responsibility (⇑l).” In a system with casts, the programmer who writes

〈R1 → R2 ⇒ S1 → S2〉l f is saying, “Although all I know statically about f is that

its results satisfy R2 when it is applied to arguments satisfying R1, I assert that it’s

okay to use it on arguments satisfying S1 (because I believe that S1 implies R1) and

that its results will always satisfy S2 (because R2 implies S2).” In the latter case, the

programmer is taking responsibility for both assertions (so ⇑l makes sense in both

cases), while the additional responsibility for checking that arguments satisfy S1 will

be discharged elsewhere (by another cast, with a different label).

While contract checks in latent systems may seem intuitively to be much the same

thing as casts in manifest systems, the formal correspondence is not immediate. How

do the contravariant function casts of λH relate to the invariant checks of λC? How

does λH model λC’s pair of polarized blame labels? These questions have led to some

confusion in the community about the nature of contracts. Indeed, as we will see,

matters become yet murkier in richer languages with features such as dependency.

Gronski and Flanagan (2007) initiated a formal investigation of the connection

between the latent and manifest worlds. They defined a core calculus, λC, capturing

the essence of latent contracts in a simply typed λ-calculus, and an analogous

manifest calculus λH. To compare these systems, they introduced a type-preserving

translation φ from λC to λH. What makes φ interesting is that it relates the languages

feature for feature: contracts over base types are mapped to casts at base type, and

function contracts are mapped to function casts. The main result is that φ preserves

behavior, in the sense that if a term t in λC evaluates to a constant k or blame ⇑l ,

then its translation φ(t) evaluates similarly.

Our work extends their work in two directions. First, we strengthen their main

result by introducing a new feature-for-feature translation ψ from λH to λC and

proving a similar correspondence theorem for ψ. (We also give a new, more detailed

proof of the correspondence theorem for φ.) These correspondences show that the

manifest and latent approaches are effectively equivalent in the non-dependent case.

Second, and more significantly, we extend the whole story to allow dependent

function contracts in λC and dependent arrow types in λH. Dependency is extremely

handy in contracts, as it allows for precise specifications of how the results of

functions depend on their arguments. For example, here is a contract that we might

use with an implementation of vector concatenation:

z1:Vec �→ z2:Vec �→ {z3:Vec | vlen z3 = vlen z1 + vlen z2}

Adding dependent contracts to λC is easy: the dependency is all in the contracts

and the types stay simple. We have just one significant design choice: Should domain

contracts be rechecked when the bound variable appears the codomain contract?

This choice leads to two dialects of λC, one that does recheck (picky λC) and another

that does not (lax λC). The choice is not clear, so we consider both. The question

of which blame labels belong on this extra check is discussed at length in Dimoulas

et al. (2011), which introduces indy blame. Indy blame is a variant of picky. We do

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

228 M. Greenberg et al.

Exact translations

lax λC λH picky λC

ψ

ψφ

φ

Fig. 1. The axis of blame.

not consider it in depth here, since it does not affect whether or not blame is raised,

only which blame. We discuss this point more in Section 7.3. In λH, on the other

hand, dependency significantly complicates the metatheory, requiring the addition

of a denotational semantics for types and kinds to break a potential circularity

in definitions, plus an intricate sequence of technical lemmas involving parallel

reduction to establish type soundness.

Surprisingly, the tight correspondence between λC and λH breaks down in the

dependent case: the natural generalization of translations does not preserve behavior

exactly. Indeed, we can place λH between the two variants of λC on an “axis of

blame” (Figure 1), where evaluation behavior is preserved exactly when moving left

on the axis (from picky λC to λH to lax λC), but translated terms can blame more

than their pre-images when moving right.1 It is still the case that when a pre-image

raises blame, its translation blames as well—though not necessarily the same label.

The discrepancy arises in the case of “abusive” contracts, such as

f :({x :Int | nonzero x} �→ {y:Int | true}) �→ {z :Int | f 0 = 0}

This rather strange contract has the form f :c1 �→ c2, where c2 uses f in a way that

violates c1! In particular, if we apply it (in lax λC) to λf :Int → Int. 0 and then

apply the result to λx :Int. x and 5, the final result will be 5, since λx :Int. x does

satisfy the contract {x :Int | nonzero x} �→ {y:Int | true} and 5 satisfies the contract

{z :Int | (λx :Int. x) 0 = 0}. However, running the translation of f in λH yields an

extra check, wrapping the occurrence of f in the codomain contract with a cast

from {x :Int | nonzero x} → {y:Int | true} to {x :Int | true} → {y:Int | true}, which

fails when the wrapped function is applied to 0. We discuss this phenomenon in

greater detail in Section 4.

We should note at the outset that, like Gronski and Flanagan (2007), we are

interested in translations that relate λC and λH feature for feature, i.e., mapping base

contracts to base contracts and function contracts to function contracts. Translations

that do not map feature for feature can give an exact treatment of blame. Consider

the following dependent version of the wrap operator from Findler and Felleisen

(2002). There are two cases: one for refinements of base types B , another for

1 There might, in principle, be some other way of defining φ and ψ that (a) preserves types, (b) maps
feature for feature, and (c) induces an exact behavioral equivalence. After considering a number of
alternatives, we conjecture that no such φ and ψ exist.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 229

B ::= Bool | . . . base types

k ::= true | false | . . . first-order constants

Fig. 2. Base types and constants for λC and λH.

dependent function contracts

φ(〈{x :B | t}〉l ,l ′
) = 〈	B
 ⇒ {x :B | φ(t)}〉l

φ(〈x :c1 �→ c2〉l ,l ′
) = λf:	x :c1 �→ c2
.

λx:	c1
.
φ(〈c2〉l ,l ′

) (f (φ(〈c1〉l ′ ,l) x))

We can define a similar mapping function that implements λH’s semantics as base-

type contracts in lax or picky λC. It is unsurprising that an exact mapping exists: λC

and λH are lambda calculi that feature, among other things, a way to conditionally

raise exceptions. That these languages are inter-encodable is completely unsurprising.

But translations like these do not relate function contracts to function casts at all,

so they do not do much to tell us about how semantics of contracts and that of

casts relate.

In summary, our main contributions are (a) the translation ψ and a symmetric

version of Gronski and Flanagan’s behavioral correspondence theorem (2007),

(b) the basic metatheory of (call-by-value (CBV), blame-sensitive) dependent λH,

(c) dependent versions of φ and ψ, and their properties with regard to λH and both

dialects of λC, and (d) a weaker behavioral correspondence in the dependent case.

We restrict ourselves to strongly normalizing programs, though we believe the results

should generalize readily to programs with recursion and nontermination. This paper

extends the discussion of Greenberg et al. (2010), giving more interesting proofs.

2 The non-dependent languages

We begin in this section by defining the non-dependent versions of λC and λH and

continue in Section 3 with the translations between them. The dependent languages,

dependent translations, and their properties are developed in Sections 4, 6, and 7.

Throughout the paper, rules prefixed with an E or an F are operational rules for λC

and λH, respectively. An initial T is used for λC typing rules; typing rules beginning

with an S belong to λH.

All of our languages will share a set of base types and first-order constants, given

in Figure 2. Let the set KB contain constants of base type B . We assume that Bool

is among the base types, with KBool = {true, false}.

2.1 The language λC

The language λC is the simply typed λ-calculus straightforwardly augmented with

contracts. Contracts c come in two forms: base contracts {x :B | t} over a base type

B , and higher-order contracts c1 �→ c2, which check the arguments and results of

functions. We can use contracts in terms with the contract obligation 〈c〉l ,l ′
. Applying

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

230 M. Greenberg et al.

Syntax for λC

T ::= B | T1 → T2 types

c ::= {x :B | t} | c1 �→ c2 contracts

t ::= x | k | λx :T1. t2 | t1 t2 | ⇑ l | 〈c〉l ,l ′ | 〈{x :B | t1}, t2, k〉l
terms

v ::= k | λx :T1. t2 | 〈c〉l ,l ′ | 〈c1 �→ c2〉l ,l ′
v values

r ::= v | ⇑ l results

E ::= [] t | v [] | 〈{x :B | t}, [] , k〉l
evaluation contexts

Operational semantics for λC

(λx :T1. t2) v −→c t2{x := v} E Beta

k v −→c [[k]](v) E Const

〈{x :B | t}〉l ,l ′
k −→c 〈{x :B | t}, t{x := k}, k〉l

E CCheck

〈{x :B | t}, true, k〉l −→c k E OK

〈{x :B | t}, false, k〉l −→c ⇑ l E Fail

(〈c1 �→ c2〉l ,l ′
v) v ′ −→c 〈c2〉l ,l ′

(v (〈c1〉l ′ ,l v ′)) E CDecomp

E [⇑ l] −→c ⇑ l E Blame

E [t1] −→c E [t2] when t1 −→c t2 E Compat

Typing rules for λC

Γ � t : T

x :T ∈ Γ

Γ � x : T
T Var

Γ, x :T1 � t2 : T2

Γ � λx :T1. t2 : T1 → T2

T Lam

� c : T

Γ � 〈c〉l ,l ′
: T → T

T Contract

Γ � k : tyc(k)
T Const

Γ � t1 : T1 → T2 Γ � t2 : T1

Γ � t1 t2 : T2

T App

Γ � ⇑ l : T
T Blame

∅ � k : B ∅ � t2 : Bool � {x :B | t1} : B

t2 −→∗
c true implies t1{x := k} −→∗

c true

∅ � 〈{x :B | t1}, t2, k〉l
: B

T Checking

� c : T

x :B � t : Bool

� {x :B | t} : B
T BaseC

� c1 : T1 � c2 : T2

� c1 �→ c2 : T1 → T2

T FunC

Fig. 3. Syntax and semantics for λC.

a contract obligation 〈c〉l ,l ′
to a term t dynamically ensures that t and its surrounding

context satisfy c. If t does not satisfy c, then the positive label l will be blamed and

the whole term will reduce to ⇑ l ; on the other hand, if the context does not treat

〈c〉l ,l ′
t as c demands, then the negative label l ′ will be blamed and the term will

reduce to ⇑ l ′. In contexts where it is unambiguous, we refer to contract obligations

simply as contracts.

The syntax and semantics of λC appears in Figure 3, with some common definitions

(shared with λH) in Figure 2. Besides the contract term 〈c〉l ,l ′
, λC includes first-order

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 231

constants k , blame, and active checks 〈{x :B | t1}, t2, k〉l . Active checks do not appear

in source programs; they are a technical artifact of the small-step operational

semantics, as we explain below. Also, note that we only allow contracts over base

types B : we have function contracts, like {x :Int | pos x} �→ {x :Int | nonzero x},
but not base contracts over functions themselves, like {f:Bool → Bool | f true =

f false}.
Values v include constants, abstractions, contracts, and function contracts applied

to values (more on these later); a result r is either a value or ⇑ l for some l .

We interpret constants using two constructions: the type-assignment function tyc,

which maps constants to first-order types of the form B1 → B2 → . . . → Bn (and

which is assumed to agree with KB); and the denotation function [[−]], which maps

constants to functions from constants to constants (or blame, to allow for partiality).

Denotations must agree with tyc, i.e., if tyc(k) = B1 → B2, then [[k]](k1) ∈ KB2
if

k1 ∈ KB1
.

The operational semantics is given in Figure 3. It includes six rules for basic

(small-step, CBV) reductions, plus two rules that involve evaluation contexts E

(Figure 3). The evaluation contexts implement left-to-right evaluation for function

application. If ⇑ l appears in the active position of an evaluation context, it is

propagated to the top level, like an uncatchable exception. As usual, values (and

results) do not step.

The first two basic rules are standard, implementing primitive reductions and

β-reductions for abstractions. In these rules, arguments must be values v . Since

constants are of first order, we know that when E Const reduces a well-typed

application, the argument is not just a value but a constant.

The rules E CCheck, E OK, E Fail, and E CDecomp describe the semantics of

contracts. In E CCheck, base-type contracts applied to constants step to an active

check. Active checks include the original contract, the current state of the check, the

constant being checked, and a label to blame if necessary. We hold on to the original

contract as a technical device for the translation φ from λC to λH, since λH needs to

know the target type of an active check. If the check evaluates to true, then E OK

returns the initial constant. If false, the check has failed and a contract has been

violated, so E Fail steps the term to ⇑ l . Higher-order contracts on a value v wait

to be applied to an additional argument. That is why function contracts applied

to values are values. There is no substantial difference between this approach and

expanding function contracts into new lambdas. When that argument has also been

reduced to a value v ′, E CDecomp decomposes the function cast: The argument

value is checked with the argument part of the contract (switching positive and

negative blame, since the context is responsible for the argument), and the result of

the application is checked with the result contract.

The typing rules for λC (Figure 3) are mostly standard. We give types to constants

using the type-assignment function tyc. Blame expressions have all types. Contracts

are checked for well-formedness using the judgment � c : T , comprising the

rules T BaseC, which require that the checking term in a base contract returns

a boolean value when supplied with a term of the right type, and T FunC. Note

that the predicate t in a contract {x :B | t} can contain at most x free, since we

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

232 M. Greenberg et al.

are considering only non-dependent contracts for now. Contract application, like

function application, is checked using T App.

The T Checking rule only applies in the empty context (active checks are only

created at the top level during evaluation). The rule ensures that the contract

{x :B | t1} has the right base type for the constant k , the check expression t2 has

a boolean type, and the check is actually checking the right contract. The latter

condition is formalized by the implication: t2 −→∗
c true implies t1{x := k} −→∗

c

true asserts that if t2 evaluates to true, then the original check t1{x := k} must

also evaluate to true. This requirement is needed for two reasons: first, nonsensical

terms like 〈{x :Int | pos x}, true, 0〉l should not be well typed; and second, we use

this property in showing that the translations are type-preserving (see Section 6).

This rule obviously makes type checking for the full “internal language” with

checks undecidable, but excluding checks decidability. We could give a more precise

condition—for example, that t1{x := k} −→∗
c t2—but there is no need.

The language enjoys standard preservation and progress theorems. Together, these

ensure that evaluating a well-typed term to a normal form always yields a result r ,

which is either blame or a value.

2.2 The language λH

Our second core calculus, non-dependent λH, extends the simply typed λ-calculus

with refinement types and cast expressions. The definitions appear in Figure 4. Unlike

λC, which separates contracts from types, λH combines them into refined base types

{x :B | s1} and function types S1 → S2. As for λC, we do not allow refinement

types over functions, nor do we allow refinements of refinements. (Belo et al., 2011

add these features to a dependent λH.) Unrefined base types B are not valid types;

they must be wrapped in a trivial refinement, as the raw type {x :B | true}. The

terms of the language are mostly standard, including variables, the same first-order

constants as λC, blame, abstractions, and applications. The cast expression 〈S1 ⇒ S2〉l

dynamically checks that a term of type S1 can be given type S2. Like λC, active

checks are used to give a small-step semantics to cast expressions.

The values of λH include constants, abstractions, casts, and function casts applied

to values. Results are either values or blame. We give meaning to constants as

we did in λC, reusing [[−]]. Type assignment is via tyh, which we assume produces

well-formed types (defined in Figure 4). To keep the languages in sync, we require

that tyh and tyc agree on “type skeletons”: if tyc(k) = B1 → B2, then tyh(k) =

{x :B1 | s1} → {x :B2 | s2}.
The small-step, CBV semantics in Figure 4 comprises six basic rules and two rules

involving evaluation contexts F . Each rule corresponds closely to its λC counterpart.

Notice how the decomposition rules compare. In λC, the term (〈c1 �→ c2〉l ,l ′
v) v ′

decomposes into two contract checks: c1 checks the argument v ′, and c2 checks

the result of the application. In λH the term (〈S11 → S12 ⇒ S21 → S22〉l w) w ′

decomposes into two casts: a contravariant cast on the argument and a covariant

cast on the result. The contravariant cast 〈S21 ⇒ S11〉l w ′ makes w ′ a suitable input

for w , while 〈S12 ⇒ S22〉l casts the result from w applied to (the cast) w ′. Suppose

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 233

Syntax for λH

S ::= {x :B | s1} | S1 → S2 types/contracts

s ::= x | k | λx :S1. s2 | s1 s2 | ⇑ l | 〈S1 ⇒ S2〉l | 〈{x :B | s1}, s2, k〉l
terms

w ::= k | λx :S1. s2 | 〈S1 ⇒ S2〉l | 〈S11 → S12 ⇒ S21 → S22〉l
w values

q ::= w | ⇑ l results

F ::= [] s | w [] | 〈{x :B | s}, [] , k〉l evaluation contexts

Operational semantics for λH

(λx :S1. s2) w2 −→h s2{x := w2} F Beta

k w −→h [[k]](w) F Const

〈{x :B | s1} ⇒ {x :B | s2}〉l
k −→h 〈{x :B | s2}, s2{x := k}, k〉l

F CCheck

〈{x :B | s}, true, k〉l −→h k F OK

〈{x :B | s}, false, k〉l −→h ⇑ l F Fail

(〈S11 → S12 ⇒ S21 → S22〉l
w) w ′ −→h 〈S12 ⇒ S22〉l

(w (〈S21 ⇒ S11〉l
w ′)) F CDecomp

F [⇑ l] −→h ⇑ l F Blame

F [s1] −→h F [s2] when s1 −→h s2 F Compat

Typing rules for λH

∆ � s : S

x :S ∈ ∆

∆ � x : S
S Var

� S1 ∆, x :S1 � s2 : S2

∆ � λx :S1. s2 : S1 → S2

S Lam

� S1 � S2 �S1� = �S2�
∆ � 〈S1 ⇒ S2〉l

: S1 → S2

S Cast

∆ � k : tyh(k)
S Const

∆ � s1 : S1 → S2 ∆ � s2 : S1

∆ � s1 s2 : S2

S App

� S

∆ � ⇑ l : S
S Blame

∆ � s : S1 � S2 � S1 <: S2

∆ � s : S2

S Sub

∅ � k : {x :B | true} ∅ � s2 : {x :Bool | true} � {x :B | s1}
s2 −→∗

h true implies s1{x := k} −→∗
h true

∅ � 〈{x :B | s1}, s2, k〉l
: {x :B | s1}

S Checking

� S1 <: S2

∀k ∈ KB . (s1{x := k} −→∗
h true implies s2{x := k} −→∗

h true)

� {x :B | s1} <: {x :B | s2}
SSub Refine

� S21 <: S11 � S12 <: S22

� S11 → S12 <: S21 → S22

SSub Fun

� S

� {x :B | true}
SWF Raw

x :{x :B | true} � s : {x :Bool | true}
� {x :B | s}

SWF Refine

� S1 � S2

� S1 → S2

SWF Fun

Fig. 4. Syntax and semantics for λH

.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

234 M. Greenberg et al.

S21 = {x :Int | pos x} and S11 = {x :B | nonzero x}. Then the check on the argument

ensures that nonzero x −→∗
h true—not, as one might expect, that pos w ′ −→∗

h true.

While it is easy to read off from a λC contract exactly which checks will occur at

runtime, a λH cast must be carefully inspected to see exactly which checks will take

place. On the other hand, which label will be blamed is clearer with casts—there’s

only one!

The typing rules for λH (Figure 4) are also similar to those of λC. Just as the λC

rule T Contract checks to make sure that the contract has the right form, the λH

rule S Cast ensures that the two types in a cast are well formed and have the same

simple-type skeleton, defined as �−� : S → T (pronounced “erase S”):

�{x :B | s}� = B

�S1 → S2� = �S1� → �S2�

This prevents “stupid” casts, like 〈	Int
 ⇒ 	Bool
〉l . We define a similar operator,

	−
 : S → S (pronounced “raw S”), which trivializes all refinements:

	{x :B | s}
 = {x :B | true}
	S1 → S2
 = 	S1
 → 	S2

These operations apply to λC contracts and types in the natural way. Type well-

formedness in λH is similar to contract well-formedness in λC, though the SWF Raw

case needs to be added to get things off the ground.

The active check rule S Checking plays a role analogous to the T Checking

rule in λC, again using an implication to guarantee that we only have sensible terms

in the predicate position. Note that we retain the target type in the active check,

and that S Checking gives active checks that type—technical moves necessary for

preservation.

An important difference is that λH has subtyping. The S Sub rule allows an

expression to be promoted to any well-formed supertype. Refinement types are

supertypes if, for all constants of the base type, their condition evaluates to true

whenever the subtype’s condition evaluates to true. For function types, we use the

standard contravariant subtyping rule. We do not consider source programs with

subtyping, since subtyping makes type checking undecidable2; subtyping is just a

technical device for ensuring type preservation. Consider the following reduction:

〈{x :Int | true} ⇒ {x :Int | pos x}〉l 1 −→∗
h 1

The source term is well typed at {x :Int | pos x}. Since it evaluates to 1, we would like

to have ∆ � 1 : {x :Int | pos x}. To have type preservation in general, though, tyh(1)

must be a subtype of {x :Int | s} whenever s{x := 1} −→∗
h true. That is, constants

of base type must have “most-specific” types. One way to satisfy this requirement

is to set tyh(k) = {x :B | x = k} for k ∈ KB ; then if s{x := k} −→∗
h true, we have

� tyh(k) <: {x :B | s}. This approach is taken in Ou et al. (2004) and Knowles and

Flanagan (2010).

2 Flanagan (2006) and Knowles and Flanagan (2010) discuss trade-offs between static and dynamic
checking that allow for decidable-type systems and subtyping.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 235

Standard progress and preservation theorems hold for λH. We can also obtain

a semantic type soundness theorem as a restriction of the one for dependent λH

(Theorem 4.12).

3 The non-dependent translations

The latent and manifest calculi differ in a few respects. Obviously, λC uses contract

application and λH uses casts. Second, λC contracts have two labels—positive and

negative—where λH contracts have a single label. Finally, λH has a much richer type

system than λC. Our ψ from λH to λC and Gronski and Flanagan’s φ (2007) from

λC to λH must account for these differences while carefully mapping “feature for

feature.”

The interesting parts of the translations deal with contracts and casts. Everything

else is translated homomorphically, though the type annotation on lambdas must

be chosen carefully. The full definitions of these translations are in Section 6; the

non-dependent definitions are a straightforward restriction.

For ψ, translating from λH’s rich types to λC’s simple types is easy: we just

erase the types to their simple skeletons. The interesting case is translating the cast

〈S1 ⇒ S2〉l to a contract by translating the pair of types together, 〈ψ(S1, S2)〉l ,l . We

define ψ as two mutually recursive functions: ψ(s) translates λH terms to λC terms;

ψ(S1, S2) translates a pair of λH types—effectively, a cast—to a λC contract. The

latter function is defined as follows:

ψ({x :B | s1}, {x :B | s2}) = {x :B | ψ(s2)}
ψ(S11 → S12, S21 → S22) =ψ(S21, S11) �→ ψ(S12, S22)

We use single label on the cast in both positive and negative positions of the resulting

contract, i.e.:

ψ(〈S1 ⇒ S2〉l) = 〈ψ(S1, S2)〉l ,l .

When we translate a pair of refinement types, we produce a contract that will check

the predicate of the target type (like F CCheck); when translating a pair of function

types, we translate the domain contravariantly (like F CDecomp). For example,

〈{x :Int | nonzero x} → 	Int
 ⇒ 	Int
 → {y:Int | pos y}〉l

translates to 〈{x :Int | nonzero x} �→ {y:Int | pos y}〉l ,l .

Translating from λC to λH, we are moving from a simple type system to a rich

one. The translation φ (essentially the same as Gronski & Flanagan’s translation

(2007)) generates terms in λH with raw types—λH types with trivial refinements,

corresponding to λC’s simple types. Since the translation targets raw types, the

type preservation theorem is stated as “if Γ � t : T then 	Γ
 � φ(t) : 	T
” (see

Section 7.1).

Whereas the difficulty with ψ is ensuring that the checks match up, the difficulty

with φ is ensuring that the terms in λC and λH will blame the same labels. We deal

with this problem by translating a single contract with two blame labels into two

separate casts. Intuitively, the cast carrying the negative blame label will run all

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

236 M. Greenberg et al.

of the checks in negative positions in the contract, while the cast with the positive

blame label will run the positive checks. We let

φ(〈c〉l ,l ′
) = λx :	c
. 〈φ(c) ⇒ 	c
〉l ′

(〈	c
 ⇒ φ(c)〉l x),

where the translation of contracts to refined types is

φ({x :B | t}) = {x :B | φ(t)}
φ(c1 �→ c2) =φ(c1) → φ(c2)

The operation of casting into and out of raw types is a kind of “bulletproofing.”

Bulletproofing maintains the raw-type invariant: the positive cast takes the argument

out of 	c
 and the negative cast returns it there. For example,

〈{x :Int | nonzero x} �→ {y:Int | pos y}〉l ,l ′

translates to the λH term

λf:	Int → Int
.
〈{x :Int | nonzero x} → {y:Int | pos y} ⇒ 	Int → Int
〉l ′

(〈	Int → Int
 ⇒ {x :Int | nonzero x} → {y:Int | pos y}〉l f).

Unfolding the domain parts of the casts on f, the domain of the negative cast ensures

that f ’s argument is nonzero with 〈	Int
 ⇒ {x :Int | nonzero x}〉l ′
; the domain of

the positive cast does nothing, since 〈{x :Int | nonzero x} ⇒ 	Int
〉l has no effect.

Similarly, the codomain of the negative cast does nothing, while the codomain of

the positive cast checks that the result is positive. Separating the checks allows λH

to keep track of blame labels, mimicking λC. Put more generally, in the positive

cast, the positive positions may fail because they are “down casts,” whereas the

negative positions are “up casts,” so they cannot fail. The opposite is true for the

negative cast. This embodies the idea of contracts as pairs of projections (Findler

& Blume 2006). Note that bulletproofing is “overkill” at base type: for example,

〈{x :Int | nonzero x}〉l ,l ′
translates to

λx:	Int
.
〈{x :Int | nonzero x} ⇒ 	Int
〉l ′

(〈	Int
 ⇒ {x :Int | nonzero x}〉l x).

Only the positive cast does anything—the negative cast into 	Int
 always succeeds.

This asymmetry is consistent with λC, where base-type contracts also ignore the

negative label. In Section 4 we extend the bulletproofing translation to dependent

contracts—one of our main contributions.

Both φ and ψ preserve behavior in a strong sense: If Γ � t : B , then either t and

φ(t) both evaluate to the same constant k or they both raise ⇑ l for the same l ; and

conversely for ψ. Interestingly, we need to set up this behavioral correspondence

before we can prove that the translations preserve well-typedness because of the

T Checking and S Checking rules.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 237

4 The dependent languages

We now extend λC to dependent function contracts and λH to dependent functions.

Very little needs to be changed in λC, since contracts and types barely interact; the

changes to E CDecomp and T FunC are the important ones. Adding dependency to

λH is more involved. In particular, adding contexts to the subtyping judgment entails

adding contexts to SSub Refine. To avoid a dangerous circularity, we define closing

substitutions in terms of a separate type semantics. In addition, the new F CDecomp

rule has a slightly tricky (but necessary) asymmetry, as explained below.

4.1 Dependent λC

Dependent λC has been studied since Findler and Felleisen (2002); it received a

very thorough treatment (with an untyped host language) in Blume and McAllester

(2006), was ported to Haskell by Hinze et al. (2006) and Chitil and Huch (2007),

and was used as a specification language in Xu et al. (2009). Type soundness is not

particularly difficult, since types and contracts are kept separate. Our formulation

follows Findler and Felleisen (2002), with a few technical changes to make the proofs

for φ easier.

We have marked the changed rules with a • next to their names. The new

T RefineC, T FunC, and E CDecomp rules in Figure 5 suffice to add dependency

to λC. To help us work with the translations, we also make some small changes

to the bindings in contexts, adding a new binding form to track the labels on

a contract check throughout the contract well-formedness judgment. Note that

T FunC adds x :c1
l ′ ,l to the context when checking the codomain of a function

contract, swapping blame labels. We add a new variable rule, T VarC, that treats

x :cl ,l ′
as if it were its skeleton, x :�c�. While unnecessary for λC’s metatheory, this

new binding form helps φ preserve types when translating from λH to picky λC; see

Section 7.1.

Two different variants of the E CDecomp rule can be found in the literature:

they are lax and picky. The original rule in Findler and Felleisen (2002) is lax

(like most other contract calculi): it does not recheck c1 when substituting v ′ into

c2. Blume and McAllester (2006) used a picky semantics without observing their

departure from Findler and Felleisen (2002); Hinze et al. (2006) choose to be picky

as well, substituting 〈c1〉l ′ ,l v ′ into c2 because it makes their conjunction contract

idempotent. We can show (straightforwardly) that both enjoy standard progress and

preservation properties. Below, we consider translations to and from both dialects

of λC: picky λC using only E CDecompPicky in Sections 6.1 and 7.2, and lax λC

using only E CDecompLax in Sections 6.2 and 7.1. Accordingly, we give two sets of

evaluation rules: −→lax and −→picky . When we write −→c, the metavariable c ranges

over picky and lax. We complete the type soundness proofs here generically, writing

−→c for the evaluation relation. For the translations in Section 4.2, we specify the

evaluation relation that we use.

We make a standard assumption about constant denotations being well typed: if

Γ � k v : T then Γ � [[k]](v) : T .

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

238 M. Greenberg et al.

Syntax for dependent λC

T ::= B | T1 → T2 types

c ::= {x :B | t} | x :c1 �→ c2 contracts•
Γ ::= ∅ | Γ, x :T | Γ, x :cl ,l ′

typing contexts•

t ::= x | k | λx :T1. t2 | t1 t2 | ⇑l | 〈c〉l ,l ′ | 〈{x :B | t1}, t2, k〉l terms

v ::= k | λx :T1. t2 | 〈c〉l ,l ′ | 〈x :c1 �→ c2〉l ,l ′
v values•

r ::= v | ⇑l results

E ::= [] t | v [] | 〈{x :B | t}, [] , k〉l evaluation contexts

Operational semantics for λC

(λx :T1. t2) v −→c t2{x := v} E Beta

k v −→c [[k]](v) E Const

〈{x :B | t}〉l ,l ′
k −→c 〈{x :B | t}, t{x := k}, k〉l

E CCheck

(〈x :c1 �→ c2〉l ,l ′
v) v ′ −→lax 〈c2{x := v ′}〉l ,l ′

(v (〈c1〉l ′ ,l v ′)) E CDecompLax•
(〈x :c1 �→ c2〉l ,l ′

v) v ′ −→picky 〈c2{x := 〈c1〉l ′ ,l v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′)) E CDecompPicky•

〈{x :B | t}, true, k〉l −→c k E OK

〈{x :B | t}, false, k〉l −→c ⇑l E Fail

E [⇑l] −→c ⇑l E Blame

E [t1] −→c E [t2] when t1 −→c t2 E Compat

Contract erasure

�{x :B | t}� = B �x :c1 �→ c2� = �c1� → �c2�

Typing rules for dependent λC

� Γ

� ∅
T Empty

� Γ

� Γ, x :T
T ExtVarT•

� Γ

� Γ, x :T
T ExtVarT•

Γ � t : T

x :T ∈ Γ

Γ � x : T
T VarT

x :cl ,l ′ ∈ Γ

Γ � x : �c�
T VarC• Γ � k : tyc(k)

T Const

Γ, x :T1 � t2 : T2

Γ � λx :T1. t2 : T1 → T2

T Lam

Γ �l ,l ′
c : T

Γ � 〈c〉l ,l ′
: T → T

T Contract•

Γ � t1 : T1 → T2 Γ � t2 : T1

Γ � t1 t2 : T2

T App

Γ � ⇑l : T
T Blame

� Γ ∅ � k : B ∅ � t2 : Bool ∅ �l ,l ′ {x :B | t1} : B

t2 −→c
∗ true implies t1{x := k} −→c

∗ true

Γ � 〈{x :B | t1}, t2, k〉l : B
T Checking•

Γ �l ,l ′
c : T

Γ, x :B � t : Bool

Γ �l ,l ′ {x :B | t} : B
T RefineC•

Γ �l ′ ,l c1 : T1 Γ, x :c1
l ′ ,l �l ,l ′

c2 : T2

Γ �l ,l ′
x :c1 �→ c2 : T1 → T2

T FunC•
Fig. 5. Syntax and semantics for dependent λC.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 239

4.1 Theorem [Progress]: If ∅ � t : T then either t −→c t ′ or t = r (i.e., t = v or

t = ⇑l).

Proof

By induction on the typing derivation. �

For preservation, we prove confluence and substitution lemmas. Note that our

substitution lemma must now also cover contracts, since they are no longer closed.

4.2 Lemma [Determinacy]: Let −→c be either −→picky or −→lax. If t −→c t ′ and

t −→c t ′′, then t ′ = t ′.

4.3 Corollary [Coevaluation]: If Let −→c be either −→picky or −→lax. t −→c
∗ r and

t −→c
∗ t ′, then t ′ −→c

∗ r .

4.4 Lemma [Term and contract substitution]: If ∅ � v : T ′, then

1. if Γ, x :T ′,Γ′ � t : T , then Γ,Γ′{x := v} � t{x := v} : T , and

2. if Γ, x :T ′,Γ′ �l ,l ′
c : T , then Γ,Γ′{x := v} �l ,l ′

c{x := v} : T .

Proof

By mutual induction on the typing derivations for t and c. �

We omit the proof for x :cl ,l ′
bindings, which is similar.

4.5 Theorem [Preservation]: If ∅ � t : T and t −→c t ′ then ∅ � t ′ : T .

Proof

By induction on the typing derivation. This proof is straightforward because typing

and contracts hardly interact. �

4.2 Dependent λH

Now we come to the challenging part: Dependent λH and its proof of type soundness.

These results require the most complex metatheory in the paper because we need

some strong properties about CBV evaluation.3 The full definitions are in Figures 6

and 7. As before, we have marked the changed rules with a • next to their names.

We enrich the type system with dependent function types, x :S1 → S2, where x

may appear in S2. The S Cast rule and the proofs need a notion of type erasure,

�S �; type height |S | will also be used in the proofs.

�−� : S → T | − | : S → �
�{x :B | s}� = B |{x :B | s}| = 1

�x :S1 → S2� = �S1� → �S2� |x :S1 → S2| = 1 + |S1| + |S2|

A new dependent application rule, S App, substitutes the argument into the re-

sult type of the application. We generalize SWF Refine to allow refinement-type

3 The benefit of a CBV semantics is a better treatment of blame. By contrast, Knowles and Flanagan
(2010) cannot treat failed casts as exceptions because that would destroy confluence. They treat them
as stuck terms. Readers familiar with the soundness proof of Knowles and Flanagan will notice that
our proof is significantly different from their proof. We discuss this in Section 8.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

240 M. Greenberg et al.

Syntax for dependent λH

S ::= {x :B | s1} | x :S1 → S2 types/contracts•
∆ ::= ∅ | ∆, x :S typing contexts

s ::= x | k | λx :S1. s2 | s1 s2 | | ⇑l | 〈S1 ⇒ S2〉l | 〈{x :B | s1}, s2, k〉l terms

w ::= k | λx :S1. s2 | 〈S1 ⇒ S2〉l | 〈x :S11 → S12 ⇒ x :S21 → S22〉l w values•
q ::= w | ⇑l results

F ::= [] s | w [] | 〈{x :B | s}, [] , k〉l evaluation contexts

Operational semantics for dependent λH

s1 �h s2

(λx :S1. s2) w2 �h s2{x := w2} F Beta

k w �h [[k]](w) F Const

〈{x :B | s1} ⇒ {x :B | s2}〉l k �h 〈{x :B | s2}, s2{x := k}, k〉l
F CCheck

(〈x :S11 → S12 ⇒ x :S21 → S22〉l w) w ′ �h F CDecomp•
〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒ S22{x := w ′}〉l (w (〈S21 ⇒ S11〉l w ′))

〈{x :B | s}, true, k〉l �h k F OK

〈{x :B | s}, false, k〉l �h ⇑l F Fail

s1 −→h s2

s1 �h s2

s1 −→h s2

F Reduce

s1 −→h s2

F [s1] −→h F [s2]
F Compat

F [⇑l] −→h ⇑l
F Blame

Fig. 6. Syntax and operational semantics for dependent λH.

predicates that use variables from the enclosing context. SWF Fun adds the bound

variable to the context when checking the codomain of function types. In SSub Fun,

subtyping for dependent function types remains contravariant, but we also add the

argument variable to the context with the smaller type. This is similar to the function

subtyping rule of F<: (Cardelli et al. 1994).

We need to be careful when implementing higher-order dependent casts in the

rule F CDecomp. As the cast decomposes, the variables in the codomain types of

such a cast must be replaced. However, this substitution is asymmetric; on one

side, we cast the argument and on the other we do not. This behavior is required

for type soundness. For, suppose we have ∆ � x :S11 → S12 and ∆ � x :S21 → S22

with equal skeletons, and values ∆ � w : (x :S11 → S12) and ∆ � w ′ : S21. Then

∆ � (〈x :S11 → S12 ⇒ x :S21 → S22〉l w) w ′ : S22{x := w ′}. When we decompose the

cast, we must make some substitution into S12 and S22, but which? It is clear that

we must substitute w ′ into S22, since the original application has type S22{x := w ′}.
Decomposing the cast will produce the inner application ∆ � w (〈S21 ⇒ S11〉l w ′) :

S12{x := 〈S21 ⇒ S11〉l w ′}; in order to apply the codomain cast to this term, we

must substitute 〈S21 ⇒ S11〉l w ′ into S12. This calculation determines the form of

F CDecomp.

While the operational semantics changes only in F CDecomp, we have split the

evaluation relation into two parts: reductions �h and steps −→h. This is a technical

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 241

Typing rules

� ∆

� /0
S EMPTY � ∆ ∆ � S

� ∆,x:S
S EXTVAR

∆ � s : S

x:S ∈ ∆
∆ � x : S

S VAR

∆ � S1 ∆,x:S1 � s2 : S2

∆ � λ x:S1. s2 : (x:S1 → S2)
S LAM•

∆ � S1 ∆ � S2
�S1� = �S2�

∆ � 〈S1 ⇒ S2〉l : S1 → S2
S CAST

∆ � k : tyh(k)
S CONST

∆ � s1 : (x:S1 → S2) ∆ � s2 : S1

∆ � s1 s2 : S2{x := s2}
S APP•

∆ � s : S1 ∆ � S2
∆ � S1 <: S2

∆ � s : S2
S SUB•

� ∆ /0 � k : {x:B | true} /0 � s2 : {x:Bool | true} /0 � {x:B | s1} /0 � s2 ⊃ s1{x := k}
∆ � 〈{x:B | s1},s2,k〉l : {x:B | s1}

S CHECKING•

∆ � S

∆ � {x:B | true}
SWF RAW

∆,x:{x:B | true} � s : {x:Bool | true}
∆ � {x:B | s}

SWF REFINE•

∆ � S1 ∆,x:S1 � S2

∆ � x:S1 → S2
SWF FUN•

∆ � S1 <: S2

∆,x:{x:B | true} � s1 ⊃ s2

∆ � {x:B | s1} <: {x:B | s2}
SSUB REFINE•

∆ � S21 <: S11 ∆,x:S21 � S12 <: S22

∆ � x:S11 → S12 <: x:S21 → S22
SSUB FUN•

∆ � s1 ⊃ s2

∀σ . (∆ |= σ ∧ σ (s1) −→∗
h true) implies σ (s2) −→∗

h true

∆ � s1 ⊃ s2
S IMP•

∆ |= σ ⇐⇒ ∀x ∈ dom(∆). σ (x) ∈ [[σ (∆(x))]]

Fig. 7. Typing rules for dependent λH.

change that allows us to factor our proofs more cleanly (particularly for the parallel

reduction proofs).

The final change generalizes SSub Refine to open terms. We must close these

terms before we can compare their behavior, using closing substitutions σ and

reading ∆ |= σ as “σ satisfies ∆.”

Care is needed here to prevent the typing rules from becoming circular: the typing

rule S Sub references the subtyping judgment, the subtyping rule SSub Refine

references the implication judgment, and the single implication rule S Imp has

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

242 M. Greenberg et al.

Denotations of types

s ∈ [[{x :B | s0}]] ⇐⇒ s −→∗
h ⇑l ∨ (∃k ∈ KB . s −→∗

h k ∧ s0{x := k} −→∗
h true)

s ∈ [[x :S1 → S2]] ⇐⇒ ∀q ∈ [[S1]]. s q ∈ [[S2{x := q}]]

Denotations of kinds

{x :B | s} ∈ [[�]] ⇐⇒ ∀k ∈ KB . s{x := k} ∈ [[{x :Bool | true}]]
x :S1 → S2 ∈ [[�]] ⇐⇒ S1 ∈ [[�]] ∧ ∀q ∈ [[S1]]. S2{x := q} ∈ [[�]]

Semantic judgments

∆ |= S1 <: S2 ⇐⇒ ∀σ s.t. ∆ |= σ, [[σ(S1)]] ⊆ [[σ(S2)]]

∆ |= s : S ⇐⇒ ∀σ s.t. ∆ |= σ, σ(s) ∈ [[σ(S)]]

∆ |= S ⇐⇒ ∀σ s.t. ∆ |= σ, σ(S) ∈ [[�]]

Fig. 8. Type and kind semantics for dependent λH.

∆ |= σ in a negative position. This circularity would cause the typing rules to be

non-monotonic, and so the existence of the least or the greatest fixed-point would

not be immediately obvious—our type system would not be well defined! To avoid

this circularity, ∆ |= σ must not refer back to other judgments. (The reader may

wonder why this was not a problem in λC, but notice that in λC, implication is only

used in T Checking—which has no (real) context. If we only needed implication

in the S Checking rule, we would not need contexts here, either—we can ensure

that active checks only occur at the top-level, with an empty context. But the

SSub Refine subtyping rule refers to S Imp, and subtyping may be used in arbitrary

contexts.)

We can avoid the circularity and ensure that the type system is well defined by

building the syntactic rules on top of a denotational semantics for λH’s types.4 The

idea is that the semantics of a type is a set of closed terms defined independently of

the syntactic typing relation, but that turns out to contain all closed well-typed terms

of that type. Thus, in the definition of ∆ |= σ, we quantify over a somewhat larger

set than strictly necessary—not just the syntactically well-typed terms of appropriate

type (which are all the ones that will ever appear in programs) but all semantically

well-typed ones.

The type semantics appears in Figure 8. It is defined by induction on type

skeletons. For refinement types, terms must either go to blame or produce a constant

that satisfies (all instances of) the given predicate. For function types, well-typed

arguments must yield well-typed results. By construction, these sets include only

terminating terms that do not get stuck. In order to show that casts inhabit the

4 Knowles and Flanagan (2010) also introduce a type semantics, but their semantics differs from ours
in two ways. First, because they cannot treat blame as an exception (because their semantics is
nondeterministic), they must restrict the terms in the semantics to be those that only get stuck at
failed casts. They do so by requiring the terms to be well typed in the simply typed λ-calculus after all
casts have been erased. Secondly, their type semantics does not require strong normalization. However,
it is not clear whether their language actually admits nontermination—they include a fix constant,
but their semantic type soundness proof appears to break down in that case. The problem is not
insurmountable: either step indexing their semantics or a proof of unwinding as in Pitts (2005) would
resolve the issue.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 243

denotations of their types, we must also define a denotation of kinds. Since the only

kind is ∗, its denotation [[�]] directly defines semantic well-formedness in terms of

the denotations of types.

We must again make the assumption that constants have most-specific types: if

�tyh(k)� = B and s{x := k} −→∗
h true then ∅ � tyh(k) <: {x :B | s}. We make some

other more standard assumptions as well. Constants must have closed, well-formed

types, and the types assigned must be well-formed. We require that constants are

semantically well-typed: k ∈ [[tyh(k)]]; this requirement is true by our “most-specific

type” assumption at base types, but must be assumed at (first-order) function types.

Note that this rules out including fix as a constant, since our type semantics is

inhabited only by strongly normalizing terms. We conjecture that expanding the

denotation of refinement types to allow for divergence or a step-indexed logical

relation (Ahmed 2006) would allow us to consider nonterminating terms.

We introduce a few facts about type semantics before proving semantic type

soundness.

4.6 Lemma [Determinacy]: If s −→h s ′ and s −→h s ′′, then s ′ = s ′.

4.7 Corollary [Coevaluation]: If s −→∗
h s ′ and s −→∗

h q , then s ′ −→∗
h q .

4.8 Lemma [Expansion and contraction of [[S]]]: If s −→∗
h s ′, then s ′ ∈ [[S]] iff s ∈

[[S]].

Proof

By induction on |S |. �

4.9 Lemma [Blame inhabits all types]: For all S , ⇑l ∈ [[S]].

Proof

By induction on |S |. �

4.10 Corollary [Nonemptiness]: For all S , there exists some q such that q ∈ [[S]].

The normal forms of −→∗
h are of the form q = w or ⇑l .

4.11 Lemma [Strong normalization]: If s ∈ [[S]], then there exists a q such that

s −→∗
h q—i.e., either s −→∗

h w or s −→∗
h ⇑l .

Proof

By induction on |S |.

S = {x :B | s0}: Suppose s ∈ [[{x :B | s0}]]. By definition, either s −→∗
h w or

s −→∗
h ⇑l , so s normalizes.

S = x :S1 → S2: Suppose s ∈ [[x :S1 → S2]]. We know that for any q ∈ [[S1]]

that s q ∈ [[S2{x := q}]]. Since [[S1]] is nonempty (by Lemma 4.10), let

q ∈ [[S1]]. By the induction hypothesis (IH), s q −→∗
h w or s q −→∗

h ⇑l .

By the definition of evaluation contexts and −→∗
h, the function position is

evaluated first. If the application reduces to a value (i.e., s q −→∗
h w), then first

s q −→∗
h w ′ q , and so s −→∗

h w ′. Alternatively, the application could reduce

to blame (i.e., s q −→∗
h ⇑l). There are two ways for this to happen: either

s −→∗
h ⇑l , or s −→∗

h w ′ and q −→∗
h ⇑l . In both cases s normalizes. �

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

244 M. Greenberg et al.

Unlike the rest of the paper, we take a top-down approach to the rest of type

soundness to help motivate the steps. We are interested in relating our syntactic

type system and the type semantics by semantic type soundness: if ∅ � s : S , then

s ∈ [[S]]. However, to prove this result, we must generalize it. In the bottom

of Figure 8, we define three semantic judgments that correspond to each of the

three typing judgments. (Note that the third one requires the definition of a kind

semantics that picks out well-behaved types—those whose embedded terms belong

to the type semantics.) We then show that the typing judgments imply their semantic

counterparts.

4.12 Theorem [Semantic-type soundness]:

1. If ∆ � S1 <: S2 then ∆ |= S1 <: S2.

2. If ∆ � s : S then ∆ |= s : S .

3. If ∆ � S then ∆ |= S .

Proof

Proof of (1) is in Lemma 4.14. Proofs of (2) and (3) are in Lemma 4.21. �

The first part follows by induction on the subtyping judgment.

4.13 Lemma [Trivial refinements of constants]: If k ∈ KB , then k ∈ [[{x :B | true}]].
4.14 Lemma [Semantic-subtype soundness]: If ∆ � S1 <: S2 then ∆ |= S1 <: S2.

Proof

By induction on the subtyping derivation.

SSub Refine: We know ∆ � {x :B | s1} <: {x :B | s2}, and must show the

corresponding semantic subtyping. Inversion of this derivation gives us ∆, x :{x :B |
true} � s1 ⊃ s2, which means

∀σ. ((∆, x :{x :B | true} |= σ ∧ σ(s1) −→∗
h true) implies σ(s2) −→∗

h true) (∗)

We must show ∆ |= {x :B | s1} <: {x :B | s2}, i.e., that ∀σ. (∆ |= σ implies [[{x :B |
s1}]] ⊆ [[{x :B | s2}]]). Let σ be given such that ∆ |= σ. Suppose s ∈ [[σ({x :B | s1})]].
By definition, either s goes to ⇑l , or it goes to k ∈ KB such that s1{x := k} −→∗

h true.

In the former case, ⇑l ∈ [[{x :B | s2}]] by definition. So consider the latter case, where

s −→∗
h k .

We already know that k ∈ KB , so it remains to see that σ(s2){x := k} −→∗
h true.

We know by assumption that σ(s1){x := k} −→∗
h true. By Lemma 4.13, k ∈ [[{x :B |

true}]].
Now observe that ∆, x :{x :B | true} |= σ{x := k}. Since σ′(s1) −→∗

h true, we can

conclude that σ′(s2) −→∗
h true by our assumption (*). This completes this case.

SSub Fun: ∆ � (x :S11 → S12) <: (x :S21 → S22); by the IH, we have ∆ |= S21 <: S11

and ∆, x :S21 |= S12 <: S22. We must show that ∆ |= (x :S11 → S12) <: (x :S21 → S22).

Let ∆ |= σ and s ∈ [[σ(x :S11 → S12)]], for some σ. We must show, for all q , that if

q ∈ [[σ(S21)]], then s q ∈ [[σ(S22){x := q}]].
Let q ∈ [[σ(S21)]]. Then q ∈ [[σ(S11)]]. Since s ∈ [[σ(x :S11 → S12)]], we know

that s q ∈ [[σ(S12){x := q}]]. Finally, since ∆, x :S21 |= S12 <: S22 and ∆, x :S21 |=
σ{x := q}, we can conclude that s q ∈ [[σ(S22){x := q}]], and so s ∈ [[σ(x :S21 →
S22)]]. �

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 245

s1 � s2

s � s
FP Refl

w � w ′

k w � [[k]](w ′)
FP RConst

s12 � s ′
12 w2 � w ′

2

(λx :S . s12) w2 � s ′
12{x := w ′

2}
FP RBeta

s2 � s ′
2

〈{x :B | s1} ⇒ {x :B | s2}〉l k � 〈{x :B | s ′
2}, s ′

2{x := k}, k〉l
FP RCCheck

〈{x :B | s}, true, k〉l � k
FP ROK

〈{x :B | s}, false, k〉l � ⇑l
FP RFail

S11 � S ′
11 S12 � S ′

12 S21 � S ′
21 S22 � S ′

22 w1 � w ′
1 w2 � w ′

2

(〈x :S11 → S12 ⇒ x :S21 → S22〉l w1) w2 �
〈S ′

12{x := 〈S ′
21 ⇒ S ′

11〉l w ′
2} ⇒ S ′

22{x := w ′
2}〉l (w ′

1 (〈S ′
21 ⇒ S ′

11〉l w ′
2))

FP RCDecomp

S1 � S ′
1 s12 � s ′

12

λx :S1. s12 � λx :S ′
1. s

′
12

FP Lam

s1 � s ′
1 s2 � s ′

2

s1 s2 � s ′
1 s ′

2

FP App

S1 � S ′
1 S2 � S ′

2

〈S1 ⇒ S2〉l � 〈S ′
1 ⇒ S ′

2〉l

FP Cast

S � S ′ s � s ′

〈S , s , k〉l � 〈S ′, s ′, k〉l
FP Check F [⇑l]� ⇑l

FP Blame

S1 � S2

S � S
FP SRefl

s � s ′

{x :B | s}� {x :B | s ′}
FP SRefine

S1 � S ′
1 S2 � S ′

2

x :S1 → S2 � x :S ′
1 → S ′

2

FP SFun

Fig. 9. Parallel reduction for dependent λH.

The proof semantic subtype soundness goes through easily, the first of the three

parts of semantic soundness (Theorem 4.12). We run into some complications with

semantic type and kind soundness, the second and third parts (which must be

proven together). The crux of the difficulty lies with the S App rule. Suppose the

application s1 s2 was well typed and s1 ∈ [[x :S1 → S2]] and s2 ∈ [[S1]]. According

to S App, the application’s type is S2{x := s2}. By the type semantics defined in

Figure 8, if s1 ∈ [[x :S1 → S2]], then s1 q ∈ [[S2{x := q}]] for any q ∈ [[S1]]. Sadly, s2

is not necessarily a result! We do know, however, that s2 ∈ [[S1]], so s2 −→∗
h q2 by

strong normalization (Lemma 4.11). We need to ask, then, how the type semantics

of S2{x := s2} and S2{x := q2} relate. (One might think that we can solve this by

changing the type semantics to quantify over terms, not results. But this just pushes

the problem to the S Lam case.)

We can show that the two type semantics are in fact equal using a parallel

reduction technique. We define a parallel reduction relation � on terms and types

in Figure 9 that allows redexes in different parts of a term (or type) to be reduced

in the same step, and we prove that types that parallel-reduce to each other—like

S2{x := s2} and S2{x := q2}—have the same semantics. The definition of parallel

reduction is standard, though we need to be careful to make it respect our CBV

reduction order: the β-redex (λx :S1. s1) s2 should not be contracted unless s2 is a

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

246 M. Greenberg et al.

value, since doing so can change the order of effects. (Other redices within s1 and s2

can safely reduce.)5 The proof requires a longish sequence of technical lemmas that

essentially show that � commutes with −→∗
h. Since the proofs require fussy symbol

manipulation, we have done these proofs in Coq. Our development is available

at http://www.cis.upenn.edu/~mgree/papers/lambdah_parred.tgz. We restate

the critical results here.

4.15 Lemma [Substitution of parallel-reducing terms, Lemma A3 in thy.v]:

If w � w ′, then

1. if s � s ′ then s{x := w}� s ′{x := w ′}, and

2. if S � S ′ then S {x := w}� S ′{x := w ′}.

4.16 Lemma [Parallel reduction implies co-evaluation, Lemma A20 in thy.v]:

If s1 � s2 then s1 −→∗
h k iff s2 −→∗

h k . Similarly, s1 −→∗
h ⇑l iff s2 −→∗

h ⇑l .

An alternative strategy would be to use � in the typing rules and −→h in the

operational semantics. This would simplify some of our metatheory, but it would

complicate the specification of the language. Using −→h in the typing rules gives a

clearer intuition and keeps the core system small.

4.17 Lemma [Single parallel reduction preserves type semantics]:

If S1 � S2 then [[S1]] = [[S2]].

Proof

By induction on |S1| (which is equal to |S2|), with a case analysis on the final rule

used to show S1 � S2. �

4.18 Corollary [Parallel reduction preserves type semantics]: If S1 �∗ S2 then

[[S1]] = [[S2]].

4.19 Lemma [Partial semantic substitution]: If ∆1, x :S ′,∆2 |= s : S , and ∆1, x :S ′,

∆2 |= S , and ∆1 |= s ′ : S ′ then ∆1,∆2{x := s ′} |= s{x := s ′} : S {x := s ′} and

∆1,∆2{x := s ′} |= S {x := s ′}.

Proof

By the definition of ∆ |= σ. �

The semantic typing case for casts requires a separate induction.

4.20 Lemma [Semantic typing for casts]: If ∆ |= S1 and ∆ |= S2 and �S1� = �S2�,
then ∆ |= 〈S1 ⇒ S2〉l : x :S1 → S2 for fresh x .

Proof

By induction on |S1| = |S2|, going by cases on the shape of S2. Let ∆ |= σ; we show

that σ(〈S1 ⇒ S2〉l) ∈ [[σ(S1 → S2)]].

5 We conjecture that the reflexive transitive closure of a similar “CBV-respecting” variant of full β-
reduction could be used in place of our parallel reduction. It is not clear whether it would lead to
shorter proofs.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 247

S2 = {x :B | σ(s2)}: Let q ∈ [[σ(S1)]]. If q = ⇑l ′, then the applied cast goes to ⇑l ′,

and we are done by Lemma 4.9. So q = k ∈ KB . By F CCheck 〈S1 ⇒ {x :B |
σ(s2)}〉l k −→h 〈{x :B | σ(s2)}, σ(s2){x := k}, k〉l . By the well-kinding of S2, we know

that σ(s2){x := k} ∈ [[{x :Bool | true}]], so by strong normalization (Lemma 4.11),

the predicate in the active check goes to blame or to a value. If it goes to blame, we

are done. If it goes to a value, then that value must be true or false. If it goes to

false, then the whole term goes to blame and we are done. If it goes to true, then

the check will step to k . But σ(s2){x := k} −→∗
h true, so k ∈ [[σ({x :B | s2})]] by

definition. Expansion (Lemma 4.8) completes the proof.

S2 = x :S21 → S22: We must have S1 = x :S11 → S12. Let q ∈ [[σ(S1)]]; if it is blame,

we are done by Lemma 4.9, so let it be a value w . Let q ′ ∈ [[σ(S21)]]; if it is blame

we are done, so let it be a value w ′. By F CDecomp:

〈σ(S12){x := 〈S21 ⇒ S11〉l w ′} ⇒ σ(S22){x := w ′}〉l (w (〈σ(S21) ⇒ σ(S11)〉l w ′))

By the IH, 〈σ(S21) ⇒ σ(S11)〉l is semantically well-typed, so 〈σ(S21) ⇒ σ(S11)〉l w ′ ∈
[[σ(S11)]]. By strong normalization (Lemma 4.11), this term reduces (and therefore

parallel reduces, by Lemma A4) to some q ′′.

We know that w q ′′ ∈ [[σ(S12){x := q ′′}]] by assumption. Using parallel reduction

(Corollary 4.18), we have [[σ(S12){x := q ′′}]] = [[σ(S12){x := 〈σ(S21) ⇒ σ(S11)〉l w ′}]].
Before applying the IH, we note that ∆ |= S12{x := 〈S21 ⇒ S11〉l w ′} and

∆ |= S22{x := w ′} by Lemma 4.19. Then by the IH we see that 〈σ(S12){x := 〈S21 ⇒
S11〉l w ′} ⇒ σ(S22){x := w ′}〉l is semantically well-kinded, so

〈σ(S12){x := 〈S21 ⇒ S11〉l w ′} ⇒ σ(S22){x := w ′}〉l (w w ′′) ∈ [[σ(S22)

{x := w ′}]] �

4.21 Lemma [Semantic-type soundness]:

1. If ∆ � s : S then ∆ |= s : S .

2. If ∆ � S then ∆ |= S .

Proof

By induction on the typing and well-formedness derivations, using Corollary 4.18 in

the S App case and Lemma 4.14 in the S Sub case. �

Theorem 4.12 gives us type soundness, and it combines with Lemma 4.11 for an

even stronger result: well-typed programs always evaluate to values of appropriate

(semantic) type.

While one can prove progress and preservation theorems, we omit them: we

already have type soundness. Our later proofs will require standard weakening and

substitution lemmas, though, so we prove them now.

4.22 Lemma [Weakening]: If ∆ � s : S and ∆ � S , and dom(∆) ∩ dom(∆′) = ∅ with

� ∆,∆′, then ∆,∆′ � s : S and ∆,∆′ � S .

Proof

By straightforward induction on s and |S |; we reuse the (critical) context well-

formedness derivation in the S Checking case. �

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

248 M. Greenberg et al.

The substitution lemma has one complication: The operational judgment S Imp

requires the semantic-type soundness theorem to show that a syntactically well-typed

term can be used in a closing substitution. It is otherwise straightforward.

4.23 Lemma [Substitution (implication)]: If ∆1, x :S ,∆2 � s1 ⊃ s2 and ∆1 � s : S ,

then ∆1,∆2{x := s} � s1{x := s} ⊃ s2{x := s}.

Proof

Direct, unfolding the closing substitutions. �

4.24 Lemma [Substitution (subtyping)]: If ∆1, x :S ,∆2 � S1 <: S2 and ∆1 � s : S ,

then ∆1,∆2{x := s} � S1{x := s} <: S2{x := s}.

Proof

By induction on the subtyping derivation. �

4.25 Lemma [Substitution (typing and well-formedness)]: If ∆1 � s : S then

1. if ∆1, x :S ,∆2 � s1 : S1 then ∆1,∆2{x := s} � s1{x := s} : S1{x := s},
2. if ∆1, x :S ,∆2 � S1 then ∆1,∆2{x := s} � S1{x := s}, and

3. if � ∆1, x :S ,∆2 then � ∆1,∆2{x := s}.

Proof

By mutual induction on the typing derivations. �

5 The translations

We divide our treatment of translations between lax λC, λH, and picky λC into two

sections: one for exact translations, moving right on the axis of blame, and another

for inexact translations, moving left.

Exact translations

lax λC λH picky λC

ψ

φ ψ

φ

Inexact translations, more blame in target language

Section 6 covers the exact translations, moving left on the axis of blame from

picky λC to λH, and from λH to lax λC. Section 7 covers the inexact translations,

moving right on the axis of blame from lax λC to λH, and from λH to picky λC.

Each translation proof follows the same basic schema. First, we define a logical

relation between the two languages. Then we use the logical relation to prove

a lemma relating the translation, contracts, and casts. Finally, we prove that the

translation preserves evaluation behavior—that is, terms are logically related to their

translations—and typing. All of the proofs make extensive use of expansion and

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 249

Result correspondence

r ≈ q : T

k ≈ k : B ⇐⇒ k ∈ KB

v ≈ w : T1 → T2 ⇐⇒ ∀t ∼ s : T1. v t ∼ w s : T2

⇑l ≈ ⇑l : T

Term correspondence

t ∼ s : T

t ∼ s : T ⇐⇒ t −→c
∗ r ∧ s −→∗

h q ∧ r ≈ q : T

Fig. 10. A blame-exact result/term correspondence.

contraction of evaluation and “cotermination” arguments. Every proof uses its own

contract/cast logical relation. The proofs for the inexact translations in Section 7

demand custom term logical relations, too. We have used σ to range over closing

substitutions in λH; we will use δ to range over dual closing substitutions in the

logical relations.

6 Exact translations

Translations moving left on the axis of blame—from picky λC to λH, and from λH to

lax λC—are exact. That is, we can show a tight behavioral correspondence between

terms and their translations (see Figure 10). We read t ∼ s : T as “t corresponds

with s at type T .”

Our correspondence is a standard logical relation, defined in two intertwined

parts: a relation on results, r ≈ q : T and its closure with respect to evaluation,

t ∼ s : T . The term correspondence is defined directly: terms correspond when they

reduce to corresponding results. We write −→c in this single definition: in Section 6.1

we use this definition taking −→c to be −→picky; in Section 6.2 we use this definition

taking −→c to be −→lax. The result correspondence is defined inductively over

λC’s simple types. Blame corresponds to itself at any type. At B , constants in KB

correspond to themselves; results at T1 → T2 correspond when they applying them

to corresponding terms yields corresponding terms. Stratifying the definition this

way simplifies some of our proofs later. We call this correspondence exact because

terms corresponding at base type yield identical results.

Note that we define the correspondence here on closed (or harmlessly open) terms.

In the following two sections, we will define translation specific extensions of the

correspondence to open terms and contracts.

6.1 Translating picky λC to λH: dependent φ

We define the full φ for the dependent calculi in Figure 11. In the dependent case,

we need to translate derivations of well-formedness and well-typing of λC contexts,

terms, and contracts into λH contexts, terms, and types. We translate derivations to

ensure type preservation, translating T VarT and T VarC derivations differently:

we leave variables of simple type alone, but we cast variables bound to contracts.

To see why we need this distinction, consider the function contract f :(x :{x :Int |
pos x} �→ {y:Int | true}) �→ {z :Int | f 0 = 0}. Note that this contract is well formed

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

250 M. Greenberg et al.

Contexts φ : (� Γ) → ∆

φ(� ∅) = ∅
φ(� Γ, x :T) = φ(� Γ), x :	T

φ(� Γ, x :cl ,l ′

) = φ(� Γ), x :φ(Γ �l ,l ′
c : �c�)

Terms φ : (Γ � t : T) → s

φ(Γ1, x :T ,Γ2 � x : T) = x

φ(Γ1, x :cl ,l ′
,Γ2 � x : �c�) = 〈φ(Γ1 �l ,l ′

c : �c�) ⇒ 	c
〉l ′
x

φ(Γ � k : T) = k

φ(Γ � λx :T1. t2 : T1 → T2) = λx :	T1
. φ(Γ, x :T1 � t2 : T2)

φ(Γ � t1 t2 : T2) = φ(Γ � t1 : T1 → T2) φ(Γ � t2 : T1)

φ(Γ � ⇑l : T) = ⇑l

φ(∅ � 〈c, t , k〉l : B) = 〈φ(∅ �l ,l ′
c : B), φ(∅ � t : Bool), k〉l

φ(Γ � 〈c〉l ,l ′
: T) = λx :	c
. 〈φ(Γ �l ′ ,l c : T) ⇒ 	c
〉l ′

(〈	c
 ⇒ φ(Γ �l ,l ′
c : T)〉l x)

where x is fresh

Types φ : (Γ �l ,l ′
c : T) → S

φ(Γ �l ,l ′ {x :B | t} : B) = {x :B | φ(Γ, x :B � t : Bool)}
φ(Γ �l ,l ′

x :c1 �→ c2 : T1 → T2) = x :φ(Γ �l ′ ,l c1 : T1) → φ(Γ, x :c1
l ′ ,l �l ,l ′

c2 : T2)

Fig. 11. The translation φ from dependent λC to dependent λH.

in λC, but that the codomain “abuses” the bound variable. A naive translation

will not be well typed in λH. The term f 0 will not be typeable when f has type

x :{x :Int | pos x} → 	Int
, since f only accepts positive arguments. The problem

is that SWF Fun can add a (possibly refined) type to the context when checking

the codomain, so we need to restore the “variables have raw types” invariant—

something we cannot always rely on subtyping to do, since types are not in general

subtypes of their raw type. By tracking the variables that were bound by contracts in

λC, we can be sure to cast them to raw types when they are referenced. We therefore

translate the contract above to f :S → {z :Int | (〈S ⇒ 	Int → Int
〉l ′
f) 0 = 0}, where

S = x :{x :Int | pos x} → 	Int
. This (partially) motivates the x :cl ,l ′
binding form in

dependent λC.

Bulletproofing uses raw types, defined here for the dependent system.

	{x :B | s}
 = {x :B | true} 	x :S1 → S2
 = 	S1
 → 	S2

	B
 = {x :B | true} 	T1 → T2
 = 	T1
 → 	T2

	{x :B | t}
 = {x :B | true} 	x :c1 �→ c2
 = 	c1
 → 	c2

Note that dependency is eliminated.

We could write the translation on terms instead of derivations, defining

φ(x :c1 �→ c2) = x :φ(c1) → φ(c2){x := 〈φ(c1) ⇒ 	c1
〉l x}

but the proofs are easier if we translate derivations.

Constants translate to themselves. One technical point: To maintain the raw-type

invariant, we need λH’s higher-order constants to have typings that can be seen

as raw by the subtyping relation, i.e., ∆ � tyh(k) <: 	tyc(k)
. This can be proven

at base types (since we have already assumed that tyh(k) is the “most specific

type” for each k), but must be assumed for first-order constant functions. This

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 251

Contract/type correspondence

c ∼l ,l ′
S : T

{x :B | t} ∼l ,l ′ {x :B | s} : B ⇐⇒ ∀k ∈ KB . t{x := k} ∼ s{x := k} : Bool

x :c1 �→ c2 ∼l ,l ′
x :S1 → S2 : T1 → T2 ⇐⇒ c1 ∼l ′ ,l S1 : T1 ∧

∀t ∼ s : T1.c2{x := 〈c1〉l ′ ,l t} ∼l ,l ′
S2{x := 〈	S1
 ⇒ S1〉l ′

s} : T2

Dual closing substitutions

Γ |= δ ⇐⇒

⎧⎨
⎩

∀x :T ∈ Γ. δ1(x) ∼ δ2(x) : T

∀x :cl ,l ′ ∈ Γ. δ1(x) = 〈δ1(c)〉l ,l ′
t ∧ δ2(x) = 〈	c
 ⇒ δ2(S)〉l s

where S = φ(Γ �l ,l ′
c : �c�) ∧ t ∼ s : �c�

Lifted to open terms

Γ � t ∼ s : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(t) ∼ δ2(s) : T)

Γ � c ∼l ,l ′
S : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(c) ∼l ,l ′

δ2(S) : T)

Fig. 12. Blame-exact correspondence for φ from picky λC.

slightly restricts the types we might assign to our constants, e.g., we cannot say

tyh(sqrt) = x :{x :Float | x >= 0} → {y:Float | (y ∗ y) = x}, since it is not the

case that ∆ � tyh(sqrt) <: 	Float → Float
. Since its domain cannot be refined,

[[sqrt]] must be defined for all k ∈ KFloat, e.g., [[sqrt]](−1) must be defined. We have

already required that denotations be total over their simple types in λC, and λH uses

the same denotation function [[−]], so this requirement does not seem too severe. In

any case, we can define it to be equal to ⇑l0, for some l0. We could instead translate

k to 〈tyh(k) ⇒ 	tyh(k)
〉l0 k ; however, in this case the non-dependent fragments of

the languages would no longer correspond exactly.

We extend the term correspondence of Figure 10 to contracts and types, lifting

the correspondences to open terms using dual closing substitutions. Recall that we

interpret the term correspondence as using −→picky . For a binding x :cl ,l ′ ∈ Γ, we use

φ to insert the negative cast (labelled with l ′) and closing substitutions (in Figure 12)

to insert the positive cast (labelled with l). Do not be confused by the label used

for function contract correspondence—this definition does, in fact, match up with

closing substitutions. A binding x :cl ,l ′ ∈ Γ must have come from the domain of an

application of T FunC, so the labels on the binding are already swapped when φ

or Γ |= δ sees them. In the definition of function contract correspondence, we swap

manually—whence the l ′ on the inserted cast. It helps to think of polarity in terms

of position rather than the presence or absence of a prime.

6.1 Lemma [Expansion and contraction]: If t −→picky
∗ t ′, and s −→∗

h s ′ then t ∼ s :

T iff t ′ ∼ s ′ : T .

6.2 Lemma [Constants correspond to themselves]: For all k , k ∼ k : tyc(k).

6.3 Lemma [Equivalence is closed under parallel reduction]: If s � s ′ then t ∼ s :

T iff t ∼ s ′ : T . Similarly, if S � S ′ then c ∼l ,l ′
S : T iff c ∼l ,l ′

S ′ : T .

Proof

In both cases, by induction on T , using the first to prove the second. �

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

252 M. Greenberg et al.

6.4 Lemma [Trivial casts]: If t ∼ s : B and �S � = B , then t ∼ 〈S ⇒ 	B
〉l s : B .

6.5 Lemma [Related base casts]: If {x :B | t} ∼l0 ,l1 {x :B | s} : B and t ′ ∼ s ′ : B

and �S � = B , then 〈{x :B | t}〉l ,l ′
t ′ ∼ 〈S ⇒ {x :B | s}〉l s ′ : B .

Proof

Direct. Note that l0 and l1 are entirely irrelevant. �

6.6 Lemma [Bulletproofing]: If t ∼ s : T and c ∼l ,l ′
S : T then 〈c〉l ,l ′

t ∼ 〈S ⇒
	S
〉l ′ 〈	S
 ⇒ S 〉l s : T .

Proof

By induction on T . First, observe that either both t and s go to ⇑l ′′ or both t and s

go to values related at T . In the former case, the outer terms also go to blame. So

we only consider the case where t −→picky
∗ v , s −→∗

h w , and v ≈ w : T .

T = B : So c = {x :B | t1} and S = {x :B | s1} and S ′ = {x :B | s2}. By

Lemma 6.5 we have 〈c〉l ,l ′
t ∼ 〈	S
 ⇒ S 〉l s : B . By Lemma 6.4 we can add

the extra, trival cast 〈S ⇒ 	S
〉l ′
.

T = T1 → T2: We know that c = x :c1 �→ c2 and S = x :S1 → S2. Let

t ′ ∼ s ′ : T1. We only need to consider the case where t ′ −→picky
∗ v ′ and

s ′ −→∗
h w ′—if t ′ −→picky

∗ ⇑l ′′ and s ′ −→∗
h ⇑l ′′ the outer terms correspond

because both blame l ′′.

On the λC side, (〈c〉l ,l ′
t) t ′ −→picky

∗ 〈c2{x := 〈c1〉l ′ ,l v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′)). In

λH, we can see

(〈S ⇒ 	S
〉l ′ 〈	S
 ⇒ S 〉l s) s ′ −→∗
h

〈S2{x := 〈	S1
 ⇒ S1〉l ′
w ′} ⇒ 	S2
〉l ′

((〈	S
 ⇒ S 〉l w) (〈	S1
 ⇒ S1〉l ′
w ′))

We cannot determine where the redex is until we know the shape of T1—does

the negative argument cast step to an active check, or do we decompose the

positive cast?

— T1 = B . Since v ′ ≈ w ′ : B , we must have v ′ = w ′ = k ∈ KB . By Lemma 6.5

and c1 ∼l ′ ,l S1 : B , we know that 〈c1〉l ′ ,l v ′ ∼ 〈	S1
 ⇒ S1〉l ′
w ′ : B . Both

terms go to blame or to the same value—which must be k , from inspection

of the contract and cast evaluation rules.. The former case is immediate,

since the outer terms then go to blame. So suppose 〈c1〉l ′ ,l k −→picky
∗ k

and 〈	S1
 ⇒ S1〉l ′
k −→∗

h k . Now the terms evaluate like so:

〈c2{x := 〈c1〉l ′ ,l v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′)) −→picky

∗ 〈c2{x := 〈c1〉l ′ ,l k}〉l ,l ′
(v k)

〈S2{x := 〈	S1
⇒S1〉l ′
k}⇒	S2
〉l ′

((〈	S
⇒S 〉l w) (〈	S1
⇒S1〉l ′
k)) −→∗

h

〈S2{x := 〈	S1
 ⇒ S1〉l ′
k} ⇒ 	S2
〉l ′

〈	S2
 ⇒ S2{x := k}〉l (w (〈S1 ⇒ 	S1
〉l k))

By Lemma 6.4, k ∼ 〈S1 ⇒ 	S1
〉l k : B , so v k ∼ w (〈S1 ⇒ 	S1
〉l k) : T2.

We have by definition (and k ∼ k : B) that c2{x := 〈c1〉l ′ ,l k} ∼l ,l ′
S2{x :=

〈	S1
 ⇒ S1〉l ′
k} : T2. Recall that 〈	S1
 ⇒ S1〉l ′

k −→∗
h k . This implies

〈	S1
 ⇒ S1〉l ′
k �∗ k (Lemma A4 in the Coq). We can then see that

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 253

S2{x := 〈	S1
 ⇒ S1〉l ′
k} �∗ S2{x := k} by Lemma A1 in the Coq. By

extension with the congruence rules:

〈S2{x := 〈	S1
 ⇒ S1〉l ′
k} ⇒ 	S2
〉l ′

〈	S2
 ⇒ S2{x := 〈	S1
 ⇒ S1〉l ′
k}〉l (w (〈S1 ⇒ 	S1
〉l k))�

〈S2{x := 〈	S1
 ⇒ S1〉l ′
k} ⇒ 	S2
〉l ′

〈	S2
 ⇒ S2{x := k}〉l (w (〈S1 ⇒ 	S1
〉l k))

By the IH 〈c2{x := 〈c1〉l ′ ,l k}〉l ,l ′
(v k) corresponds to the former, which

means it is related to the latter by Lemma 6.3. We conclude the case with

expansion (Lemma 6.1).

— T1 = T11 → T12. We continue with an application of F CDecomp in λH:

〈S2{x := 〈	S1
 ⇒ S1〉l ′
w ′} ⇒ 	S2
〉l ′

((〈	S
 ⇒ S 〉l w) (〈	S1
 ⇒ S1〉l ′
w ′)) −→∗

h

〈S2{x := 〈	S1
 ⇒ S1〉l ′
w ′} ⇒ 	S2
〉l ′

〈	S2
 ⇒ S2{x := 〈	S1
 ⇒ S1〉l ′
w ′}〉l

(w (〈S1 ⇒ 	S1
〉l (〈	S1
 ⇒ S1〉l ′
w ′)))

By the IH on c1 ∼l ′ ,l S1 : T1 and v ′ ∼ w ′ : T1, we can find what we

need for the domain: 〈c1〉l ′ ,l v ′ ∼ 〈S1 ⇒ 	S1
〉l (〈	S1
 ⇒ S1〉l ′
w ′) : T1. By

assumption, the results of applying v and w to these values correspond.

(And they are values, since function contracts/casts applied to values are

values.)

We have c2{x := 〈c1〉l ′ ,l v ′} ∼l ,l ′
S2{x := 〈	S1
 ⇒ S1〉l ′

w ′} : T2 by as-

sumption, so the IH tells us that the codomain contract and bulletproofing

correspond. We conclude by expansion (Lemma 6.1). �

Having characterized how contracts and pairs of related casts relate, we show

that terms correspond to their translation.

6.7 Theorem [Behavioral correspondence]: If � Γ, then:

1. If φ(Γ � t : T) = s then Γ � t ∼ s : T .

2. If φ(Γ �l ,l ′
c : T) = S then Γ � c ∼l ,l ′

S : T .

Proof

We simultaneously show both properties by induction on the depth of φ’s

recursion. �

We can now prove that φ preserves types, using Theorem 6.7 to show that φ preserves

the implication judgment. As a preliminary, we use the behavioral correspondence

to show that φ preserves the implication judgment.

6.8 Lemma: If t1 −→picky
∗ true implies t2 −→picky

∗ true then ∅ � φ(∅ � t1 :

Bool) ⊃ φ(∅ � t1 : Bool).

Proof

By the logical relation. �

The type preservation proof is very similar to the correspondence proof of

Theorem 6.7.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

254 M. Greenberg et al.

Term translation

ψ : s → t

ψ(x) = x ψ(k) = k

ψ(λx :S . s) = λx :�S �. ψ(s) ψ(s1 s2) = ψ(s1) ψ(s2)

ψ(〈S1 ⇒ S2〉l) = 〈ψl (S1, S2)〉l ,l ψ(⇑l) = ⇑l

ψ(〈{x :B | s1}, s2, k〉l) = 〈{x :B | ψ(s1)}, ψ(s2), k〉l

Cast translation

ψ : S × S × l → T

ψl ({x :B | s1}, {x :B | s2}) = {x :B | ψ(s2)}
ψl (x :S11 → S12, x :S21 → S22) = x :ψl (S21, S11) �→ ψl (S12{x := 〈S21 ⇒ S11〉l x}, S22)

Fig. 13. ψ mapping dependent λH to dependent λC.

6.9 Theorem [Type preservation]: If φ(� Γ) = ∆ then:

1. � ∆.

2. If φ(Γ � t : T) = s then ∆ � s : 	T
.
3. If φ(Γ �l ,l ′

c : T) = S then ∆ � S .

Proof

We prove all three properties simultaneously, by induction on the depth of φ’s

recursion.

The proof is by cases on the λC context well-formedness/term typing/contract

well-formedness derivations, which determine the branch of φ taken. �

6.2 Translating λH to lax λC: dependent ψ

In this section, we formally define ψ for the dependent versions of lax λC and λH.

We prove that ψ is type preserving and induces behavioral correspondence.

The full definition of ψ is given in Figure 13. Most terms are translated

homomorphically. In abstractions, the annotation is translated by erasing the

refined λH type to its skeleton. As we mentioned in Section 3, the trickiest part

is the translation of casts between function types: when generating the codomain

contract from a cast between two function types, we perform the same asymmetric

substitution as F CDecomp. Since ψ inserts new casts, we need to pick a blame

label: ψ(〈S1 ⇒ S2〉l) passes l as an index to ψl (S1, S2).

We reuse the term correspondence t ∼ s : T (Figure 10), interpreting it as using

−→lax, and define a new contract/cast correspondence c ∼ S1 ⇒l S2 : T (Figure 14),

relating contracts and pairs of λH types—effectively, casts. This correspondence uses

the term correspondence in the base type case and follows the pattern of F CDecomp

in the function case. Since it inserts a cast in the function case, we index the relation

with a label, just like ψ. Note that the correspondence is blame-exact, relating λC

and λH terms that either blame the same label or go to corresponding values.We

define closing substitutions ignoring the contracts in the context; we lift the relation

to open terms in the standard way.

We begin with some standard properties of the term correspondence relation.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 255

Contract/type correspondence

c ∼ S1 ⇒l S2 : T

{x :B | t} ∼ {x :B | s1} ⇒l {x :B | s2} : B ⇐⇒
∀k ∈ KB . t{x := k} ∼ s2{x := k} : Bool

x :c1 �→ c2 ∼ x :S11 → S12 ⇒l S21 → S22 : T1 → T2 ⇐⇒ c1 ∼ S21 ⇒l S11 : T1 ∧
∀t ∼ s : T1.c2{x := t} ∼ S12{x := 〈S21 ⇒ S11〉l s} ⇒l S22{x := s} : T2

Dual closing substitutions

Γ |= δ ⇐⇒
{

∀x :T ∈ Γ, δ1(x) ∼ δ2(x) : T

∀x :cl ,l ′ ∈ Γ, δ1(x) ∼ δ2(x) : �c�

Lifted to open terms

Γ � t ∼ s : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(t) ∼ δ2(s) : T)

Γ � c ∼ S1 ⇒l S2 : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(c) ∼ δ2(S1) ⇒l δ2(S2) : T)

Fig. 14. Blame-exact correspondence for ψ into lax λC.

6.10 Lemma [Expansion and contraction]: If t −→lax
∗ t ′, and s −→∗

h s ′ then t ∼ s :

T iff t ′ ∼ s ′ : T .

6.11 Lemma [Blame corresponds to blame]: For all T , ⇑l ∼ ⇑l : T .

6.12 Lemma [Constants correspond to themselves]: For all k , k ≈ k : tyc(k).

As a corollary of Lemmas 6.11 and 6.10, if two terms evaluate to blame, then

they correspond. This will be used extensively in the proofs below, as it allows us to

eliminate many cases.

6.13 Lemma [Corresponding terms coevaluate]: If t ∼ s : T then t −→lax
∗ v ∧

s −→∗
h w or t −→lax

∗ ⇑l ∧ s −→∗
h ⇑l ; moreover, t −→lax

∗ r and s −→∗
h q such that

r ≈ q : T .

6.14 Lemma [Contract/cast correspondence]: If c ∼ S1 ⇒l S2 : T and t ∼ s : T

then 〈c〉l ,l t ∼ 〈S1 ⇒ S2〉l s : T .

Proof

By induction on T . We reason via expansion (Lemma 6.10), showing that the initial

terms reduce to corresponding terms.

T = B : So c = {x :B | t1}, S1 = {x :B | s1}, and S2 = {x :B | s2}. Since

t ∼ s : B , we know that they either both reduce to k ∈ KB or ⇑l ′. If the latter

is the case, we are done. So suppose t −→lax
∗ k along with s −→∗

h k .

We can step our terms into active checks as follows:

〈{x :B | t1}〉l ,l t −→lax
∗ 〈{x :B | t1}, t1{x := k}, k〉l

〈{x :B | s1} ⇒ {x :B | s2}〉l s −→∗
h 〈{x :B | s2}, s2{x := k}, k〉l

By inversion of the contract/cast correspondence, we know that t1{x := k} ∼
s2{x := k} : Bool, so these terms go to blame or to a Bool together. If they go

to ⇑l ′, we are done. If they go to false, then both the obligation and the cast

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

256 M. Greenberg et al.

will go to ⇑l . Finally, if they both go to true, then both terms will evaluate to

k .

T = T1 → T2: c = x :c1 �→ c2, S1 = x :S11 → S12, and S2 = x :S21 → S22. We

know by inversion of the contract/cast relation that c1 ∼ S21 ⇒l S11 : T1 and

that for all t ∼ s : T1, c2{x := t} ∼ S12{x := 〈S21 ⇒ S11〉l s} ⇒l S22{x :=

s} : T2. We want to prove that 〈c〉l ,l ∼ 〈S1 ⇒ S2〉l s : T1 → T2. First, we can

assume t −→lax
∗ v and s −→∗

h w where v ∼ w : T1 → T2—if not, both cast

and contracted terms go to blame and we are done.

We show that the decomposition of the contract and cast terms correspond

for all inputs. Let t ′ ∼ s ′ : T1. Again, we can assume that they reduce to

v ′ ∼ w ′ : T1, or else we are done by blame lifting. On the λC side, we have

(〈c〉l ,l t) t ′ −→lax
∗ 〈c2{x := v ′}〉l ,l (v (〈c1〉l ,l v ′))

In λH, we find

(〈S1 ⇒ S2〉l s) s ′ −→∗
h 〈S12{x := 〈S21 ⇒ S11〉l w} ⇒ S22{x := w ′}〉l

(w (〈S21 ⇒ S11〉l w ′))

By the IH, we know that 〈c1〉l ,l v ′ ∼ 〈S21 ⇒ S11〉l w ′ : T1. Since v ∼ w : T1 →
T2, we have v (〈c1〉l ,l v ′) ∼ w (〈S21 ⇒ S11〉l w ′) : T2. Again by the IH, we

can see that 〈c2{x := v ′}〉l ,l (v (〈c1〉l ,l v ′)) ∼ 〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒
S22{x := w ′}〉l w (〈S21 ⇒ S11〉l w ′) : T2. �

We prove three more technical lemmas necessary for the behavioral and type

correspondence.

6.15 Lemma [Skeletal equality of subtypes]: If ∆ � S1 <: S2, then �S1� = �S2�.

6.16 Lemma: If �S1� = �S2� = T , then �ψl (S1, S2)� = T .

6.17 Lemma: If ∆1 � S1 and ∆1 � S2, where �S1� = �S2� then

1. if ∆1, x :S1,∆2 � s : S then ∆1, x :S2,∆2{x := 〈S2 ⇒ S1〉l x} � s{x := 〈S2 ⇒
S1〉l x} : S {x := 〈S2 ⇒ S1〉l x}, and

2. if ∆1, x :S1,∆2 � S then ∆1, x :S2,∆2{x := 〈S2 ⇒ S1〉l x} � S {x := 〈S2 ⇒
S1〉l x}.

We use the correspondence relations to show that s and its translation ψ(s)

correspond—i.e., that ψ faithfully translates the λH semantics. We must choose the

subject of induction carefully, however, to ensure that we can apply the IH in the

case for function casts. An induction on the height of the well-formedness derivation

is tricky because of the “extra” substitution that ψ does. Instead, we do induction

on the depth of ψ’s recursion (and also derivation height, for the S Sub case).

6.18 Theorem [Behavioral correspondence]:

1. If ∆ � s : S then �∆� � ψ(s) ∼ s : �S �.
2. If ∆ � S1 and ∆ � S2, where �S1� = �S2� = �S �, then �∆� � ψl (S1, S2) ∼ S1 ⇒l

S2 : �S � (for all l).

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 257

Proof

By induction on the lexicographically ordered pairs (m, n), where m is the depth of

the recursion of the translation ψ(s) (for part 1) or ψl (S1, S2) (for part 2) and n is

either |∆ � s : S | (for part 1) or |∆ � S1| + |∆ � S2| (for part 2). The first component

decreases in all uses of the IH except for the S Sub case, where only the second

component decreases. Part 1 of the proof proceeds by case analysis on the final rule

used in the typing derivation ∆ � s : S . The rule that was used determines the shape

of ψ(s) in all cases but S Sub.

We give only the most interesting cases for the first part: S Cast, S Checking,

and S Sub.

S Cast: ∆ � 〈S1 ⇒ S2〉l : S1 → S2 and ψ(〈S1 ⇒ S2〉l) = 〈ψl (S1, S2)〉l ,l . By inversion,

∆ � S1 and ∆ � S2, where �S1� = �S2�.
By the IH for proposition (2), �∆� � ψl (S1, S2) ∼ S1 ⇒l S2 : �S2�.
Let �∆� |= δ; we must show δ1(〈ψl (S1, S2)〉l ,l) ∼ δ2(〈S1 ⇒ S2〉l) : �S1� → �S2�. Let

t ∼ s : �S1�. We have δ1(〈ψl (S1, S2)〉l ,l) t ∼ δ2(〈S1 ⇒ S2〉l) s : �S2� by Lemma 6.14.

S Checking: We have ∆ � 〈{x :B | s1}, s2, k〉l : {x :B | s1}; translating yields

ψ(〈{x :B | s1}, s2, k〉l) = 〈{x :B | ψ(s1)}, ψ(s2), k〉l . Recall that the terms of the

active check are closed. By inversion we have ∅ � s2 : {x :Bool | true} and

∅ � k : {x :B | true}, so k ∈ KB .

By the IH, ψ(s2) ∼ s2 : Bool. These two terms coevaluate to blame or a boolean

constant. There are three cases, all of which result in the active checks evaluating

to ≈-corresponding values:

• If they go to ⇑l ′, then the checks do too, and ⇑l ′ ≈ ⇑l ′ : B .

• If they go to false, then the checks go to ⇑l , and ⇑l ≈ ⇑l : B .

• If they go to true, then the checks go to k ∈ KB , and k ≈ k : B .

S Sub: ∆ � s : S ; we do not know anything about the shape of ψ(s). By inversion,

∆ � s : S ′ and ∆ � S ′ <: S . By Lemma 6.15, �S ′� = �S �.
Since the sub-derivation ∆ � s : S ′ is smaller, by the IH �∆� � ψ(s) ∼ s : �S ′�.

But �S ′� = �S �, so we are done.

Part 2 of this proof proceeds by cases on ψl (S1, S2) = c.

ψl (S1, {x :B | s2}) = {x :B | ψ(s2)}: Note that S2 = {x :B | s2}. By inversion of ∆ �
{x :B | s2}, we have ∆, x :{x :B | true} � s2 : {x :Bool | true}.

By the IH for proposition (1), �∆�, x :B � ψ(s2) ∼ s2 : Bool.

We must show �∆� � {x :B | ψ(s2)} ∼ S1 ⇒l {x :B | s2} : B . Let �∆� |= δ; we

prove that δ1({x :B | ψ(s2)}) ∼ δ2(S1) ⇒l δ2({x :B | s2}) : B , i.e., for all k ∈ KB , that

δ1(ψ(s2)){x := k} ∼ δ2(s2){x := k} : Bool. Since k ∼ k : B , we can see this last by

the IH.

ψl (x :S11 → S12, x :S21 → S22) = x :ψl (S21, S11) �→ ψl (S12{x := 〈S21 ⇒ S11〉l x}, S22):

We can see S2 = x :S21 → S22 and so S1 = x :S11 → S12, where �S21� =

�S11� and �S22� = �S12�. By inversion, we have the following well-formedness

derivations:

∆ � S21 ∆ � S11

∆, x :S21 � S22 ∆, x :S22 � S12

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

258 M. Greenberg et al.

We can apply the IH (contravariantly) to see

�∆� � ψl (S21, S11) ∼ S21 ⇒l S11 : �S11� (*)

By weakening (Lemma 4.22), we can see ∆, x :S21 � S21 and ∆, x :S21 � S11.

We can reapply the IH to show �∆�, x :�S21� � ψl (S21, S11) ∼ S21 ⇒l S11 : �S11�.
Now ∆, x :S21 � 〈S21 ⇒ S11〉l : S21 → S11 and ∆, x :S21 � 〈S21 ⇒ S11〉l x : S11.

By Lemma 6.17, we can substitute this last into ∆, x :S11 � S12, finding ∆, x :S21 �
S12{x := 〈S21 ⇒ S11〉l x}.

We apply the IH for proposition (2) on ∆, x :S21 � S12{x := 〈S21 ⇒ S11〉l x} and

∆, x :S21 � S22, showing

�∆�, x :�S21� �ψl (S12{x := 〈S21 ⇒ S11〉l x}, S22) ∼
S12{x := 〈S21 ⇒ S11〉l x} ⇒l S22 : �S22� (**)

We now combine (*) and (**) to show �∆� � ψl (x :S11 → S12, x :S21 → S22) ∼
x :S11 → S12 ⇒l x :S21 → S22 : �S2�. Let �∆� |= δ. We can apply (*) to see

δ1(ψ
l (S21, S11)) ∼ δ2(S21) ⇒l δ2(S11) : �S11�. For the codomain we must show, for all

t ∼ s : �S11�, that

δ1(ψ
l (S12{x := 〈S21 ⇒ S11〉l x}, S22)){x := t} ∼

δ2(S12){x := 〈S21 ⇒ S11〉l s} ⇒l δ2(S22){x := s} : �S22�

Let t ∼ s : �S11�. Recalling that �S11� = �S21�, observe �∆�, x :�S21� |= δ{x := t , s}.
Call this δ′. By (**) we see

δ′
1(ψ

l (S12{x := 〈S21 ⇒S11〉l x}, S22)) ∼ δ′
2(S12{x := 〈S21 ⇒S11〉l x}) ⇒l δ′

2(S22) : �S22�

which we can rewrite to

δ1(ψ
l (S12{x := 〈S21 ⇒ S11〉l x}, S22)){x := t} ∼

δ2(S12){x := 〈S21 ⇒ S11〉l s} ⇒l δ2(S22){x := s} : �S22�

This is exactly what we needed to finish the proof of correspondence. �

As a preliminary to type-preservation, we use behavioral correspondence to show

that the implication judgment is preserved.

6.19 Lemma: If ∅ � s1 : {x :Bool | true} and ∅ � s2 : {x :Bool | true} and ∅ � s1 ⊃ s2,

then ψ(s1) −→lax
∗ true implies ψ(s2) −→lax

∗ true.

Proof

By the logical relation. �

The type preservation proof is very similar to the correspondence proof of

Theorem 6.18, though the function case of the type/contract correspondence is

intricate.

6.20 Theorem [Type preservation for ψ]:

1. If ∆ � s : S then �∆� � ψ(s) : �S �.
2. If ∆ � S1, ∆ � S2, where �S1� = �S2� = T , then �∆� �l ,l ′

ψl (S1, S2) : T .

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 259

Proof

By induction on the lexicographically ordered pair containing (a) the depth of the

recursion of the translation ψ or ψ(s), and (b) |∆ � s : S | or |∆ � S1| + |∆ � S2|.
Part 1 of the proof proceeds by case analysis on the final rule of ∆ � s : S , which

determines the shape of ψ(s) = t in all cases but S Sub. Part 2 of the proof proceeds

by case analysis on ψl (S1, S2) = c.

ψl (x :S11 → S12, x :S21 → S22) = x :ψl (S21, S11) �→ ψl (S12{x := 〈S21 ⇒ S11〉l x}, S22):

We must have S2 = x :S21 → S22 and S1 = x :S11 → S12, where �S21� = �S11� and

�S22� = �S12�. By inversion, we have the following well-formedness derivations:

∆ � S21 ∆ � S11

∆, x :S21 � S22 ∆, x :S22 � S12

By the IH �∆� �l ′ ,l ψl (S21, S11) : �S11�. Note that �ψl (S21, S11)� = �S21�.
By weakening, we can see ∆, x :S21 � S21 and ∆, x :S21 � S11. We can reapply the IH

to show �∆�, x :�S21� �l ′ ,l ψl (S21, S11) : �S11�. Now ∆, x :S21 � 〈S21 ⇒ S11〉l : S21 →
S11. Next ∆, x :S21 � 〈S21 ⇒ S11〉l x : S11. By Lemma 6.17, we can substitute this last

into ∆, x :S11 � S12, finding ∆, x :S21 � S12{x := 〈S21 ⇒ S11〉l x}.
By the IH for proposition (2) on ∆, x :S21 � S12{x := 〈S21 ⇒ S11〉l x} and

∆, x :S21 � S22,

�∆�, x :�S21� �l ,l ′
ψl (S12{x := 〈S21 ⇒ S11〉l x}, S22) : �S22�

By Lemma 6.16, �ψl (S21, S11)� = �S21�, so we can rewrite the above derivation to

�∆�, x :ψl (S21, S11)
l ′ ,l �l ,l ′

ψl (S12{x := 〈S21 ⇒ S11〉l x}, S22) : �S22�

Now by T FunC

�∆� �l ,l ′
x :ψl (S21, S11) �→ ψl (S12{x := 〈S21 ⇒ S11〉l x}, S22) : �S21� → �S22� �

7 Inexact translations

The same translations φ and ψ can be used to move right on the axis of blame

(Figure 1). However, in this direction the images of these translations blame strictly

more than their pre-images. We were able to use the same correspondence for both

exact proofs in Section 6, but the following two proofs use custom correspondences:

one where lax λC terms correspond to λH terms (with possibly more blame), and

another where λH terms correspond to picky λC terms (with possibly more blame).

In both cases, the λC terms will be on the left and the λH terms on the right.

7.1 Translating lax λC to λH

Translating with φ from terms in picky λC to exactly corresponding terms in λH

was a relatively straightforward generalization of the non-dependent case; things

get more interesting when we consider the translation φ from lax λC to dependent

λH. We can prove that it preserves types (for terms without active checks), but

we can only show a weaker behavioral correspondence: sometimes lax λC terms

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

260 M. Greenberg et al.

Value correspondence

v ≈� w : T

k ≈� k : B ⇐⇒ k ∈ KB

v ≈� w : T1 → T2 ⇐⇒ ∀t ∼� s : T1. v t ∼� w s : T2

Term correspondence

t ∼� s : T

t ∼� s : T ⇐⇒ s −→∗
h ⇑l ∨ (t −→lax

∗ v ∧ s −→∗
h w ∧ v ≈� w : T)

Contract/type correspondence

c ∼� S : T

{x :B | t} ∼� {x :B | s} : B ⇐⇒ ∀k ∈ KB . t{x := k} ∼� s{x := k} : Bool

x :c1 �→ c2 ∼� x :S1 → S2 : T1 → T2 ⇐⇒ c1 ∼� S1 : T1 ∧
∀t ∼� s : T1. c2{x := t} ∼� S2{x := s} : T2

Dual closing substitutions

Γ |=� δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼� δ2(x) : �Γ(x)�

Lifted to open terms

Γ � t ∼� s : T ⇐⇒ ∀δ. (Γ |=� δ implies δ1(t) ∼� δ2(s) : T)

Γ � c ∼� S : T ⇐⇒ ∀δ. (Γ |=� δ implies δ1(c) ∼� δ2(S) : T)

Fig. 15. Blame-inexact correspondence for φ from lax λC.

terminate with values when their φ-images go to blame. This weaker property is

a consequence of bulletproofing, the asymmetrically substituting F CDecomp rule,

and the extra casts inserted for type preservation (i.e., for T VarC derivations). This

is not a weakness of our proof technique—we give a counterexample, a lax λC term

∅ � t : T such that t −→lax
∗ v and φ(∅ � t : T) −→∗

h ⇑l .

We can show the behavioral correspondence using a blame-inexact logical relation,

defined in Figure 15. The behavioral correspondence here, though weaker than

before, is still pretty strong: if t ∼� s : B (read “t blames no more than s at type

B”), then either s −→∗
h ⇑l or t and s both go to k ∈ KB . This correspondence differs

slightly in construction from the earlier exact one—we define ≈� as a relation on

values, while ≈ is a relation on results. Doing so simplifies our inexact treatment of

blame—in particular, Lemma 7.2. We again use the term correspondence to relate

contracts and λH types. We then lift the correspondences to open terms (Figure 15).

Closing substitutions map variables to corresponding terms of appropriate type.

Note that closing substitutions ignore the contract part of x :cl ,l ′
bindings, treating

them as if they were x :�c�.

7.1 Lemma [Expansion and contraction]: If t −→lax
∗ t ′, and s −→∗

h s ′ then t ∼� s :

T iff t ′ ∼� s ′ : T .

Note that there are corresponding terms at every type. We can prove a much

stronger lemma than we did for ∼ in Lemma 6.11, since the correspondence here is

much weaker.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 261

7.2 Lemma [Everything corresponds to blame]: For all t and T , t ∼� ⇑l ′ : T .

7.3 Lemma [Constants correspond to themselves]: For all k , k ≈� k : tyc(k).

Proof

By induction on tyc(k), recalling that constants are of first order. �

As a corollary of Lemmas 7.2 and 7.1, if two terms evaluate to blame—or even

just the λH side!—then they correspond. This will be used extensively in the proofs

below, as it allows us to eliminate many cases.

We prove three lemmas about contracts and casts at base types. The first two

characterize contracts and casts at base types.

7.4 Lemma [Trivial casts]: If t ∼� s : B , then t ∼� 〈S ⇒ 	B
〉l s : B for all S .

7.5 Lemma [Related base casts]: If {x :B | t} ∼� {x :B | s} : B and t ′ ∼� s ′ : B ,

then 〈{x :B | t}〉l ,l ′
t ′ ∼� 〈S ⇒ {x :B | s}〉l s ′ : B for all S .

The third lemma shows that correspondence is closed under adding extra casts

to the λH term due to the inexactness of our behavioral correspondence. Since λH

terms can go to blame more often than corresponding lax λC terms, we can add

“extra” casts to λH terms. We formalize this in the following lemma, which captures

the asymmetric treatment of blame by the ∼� relation. We use it to show that

the cast substituted in the codomain by F CDecomp does not affect behavioral

correspondence. Note that the statement of the lemma requires that the types of

the cast correspond to some contracts at the same type T , but we never use the

contracts in the proof—they witness the well-formedness of the λH types.

7.6 Lemma [Extra casts]: If t ∼� s : T and c1 ∼� S1 : T and c2 ∼� S2 : T , then

t ∼� 〈S1 ⇒ S2〉l s : T .

Proof

The proof is by induction on T . Note that we do not use c1 or c2 at all in the proof,

but instead they are witnesses to the well-formedness of S1 and S2.

�S1� = �S2� = T . Either s −→∗
h ⇑l ′ or t and s both go to corresponding values

at T . If s −→∗
h ⇑l ′, then 〈S1 ⇒ S2〉l s −→∗

h ⇑l ′ and t ∼� ⇑l ′ : T since everything is

related to blame (Lemma 7.2).

Therefore, suppose that t −→lax
∗ v and s −→∗

h w and v ≈� w : T in each of the

following cases of induction:

T = B : So S2 = {x :B | s2}, and c2 = {x :B | t2}.
So t −→lax

∗ k and s −→∗
h k for k ∈ KB . If t and s both go to k , then

〈S1 ⇒ S2〉l s −→∗
h 〈{x :B | s2}, s2{x := k}, k〉l . By c2 ∼� S2 : B we see (in

particular) t2{x := k} ∼� s2{x := k} : Bool. So s2{x := k} either goes to

⇑l ′ or s2{x := k} (and, irrelevantly, t2{x := k}) go to some k ′ ∈ KBool. In

the former case, 〈{x :B | s2}, s2{x := k}, k〉l −→∗
h ⇑l ′ and we are done (by

Lemma 7.2). In the latter case, the λH term either goes to ⇑l (and everything

is related to blame) or goes to k—but so does t , and k ≈� k : B .

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

262 M. Greenberg et al.

T = T1 → T2: We have:

S1 = x :S11 → S12 S2 = x :S21 → S22

c1 = x :c11 �→ c12 c2 = x :c21 �→ c22

We have t −→lax
∗ v and s −→∗

h w , where v ≈� w : T1 → T2.

Let t ′ ∼� s ′ : T1; we wish to see that v t ′ ∼� (〈S1 ⇒ S2〉l w) s ′ : T2. Either

s ′ −→∗
h ⇑l ′ or both go to values. In the former case the whole cast goes to ⇑l ′

we are done by Lemma 7.2, so let t ′ −→lax
∗ v ′ and s ′ −→∗

h w ′.

Decomposing the cast in λH,

(〈S1 ⇒ S2〉l w) s ′ −→∗
h

〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒ S22{x := w ′}〉l (w (〈S21 ⇒ S11〉l w ′))

We have c21 ∼� S21 : T1 and c11 ∼� S11 : T1, so v ′ ∼� 〈S21 ⇒ S11〉l w ′ : T1 by

the IH. Since v ≈� w : T1 → T2, we can see that v v ′ ∼� w (〈S21 ⇒ S11〉l w ′) :

T2.

Furthermore, we know that for all t ′′ ∼� s ′′ : T1 that

— c12{x := t ′′} ∼� S12{x := s ′′} : T2 and

— c22{x := t ′′} ∼� S22{x := s ′′} : T2.

We know that v ′ ∼� w ′ : T1 and v ′ ∼� 〈S21 ⇒ S11〉l w ′ : T1, so we can see

— c12{x := v ′} ∼� S12{x := w ′} : T2 and

— c22{x := v ′} ∼� S22{x := 〈S21 ⇒ S11〉l w ′} : T2.

So by the IH,

v v ′ ∼� 〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒ S22{x := w ′}〉l (w (〈S21 ⇒ S11〉l w ′)) : T2

and we are done by expansion (Lemma 7.1). �

To apply the extra cast lemma, we will need these “witness” contracts for raw

types; to that end we define trivial contracts. These contracts are lifted from types,

and are the λC correlate to λH’s raw types.

B↑ = {x :B | true}
(T1 → T2)↑ = (T1↑) �→ (T2↑)

7.7 Lemma [Lifted types logically relate to raw types]: For all T , T↑ ∼� 	T
 : T .

The “bulletproofing” lemma is the key to the behavioral correspondence proof.

We show that a contract application corresponds to bulletproofing with related

types. Note that we allow for different types in the two casts. This is necessary due

to an asymmetric substitution that occurs when T = B → T2.

7.8 Lemma [Bulletproofing]: If t ∼� s : T and c ∼� S : T and c ∼� S ′ : T , then

〈c〉l ,l ′
t ∼� 〈S ′ ⇒ 	S ′
〉l ′ 〈	S
 ⇒ S 〉l s : T .

Proof

By induction on T . First, observe that either s −→∗
h ⇑l ′′ or both t and s go to values

related at T . In the former case, 〈S ′ ⇒ 	S ′
〉l ′ 〈	S
 ⇒ S 〉l s −→∗
h ⇑l ′′, and everything

is related to blame (Lemma 7.2). So t −→lax
∗ v , s −→∗

h w , and v ≈� w : T .

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 263

T = B : So c = {x :B | t1} and S = {x :B | s1} and S ′ = {x :B | s2}. By

Lemma 7.5 we have 〈c〉l ,l ′
t ∼� 〈	S
 ⇒ S 〉l s : B . By Lemma 7.4 we can add

the extra, trivial cast.

T = T1 → T2: We know that c = x :c1 �→ c2, S = x :S1 → S2 and S ′ = x :S ′
1 →

S ′
2. Let t ′ ∼� s ′ : T1. By Lemma 7.2, we only need to consider the case where

t ′ −→lax
∗ v ′ and s ′ −→∗

h w ′—if s ′ −→∗
h ⇑l ′′ we are done.

On the λC side, (〈c〉l ,l ′
t) t ′ −→lax

∗ 〈c2{x := v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′)). In λH, we

can see

(〈S ′ ⇒ 	S ′
〉l ′ 〈	S
 ⇒ S 〉l s) s ′ −→∗
h

〈S ′
2{x := 〈	S ′

1
 ⇒ S ′
1〉l ′

w ′} ⇒ 	S ′
2
〉l ′

((〈	S
 ⇒ S 〉l w) (〈	S ′
1
 ⇒ S ′

1〉l ′
w ′))

We cannot determine where the redex is until we know the shape of T1—does

the negative argument cast step to an active check, or do we decompose the

positive cast?

— T1 = B .

By Lemma 7.5 and c1 ∼� S ′
1 : B , we know that 〈c1〉l ′ ,l v ′ ∼� 〈	S ′

1
 ⇒
S ′

1〉l ′
w ′ : B . The λH term goes to blame or both terms go to the same

value, v ′ = w ′ = k ∈ KB . In the former case, the entire λH term goes to

blame and we are done by Lemma 7.2. So suppose 〈c1〉l ′ ,l k −→lax
∗ k and

〈	S ′
1
 ⇒ S ′

1〉l ′
w ′ −→∗

h k . Now the terms evaluate like so:

〈c2{x := v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′)) −→lax

∗ 〈c2{x := k}〉l ,l ′
(v k)

〈S ′
2{x := 〈	S ′

1
 ⇒ S ′
1〉l ′

w ′} ⇒ 	S ′
2
〉l ′

((〈	S
 ⇒ S 〉l w) (〈	S ′
1
 ⇒ S ′

1〉l ′
w ′)) −→∗

h

〈S ′
2{x := 〈	S ′

1
 ⇒ S ′
1〉l ′

w ′} ⇒ 	S ′
2
〉l ′

〈	S2
 ⇒ S2{x := k}〉l (w (〈S1 ⇒ 	S1
〉l k))

By Lemma 7.4, k ∼� 〈S1 ⇒ 	S1
〉l k : B , so v k ∼� w (〈S1 ⇒ 	S1
〉l k) :

T2.

Noting that k ∼� k : B and k ∼� 〈	S1
 ⇒ S1〉l k : B , we can see that

c2{x := k} ∼� S2{x := k} : T2 and c2{x := k} ∼� S ′
2{x := 〈	S1
 ⇒

S1〉l k} : T2. Now the IH shows that 〈c2{x := k}〉l ,l ′
(v k) ∼� 〈S ′

2{x :=

〈	S ′
1
 ⇒ S ′

1〉l ′
w ′} ⇒ 	S ′

2
〉l ′ 〈	S2
 ⇒ S2{x := k}〉l (w (〈S1 ⇒ 	S1
〉l k)) :

T2, and we conclude the case with expansion (Lemma 7.1).

— T1 = T11 → T12. We can continue with an application of F CDecomp in

λH and find

〈S ′
2{x := 〈	S ′

1
 ⇒ S ′
1〉l ′

w ′} ⇒ 	S ′
2
〉l ′

((〈	S
 ⇒ S 〉l w) (〈	S ′
1
 ⇒ S ′

1〉l ′
w ′)) −→∗

h

〈S ′
2{x := 〈	S ′

1
 ⇒ S ′
1〉l ′

w ′} ⇒ 	S ′
2
〉l ′

〈	S2
 ⇒ S2{x := 〈	S ′
1
 ⇒ S ′

1〉l ′
w ′}〉l

(w (〈S1 ⇒ 	S1
〉l 〈	S ′
1
 ⇒ S ′

1〉l ′
w ′))

By the IH, 〈c1〉l ′ ,l v ′ ∼� 〈S1 ⇒ 	S1
〉l 〈	S ′
1
 ⇒ S ′

1〉l ′
w ′ : T1. By assumption,

the results of applying v and w to these values correspond. (And they are

values, since function contracts/casts applied to values are values.)

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

264 M. Greenberg et al.

We know c1 ∼� S ′
1 : T1, and by Lemma 7.7 T1↑ ∼� 	S ′

1
 : T1. Since

v ′ ∼� w ′ : T1, Lemma 7.6 shows v ′ ∼� 〈	S ′
1
 ⇒ S ′

1〉l ′
w ′ : T1. This

lets us see that c2{x := v ′} ∼� S ′
2{x := 〈	S ′

1
 ⇒ S ′
1〉l ′

w ′} : T2 and

c2{x := v ′} ∼� S2{x := 〈	S ′
1
 ⇒ S ′

1〉l ′
w ′} : T2. Now the IH and expansion

(Lemma 7.1) complete the proof. �

Having characterized how contracts and pairs of related casts relate, we show

that translated terms correspond to their sources.

7.9 Theorem [Behavioral correspondence]: If � Γ, then

1. If φ(Γ � t : T) = s then Γ � t ∼� s : T .

2. If φ(Γ �l ,l ′
c : T) = S then Γ � c ∼� S : T .

Proof

We simultaneously show both properties by induction on the depth of φ’s recursion.

To show Γ � t ∼� s : T , let Γ |= δ—we will show δ1(t) ∼� δ2(s) : T .

The proof proceeds by case analysis on the final rule of the translated typing and

well-formedness derivations. �

We find a weak corollary: φ(Γ � t : B) −→∗
h k implies t −→lax

∗ k : if the λH term

does not go to blame, then the original λC term must go to the same constant.

We can also show type preservation for terms not containing active checks. (We

do not know that translated active checks are well typed because Theorem 7.9 is not

strong enough to preserve the implication judgment. We only expect these checks to

occur at runtime, so this is good enough: φ preserves the types of source programs.)

7.10 Theorem [Type preservation]: For programs without active checks, if φ(� Γ) =

∆, then

1. � ∆.

2. ∆ � φ(Γ � t : T) : 	T
.
3. ∆ � φ(Γ �l ,l ′

c : T).

Proof

We prove all three properties simultaneously, by induction on the depth of φ’s

recursion.

The proof is by cases on the λC context well-formedness/term typing/contract

well-formedness derivations, which determine the branch of φ taken. �

To see that φ in Figure 11 does not give us exact blame, let us look at two

counterexamples; in both cases, a lax λC term goes to a value while its translation

goes to blame. In the first example, blame is raised in λH due to bulletproofing. In

the second, blame is raised due to the extra cast from the translation of T VarC. In

both examples, the contracts are abusive: higher-order contracts where the codomain

places a contradictory requirement on the domain. For the first counterexample, let

c = f :(x :{x :Int | true} �→ {y:Int | nonzero y}) �→ {z :Int | f 0 = 0}
S1 = x :{x :Int | true} → {y:Int | nonzero y}
S =φ(∅ �l ,l c : (Int → Int) → Int)

= f :S1 → {z :Int | (〈S1 ⇒ 	S1
〉l f) 0 = 0}.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 265

Here, the contradiction comes when the codomain requires that f 0 yield 0, but f ’s

contract says it will return a non-zero value. We find 〈c〉l ,l (λf.0) (λx.0)−→lax
∗0 but

(λx :	c
. 〈S ⇒ 	S
〉l (〈	S
 ⇒ S 〉l x)) (λf.0) (λx.0) −→∗
h ⇑l .

For the second counterexample, let

c′ = f :(x :{x :Int | nonzero x} �→ {y:Int | true}) �→ {z :Int | f 0 = 0}
S ′

1 = x :{x :Int | nonzero x} → {y:Int | true}
S ′ = φ(∅ �l ,l c′ : (Int → Int) → Int)

= f :S ′
1 → {z :Int | (〈S ′

1 ⇒ 	S ′
1
〉l f) 0 = 0}.

This time the contradiction comes from the codomain applying f to 0, while the do-

main contract requires that f ’s input be nonzero. We find 〈c′〉l ,l (λf.0) (λx.0)−→lax
∗0

but

(λx :	c′
. 〈S ′ ⇒ 	c′
〉l (〈	S
 ⇒ 	c′
〉l x)) (λf.0) (λx.0) −→∗
h ⇑l .

The extra casts that φ inserts are all necessary—none can be removed. So while

variations on this φ are possible, they can only add more casts, which won’t resolve

the problem that λH blames more.

7.2 Translating λH to picky λC

Terms in λH and their ψ-images in lax λC correspond exactly, as shown in Section 6.2.

When we change the operational semantics of λC to be picky, however, ψ(s) blames

(strictly) more often than s . Nevertheless, we can show an inexact correspondence,

as we did for φ and lax λC in Section 7.1. We use a logical relation [[∼≺]] for [[ψ]]

into picky λC (Figure 16). Here we have reversed the asymmetry: picky λC may

blame more than λH. The proof follows the same general pattern: We first show

that it is safe to add extra contract checks, then we show that contracts and casts

correspond (inexactly), then the correspondence for well-typed terms. We can also

show type preservation for source programs (excluding active checks).

7.11 Lemma [Expansion and contraction]: If t −→picky
∗ t ′ and s −→∗

h s ′ then t ∼≺
s : T iff t ′ ∼≺ s ′ : T .

7.12 Lemma [Blame corresponds to everything]: For all T , ⇑l ∼≺ s : T .

7.13 Lemma [Constants correspond to themselves]: For all k , k ≈≺ k : tyc(k).

Proof

By induction on tyc(k), recalling that constants are of first order. �

As a corollary of Lemmas 7.12 and 7.11, if a picky λC term evaluates to blame,

then it corresponds to any λH term. This will be used extensively in the proofs below,

as it allows us to eliminate many cases.

7.14 Lemma [Extra contracts]: If t ∼≺ s : T and c ∼≺ S1 ⇒ S2 : T then 〈c〉l ,l ′
t ∼≺

s : T .

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

266 M. Greenberg et al.

Value correspondence

v ≈≺ w : T

k ≈≺ k : B ⇐⇒ k ∈ KB

v ≈≺ w : T1 → T2 ⇐⇒ ∀t ∼≺ s : T1. v t ∼≺ w s : T2

Term correspondence

t ∼≺ s : T

t ∼≺ s : T ⇐⇒ t −→picky
∗ ⇑l ∨ t −→picky

∗ v ∧ s −→∗
h w ∧ v ≈≺ w : T

Contract/type correspondence

c ∼≺ S1 ⇒ S2 : T

{x :B | t} ∼≺ {x :B | s1} ⇒ {x :B | s2} : B ⇐⇒
∀k ∈ KB . t{x := k} ∼≺ s2{x := k} : Bool

x :c1 �→ c2 ∼≺ x :S11 → S12 ⇒ x :S21 → S22 : T1 → T2 ⇐⇒ c1 ∼≺ S21 ⇒ S11 : T1 ∧
∀l.∀t ∼≺ s : T1. c2{x := t} ∼≺ S12{x := 〈S21 ⇒ S11〉l s} ⇒ S22{x := s} : T2

Dual closing substitutions

Γ |= δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼≺ δ2(x) : �Γ(x)�

Lifted to open terms

Γ � t ∼≺ s : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(t) ∼≺ δ2(s) : T)

Γ � c ∼≺ S1 ⇒ S2 : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(c) ∼≺ δ2(S1) ⇒ δ2(S) : T)

Fig. 16. Blame-inexact correspondence for ψ into picky λC.

Proof

By induction on T . If t −→picky
∗ ⇑l ′′ we are done, so let t −→picky

∗ v and s −→∗
h w

such that v ≈≺ w : T .

T = B : So c = {x :B | t2} and S2 = {x :B | s2}. Moreover, v = w = k ∈ KB ,

since those are the only corresponding values at B .

We can step and see 〈c〉l ,l ′
t −→picky

∗ 〈c, t2{x := k}, k〉l . We know that

t2{x := k} ∼≺ s2{x := k} : Bool. There are two possibilities: either t2{x :=

k} −→picky
∗ ⇑l ′′ or both terms go to corresponding Bools. In the former case,

the whole λC term goes to blame and we are done by Lemma 7.12. If both go to

false, then the outer λC term evaluates to ⇑l and we are done by Lemma 7.12

again. If both go to true, then both outer terms go to k , and k ≈≺ k : B .

T = T1 → T2: So c = x :c1 �→ c2 and S1 = x :S11 → S12 and S2 = x :S21 → S22.

Let t ′ ∼≺ s ′ : T1. If t ′ −→picky
∗ ⇑l ′′ we are done by Lemm 7.12, so let

t ′ −→picky
∗ v ′ and s ′ −→∗

h w ′, where v ′ ≈≺ w ′ : T1. We want to prove

(〈c〉l ,l ′
t) t ′ ∼≺ s s ′ : T2, which is true iff:

〈c2{x := 〈c1〉l ′ ,l v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′)) ∼≺ w w ′ : T2

By the IH on v ∼≺ w ′ : T1 and c1 ∼≺ S21 ⇒ S11 : T1, we have 〈c1〉l ′ ,l v ′ ∼≺
w ′ : T1. By definition, applying v and w yields related terms at T2. Since

〈c1〉l ′ ,l v ′ ∼≺ w ′ : T1, we have c2{x := 〈c1〉l ′ ,l v ′} ∼≺ S12{x := 〈S21 ⇒

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 267

S11〉l ′′
w ′} ⇒ S22{x := w ′} : T2. We can now apply the IH and see

〈c2{x := 〈c1〉l ′ ,l v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′)) ∼≺ w w ′ : T2 �

7.15 Lemma [Contract/cast correspondence]: If c ∼≺ S1 ⇒ S2 : T and t ∼≺ s : T

then 〈c〉l ,l ′
t ∼≺ 〈S1 ⇒ S2〉l ′′

s : T .

Proof

By induction on T . We reason via expansion (Lemma 7.11), showing that the initial

terms reduce to corresponding terms.

T = B : So c = {x :B | t1}, S1 = {x :B | s1}, and S2 = {x :B | s2}. Since

t ∼≺ s : B , we know that they either both reduce to k ∈ KB or t −→picky
∗ ⇑l ′.

If the latter is the case, we are done. So suppose t −→picky
∗ k along with

s −→∗
h k .

We can step our terms into active checks as follows:

〈{x :B | t1}〉l ,l t −→picky
∗ 〈{x :B | t1}, t1{x := k}, k〉l

〈{x :B | s1} ⇒ {x :B | s2}〉l s −→∗
h 〈{x :B | s2}, s2{x := k}, k〉l

By the contract/cast correspondence, we know that t1{x := k} ∼≺ s2{x :=

k} : Bool, so either t1{x := k} goes to blame or both terms go to a Bool

together. In the former case, the outer λC term goes to blame and we are done

by Lemma 7.12. If they go to false, then both the active check goes to ⇑l and

we are done, again by Lemma 7.12. Finally, if they both go to true, then both

terms will evaluate to k ∈ KB , and k ≈≺ k : B .

T = T1 → T2: c = x :c1 �→ c2, S1 = x :S11 → S12, and S2 = x :S21 → S22. We

know by inversion of the contract/cast relation that c1 ∼≺ S21 ⇒ S11 : T1 and

that for all l ′′ and t ∼≺ s : T1, c2{x := t} ∼≺ S12{x := 〈S21 ⇒ S11〉l ′′
s} ⇒

S22{x := s} : T2. We want to prove that 〈c〉l ,l ∼≺ 〈S1 ⇒ S2〉l s : T1 → T2.

First, we can assume t −→picky
∗ v and s −→∗

h w , where v ∼≺ w : T1 → T2—if

not, both the contracted terms go to blame and we are done by Lemma 7.12.

We show that the decomposition of the contract and cast terms correspond

for all inputs. Let t ′ ∼≺ s ′ : T1. Again, we can assume that they reduce to

v ′ ∼≺ w ′ : T1, or else we are done by blame lifting in λC. On the λC side, we

have

(〈c〉l ,l ′
t) t ′ −→picky

∗ 〈c2{x := 〈c1〉l ′ ,l v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′))

In λH, we find

(〈S1 ⇒ S2〉l ′′
s) s ′ −→∗

h

〈S12{x := 〈S21 ⇒ S11〉l ′′
w} ⇒ S22{x := w ′}〉l ′′

(w (〈S21 ⇒ S11〉l ′′
w ′))

By the IH, we know that 〈c1〉l ′ ,l v ′ ∼≺ 〈S21 ⇒ S11〉l ′′
w ′ : T1. Since v ∼≺ w :

T1 → T2, we have v (〈c1〉l ′ ,l v ′) ∼≺ w (〈S21 ⇒ S11〉l ′′
w ′) : T2. By Lemma 7.14,

〈c1〉l ′ ,l v ′ ∼≺ w ′ : T1. We can then see that c2{x := 〈c1〉l ′ ,l v ′} ∼≺ S12{x :=

〈S21 ⇒ S11〉l ′′
w ′} ⇒ S22{x := w ′} : T2. By the IH, we therefore have

〈c2{x := 〈c1〉l ′ ,l v ′}〉l ,l ′
(v (〈c1〉l ′ ,l v ′)) ∼≺

〈S12{x := 〈S21 ⇒ S11〉l ′′
w ′} ⇒ S22{x := w ′}〉l ′′

w (〈S21 ⇒ S11〉l ′′
w ′) : T2 �

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

268 M. Greenberg et al.

7.16 Theorem [Behavioral correspondence]:

1. If ∆ � s : S then �∆� � ψ(s) ∼≺ s : �S �.
2. If ∆ � S1 and ∆ � S2, where �S1� = �S2� = �S �, then �∆� � ψl (S1, S2) ∼≺ S1 ⇒

S2 : �S �.

Proof

By an induction similar to the proof of Theorem 6.18. �

7.17 Theorem [Type preservation for ψ]: For programs without active checks, if � ∆,

then:

1. If ∆ � s : S then �∆� � ψ(s) : �S �.
2. If ∆ � S1, ∆ � S2, where �S1� = �S2� = T , then �∆� �l ,l ′

ψl (S1, S2) : T .

Proof

By an induction similar to the proof of Theorem 6.20. �

Here is an example where a λH term reduces to a value while its ψ-image in picky

λC term reduces to blame. As before, this counterexample uses an abusive contract:

a higher-order contract where the codomain puts a contradictory requirement on

the domain. Here, the contradiction is that f claims to return a nonzero value, but

the codomain requires that it returns 0.

S1 = f :S11 → S12

= f :(x :	Int
 → {y:Int | nonzero y}) → 	Int

S2 = f :S21 → S22

= f :(x :	Int
 → 	Int
) → {z :Int | f 0 = 0}
c =ψl (S1, S2)

= f :ψl (S21, S11) �→ ψl (S12{f := 〈S21 ⇒ S11〉l f }, S22)

= f :(x :{x :Int | true} �→ {y:Int | nonzero y}) �→ {z :Int | f 0 = 0}

Let w = (λf :(x :{x :Int | true} → {y:Int | nonzero y}). 0) and w ′ = (λx :{x :Int |
true}. 0). The term is well typed: we can show ∅ � w : S1 and ∅ � w ′ : S21. Therefore,

∅ � (〈S1 ⇒ S2〉l w) w ′ : S22{f := w ′}. Translating, we find

ψ((〈S1 ⇒ S2〉l w) w ′) = (〈ψl (S1, S2)〉l ,l ψ(w)) ψ(w ′) = (〈c〉l ,l λf :Int. 0) λx :Int. 0.

On the one hand, (〈S1 ⇒ S2〉l w) w ′ −→∗
h 0, while (〈c〉l ,l λf :Int. 0) λx :Int. 0 −→picky

∗

⇑l . This means we cannot hope to use ψ as an exact correspondence between λH and

picky λC. (Removing the extra cast ψ inserts into S12 does not affect our example,

since ψ ignores S12 here.) For example,

ψl ({z :Int | true}{f := 〈S21 ⇒ S11〉l f }, {z :Int | f 0 = 0}) = {x :B | ψ(f 0 = 0)}.

7.3 Alternative calculi

There are three alternative calculi that we have not considered here: indy

λC (Dimoulas et al. 2011), superpicky λH, and nonterminating calculi. We describe

them in detail below, but we leave them as future work.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 269

Dimoulas et al. (2011) add a third blame label to λC, representing the contract

itself; we write it here as a subscript. They accordingly change the picky E CDecomp

rule:

(〈x :c1 �→ c2〉l,l
′

l′′ v1) v2 −→indy 〈c2{x := 〈c1〉l
′′ ,l
l′′ v2}〉l,l

′

l′′ (v1 (〈c1〉l
′ ,l
l′′ v2))

In the substitution in the codomain, note that the blame label on the domain

contract uses the contract’s blame label l ′′. The intuition here is that any problem

arising in c2 is in the contract’s context (label l ′′), not the original negative context

(label l ′). We conjecture (but have not proven) that indy λC is in the same position

on the axis of blame as picky λC. We only need to change the labels on the contracts

φ inserts to have an exact correspondence; however, ψ will remain inexact.

Superpicky λH reworks the F CDecomp rule in an attempt to harmonize λH and

picky λC semantics:6

(〈x :S11 → S12 ⇒ x :S21 → S22〉l w1) w2 �h

〈S12{x := 〈S21 ⇒ S11〉l w2} ⇒ S22{x := 〈S11 ⇒ S21〉l (〈S21 ⇒ S11〉l w2)}〉l

(w1 (〈S21 ⇒ S11〉l w2))

This seems to resolve the problem with ψ into picky λC, but it poses problems in

the proof of semantic-type soundness for λH: how do S22{x := w2} and S22{x :=

〈S11 ⇒ S21〉l (〈S21 ⇒ S11〉l w2)} relate?

Finally, we have been careful to ensure that all of our calculi are strongly

normalizing. We do not believe this to be essential, though we would have to change

our logical relations—λH’s type semantics and the correspondences—to account for

nontermination. We conjecture that step-indexing (Ahmed 2006) will suffice.

8 Related work

Conferences in recent years have seen a profusion of papers on higher-order contracts

and related features. This is all to the good, but for newcomers to the area it can

be a bit overwhelming, especially given the great variety of technical approaches. To

help reduce the level of confusion, in Table 1 we summarize the important points

of comparison between a number of systems that are closely related to ours. This

table is an updated version compared to that in Greenberg et al. (2010).

The largest difference is between latent and manifest treatments of contracts—i.e.,

whether contract checking (under whatever name) is a completely dynamic matter

or whether it leaves a “trace” that the type system can track.

Another major distinction (labeled “dep” in the figure) is the presence of

dependent contracts or, in manifest systems, dependent function types. Latent

systems with dependent contracts also vary in whether their semantics is lax or picky.

Next, most contract calculi use a standard CBV order of evaluation (“eval order”

in the figure). Notable exceptions include those of Hinze et al. (2006), which is

embedded in Haskell, Flanagan (2006), which uses a variant of call-by-name, and

Knowles and Flanagan (2010), which uses full β-reduction (more on this below).

6 This idea is due to Jeremy Siek (personal communication, January 2010).

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

270 M. Greenberg et al.

Table 1. Comparison between contract systems

Latent systems

FF02 HJL06 GF07 λC BM06 DFFF11 our λC

(1) (2) (3) (4) (5)

dep (6) � lax � picky × (7) � indy � either

eval order CBV lazy CBV CBV CBV CBV

blame (8) ⇑l ⇑l ⇑l ⇑l or ⊥ ⇑l ⇑l
checking (9) if if © active active active

typing (10) � � � n/a � �
any con (11) � � � � � �

Manifest systems

GF07 λH F06 KF10 WF09 OTMW04 BGIP11 our λH

(3) (12) (13) (14) (15) (16)

dep (6) × � � × � � �
eval order CBV CBN(17) full β CBV CBV CBV CBV

blame (8) ⇑l stuck stuck ⇑l ⇑ ⇑l ⇑l
checking (9) © © active active if active active

typing (10) × × � � � � �
any con (11) � � � � × � �

Notes: (1) Findler & Felleisen (2002). (2) Hinze et al. (2006). (3) Gronski & Flanagan (2007).

(4) Blume & McAllester (2006). (5) Dimoulas et al. (2011). (12) Flanagan (2006). (13) Knowles

& Flanagan (2010). (14) Wadler & Findler (2009). (15) Ou et al. (2004). (6) Does the system

include dependent contracts or function types (�) or not (×) and, for latent systems, is

the semantics lax or picky? (see text for more on “indy” checking). (7) An “unusual” form

of dependency, where negative blame in the codomain results in nontermination. (17) A

nondeterministic variant of CBN. (8) Do failed contracts raise labeled blame (⇑l), raise

blame without a label (⇑), get stuck, or sometimes raise blame and sometimes diverge (⊥)?

(9) Is contract or cast checking performed using an “active check” syntactic form (active),

an “if” construct with a refined typing rule (if), or “inlined” by making the operational

semantics refer to its own reflexive and transitive closure (©)? (10) Is the typing relation

monotonic, i.e., is the typing relation known to be uniquely defined? (11) Are arbitrary user-

defined boolean functions allowed as contracts or refinements (�), or only built-in ones (×)?

Another point of variation (“blame” in the figure) is how contract violations or

cast failures are reported—by raising an exception or by getting stuck. We also

return to this below.

The next two rows in the table (“checking” and “typing”) concern more technical

points in the papers most closely related to ours. In both Flanagan (2006) and

Gronski and Flanagan (2007), the operational semantics checks casts “all in one

go”:

s2{x := k} −→∗
h true

〈{x :B | s1} ⇒ {x :B | s2}〉l k −→h k

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 271

Such rules are formally awkward, and in any case they violate the spirit of a small-

step semantics. Also, the formal definitions of λH in both Flanagan (2006) and

Gronski and Flanagan (2007) involve a circularity between the typing, subtyping,

and implication relations. Knowles and Flanagan (2010) improve the technical

presentation of λH in both respects. In particular, they avoid circularity (as we

do) by introducing a denotational interpretation of types and maintain small-step

evaluation by using a new syntactic form of “partially evaluated casts” (like most

of the other systems).

The main contributions of the present paper are (1) the dependent translations φ

and ψ and their properties, and (2) the formulation and metatheory of dependent

λH. (Dependent λC is not a contribution on its own: many similar systems have

been studied, and in any case its properties are simple.) The non-dependent part

of our φ translation essentially coincides with the one studied by Gronski and

Flanagan (2007), and our behavioral correspondence theorem is essentially the same

as their theorem. Our ψ translation completes their story for the non-dependent

case, establishing a tight connection between the systems. The full dependent forms

of φ and ψ studied here are novel, as is the observation that the correspondence

between the latent and manifest worlds is more problematic in this setting.

Our formulation of λH is most comparable to that of Knowles and Flanagan

(2010), but there are some significant differences. First, our cast-checking constructs

are equipped with labels, and failed casts go to explicit blame—i.e., they raise

labeled exceptions. In the λH of Knowles and Flanagan (2010) (though not the

earlier one of Gronski and Flanagan (2007)), failed casts are simply stuck terms—

their progress theorem says, “If a well-typed term cannot step, then either it is a

value or it contains a stuck cast.” Second, their operational semantics uses full,

nondeterministic β-reduction, rather than specifying a particular order of reduction,

as we have done. This significantly simplifies parts of the metatheory by allowing

them to avoid introducing parallel reduction. We prefer standard CBV reduction

because we consider blame as an exception—a computational effect—and we want

to reason about which blame will be raised by expressions involving many casts.

At first glance, it might seem that our theorems follow directly from the results

for Knowles and Flanagan’s language (2007), since CBV is a restriction of full β-

reduction. However, the reduction relation is used in the type system (in rule S Imp),

so the type systems for the two languages are not the same. For example, suppose

the term bad contains a cast that fails. In our system {y:B | true} is not a subtype

of {y:B | (λx :S . true) bad} because the contract evaluates to blame. However,

the subtyping does hold in the Knowles and Flanagan system (2007) because the

predicate reduces to true.

The system studied by Ou et al. (2004) is also close in spirit to our λH. The

main difference is that, because their system includes general recursion, they restrict

the terms that can appear in contracts to just applications involving predefined

constants: only “pure” terms can be substituted into types, and these do not include

lambda-abstractions. Our system (like all of the others in Table 7—see the row

labeled “any con”) allows arbitrary user-defined boolean functions to be used as

contracts.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

272 M. Greenberg et al.

Our description of λC is ultimately based on λCon (Findler & Felleisen 2002),

though our presentation is slightly different in its use of checks. Hinze et al.

(2006) adapted Findler and Felleisen-style contracts (2002) to a location-passing

implementation in Haskell, using picky-dependent function contracts.

Our λH-type semantics in Section 4.2 is effectively a semantics of contracts. Blume

and McAllester (2006) offer a semantics of contracts that is slightly different—our

semantics includes blame at every type, while theirs explicitly excludes it. Xu et al.

(2009) is also similar, though their “contracts” have no dynamic semantics at all:

they are simply specifications.

Dimoulas et al. (2011) introduce a new dialect of picky λC, where contract checks

in the codomain are given a distinct negative label. If labels represent “contexts” for

values, then this treats the contract as an independent context. “Indy” λC and picky

λC will raise exactly the same amount of blame, but they will blame different labels.

Belo et al. (2011) at once simplify and extend the CBV λH given here. The type

system is redesigned to avoid subtyping and closing substitutions, so type soundness

is proved with easy syntactic methods (Wright & Felleisen 1994). The language

also allows general refinements—refinements of any type, not just base types—and

extends the type system to polymorphism. This can be seen as completing some of

the future work of Greenberg et al. (2010).

We have discussed only a small sample of many papers on contracts and related

ideas. We refer the reader to Knowles and Flanagan (2010) for a more comprehensive

survey. Another useful resource is Wadler and Findler (2007) (technically superceded

by Wadler and Findler (2007), but with a longer related work section), which surveys

work combining contracts with type Dynamic and related features.

There are also many other systems that employ various kinds of precise types, but

in a completely static manner. One notable example is the work of Xu et al. (2009),

which uses user-defined boolean predicates to classify values (justifying their use of

the term “contracts”) but checks statically that these predicates hold.

Sage (Knowles et al. 2006) and Knowles and Flanagan (2010) both support mixed

static and dynamic checking of contracts, using, for example, a theorem prover. We

have not addressed this aspect of their work, since we have chosen to work directly

with the core calculus λH, which for them was the target of an elaboration function.

9 Conclusion

We can faithfully encode dependent λH into λC—the behavioral correspondence is

tight. λH’s F CDecomp rule forces us to accept a weaker behavioral correspondence

when encoding λC into λH, so we conclude that the manifest and latent approaches

are not equivalent in the dependent case. We do find, however, that the two

approaches are entirely inter-encodable in the non-dependent restriction.

Acknowledgments

Sewell and Zappa Nardelli’s OTT tool (Sewell et al., 2007) was invaluable for

organizing our definitions. We used Aydemir and Weirich’s LNGen tool (June

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

Contracts made manifest 273

2010) for the Coq development of parallel reduction. Brian Aydemir, João Belo,

Chris Casinghino, Nate Foster, and the anonymous POPL reviewers gave us

helpful comments. The anonymous JFP reviewers’ thorough comments significantly

improved and clarified the paper. Our work has been supported by the National

Science Foundation under grants 0702545 (A Practical Dependently-Typed Functional

Programming Language), 0910786 (TRELLYS), 0534592 (Linguistic Foundations for

XML View Update), and 0915671 (Contracts for Precise Types).

References

Ahmed, A. (2006) Step-indexed syntactic logical relations for recursive and quantified types.

In Proceedings of theEuropean Symposium on Programming (ESOP), Lecture Notes in

Computer Science, vol. 3924. Berlin, Germany: Springer-Verlag, pp. 69–83.
Aydemir, B. & Weirich, S. (June 2010) LNgen: Tool support for locally nameless representations.

Tech. Report MS-CIS-10-24. Department of Computer and Information Science, University

of Pennsylvania.
Belo, J. F., Greenberg, M., Igarashi, A. & Pierce, B. C. (2011) Polymorphic contracts. In

Proceedings of the European Symposium on Programming (ESOP), Saarbrücken, Germany,

pp. 18–37.
Blume, M. & McAllester, D. A. (2006) Sound and complete models of contracts. J. Funct.

Program. (JFP) 16, 375–414.
Cardelli, L., Martini, S., Mitchell, J. C. & Scedrov, A. (1994) An extension of system F with

sub-typing. Inf. Comput. 9, 4–56.
Chitil, O. & Huch, F. (2007) Monadic, prompt lazy assertions in Haskell. In Proceedings of

the Asian Symposium on Programming Languages and Systems (APLAS), LNCS vol. 4807.

New York, NY: Springer, pp. 38–53.
Dimoulas, C., Findler, R. B., Flanagan, C. & Felleisen, M. (2011) Correct blame for contracts:

No more scapegoating. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL), Austin, TX, USA, pp. 215–226.
Findler, R. B. & Blume, M. (2006) Contracts as pairs of projections. In Proceedings of

the Functional and Logic Programming (FLOPS), Fuji Susono, Japan, LNCS vol. 3945,

pp. 226–241.
Findler, R. B. & Felleisen, M. (2002) Contracts for higher-order functions. In Proceedings

of the Seventh ACM SIGPLAN International Conference on International Conference on

Functional Programming (ICFP), Pittsburgh, PA, USA, pp. 48–59.
Flanagan, C. (2006) Hybrid type checking. In Proceedings of the 33rd ACM SIGPLAN-

SIGACT Symposium on the Principles of Programming Languages (POPL), Charleston,

SC, USA, pp. 245–256.
Greenberg, M., Pierce, B. C. & Weirich, S. (2010) Contracts made manifest. In Proceedings of

the 37th ACM SIGACT-SIGPLAN Symposium on the Principles of Programming Languages

(POPL), Madrid, Spain, pp. 353–364.
Gronski, J. & Flanagan, C. (2007). Unifying hybrid types and contracts. In Proceedings of

the 8th Symposium on Trends in Functional Programming (TFP), New York, NY, USA,

pp. 54–70.
Guha, A., Matthews, J., Findler, R. B. & Krishnamurthi, S. (2007) Relationally-parametric

polymorphic contracts. In Proceedings of the Dynamic Languages Symposium (DLS),

Montreal, Quebec, Canada, October 22, pp. 29–40.
Hinze, R., Jeuring, J. & Löh, A. (2006) Typed contracts for functional programming. In

Proceedings of the Functional and Logic Programming (FLOPS), Fuji Susono, Japan, LNCS

vol. 3945, pp. 208–225.
Knowles, K. & Flanagan, C. (January 2010) Hybrid type checking. ACM Trans. Program.

Lang. Syst. (TOPLAS) 32(2), Article 6, 34 pp.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

274 M. Greenberg et al.

Knowles, K., Tomb, A., Gronski, J., Freund, S. N. & Flanagan, C. (2006) Sage:

Hybrid checking for flexible specifications. In Proceedings of the Scheme and Functional

Programming Workshop, University of Chicago, pp. 93–104.

Meyer, B. (1992) Eiffel: The Language. Upper Saddle River, NJ: Prentice-Hall.

Ou, X., Tan, G., Mandelbaum, Y. & Walker, D. (2004) Dynamic typing with dependent types.

In Proceedings of the IFIP Conference on Theoretical Computer Science (TCS), Toulouse,

France, pp. 437–450.

Pitts, A. M. (2005) Typed operational reasoning. In Advanced Topics in Types and

Programming Languages, Chap. 7. Pierce, B. C. (ed). Cambridge, MA: MIT Press, pp.

245–289.

Sewell, P., Nardelli, F. Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S. & Strnisa, R.

(2007) Ott: Effective tool support for the working semanticist. In Proceedings of the 12th

ACM SIGPLAN International Conference on Functional Programming (ICFP), Freiburg,

Germany, October 1–3, pp. 1–12.

Tobin-Hochstadt, S. & Felleisen, M. (2008) The design and implementation of typed scheme. In

Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL), San Francisco, USA, pp. 395–406.

Wadler, P. & Findler, R. B. (2007) Well-typed programs can’t be blamed. Proceedings of the

Scheme and Functional Programming Workshop, Freiburg, Germany, September 30.

Wadler, P. & Findler, R. B. (2009) Well-typed programs can’t be blamed. In Proceedings of the

18th European Symposium on Programming (ESOP), York, UK, March 25–27, pp. 1–16.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf. Comput.

115, 38–94.

Xu, D. N., Peyton Jones, S. & Claessen, K. (2009) Static contract checking for Haskell.

In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on the Principles of

Programming Languages (POPL), Savannah, Georgia, January 21–23, pp. 41–52.

https://doi.org/10.1017/S0956796812000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000135

