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Subadditivity Inequalities for Compact
Operators
Jean-Christophe Bourin, Tetsuo Harada, and Eun-Young Lee

Abstract. Some subadditivity inequalities for matrices and concave functions also hold for Hilbert
space operators, but (unfortunately!) with an additional ε term. It does not seem possible to erase
this residual term. However, in case of compact operators we show that the ε term is unnecessary.
Further, these inequalities are strict in a certain sense when some natural assumptions are satisfied. The
discussion also emphasizes matrices and their compressions and several open questions or conjectures
are considered, both in the matrix and operator settings.

1 From Matrices to Operators

Given two positive Hilbert space operators A,B and an arbitrary small fixed ε > 0,
the following inequality (see [6]) holds for non-negative concave functions f (t) on
the positive half-line,

(1.1) f (A + B) ≤ U f (A)U ∗ + V f (B)V ∗ + εI

where U ,V are some unitary operators and I denotes the identity. In the fundamental
finite-dimensional case, proved in [1], we may of course take ε = 0. Thus, denoting
by Mn the algebra of n-by-n matrices and by M+

n the positive (semi-definite) part, we
have the following.

Theorem 1.1 Let f (t) be a monotone concave function on [0,∞) with f (0) ≥ 0 and
let A,B ∈M+

n . Then, for some unitaries U ,V ∈Mn,

f (A + B) ≤ U f (A)U ∗ + V f (B)V ∗.

The first motivation of this article is to find conditions allowing, likewise in the
matrix case, to drop the ε term in (1.1). In the course of settling this question, we
noted that, in case of compact operators with dense ranges, we may not only drop the
ε term, but also obtain a certain strict type inequality, stronger than (1.1) without the
ε term, when f (t) is strictly concave, i.e.,

f
( a + b

2

)
>

f (a) + f (b)

2

Received by the editors January 14, 2012.
Published electronically May 30, 2012.
Jean-Christophe Bourin was supported by ANR 2011-BS01-008-01. Eun-Young Lee’s research was

supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology (2010-0003520).

E.-Y. Lee is the corresponding author.
AMS subject classification: 47A63, 15A45.
Keywords: concave or convex function, Hilbert space, unitary orbits, compact operators, compres-

sions, matrix inequalities.

25

https://doi.org/10.4153/CMB-2012-009-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-009-9


26 J. C. Bourin, T. Harada, and E. Y. Lee

for all a 6= b in the positive half-line.
The proofs in the next sections depend on the well-known matrix case and belong

to the scope of matrix analysis. However we will completely adapt it and this article
is self-contained. A good account on Theorem 1.1 and (1.1), related matrix/operator
inequalities and applications can be found in the survey [6]. Identifying A ∈ Mn as
an operator on F = Cn, Theorem 1.1 yields results for compressions AS of A onto
subspaces S ⊂ F. The following is implicit in the proofs of [6, Corollaries 3.5–3.7].

Corollary 1.2 Let A ∈M+
n and let S be a subspace of F. If f (t) is a monotone, concave

function on [0,∞) such that f (0) ≥ 0, then

f (A) ≤ J f (AS) J∗ + K f (AS⊥)K∗

for some isometries J : S→ F and K : S⊥ → F.

We will give in Corollary 2.3 below a version for compact operators with a detailed
proof. Let us close this introduction by mentioning some questions still open in the
matrix case.

Question 1.3 Theorem 1.1 implies the Rotfel’d trace inequality [8]:

Tr h(A + B) ≤ Tr
(

h(A) + h(B)
)

for all A,B ∈M+
n and all concave functions on [0,∞) with h(0) ≥ 0. Indeed, we may

approach h(t) by f (t) + at where f (t) is monotone and concave, f (0) = h(0), a ∈ R,
and then apply the theorem to f (t). Does Theorem 1.1 hold for a non-monotone
concave function f (t) with f (0) ≥ 0?

Question 1.4 It is not possible to take U = V in Theorem 1.1, even for a sim-
ple operator monotone function such as

√
t . Writing the inequality as f (A + B) −

V f (B)V ∗ ≤ U f (A)U ∗ it is natural to ask whether

0 ≤ f (A + B)−V f (B)V ∗ ≤ U f (A)U ∗

could hold too, for some suitable unitaries U ,V . In particular, does it hold when f (t)
is operator monotone?

Question 1.5 Let f : [0,∞) → [0,∞) be concave and A,B ∈ M+
n . Theorem 1.1

entails that
‖ f (A + B)‖ ≤ ‖ f (A)‖ + ‖ f (B)‖

for all symmetric norms ‖ · ‖, those norms such that ‖U TV‖ = ‖T‖ for all T ∈
Mn and all unitaries U ,V . In fact, much stronger norm inequalities hold, see [5]
and references therein. A semi-norm ‖ · ‖w on Mn is weakly symmetric if ‖T‖w =
‖U TU ∗‖w for all T and any unitary U . Is it possible to extend the previous symmetric
norm inequality to

‖ f (A + B)‖w ≤ ‖ f (A)‖w + ‖ f (B)‖w

for all weakly symmetric semi-norms? The following is known [2]: This holds in the
special case of ‖T‖w = diam W (T), the diameter of the numerical range. This holds
too for any weakly symmetric semi-norms on 2× 2 matrices.
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2 Compact Operators and Concave Functions

Let B be the space of all bounded linear operators on a separable Hilbert space H, let
B+ its positive part and B+

a its absolutely positive part: A ∈ B+
a iff 〈h,Ah〉 > 0 for all

non-zero h ∈ H. We write A ≥a B when A − B ∈ B+
a . We denote by K the ideal

of compact operators on H, and by K+ and K+
a the positive and absolutely positive

parts. We have the following results.

Theorem 2.1 Let f (t) be a monotone concave function on [0,∞) such that f (0) ≥ 0.

(i) If A,B ∈ K+, then for some partial isometries J,K ∈ B,

(2.1) f (A + B) ≤ J f (A) J∗ + K f (B)K∗.

Moreover, if f (t) is strictly concave and f (0) = 0, we can take supp J = supp A
and supp K = supp B.

(ii) If A,B ∈ K+
a , then for some unitary U ,V ∈ B,

f (A + B) ≤ U f (A)U ∗ + V f (B)V ∗.

Moreover, if f (t) is strictly concave, this can be improved as

(2.2) f (A + B) ≤a U f (A)U ∗ + V f (B)V ∗.

Here the notation supp T means the support of T ∈ B, that is, the orthogonal of
its kernel. Recall that a partial isometry J is an operator such that J∗ J and J J∗ are
projections.

Note that deleting the ε part in (1.1) is quite meaningful when considering ideals
of compact operators. We refer to [9] for the Calkin theory of ideals of compact
operators. The next corollary follows from (2.1) and the property that A ≥ B ≥ 0
and A ∈ J ensures that B ∈ J in any ideal J.

Corollary 2.2 Let J be an ideal of K. Let A,B ∈ K+ and let f (t) be a non-negative
monotone, concave function on [0,∞). If both f (A) ∈ J and f (B) ∈ J, then we also
have f (A + B) ∈ J.

Corollary 2.3 Let A ∈ K+
a and let S be a closed subspace of H. If f (t) is a monotone,

strictly concave function on [0,∞) such that f (0) ≥ 0, then

f (A) ≤ J f (AS) J∗ + K f (AS⊥)K∗

for some isometries J : S→ H and K : S⊥ → H.

We first state a lemma which is the adaption to the matrix case [6, Lemma 3.4].

Lemma 2.4 Let A ∈ K+
a and let S be a closed subspace of H. Then,

A = JAS J∗ + KAS⊥K∗

for some isometries J : S→ H and K : S⊥ → H.
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Proof With respect to the decomposition H = S ⊕ S⊥, we have a block matrix
representation

A =

[
AS X
X∗ AS⊥

]
which can be factorized as a square of a positive block matrix,

A =

[
C Y
Y ∗ D

] [
C Y
Y ∗ D

]
and observe that it can be written as

(2.3)

[
C 0
Y ∗ 0

] [
C Y
0 0

]
+

[
0 Y
0 D

] [
0 0

Y ∗ D

]
= TT∗ + SS∗.

Then, note that C ≥a 0 on S so that T has polar decomposition T = J|T| where
supp T = supp J = S, hence TT∗ = JT∗T J∗ where J is a partial isometry with
support S and

T∗T =

[
C2 + YY ∗ 0

0 0

]
=

[
AS 0
0 0

]
.

Similarly S∗S = KSS∗K∗ where K is partial isometry with support S⊥ and

SS∗ =

[
0 0
0 AS⊥

]
.

Therefore, from (2.3) we have

(2.4) A = J

[
AS 0
0 0

]
J∗ + K

[
0 0
0 AS⊥

]
K∗.

Regarding J as an isometry on S and K as an isometry on S⊥, (2.4) is equivalent to
the statement of the lemma.

We may now give the proof of Corollary 2.3.

Proof Since A ≥a 0 we have f (A) = f0(A) where f0(t) = f (t) for t > 0 and f0(0) =
0. As f0(t) is monotone and strictly concave, we may suppose that f (t) = f0(t); i.e.,
that f (0) = 0. In the decomposition 2.4, note that

supp J

[
AS 0
0 0

]
J∗ = J(S)

and

supp K

[
0 0
0 AS⊥

]
K∗ = K(S⊥).
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Thus, applying (2.1) to (2.4), we have some partial isometries J0 and K0 with supports
J(S) and K(S⊥) respectively, such that

f (A) = f

(
J

[
AS 0
0 0

]
J∗ + K

[
0 0
0 AS⊥

]
K∗
)

≤ J0 f

(
J

[
AS 0
0 0

]
J∗
)

J∗0 + K0 f

(
K

[
0 0
0 AS⊥

]
K∗
)

K∗0

= J0 J

[
f (AS) 0

0 0

]
J∗ J∗0 + K0K

[
0 0
0 f (AS⊥)

]
K∗K∗0

where we used the condition f (0) = 0 for the last equality. Regarding J0 J as an
isometry on S and K0K as an isometry on S⊥, this completes the proof.

Remark 2.5. If the condition A ∈ K+
a in Corollary 2.3 is relaxed to A ∈ K+ and the

strictly concave condition is relaxed to a merely concave, then Corollary 2.3 holds for
some partial isometries J : S→ H and K : S⊥ → H. Indeed (2.3)–(2.4) still hold for
A ∈ K+, with partial isometries J,K such that supp J ⊂ S and supp K ⊂ S⊥.

Of course, using a strictly concave assumption is not a too severe restriction, and
this implies some strict Rotfel’d trace inequality. Here is an application to the deter-
minant type functional on trace class positive operators,

A 7→ det(I + A) :=
∞∏

k=1

λ↓k [I + A],

where λ↓k [ · ], k = 1, . . . , stand for the eigenvalues arranged in descending order.

Corollary 2.6 Let A,B ∈ B be two absolutely positive trace class operators. Then,

det(I + A + B) < det(I + A) det(I + B).

Proof Note that det(I + X) = exp{Tr log(I + X)} and apply (2.2) to the strictly
concave function log(1 + t).

Obviously, Theorem 2.1 is equivalent to the next statement for convex functions.

Corollary 2.7 Let g(t) be a monotone, strictly convex function on [0,∞) with g(0) ≤
0 and let A,B ∈ K+

a . Then, for some unitaries U ,V ∈ B,

(2.5) g(A + B) ≥a U g(A)U ∗ + V g(B)V ∗.

For p ≥ 1, it is well-known that the functional K+ → [0,∞], A 7→ {Tr A1/p}p is
concave/superadditive. Applying (2.5) we infer the following alternative.

Corollary 2.8 Let g(t) be a non-negative, strictly convex function on [0,∞) such that
g(0) = 0. Let A,B ∈ K+

a and p ≥ 1. Then, either

{Tr g1/p(A + B)}p = {Tr g1/p(A)}p + {Tr g1/p(B)}p =∞

or
{Tr g1/p(A + B)}p > {Tr g1/p(A)}p + {Tr g1/p(B)}p.
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Proof We start with (2.5): there exist two unitary operators U ,V satisfying

g(A + B) ≥a U g(A)U ∗ + V g(B)V ∗.

Let h(t) be a strictly increasing function on [0,∞), with h(0) = 0 and let X,Y be two
positive compact operators such that Y ≥a X ≥a 0. Then, by the min-max principle,
there exists a unitary W such that h(X) ≤a W h(Y )W ∗. Therefore, from (2.5) and
taking h(t) = t1/p, we get

g1/p(A + B) ≥a

(
U0g(A)U ∗0 + V0g(B)V ∗0

) 1/p

for some unitary operators U0,V0. This implies that either

{Tr g1/p(A + B)}p >
{

Tr
(

U0g(A)U ∗0 + V0g(B)V ∗0
) 1/p} p

in case of the right hand side is finite, or

{Tr g1/p(A + B)}p =
{

Tr
(

U0g(A)U ∗0 + V0g(B)V ∗0
) 1/p} p

=∞

in case of the right hand side is infinite. Using the superadditivity of A 7→ {Tr A1/p}p

on K+ completes the proof.

Remark 2.9. The functional A 7→ {Tr A1/p}p on M+
n is a special case of a family

of concave superadditive functionals on positive definite matrices, called symmetric
anti-norms and studied in [3], [4].

The most attractive part of Theorem 2.1 is (2.2) involving the absolute order ≤a.
We conjecture that (2.2) can be extended to positive operators in B with dense ranges.

Conjecture 2.10 Inequality (2.2) also holds for all A,B ∈ B+
a .

This conjecture is proved for some special cases [2], for instance when A,B are
in a type II-1 factor and f (t) is concave on [0,∞), and further C2 on (0,∞) with
f ′ ′(t) < 0 for all t > 0. It seems also natural to propose the following conjecture.

Conjecture 2.11 Let h(t) be a continuous, (strictly) increasing function on the real
line and let A,B ∈ B be Hermitian and such that A ≤a B. Then, for some unitary
U ∈ B, we have h(A) ≤a U h(B)U ∗.

3 Proof of Theorem 2.1

We first prove (2.2), in fact its equivalent convex version (2.5). We need two lemmas.
The first one is adapted from [7].

Lemma 3.1 Let g(t) be a strictly convex function on [0,∞) with g(0) = 0, let {ak}∞k=1
be a bounded sequence in (0,∞), and let {wk}∞k=1 be a sequence in [0,∞) such that
0 <

∑∞
k=1 wk < 1. Then,

g
( ∞∑

k=1

wkak

)
<

∞∑
k=1

wkg(ak).
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Proof Let w0 := 1−
∑∞

k=1 wk and a0 := 0. We then have to show

g
( ∞∑

k=0

wkak

)
<

∞∑
k=0

wkg(ak).

This holds for the ≤ sign. We claim that equality cannot hold. Indeed, the equality
would imply wk0 = 1 for some index k0, hence a contradiction. This follows from the
following general fact for a probability measure w on a compact interval [α, β]:

g

(∫
[α,β]

t dw(t)

)
=

∫
[α,β]

g(t) dw(t) =⇒ the support of w is singleton.

To see this, let us recall the standard proof for the Jensen inequality based on sup-
porting lines. Set t0 =

∫
[α,β] t dw(t) and choose real numbers a, b satisfying

g(t) ≥ at + b, g(t0) = at0 + b.

Integration of both sides of this inequality gives rise to∫
[α,β]

g(t) dw(t) ≥ at0 + b

∫
[α,β]

dw(t) = at0 + b = g(t0).

When g(t) is strictly convex, we have g(t) > at + b for t 6= t0. Thus, if the equality
occurs in the above, then the support of w must be {t0}.

Lemma 3.2 Let g(t) be a monotone, strictly convex function on [0,∞) with g(0) ≤ 0,
let A ∈ K+

a , and let Z ∈ B such that 0 ≤a Z∗Z ≤a I and 0 ≤a ZZ∗ ≤a I. Then, for
some unitary U ∈ B,

g(Z∗AZ) ≤a U Z∗g(A)ZU ∗.

Proof Note that if the inequality holds for g(t) then it also holds for g(t)− c for any
c > 0 since Z is a contraction. Thus we may and do assume g(0) = 0. The following
fact follows from Lemma 3.1: for w ∈ H with 0 < ‖w‖ < 1,

(3.1) g(〈w,Aw〉) < 〈w, g(A)w〉.

We then consider two cases.

1. g(t) is (strictly) decreasing. Since the assumptions ensure that Z is a one-to-
one contraction with a dense range it follows that Z∗AZ ∈ K+

a as a compact pos-
itive operator with a zero null space. Thus −g(Z∗AZ) ∈ K+

a too, hence there ex-
ists an orthonormal basis {ek}∞k=1 and a non-decreasing sequence of eigenvalues,

{λ↑k [g(Z∗AZ)]}∞k=1 with lim
k→∞

λ↑k [g(Z∗AZ)] = 0, such that

g(Z∗AZ) =
∞∑

k=1

λ↑k [g(Z∗AZ)]ek ⊗ ek.
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Similarly −g(A) ∈ K+
a , thus −Z∗g(A)Z ∈ K+ too. Hence there is an or-

thonormal basis {e ′k}∞k=1 and a non-decreasing sequence {λ↑k [Z∗g(A)Z]}∞k=1 with

lim
k→∞

λ↑k [Z∗g(A)Z] = 0 such that

Z∗g(A)Z =

∞∑
k=1

λ↑k [Z∗g(A)Z]e ′k ⊗ e ′k.

Fix k and let S be the k-dimensional subspace S = span{e1, . . . , ek}. Then

λ↑k [g(Z∗AZ)] = max
h∈S;‖h‖=1

〈h, g(Z∗AZ)h〉.

Similarly,

λ↑k [Z∗g(A)Z] = max
h∈T;‖h‖=1

〈h,Z∗g(A)Zh〉

where T = span{e ′1, . . . , e ′k}. We have, using (3.1),

max
h∈T;‖h‖=1

〈h,Z∗g(A)Zh〉 = max
h∈T;‖h‖=1

〈Zh, g(A)Zh〉

> max
h∈T;‖h‖=1

g(〈Zh,AZh〉)

= max
h∈T;‖h‖=1

g(〈h,Z∗AZh〉)

= g
(

min
h∈T;‖h‖=1

〈h,Z∗AZh〉
)

(3.2)

where we use that g(t) is decreasing for the last equality. Next, from the min-max
principle and since S is a spectral subspace of Z∗AZ corresponding to the k largest
eingenvalues, we have

min
h∈T;‖h‖=1

〈h,Z∗AZh〉 ≤ min
h∈S;‖h‖=1

〈h,Z∗AZh〉.

Thus, since g(t) is decreasing,

g
(

min
h∈T;‖h‖=1

〈h,Z∗AZh〉
)
≥ g
(

min
h∈S; ‖h‖=1

〈h,Z∗AZh〉
)

= max
h∈S;‖h‖=1

〈h, g(Z∗AZ)h〉

= λ↑k [g(Z∗AZ)].

(3.3)

Combining (3.2) and (3.3) we have strict inequalities between the list of eigenvalues
of Z∗g(A)Z and those of g(Z∗AZ). The fact that the two lists of eigenvectors are bases
then ensure the existence of a unitary U , defined by U e ′k = ek, such that

g(Z∗AZ) ≤a U Z∗g(A)ZU ∗.
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2. g(t) is strictly increasing. The proof is similar to, but simpler than, that of the
previous case; we deal with operators in K+

a and the usual list of eigenvalues arranged
in decreasing order λ↓k [ · ]. We have, for each integer k ≥ 1, a subspace F ⊂ H of
dimension k (a spectral subspace of Z∗AZ corresponding to its k-largest eigenvalues)
such that

λ↓k [g(Z∗AZ)] = min
h∈F;‖h‖=1

〈h, g(Z∗AZ)h〉

= min
h∈F;‖h‖=1

g(〈h,Z∗AZh〉)

= min
h∈F;‖h‖=1

g(〈Zh,AZh〉),

where we have used the monotonicity of g(t). Then, using (3.1) with w = Zh and
the min-max principle,

λ↓k [g(Z∗AZ)] < min
h∈F;‖h‖=1

〈Zh, g(A)Zh〉

≤ λ↓k [Z∗g(A)Z].

The existence of U follows as in the decreasing case.

We turn to the proof (2.5), the convex version of Theorem 2.1 (2.2).

Proof of (2.5) We may confine the proof to the case g(0) = 0 as if (2.5) holds for a
function g(t) then it also holds for g(t)−α for anyα > 0. This assumption combined
with the monotonicity of g(t) entails that g(t) has a constant sign ε ∈ {−1, 1}, hence
g(t) = ε|g|(t).

By assumption, (A + B) has a dense range and its unbounded inverse has a
dense domain and is such that the operators X := A1/2(A + B)−1/2 and Y :=
B1/2(A + B)−1/2, at first defined on the domain of (A + B)−1/2, may be extended
as one-to-one contractions with dense ranges, more precisely,

0 ≤a X∗X ≤a I, 0 ≤a XX∗ ≤a I and 0 ≤a Y ∗Y ≤a I, 0 ≤a YY ∗ ≤a I.

Note also that
A = X(A + B)X∗ and B = Y (A + B)Y ∗.

For any one to one operator T with a dense range, the polar decomposition shows
that T∗T and TT∗ are unitarily equivalent. Hence, using Lemma 3.2 and the previous

observation with T =
(
|g|(A + B)

) 1/2
X∗ we have two unitary operators U0 and U

such that

g(A) = g
(

X(A + B)X∗
)

≤a U0Xg(A + B)X∗U ∗0

= εU ∗
(
|g|(A + B)

) 1/2
X∗X

(
|g|(A + B)

) 1/2
U ,
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so,

(3.4) U g(A)U ∗ ≤a ε
(
|g|(A + B)

) 1/2
X∗X

(
|g|(A + B)

) 1/2
.

Similarly there exists a unitary operator V such that

(3.5) V g(B)V ∗ ≤a ε
(
|g|(A + B)

) 1/2
Y ∗Y

(
|g|(A + B)

) 1/2
.

Adding (3.4) and (3.5) we get

U g(A)U ∗ + V g(B)V ∗ ≤a g(A + B)

since X∗X + Y ∗Y = I.
Inspecting the above proof shows that Conjecture 2.10 would follow from the next

one, stating that Lemma 3.2 might still hold in B+
a .

Conjecture 3.3 Lemma 3.2 still holds for all A ∈ B+
a .

Now, we turn to the proof of the remaining parts of Theorem 2.1. As before we
consider the convex versions and thus have to show the following:

Let g(t) be a monotone convex function on [0,∞) such that g(0) ≤ 0.

(i) If A,B ∈ K+, then for some partial isometries J,K ∈ B,

(3.6) g(A + B) ≥ Jg(A) J∗ + Kg(B)K∗.

Moreover, if g(t) is strictly convex and g(0) = 0 , we can take supp J =
supp A and supp K = supp B.

(ii) If A,B ∈ K+
a , then for some unitary U ,V ∈ B,

(3.7) g(A + B) ≤ U g(A)U ∗ + V g(B)V ∗.

We indicate below how to adapt the proof of (2.5) in order to get (3.6) and (3.7).
The proof of (3.7) is quite similar to the previous proof of (2.5), though simpler;

we do not need Lemma 3.1 and we replace the strict inequality (3.1) by the standard
Jensen inequality,

g(〈w,Aw〉) ≤ 〈w, g(A)w〉

for all vectors w ∈ H with ‖w‖ ≤ 1. This yields a version of Lemma 3.2 for convex
functions where the≤a sign is replaced by the usual order≤, and we may then repeat
the proof of (2.5), but with the≤ sign, and thus obtain (3.7).

The weaker statement (3.6) is obtained by first establishing the following variation
of Lemma 3.2.

Let g(t) be a monotone, convex function on [0,∞) with g(0) ≤ 0, let A ∈ K+, and
let Z ∈ B be a contraction. Then

(3.9) g(Z∗AZ) ≤ JZ∗g(A)Z J∗
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for some partial isometry J with

supp J∗ = supp g(Z∗AZ) and supp J = supp Z∗g(A)Z.

To prove (3.9), we proceed as in the proof of Lemma 3.2, except that we use (∗) in
place of (3.1). We may assume that g(0) = 0 and we obtain the eigenvalue inequalities

λ↑k [g(Z∗AZ)] ≤ λ↑k [Z∗g(A)Z], (k ≥ 1)

in case of g(t) is decreasing, and

λ↓k [g(Z∗AZ)] ≤ λ↓k [Z∗g(A)Z], (k ≥ 1)

in case of g(t) is increasing. This ensures that (3.9) holds for some partial isometry J
with supp J∗ = supp g(Z∗AZ) and supp J = supp Z∗g(A)Z.

Having (3.9) at our disposal, we may infer (3.6) by repeating the proof of (2.5), but
for the ≤ sign and with partial isometries in place of unitaries: We can suppose that
the space H is the closure of supp A + supp B. Hence we may then define (A + B)−1/2.
Next, recall that in the proof of (2.5) we have used the relation

g(A) = g
(

X(A + B)X∗
)
,

where X := A1/2(A + B)−1/2 is a contraction on H and further supp X∗ = supp A.
By using (3.9) we obtain a partial isometry U0 such that

(3.10) g(A) = g
(

X(A + B)X∗
)
≤ U0Xg(A + B)X∗U ∗0

and

(3.11) supp U ∗0 = supp g(A), supp U0 = supp Xg(A + B)X∗.

From (3.10) and (3.11), we also have

(3.12) U ∗0 g(A)U0 ≤ Xg(A + B)X∗.

On the other hand, if ε denotes the constant sign of g(t),

Xg(A + B)X∗ = J0ε|g|1/2(A + B)X∗X|g|1/2(A + B) J∗0

for some partial isometry J0 with

(3.13) supp J∗0 = supp Xg(A + B)X∗ = supp U0

so that (3.12) yields

(3.14) J∗0 U ∗0 g(A)U0 J0 ≤ ε|g|1/2(A + B)X∗X|g|1/2(A + B).
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Now, observe that the condition (3.13) ensures that U0 J0 is a partial isometry, thus
(3.14) can be written as

(3.15) Jg(A) J∗ ≤ ε|g|1/2(A + B)X∗X|g|1/2(A + B).

for some partial isometry J. We have a similar expression

(3.16) Kg(B)K∗ ≤ ε|g|1/2(A + B)Y ∗Y |g|1/2(A + B)

for some partial isometry K. As in the proof of (2.5), summing (3.15) and (3.16)
yields (3.6).

It remains to establish (3.6) with supp J = supp A and supp K = supp B whenever
we assume g(0) = 0 and g(t) is monotone, strictly convex. (Such a refinement is
necessary to have isometries in Corollary 2.3.) The assumptions entail g(0) = 0 and
g(t) 6= 0 for all t > 0 so that supp g(A) = supp A and, by still supposing that H is
the closure of supp A + supp B, we have g(A + B) ≥a 0. Thus, the partial isometry U0

defined in (3.10) can be chosen such that

supp U ∗0 = supp U0 = supp A.

It then follows from (3.13) that the partial isometry J in (3.15) satisfies to supp J =
supp A. Similarly, the partial isometry K in (3.16) satisfies to supp K = supp B as
desired.
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