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Pathological Phenomena in
Denjoy–Carleman Classes

Ethan Y. Jaòe

Abstract. Let CM denote a Denjoy–Carleman class of C∞ functions (for a given logarithmically-
convex sequence M = (Mn)). We construct: (1) a function in CM

((−1, 1)) that is nowhere in any
smaller class; (2) a function on R that is formally CM at every point, but not in CM

(R); (3) (under
the assumption of quasianalyticity) a smooth function onRp (p ≥ 2) that isCM on everyCM curve,
but not in CM

(Rp
).

1 Introduction

_e aim of this article is to provide explicit constructions of several examples of func-
tions illustrating pathologies and subtleties in the theory of Denjoy–Carleman classes.
In the following, F will denote eitherR orC. _e ûrst example is of a function in any
given Denjoy–Carleman class, but not in any smaller Denjoy–Carleman class.

_eorem 1.1 For any Denjoy–Carleman class CM there exists f ∈ C∞((−1, 1),F)
satisfying
(i) f ∈ CM((−1, 1),F);
(ii) for any Denjoy–Carleman class CN ⊊ CM , and any open subset U ⊆ (−1, 1), f /∈

CN(U).

_e second example is of a functionwhich is formally in a givenDenjoy–Carleman
class at all points, but is nonetheless not in that class (the notation f ∈ FM(x ,F)
indicates that f is formally of class CM at x; see Deûnition 2.3).

_eorem 1.2 Let CM be anyDenjoy–Carleman class. _en there exists f ∈ C∞(R,F)
satisfying
(i) f ∈ CM(R ∖ {0},F);
(ii) f ∈ FM(0,F);
(iii) f /∈ CM(R,F).
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Pathological Phenomena in Denjoy–Carleman Classes 89

We remark that if f ∈ C∞(U ,F), where U ⊆ Rp is open, and f ∈ F(x ,F) for
all x ∈ U , then there is an open dense subset V of U such that f ∈ CM(V ,F) (see
Proposition 4.4).

Like the second example, the third example is “close” to being CM , but actually is
not; it is smooth and its composition with every quasianalytic curve of a given quasi-
analytic Denjoy–Carleman class is in the class, yet is not itself in the class.

_eorem 1.3 For any p ≥ 2 and any quasianalytic Denjoy–Carleman classCM ,which
is not the class of analytic functions, there exists f ∈ C∞(Rp) such that for any curve
γ ∈ CM(U ,Rp) (where U ⊆ R is open), f ○ γ ∈ CM(U ,F), but f /∈ CM(Rp ,F).

_eorem 1.3 follows easily from the following result.

_eorem 1.4 For any p ≥ 2 and any Denjoy–Carleman class CM , which is not the
class of analytic functions, there exists f ∈ C∞(Rp ,F) satisfying:
(i) f ∈ CM(Rp ∖ {0},F);
(ii) for any a > 0 and integer m ≥ 1, f ∈ CM(Sp

a ,m ,F);
(iii) f ∈ CM(Rp ∖Qp ,F);
(iv) f /∈ CM(Rp ,F),
where

S
p
a ,m ∶= {x = (x1 , x2 , . . . , xp) ∈ Rp ∶ x1 ≥ 0 and x2 ≥ axm

1 } ,
Qp ∶= {x = (x1 , x2 , . . . , xp) ∈ Rp ∶ x1 > 0 and x2 > 0} .

Denjoy–Carleman classes have been classically studied in their relation to PDE
theory, harmonic analysis, and other ûelds. Recently, there has been renewed interest
in these classes from a more analytic-geometric viewpoint. _e theory of Denjoy–
Carleman classes is usually divided into the study of quasianalytic classes, charac-
terized by an analogue of analytic continuation. All the derivatives at a point of a
function in such a class uniquely determines the function (at least locally), and non-
quasianalytic classes.

However, despite quasianalytic classes satisfying “quasianalytic continuation”, their
theory is still not well understood. _is is in large part becausemany standard tech-
niques for analytic functions, namely the Weierstrass division and preparation the-
orems, fail in general for quasianalytic Denjoy–Carleman classes (see [1, 8, 9, 13, 15]).
_is makes deciding whether these classes are Noetherian very diõcult.

In relation to _eorem 1.1, several results are known. It is a classical result that
each Denjoy–Carleman class contains functions that are not in any smaller class [15,
_m. 1]. More recently, [14,_m. 2] shows that there is a function in a given quasian-
alyticDenjoy–Carleman ring that is nowhere analytic. _iswas proven by examining
“lacunarity” properties of Fourier series. _eorem 1.1 can be seen as a strengthening
of the conclusion of the ûrst result and as a generalization of the second.
By a classical theorem of Carleman (see [15, _m. 3]), there is a smooth function

germ that is formally quasianalytic of a given class, but does not correspond to any
actual quasianalytic function germ of the same class. Recently, another example of
such a non-extendable functionwas constructed in [1,_m. 1.2]. Like these examples,
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the function of_eorem 1.2 is formally of a givenDenjoy–Carleman class, yet fails to
be of actually of the class. _ere are two main diòerences between _eorem 1.2 and
both Carleman’s function and that of [1, _m. 1.2]. _eorem 1.2 involves arbitrary
Denjoy–Carleman classes instead of quasianalytic classes, but does not consider the
question of whether the germ is extendable. In fact, in the so-called strongly non-
quasianalytic case, the function must be extendable ([15,_m. 4]). Furthermore, the
function constructed in [1] is formally in the given Denjoy–Carleman class only on
[0,∞), whereas that of_eorem 1.2 is formally in the given Denjoy–Carleman class
on the entire real line.

Given certain classes C of real- or complex-valued functions of several real vari-
ables, it is a natural to consider whether a function f is of class C provided that f is
of class C on every curve of class C. In [6], Boman considers the question in the case
C = C∞ and answers it in the aõrmative. In [4], Bierstone, Milman, and Parusiński
answered the question in the negative for the class of analytic functions, showing that
a function that is analytic on every analytic curve (a so-called “arc-analytic function”)
is not necessarily even continuous. In fact, their exampleworks for any class of quasi-
analytic function. In [12, _m. 3.9] and [11, _m. 2.7], Kriegly, Michor, and Rainer
answer the problem in the aõrmative where C = CM is a non-quasianalytic Denjoy–
Carleman class. In [11] they also raise the question, if CM is a quasianalytic Denjoy–
Carlemean, whether a smooth function that is of class CM along each CM curve is of
class CM . _eorem 1.3 answers this question and provides an example of a function
which is smooth, and quasianalytic of a given class CM on every CM curve (called
“arc-quasianalytic” in [5]), yet not itself CM .

2 Preliminaries

Below we give several basic deûnitions.
N denotes the set of non-negative integers. For a multi-index α = (α1 , . . . , αp) ∈

Np , set

∣α∣ ∶= α1 + ⋅ ⋅ ⋅ + αp , Dα ∶= ∂∣α∣

∂xα1
1 ⋅ ⋅ ⋅ ∂xαp

p
, α! ∶= α1! ⋅ ⋅ ⋅ αp!

If p ≥ 2, we denote the Euclidean norm on Rp by

∥x∥ = ∥(x1 , . . . , xp)∥ =
√

x2
1 + ⋅ ⋅ ⋅ + x2

p .

For any bounded subset S ⊆ Rp , we write ∥S∥ ∶= supx∈S ∥x∥ < ∞. If p ≥ 1, t ∈ R,
a ∈ Rp , S ⊆ Rp , we write tS ± a ∶= {ts ± a ∶ s ∈ S}.

We also denote by C∞(U ,F) the F-algebra of smooth (inûnitely-diòerentiable)
F-valued functions on an open set U ⊆ Rp , and by C∞ the class of all smooth func-
tions. Unless otherwise speciûed, we write C∞(U) for C∞(U ,C). Likewise, we de-
note by Cω(U ,F) the corresponding algebra of analytic functions on U , and by Cω

the class of all analytic functions. Unless otherwise speciûed, we write Cω(U) for
Cω(U ,C).

Let M = (Mn)∞n=0 be a non-decreasing sequence of positive real numbers with
M0 = 1.
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Deûnition 2.1 For anopen setU ⊆ Rp ,we say that a function f ∈ C∞(U ,F) belongs
to the set CM(U ,F) if either of the following two equivalent conditions holds:
(i) for any x ∈ U , there exists some openV ⊆ U containing x and constantsA, B > 0

such that, for any multi-index α ∈ Np and y ∈ V

(2.1) ∣Dα f (y)∣ ≤ AB∣α∣∣α∣!M∣α∣;

(ii) for any compact set K ⊆ Rp contained in U , there are A, B > 0, such that for all
y ∈ K, (2.1) holds.

In this case, we will say that f is of class CM ; CM is called a “Denjoy–Carleman” class.

Remark 2.2 Note that if M = (Mn)∞n=0 is identically 1, then CM is the class Cω of
analytic functions. We will call a Denjoy–Carleman class CM “non-analytic” if CM ≠
Cω .

Deûnition 2.3 We say that a function f ∈ C∞(U ,F) is formally CM at a point y ∈ U ,
if there are A, B > 0 such that (2.1) holds; in this case we write f ∈ FM(y,F) (i.e., the
coeõcients of the formal power series of f at y satisfy bounds similar to those in (2.1)).

Deûnition 2.4 Given a closed subset C ⊆ Rp , we say that f ∶ C → F is in CM(C ,F)
if there is some open set U ⊇ C such that f ∈ C∞(U ,F), and, for each x ∈ C, there is
an open neighbourhood V containing x, such that (2.1) holds for all y ∈ V ∩ C, with
suitable A, B > 0.

For any open or closed S ⊆ Rp ,wewrite CM(S) for CM(S ,C). Likewise,we always
write FM(x) for FM(x ,C).

Remark 2.5 Note that in all of the above deûnitions, the requirement of having
upper bounds on all derivatives is actually equivalent to the apparently weaker re-
quirement that there is an upper bound of the same form on all but ûnitely many of
the derivatives.

In order for Denjoy–Carleman classes to satisfy useful properties, one imposes
the condition that M is logarithmically convex, i.e., the ratios Mn+1/Mn form a non-
decreasing sequence. _is condition implies that the sequence M1/n

n is also non-
decreasing (see [15, §1.3]). Because of the Leibniz rule, logarithmic convexity implies
that the sets CM(U ,F) are closed under multiplication (for U open in Rp). Since
CM(U ,F) is also closed under addition, the logarithmic convexity of M implies that
CM(U ,F) forms an F-subalgebra of C∞(U ,F). For the remainder of this article,
we work exclusively work withDenjoy–Carleman classes CM , for M logarithmically-
convex.

It is also sometimes required that

sup
n≥1

( Mn+1

Mn
)

1/n
<∞.

_is condition is equivalent to stablility under diòerentiation of CM(U ,F) (see [15,
Cor. 2]). However, none of the results in this article assume this fact.
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For two Denjoy–Carleman classes CM and CN , CM(U ,F) ⊆ CN(U ,F) if and only
if

(2.2) sup
n≥1

( Mn

Nn
)

1/n
<∞

(see [15, §1.4]). In particular, CM(U ,F) = Cω(U ,F) if and only if supn≥1 M
1/n
n < ∞.

We write CM ⊆ CN if (2.2) holds.

Deûnition 2.6 Amapping g ∶ U → Rp , where U ⊆ Rp is open, is said to be of class
CM if each component function g i ∈ CM(U ,R), where g = (g1 , . . . , gp). In this case,
we write g ∈ CM(U ,Rp).

_eorem 2.7 (see [3,_m. 4.7]) Let U ⊆ R be open and suppose that γ ∈ CM(U ,Rp)
and f ∈ CM(S ,F), where S is an open or closed subset of Rp containing im(γ). _en
the composite function f ○ γ ∈ CM(U ,F).

Deûnition 2.8 A class C of smooth functions is called quasianalytic if whenever
U ⊆ Rp is open and f ∈ C(U ,F) satisûes Dα f (x) = 0 for all α ∈ Np and some x ∈ U ,
then f is identically 0 in a neighbourhood of x0.

_e Denjoy–Carleman theorem ([10, _m. 1.3.8]; also [15, _m. 2]) characterizes
Denjoy–Carleman classes that are quasianalytic.

_eorem 2.9 (Denjoy–Carleman) A Denjoy–Carleman class CM is quasianalytic if
and only if

∞

∑
n=0

Mn

(n + 1)Mn+1
=∞.

3 A Function in a Given Denjoy–Carleman Class That is Nowhere in
any Smaller Class

_e example we construct here is based on the idea Borel used in [7] to construct a
class of quasianalytic functions that contains nowhere analytic functions. _e exam-
ple constructed herewas inspired by, and uses several ideas in the construction of the
non-extendable function of [1,_m. 1.2]. _e ideawill be to construct the function as
the restriction to (−1, 1) of a series of rational functions

∞

∑
n=1

An

z − zn
.

where zn is a sequence of non-real complex numbers accumulating everywhere
(−1, 1). _eorem 1.1 will be proved using the following proposition.

Proposition 3.1 For any non-analytic Denjoy–Carleman class CM , there exists f ∈
C∞((−1, 1)) satisfying:
(i) for all j ≥ 0 and x ∈ (−1, 1), ∣ f ( j)(x)∣ ≤ 9

2 j!M j ;
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(ii) for any dyadic rational x ∈ (−1, 1), and large enough j,

∣ f ( j)(x)∣ ≥ 1
2

1
3 j j!M j .

(iii) for any dyadic rational x ∈ (−1, 1) and large enough j, either

∣Re( f )( j)(x)∣ ≤ 1
3
∣ Im( f )( j)(x)∣ or ∣ Im( f )( j)(x)∣ ≤ 1

3
∣Re( f )( j)(x)∣ .

First, we will prove_eorem 1.1 using Proposition 3.1.

Proof of_eorem 1.1 We assume that CM ⊋ Cω , since Cω is the smallest Denjoy–
Carleman class. We ûrst prove the case F = C. Let f be the function of Proposition 3.1
for the class CM . To prove _eorem 1.1(ii), note that if U ⊆ (−1, 1) is open, and f ∈
CN(U), then, for any x ∈ U , there is some open neighbourhood V of x contained in
U and constants A, B > 0 such that

∣ f ( j)(x)∣ ≤ AB j j!N j .

In particular, if x is a dyadic rational in V , then, for all but ûnitely many j,
1
2

1
3 j j!M j ≤ ∣ f ( j)(x)∣ ≤ AB j j!N j ,

which then implies that CM(U) ⊆ CN(U).
Now consider F = R, and let f be as above. For each dyadic rational x ∈ (−1, 1),

and each j large enough, either

∣Re( f )( j)(x)∣ ≥ 1
4

1
3 j j!M j or ∣ Im( f )( j)(x)∣ ≥ 1

4
1
3 j j!M j .

Set g ∶= Re( f ) + Im( f ). We show that g satisûes the required properties. Clearly g
satisûes _eorem 1.1(i). For each dyadic rational in x ∈ (−1, 1) and for j large enough,
either

∣g( j)(x)∣ ≥ ∣Re( f )( j)(x)∣ − ∣ Im( f )( j)(x)∣ ≥ 2
3
∣Re( f )( j)(x)∣ = 1

6
1
3 j j!M j

or

∣g( j)(x)∣ ≥ ∣ Im( f )( j)(x)∣ − ∣Re( f )( j)(x)∣ ≥ 2
3
∣ Im( f )( j)(x)∣ = 1

6
1
3 j j!M j .

So g satisûes _eorem 1.1(ii) for the same reason above as f does.

Proof of Proposition 3.1 For any real number α > 0, deûne

ϕ(α) ∶= sup
ℓ≥0

αℓ+1

Mℓ
and mn ∶=

Mn+1

Mn
.

Recall that we are assuming that the sequence M is logarithmically convex, i.e., the
sequence mn is non-decreasing. Since CM((−1, 1)) ≠ Cω((−1, 1)), ϕ(α) < ∞, for all
α. Furthermore,

(3.1) Mn =
mn+1

n

ϕ(mn)
.

A proof of (3.1) can be found in [1, §5 , step 1], but is repeated here for convenience.
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By deûnition, it is required to prove that

mn+1
n

Mn
= sup

ℓ≥0

mℓ+1
n

Mℓ
.

Indeed, if ℓ < n, then
mℓ+1

n

Mℓ
≤ mℓ+1

n

Mℓ

mn

mℓ
= mℓ+2

n

Mℓ+1

and if ℓ > n, then
mℓ+1

n

Mℓ
= mℓ

n

Mℓ−1

mn

mℓ
≤ mℓ

n

Mℓ−1
.

_e sequence mℓ+1
n /Mℓ is therefore non-decreasing for ℓ < n and non-increasing for

ℓ > n, and thus attains its supremum at mn+1
n /Mn .

Now choose a non-decreasing sequence of integers bn satisfying:
(a) bn ≤ min(mn , 2n), for all n;
(b) for all n, there is an integer kn such that bn = 2kn

(c) for all k, there is an integer nk such that bnk = 2k ;
(d) b1 = 1.
For example, we can deûne the sequence (bn) recursively by b1 = 1, and for all n ≥ 1,

bn+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

bn if 2bn > mn+1,
2bn if 2bn ≤ mn+1.

_en deûne f by

(3.2) f (x) ∶=
∞

∑
k=1

1
3kϕ(mk)

bk
∑

a=−bk

1
(x − ( a

bk
+ i

mk
))

.

It is helpful to picture the poles on the complex plane in (3.2) both as coming in rows
of height 1

mk
and as columns lying above dyadic rationals in (−1, 1).

We will verify that f satisûes the required properties.
First we will prove that (3.2) converges uniformly on (−1, 1) together with its

derivatives of every order. _en f ∈ C∞((−1, 1)), and we can diòerentiate (3.2) term-
by-term. Note that for any s, t ∈ R, ∣s − it∣ ≥ ∣t∣, and that, by the deûnition of ϕ,

m j+1
k

ϕ(mk)
≤ M j , for all k, j.

We have the following estimates on the j-th derivative of a general term in (3.2):

∣ 1
3kϕ(mk)

(
bk
∑

a=−bk

1
(x − ( a

bk
+ i

mk
))

)
( j)

∣

= j!∣ 1
3kϕ(mk)

bk
∑

a=−bk

1
(x − ( a

bk
+ i

mk
)) j+1

∣
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≤ j!
1

3kϕ(mk)
bk
∑

a=−bk

1
∣ i
mk

∣ j+1
= j!

m j+1
k

3kϕ(mk)
(2bk + 1)

≤ j!M j
2bk + 1

3k ≤ M j j!
2k+1 + 1

3k = 9
2
j!M j .

Since
∞

∑
k=1

M j j!
2k+1 + 1

3k = 9
2
j!M j ,

the series in (3.2) converges absolutely and uniformly on (−1, 1) by theM-test.
Diòerentiating term-by-term, the above computation gives the upper bounds (i)

on the derivatives of f .
We prove the lower bounds (ii) on the derivatives of f at dyadic rationals at the

same time as (iii). _e idea is, for any given dyadic rational t = p
2q ∈ (−1, 1), to look

at those summands in (3.2) that have poles on vertical lines lying above t. Since by
construction there are only ûnitely many rows of poles not containing a pole lying
above t, the sum of these summands is analytic when restricted to (−1, 1), and thus
will not aòect the estimate. For the remaining rows, the sum over the j-th deriva-
tives of summands with poles not lying above t is amultiple of the sum over the j-th
derivatives of the summands with poles that do lie above t, and this multiple can be
made arbitrarily small for large j. So, as long as the sum of the j-th derivatives of the
summands with poles lying above t is large, the j-th derivative of f at t will be large
too.

To show this explicitly, ûx some dyadic rational t = p
2q ∈ (−1, 1). _en, for some

large K = Kt , bk ≥ 2q for all k ≥ K. _us, we can write

f (x) = ∑
k<K

1
3kϕ(mk)

bk
∑

a=−bk

1
(x − ( a

bk
+ i

mk
))

+ ∑
k≥K

1
3kϕ(mk)

bk
∑

a=−bk

1
(x − ( a

bk
+ i

mk
))

.

Call the ûrst sum f1(x) and the second sum f2(x); f1 is clearly holomorphic in an
open neighbourhood of (−1, 1) in C, and is thus in particular analytic on (−1, 1). So,
there are E , F > 0 such that ∣ f ( j)1 (t)∣ ≤ EF j j! for all j ≥ 0. Since we can diòerentiate
the series for f (x) term-by-term, we can also diòerentiate the series for f2(x) term-
by-term. In particular,

f ( j)2 (t)/ j! =
∞

∑
k≥K

(−1) j

3kϕ(mk)
bk
∑

a=−bk

1
(t − ( a

bk
+ i

mk
)) j+1

= ∑
k≥K

(−1)( j)
3kϕ(mk)

1
( i

mk
) j+1

+ ∑
k≥K

(−1) j

3kϕ(mk)
∑

−bk≤a≤bk
a/bk≠t

1
(t − ( a

bk
+ i

mk
)) j+1

.

Call the ûrst of these sums S1, j , and the second S2, j . Clearly, for j ≥ K,

∣S1, j ∣ = ∑
k≥K

m j+1
k

ϕ(mk)3k ≥ 1
3 j

m j+1
j

ϕ(m j)
= 1

3 j M j

by (3.1). If j is odd, then ∣Re(S1, j)∣ = ∣S1, j ∣, and ∣ Im(S1, j)∣ = 0, with the roles of the
real and imaginary parts reversed if j is even.
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Remembering that bk ≤ mk for all k, and that bk is a power of 2 bigger than 2q for
all k ≥ K (and hence tbk − a ∈ Z for all a ∈ Z), we also have that

∣S2, j ∣ ≤ ∑
k≥K

1
3kϕ(mk)

∑
−bk≤a≤bk
a/bk≠t

1
∣(t − a

bk
) − ( i

mk
)∣ j+1

= ∑
k≥K

1
3kϕ(mk)

∑
−bk≤a≤bk
a/bk≠t

m j+1
k

(m2
k
b2k

(tbk − a))2 + 1) j+1
2

≤ ∑
k≥K

m j+1
k

3kϕ(mk)
∑

−∞<n<∞
n≠0

1

(n2 + 1) j+1
2

= ( ∑
−∞<n<∞

n≠0

1

(n2 + 1) j+1
2

)( ∑
k≥K

m j+1
k

3kϕ(mk)
) .

_e second factor is just ∣S1, j ∣. Call the ûrst factor C j . _en, for j ≥ K odd,

∣Re( f )( j)(t)/ j!∣ ≥ ∣Re(S1, j)∣ − ∣Re(S2, j)∣ − ∣Re( f1)( j)(t)/ j!∣

≥ ∣S1, j ∣ − ∣S2, j ∣ − ∣ f ( j)1 (t)/ j!∣ ≥ (1 − C j)∣S1, j ∣ − EF j

and

∣ Im( f )( j)(t)/ j!∣ ≤ ∣ Im(S1, j)∣ + ∣ Im(S2, j)∣ + ∣ Im( f ( j)1 )(t)/ j!∣

≤ ∣S2, j ∣ + ∣ f ( j)1 (t)/ j!∣ ≤ C j ∣S1, j ∣ + EF j .

with the roles of the real and imaginary parts reversed if j ≥ K is even.
Since for large enough j, EF j < 3

32
1
3 j M j < 1

8
1
3 j M j (since M j grows more quickly

than any exponential), if for large enough j, C j < 3/48 < 1/8, we would have for large
odd j

1
3
∣Re( f )( j)(t)/ j!∣ − ∣ Im( f )( j)(t)/ j!∣ ≥ 1

3
((1 − C j)∣S1, j ∣ − EF j) − (C j ∣S1, j ∣ + EF j)

= ( 1
3
− 4

3
C j) ∣S1, j ∣ − 4/3EF j

≥ 1
4

1
3 j M j − 4/3EF j ≥ 1

8
1
3 j M j > 0,

so that both

∣ Im( f )( j)(t)∣ ≤ 1
3
∣Re( f )( j)(t)∣

and

∣ f ( j)(t)∣ ≥ ∣Re( f )( j)(t)∣ − ∣ Im( f )( j)(t)∣ ≥ 2
3
∣Re( f )( j)(t)∣

≥ 2
3
j!((1 − C j)∣S1, j ∣ − EF j) ≥ 2

3
j!( 7

8
1
3 j M j −

1
8

1
3 j M j) = 1

2
1
3 j j!M j .
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If j is even, then the roles of the real part and imaginary part are reversed. So (ii) and
(iii) would follow provided that C j → 0 as j →∞. Indeed,

C j = 2
∞

∑
n=1

1

(n2 + 1) j+1
2

≤ 2( 1
√

2
j+1 +

∞

∑
n=2

1
n j+1 )

≤ 2( 1
√

2
j+1 + ∫

∞

1

1
x j+1 dx) ≤ 2( 1

√
2
j+1 +

1
j
) → 0 as j →∞,

as desired.

4 A Function Formally in a Given Denjoy–Carleman Class at Every
Point, Yet Not in the Class

_e idea for the construction of such a function will be to build it as a series of func-
tions fk whose k-th derivatives at points ak are large,where (ak) is a sequence tending
to 0, and whose derivatives at points other than ak are suõciently nice. _e follow-
ing proposition is in some sense a simpliûed version of the example constructed in
_eorem 3.1 and will provide the building blocks of our example.

Proposition 4.1 For any non-analytic Denjoy–Carleman class CM , there exists f ∈
C∞(R) satisfying:
(i) for all j ≥ 0, and all x ∈ R, ∣ f ( j)(x)∣ ≤ j!M j ;
(ii) for all j ≥ 0, and all x ≠ 0, ∣ f ( j)(x)∣ ≤ j!∣x∣−( j+1);
(iii) for all j ≥ 1, ∣ f ( j)(0)∣ ≥ 1

2 j j!M j .

Proof Let mn ∶= Mn+1/Mn and let

ϕ(α) ∶= sup
ℓ≥0

αℓ+1

Mℓ
,

as in the proof of Proposition 3.1 (recalling again the hypothesis of logarithmic con-
vexity). Deûne

(4.1) f (x) =
∞

∑
k=1

1
2kϕ(mk)(x − i

mk
)
.

We will prove that f satisûes all the required properties.
Firstwewill show that (4.1) converges uniformly onR togetherwith its derivatives

of every order. _en f ∈ C∞(R), and we can diòerentiate term-by-term. Indeed, we
have the following estimates on the j-th derivative of a general term of the series in
(4.1):

∣( 1
2kϕ(mk)(x − i

mk
)
)
( j)

∣ = j!∣ 1
2kϕ(mk)(x − i

mk
) j+1

∣

≤ j!
1

2kϕ(mk)∣ i
mk

∣ j+1
= j!

1
2k

m j+1
k

ϕ(mk)
≤ j!M j

1
2k .
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Since
∞

∑
k=1

j!M j
1
2k = j!M j ,

the series in (4.1) converges absolutely and uniformly on R by theM-test.
Diòerentiating term-by-term, the above computation gives the upper bounds (i)

on the derivatives of f .
We next prove (ii). Note that for all k, ϕ(mk) ≥ 1. Indeed,

ϕ(mk) = sup
ℓ≥0

mℓ+1
k

Mℓ
≥

mk+1
k

Mk
≥ mkmk−1 ⋅ ⋅ ⋅m1m0

Mk

= 1
Mk

Mk+1

Mk

Mk

Mk−1
⋅ ⋅ ⋅ M2

M1

M1

M0
= Mk+1

Mk

1
M0

≥ 1.

So, for all x ≠ 0,

∣ f ( j)(x)∣ = j!∣
∞

∑
k=1

1
2kϕ(mk)(x − i

mk
) j+1

∣

≤ j!
∞

∑
k=1

1
2kϕ(mk)∣x∣ j+1 = ∣x∣−( j+1) j!

∞

∑
k=1

1
2kϕ(mk)

≤ j!∣x∣−( j+1) .

To prove the lower bounds (iii) on the derivatives at 0, note that for j ≥ 1,

∣ f ( j)(0)∣ = j!∣
∞

∑
k=1

1
2kϕ(mk)(− i

mk
) j+1

∣ = j!
∞

∑
k=1

m j+1
k

2kϕ(mk)

≥ 1
2 j

m j+1
j

ϕ(m j)
j! = 1

2 j j!M j .

_e proofs of _eorems 1.2 and 1.4 will be somewhat simpliûed by introducing
strictly logarithmically convexweight sequences M for ourDenjoy–Carleman classes.

Deûnition 4.2 A sequence M = (Mn)∞n=0 is called strictly logarithmically-convex
if the ratios Mn+1/Mn form a strictly-increasing sequence.

Notice that strict logarithmic convexity also implies that the sequence M1/n
n is

strictly increasing.

Lemma 4.3 Let CM denote a non-analytic Denjoy–Carleman class. _en there exists
a non-decreasing strictly-logarithmically convex sequence M̃ such that CM = CM̃ .

Proof For n ≥ 0, set mn = Mn+1/Mn . Partition N into a union of disjoint intervals
Sk on which mn is constant, i.e.,

N =
∞

⋃
k=0

Sk ,

where Sk = {nk , nk + 1, . . . , nk + ℓk − 1}, mn = mn′ for all n, n′ ∈ Sk , and mnk+1−1 <
mnk+1 . Notice that each Sk really is ûnite since CM is non-analytic, and that #Sk = ℓk .
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We deûne a sequence (an)∞0 of real numbers as follows. Set

A ∶= min(2,
mnk+1

mnk+1−1
)

and then if n = nk + i ∈ Sk , an ∶= Ai/ℓk . Notice that since nk+1 ∈ Sk+1 but nk+1 − 1 ∈ Skmnk+1
mnk+1−1

,A > 1 and also that 1 ≤ an ≤ 2 for all n. Deûne M̃0 = M0 = 1 and

M̃n = Mn
n−1
∏
k=0
ak

for n ≥ 1. It is easy to verify that M̃ is non-decreasing, strictly logarithmically-convex,
and that CM = CM̃ .

Proof of_eorem 1.2 _e case CM = Cω is easy; the function f (x) = e−1/x2
sat-

isûes all the necessary properties. Assume from now on that CM ≠ Cω . In light of
Lemma 4.3, we might as well assume that M is strictly logarithmically convex. _e
function in the construction below is complex-valued. _e case F = R follows from
the case F = C by considering real and imaginary parts. For the case F = C, the idea is
to construct f as an inûnite sumof functions described in Proposition 4.1, but shi�ed
so that the points at which we have a lower bound on the derivatives, analogous to
those of Proposition 4.1(iii), are on a sequence tending to 0. Consider the sequence
(M1/n

n )∞n=1. Since CM is not analytic, M1/n
n →∞. Set bn = M1/n

n . Note that the terms
bn are strictly increasing (and in particular distinct), since M is strictly logarithmi-
cally convex. _en deûne an ∶= 1

√

bn
for all n, so that an → 0.

We also deûne a family of non-decreasing, logarithmically-convex sequences in-
dexed by k (k ∈ Z, k ≥ 1), Mk = (Mk

n)∞n=0, with Mk
0 = 1 by

Mk
n ∶=

⎧⎪⎪⎨⎪⎪⎩

1 if k > n,
c2n−2k+1
k Mn if k ≤ n,

for all k ≥ 1, where ck ≥ Mk are large constants to be determined later, but which will
depend only on the sequences (an) and (Mn).

Notice that CM = CMk
, for all k ≥ 1. Let hk be the function given by Proposition 4.1

applied to the sequence Mk , and set fk(x) = hk(x − ak), for all k. _en the fk ∈
C∞(R) and satisfy:

(i) for all j ≥ 0 and all x ∈ R, ∣ f ( j)k (x)∣ ≤ j!Mk
j ;

(ii) for all j ≥ 0 and for all x ≠ ak , ∣ f ( j)k (x)∣ ≤ ∣x − ak ∣−( j+1) j!;
(iii) for all j ≥ 1, ∣ f ( j)k (ak)∣ ≥ 1

2 j j!Mk
j .

Deûne

(4.2) f (x) ∶=
∞

∑
k=1

1
2k fk(x).

We will verify that f satisûes all of the necessary properties. First we prove that
(4.2) converges uniformly on R together with its derivatives of every order. _en
f ∈ C∞(R), and we can diòerentiate term-by-term. We have the following estimates
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on the j-th derivative of a general term of the series in (4.2),

∣ 1
2k f

( j)
k (x)∣ ≤ 1

2k Mk
j j! =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j!Mk
j

2k if k ≤ j,
j!
2k otherwise.

Since
j
∑
k=1

j!Mk
j

2k +
∞

∑
k= j+1

j!
2k <∞,

the sum converges absolutely and uniformly on R by theM-test.
To prove (i),we show that for each x ≠ 0, there is some neighbourhoodU contain-

ing x and constants A, B such that, for all j and all y ∈ U ,

∣ f ( j)(y)∣ ≤ AB j j!M j .

We distinguish two cases: x ≠ an for all n, and x = an , for some n. In the ûrst case,
there is a neighbourhood U of x and a δ > 0 such that inf k ∣y − ak ∣ > δ for all y ∈ U .
_en we see that, for y ∈ U and j ≥ 0,

∣ f ( j)(y)∣ ≤ j!
∞

∑
k=1

1
2k ∣x − ak ∣−( j+1)

≤ j!
∞

∑
k=1

1
2k (

1
δ
)

j+1
= 1
δ
(1
δ
)

j
j! ≤ 1

δ
(1
δ
)

j
j!M j .

In the second case, suppose x = an . _en there is a neighbourhood U of an and
δ = δn > 0 such that inf k≠n ∣y − ak ∣ > δ for all y ∈ U . Let A = max(δ−1 , 1). We see
that, for y ∈ U and j ≥ 0,

∣ f ( j)(y)∣ ≤ j! ∑
k≠n

1
2k ∣x − ak ∣−( j+1) + j!

1
2n Mn

j

≤ j!
∞

∑
k=1

1
2k (

1
δ
)

j+1
+ j!c2 j+1

n M j =
1
δ
(1
δ
)

j
j! + j!c2 j+1

n M j

≤ (2Acn)(c2nA) j j!M j .

Showing (ii) is an easy computation. Recall that, by the logarithmic convexity of
M, for any positive integers j, k with k ≤ j, M1/k

k ≤ M1/ j
j . So, for j ≥ 1,

∣ f ( j)(0)∣ ≤ j!
j
∑
k=1

1
2k ∣ak ∣−( j+1) + j!

∞

∑
k= j+1

1
2k Mk

j

≤ j!
j
∑
k=1

√
bk

2 j
+ j!

∞

∑
k= j+1

1
2k = j!

j
∑
k=1

M j/k
k + j!

2 j ≤ 2e j j!M j .

In order to show (iii), we will need to pick appropriate cn . Note that for all n ≥ 1,

∣ f (n)(an)∣ ≥
1
2n

1
2n Mn

nn! − n! ∑
k≠n

1
2k ∣an − ak ∣−(n+1)

= 1
2n

1
2n cnMnn! − n! ∑

k≠n

1
2k ∣an − ak ∣−(n+1) .

(4.3)
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Since
n! ∑

k≠n

1
2k ∣an − ak ∣−(n+1) < n!( inf

n≠k
∣an − ak ∣)

−(n+1) <∞,

we can choose cn ≥ Mn large so that (4.3) is bigger than nnn!Mn , and hence

∣ f (n)(an)∣ ≥ nnn!Mn .

So, if f ∈ CM(R), then there would be some ε > 0 and constants A, B > 0 such that
for ∣x∣ < ε

∣ f (n)(x)∣ ≤ ABnn!Mn .
In particular, for all but ûnitely many n, ∣an ∣ < ε and

nnn!Mn ≤ ∣ f (n)(an)∣ ≤ ABnn!Mn .

which is impossible, since nn grows more quickly than any exponential.

Proposition 4.4 Let CM be any Denjoy–Carleman class, U ⊆ Rp open ( for p ≥ 1),
and suppose f ∈ C∞(U ,F). _en if f ∈ FM(x ,F), for each x ∈ U there exists an open
dense subset V of U such that f ∈ CM(V ,F).

Proof It suõces to prove that for each non-empty open W1 ⊆ U , there exists a non-
empty open W2 ⊆ W1 such that f ∈ CM(W2 ,F). So, suppose a non-empty open
W1 ⊆ U is given. Let W ′ ⊆ W1 be open, bounded, with its closure contained inside
W1. Let A be an upper bound of f on W ′. Set A′ = max(A, 1), and for each B > 0 set

SB ∶= {x ∈W ′ ∶ ∣Dα f (x)∣ ≤ A′B∣α∣∣α∣!M∣α∣ for all α ∈ Np}.

By assumption, since for each x ∈W ′, f ∈ FM(x ,F), there are Px ,Qx > 0 such that

∣Dα f (x)∣ ≤ PxQ ∣α∣x ∣α∣!M∣α∣
for all α ∈ Np . Considering the cases Px/A′ ≤ 1 and Px/A′ > 1 separately, it is easy to
see that for each x ∈W ′, there is some B > 0 such that x ∈ SB . It follows that

W ′ =
∞

⋃
N=1

SN .

Since for each α, Dα f is continuous, each SN is closed (with respect to the sub-
space topology on W ′). Since W ′ is locally compact and Hausdorò, the Baire cat-
egory theorem provides at least one N0 such that SN0 has non-empty interior (with
respect to the subspace topology on W ′). Let W2 be the interior of SN0 . By deûnition
f ∈ CM(W2 ,F), andW2 ⊆W1 is open, as desired.

5 A Smooth Function That is Quasianalytic on Every Curve of a
Given Quasianalytic Denjoy–Carleman Class, Yet Not in the
Class

_e idea for constructing this function is similar in spirit to the idea for the function
constructed in §4. _e idea is to construct f as a series of functions fk whose (2k)-th
derivatives at points ak is large, where (ak) is a sequence tending to 0 on some �at
curve, and whose derivatives at points other than ak is suõciently nice. Since there
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are no quasianalytic �at curves, this will imply that the function will be quasianalytic
on each quasianalytic curve, but will not be quasianalytic.

We ûrst give an analogue of Proposition 4.1 for dimension > 1; this is Proposi-
tion 5.2. _e proof of the latter uses the following lemma, which provides a way of
passing a function in one variablewith given derivative bounds to a function in many
variables with similar derivative bounds.

Lemma 5.1 Let p ≥ 2, and let g ∈ C∞(R) denote a function such that

∣g( j)(t)∣ ≤ j!Ct , j ,

where Ct , j is a non-decreasing sequence for each t ∈ R. Set

f (x) ∶= g(∥x∥2) = g(x2
1 + ⋅ ⋅ ⋅ + x2

p).

_en f ∈ C∞(Rp) and
(i) for all α ∈ Np ,

∣Dα f (x)∣ ≤ (B(∥x∥ + 1))∣α∣∣α∣!C∥x∥2 ,∣α∣;
(ii) for all 1 ≤ i ≤ p and n ≥ 0,

∂2n f
∂x2n

i
(0) = g(n)(0)(2n)!

n!
,

where B depends only on p (not on g, α, or x).

Proof By a multivariate version of Faà di Bruno’s formula (see, for instance, [3,
Prop. 4.3]) applied to g(∥x∥2),

(5.1) Dα f (x) = α!∑
1

k1,1!k1,2! ⋅ ⋅ ⋅ kp,1!kp,2!
g(n)(∥x∥2)

p
∏
j=1

(2x j)k j,1 ,

where n = k1,1 + k1,2 + ⋅ ⋅ ⋅ + kp,1 + kp,2 and the sum is taken over all 2p–tuples of
non-negative integers (k1,1 , k1,2 , . . . , kp,1 , kp,2) such that

(5.2) α = (α1 , . . . , αp) = (k1,1 + 2k1,2 , . . . , kp,1 + 2kp,2).
Since n = k1,1 + ⋅ ⋅ ⋅ + kp,2 ≤ α1 + ⋅ ⋅ ⋅ + αp = ∣α∣ whenever k i , j satisfy (5.2) (1 ≤ i ≤ p, j =
1, 2), we see that

∣Dα f (x)∣ ≤ α!∑
1

k1,1!k1,2! ⋅ ⋅ ⋅ kp,1!kp,2!
∣g(n)(∥x∥2)∣

p
∏
j=1

(2∣x j ∣)k j,1

≤ α!∑
1

k1,1!k1,2! ⋅ ⋅ ⋅ kp,1!kp,2!
n!C∥x∥2 ,∣α∣2∣α∣(∥x∥ + 1)∣α∣

≤ (2(∥x∥ + 1)) ∣α∣C∥x∥2 ,∣α∣∣α∣!∑
n!

k1,1! ⋅ ⋅ ⋅ kp,2!
,

(5.3)

where the summation is as in (5.1). By themultinomial theorem,

n!
k1,1! ⋅ ⋅ ⋅ kp,2!

≤ ∑
ℓ1+⋅⋅⋅+ℓ2p=n

n
ℓ1 ⋅ ⋅ ⋅ ℓ2p

= (1 + ⋅ ⋅ ⋅ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2p 1’s

)n = (2p)n ≤ (2p)∣α∣ .
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_us, from (5.3),

∣Dα f (x)∣ ≤ (4p(∥x∥ + 1)) ∣α∣∣α!∣C∥x∥2 ,∣α∣#S ,

where S is the set of all 2p-tuples of non-negative integers (k1,1 , k1,2 , . . . , kp,1 , kp,2)
satisfying (5.2). Since for each i, α and k i ,1 uniquely determine k i ,2, and there are at
most ∣α∣ + 1 choices of k i ,1, #S ≤ (∣α∣ + 1)p ≤ (e p)∣α∣. So in all,

∣Dα f (x)∣ ≤ (4pe p(∥x∥ + 1)) ∣α∣∣α!∣C∥x∥2 ,∣α∣ ,
which is (i). Part (ii) is obvious either again from Faà diBruno’s formula, or by looking
at the formal power series of g at 0.

Proposition 5.2 For any p ≥ 2 and any non-analytic Denjoy–Carleman class CM ,
there exists f ∈ CM(Rp) satisfying:
(i) for any compact K ⊆ Rp , and for all α ∈ Np , x ∈ K,

∣Dα f (x)∣ ≤ (B(∥K∥ + 1))∣α∣∣α∣!M∣α∣;
(ii) for any compact K ⊆ Rp , and for all α ∈ Np , x ∈ K ∖ {0},

∣Dα f (x)∣ ≤ (B(∥K∥ + 1))∣α∣∣α∣!∥x∥−2(∣α∣+1) , if ∥x∥ ≤ 1;

(iii) for any compact set K ⊆ Rp , and for all α ∈ Np , x ∈ K ∖ {0},

∣Dα f (x)∣ ≤ (B(∥K∥ + 1))∣α∣∣α∣!, if ∥x∥ ≥ 1;

(iv) for all n ≥ 1,

∣ ∂
2n f

∂x2n
1

(0)∣ ≥ (2n)!Mn ,

where B depends only on p (as in Lemma 5.1, B and does not depend on M or K).

Proof Apply Lemma 5.1 to Proposition 4.1.

Let p ≥ 2. For any integer m ≥ 1 and real number a > 0, we denote by Sp
a ,m the set

{x = (x1 , x2 , . . . , xp) ∈ Rp ∶ x1 ≥ 0 and x2 ≥ axm
1 }

and by Qp the set

{x = (x1 , x2 , . . . , xp) ∈ Rp ∶ x1 > 0 and x2 > 0} .

_e following lemma is elementary.

Lemma 5.3 Let p ≥ 2,m ≥ 1 an integer, and a > 0 a real number. Let S = S
p
a ,m . _en

for suõciently small positive t,

dist((t, e− 1
t2 , 0, . . . , 0), S) ∶= inf

s∈S
∥(t, e− 1

t2 , 0, . . . , 0) − s∥ ≥ e− 1
t2 .

Proof of_eorem 1.4 _e proof is very similar to that of_eorem 1.2. _e case F =
R follows immediately from the case F = C by considering real and imaginary parts.
For the case F = C, consider the sequence (bn)∞n=1 = (M1/n

n )∞n=1. Since CM ≠ Cω ,
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bn → ∞. In light of Lemma 4.3, we might as well assume that the terms of bn are
distinct. For n ≥ 1, set

an ∶= (
¿
ÁÁÀ 1

log b1/4
n
,

1

b1/4
n
, 0, . . . , 0) .

_en an → 0, and an ∈ {(t, e− 1
t2 , 0, . . . , 0) ∶ t > 0}. Deûne a family ofnon-decreasing,

logarithmically-convex sequences indexed by k (k ∈ Z, k ≥ 1), Mk = (Mk
n)∞n=0, with

Mk
0 = 1 by

Mk
n ∶=

⎧⎪⎪⎨⎪⎪⎩

1 if k > n,
c2n−2k+1
k Mn if k ≤ n,

where ck ≥ Mk are large constants to be determined later, butwill depend only on the
sequences (an) and (Mn).
As in the proof of _eorem 1.2, CMk = CM for all k. Let hk be the function given

by Proposition 5.2 applied to the sequence Mk , and set fk(x) = hk(x − ak), for all k.
Let a = 1 + supk≥1 ∣ak ∣. _en the fk ∈ C∞(Rp) and satisfy:
(i) for any compact K ⊆ Rp , and for all α ∈ Np , x ∈ K,

∣Dα fk(x)∣ ≤ (B(∥K∥ + a))∣α∣∣α∣!Mk
∣α∣;

(ii) for any compact K ⊆ Rp , and for all α ∈ Np , x ∈ K ∖ {ak},

∣Dα fk(x)∣ ≤ (B(∥K∥ + a))∣α∣(∥x − ak∥−2(∣α∣+1) + 1) ∣α∣!;

(iii) for all n ≥ 1,

∣ ∂
2n fk
∂x2n

1
(ak)∣ ≥

1
2n (2n)!M

k
n ,

where B does not depend on k or the choice of compact set K.
Deûne

f (x) ∶= ∑
k=1

1
2k fk(x).

We will show that f satisûes all the required properties.
_e proof that f ∈ C∞(Rp) and thatwe can diòerentiate term-by-term is the same,

mutatis mutandis, as the proof of _eorem 1.2(i) (the diòerence being that here the
estimates must be made on compact sets and that there are more coeõcients and
several extra terms to keep track of).

_e proof of (i) is also the same, mutatis mutandis, as the proof of_eorem 1.2(i)
(with the same diòerences as above).

_e proofs of (ii) and (iii) are similar to each other, and are both similar to proof
of _eorem 1.2(ii). Fix m ≥ 1 an integer, and a > 0 a real number. Let S ∶= S

p
a ,m . If

x ≠ 0, then by (i), we have the desired bounds locally around x in S. If x = 0, then by
Lemma 5.3, for all but ûnitely many k (say, for k ≥ j), dist(ak , S) ≥ 1

bk
. _en there is

a bounded neighbourhood U of 0 in S (i.e., the intersection of a neighbourhood of 0
in Rp with S) such that for all y ∈ U and k < j, ∥y − ak∥ > δ. Set C ∶= max(δ−1 , 1).
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Let K be any compact set containing U . _en for any α with ∣α∣ ≥ 1, and any y ∈ U ,

∣Dα f (y)∣

≤ (B(∥K∥ + a))∣α∣∣α∣!(
j−1
∑
k=1

1
2k (∥y − ak∥−2(∣α∣+1) + 1)

+
∣α∣
∑
k= j

1
2k (∥y − ak∥−2(∣α∣+1) + 1) +

∞

∑
k=∣α∣+1

1
2k Mk

∣α∣)

≤ (B(∥K∥ + a)) ∣α∣∣α∣!(( j − 1)δ−2(∣α∣+1) +
∣α∣
∑
k= j

(b1/4
k )2(∣α∣+1) +

∞

∑
k=1

1
2k )

≤ (B(∥K∥ + a)) ∣α∣∣α∣!( e jδ−4∣α∣ +
∣α∣
∑
k= j

(b1/4
k )4∣α∣ + 1)

≤ (B(∥K∥ + a)) ∣α∣∣α∣!( e jδ−4∣α∣ +
∣α∣
∑
k= j

M ∣α∣/kk + e j)

≤ (B(∥K∥ + a)) ∣α∣∣α∣!( e jδ−4∣α∣ + e∣α∣M∣α∣ + e j)

≤ (3e j)( eBC4(∥K∥ + a)) ∣α∣∣α∣!M∣α∣ .

_e proof of (iii) is nearly identical to the proof of (ii). Let K be any compact subset
of Rp ∖ Qp . _en for all x = (x1 , x2 , . . . , xp) ∈ K, and k ≥ 1 (considering the cases
x1 ≤ 0 and x2 ≤ 0 separately), ∥x − ak∥ ≥ 1

b1/4
k

. So, for ∣α∣ ≥ 1, and all x ∈ K,

∣Dα f (x)∣ ≤ (B(∥K∥ + a)) ∣α∣∣α∣!(
∣α∣
∑
k=1

1
2k (∥y − ak∥−2(∣α∣+1) + 1) +

∞

∑
k=∣α∣+1

1
2k Mk

∣α∣)

≤ (B(∥K∥ + a)) ∣α∣∣α∣!(
∣α∣
∑
k=1

(b1/4
k )4∣α∣ +

∞

∑
k=1

1
2k )

≤ (B(∥K∥ + a)) ∣α∣∣α∣!( ∣α∣M∣α∣ + 1) ≤ 2(eB(∥K∥ + a))∣α∣∣α∣!M∣α∣ .

_e proof of (iv) is similar to that of_eorem 1.2(iii). Note that for n ≥ 1,

∣ ∂
2n f

∂x2n
1

(an)∣ ≥
1
2n

1
2n Mn

n(2n)! − ∑
k≠n

1
2k (B∥an∥ + a)2n(2n)!(∥an − ak∥−2(2n+1) + 1)

= 1
4n cnMn(2n)! − ∑

k≠n

1
2k (B∥an∥ + a)2n(2n)!(∥an − ak∥−2(2n+1) + 1).(5.4)

Since

∑
k≠n

1
2k (B∥an∥ + a)2n(2n)!(∥an − ak∥−2(2n+1) + 1) ≤

(Ba + a)2n(2n)!(( inf
n≠k

∣an − ak ∣)
−2(2n+1) + 1) <∞,

we can choose cn ≥ Mn large so that (5.4) is bigger than (2n)2n(2n!M2n), and hence

∣ ∂
2n f

∂x2n
1

(an)∣ ≥ (2n)2n(2n)!M2n .
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So, if f ∈ CM(Rp), then on some neighbourhood of 0, there would be C ,D > 0 such
that, for all n and x ∈ U ,

∣ ∂
2n f

∂x2n
1

(x)∣ ≤ CD2n(2n)!M2n .

But since an → 0, for all but ûnitely many n,

(2n)2n(2n)!M2n ≤ ∣ ∂
2n f

∂x2n
1

(an)∣ ≤ CD2n(2n)!M2n ,

which is an obvious contradiction.

Proof of_eorem 1.3 _e case F = R follows immediately from the case F = C by
considering real and imaginary parts. We show that in the complex case, the func-
tion f provided by _eorem 1.4 satisûes the necessary properties. We know that
f ∈ C∞(Rp) and f /∈ CM(Rp). Let γ ∈ CM(U ,Rp) (U ⊆ R open) be an arbitrary
quasianalytic curve. It is required to show that f ○ γ ∈ CM(U). _is is equivalent to
showing that for each t0 ∈ U , there is some ε > 0 such that f ○γ ∈ CM((t0 − ε, t0 + ε)).
If γ(t0) ≠ 0, then there is some ε > 0 such that γ(t) ≠ 0, for t ∈ (t0 − ε, t0 + ε). _en,
since γ((t0 − ε, t0 + ε)) ⊆ Rp ∖ {0}, f ○ γ ∈ CM((t0 − ε, t0 + ε)), by _eorem 2.7.

So, it remains to consider the case γ(t0) = 0. Without loss of generality, suppose
t0 = 0. We distinguish several cases:

(i) γ(n)1 (0) = 0, for all n ≥ 0;
(ii) γ(n)2 (0) = 0, for all n ≥ 0;
(iii) γ(n1)

1 (0) ≠ 0 and γ(n2)

2 (0) ≠ 0, for n1 , n2 ∈ N.
In the ûrst case, by quasianalyticity, there is ε > 0 such that γ1∣(−ε ,ε) ≡ 0, and as such
∣γ2(t)∣ ≥ ∣γ1(t)∣, for all ∣t∣ < ε, so that

γ((−ε, ε)) ⊆ (Rp ∖Qp) ∪ S
p
1,1 ,

and thus f ○ γ ∈ CM((−ε, ε)), by _eorem 2.7.
In the second case, by quasianalyticity, there is ε > 0 such that γ2∣(−ε ,ε) ≡ 0, and as

such, γ((−ε, ε)) ⊆ Rp ∖Qp , and thus f ○ γ ∈ CM((−ε, ε)), by _eorem 2.7.
In the third case, let k i (i = 1, 2) be the smallest integer such that γ(k i)

i (0) ≠ 0 (note
that each k i ≥ 1). _en we can write γ i(t) = tk i δ i(t) for δ i ∶U → R continuous, and
δ i(0) ≠ 0 (by L’Hôpital’s rule). For ε ≤ 1 small,we can assume that there are constants
a1 , a2 > 0 such that ∣δ1(t)∣ ≤ a1 and ∣δ2(t)∣ ≥ a2, for ∣t∣ < ε. Let m be any integer at
least as big as k2/k1. _en

a2

am
1
∣γ1(t)∣m = a2

am
1
∣tk1δ1(t)∣m ≤ a2∣t∣k2 ≤ ∣tk2δ2(t)∣ = ∣γ2(t)∣,

so that
γ((−ε, ε)) ⊆ (Rp ∖Qp) ∪ S

p
a2/am1 ,m

,

and thus f ○ γ ∈ CM((−ε, ε)) by _eorem 2.7.
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Remark 5.4 In _eorem 1.3, that the function can be taken to be of class C∞ is
somewhat surprising, as in the analytic case, a functionwhich is smooth and analytic
even on every straight line is already analytic (see [2, _m. 5.5.31]). _is means that
there is a large loss of control when passing from Cω to larger quasianalytic Denjoy–
Carleman classes: the extra assumption of smoothness no longer suõces to recover
global quasianalyticity from quasianalyticity on every curve.

Remark 5.5 Of course it does not make sense to strengthen the hypotheses of_e-
orem 1.3 to requiring that f is CM on every C∞ curve: if γ(t) is any C∞ curve that is
�at at a point t = 0, then f ○ γ is also �at, and is therefore constant by quasianalytic-
ity. Looking at the composition of f with all �at curves γ then implies that f is itself
constant too.
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