
RISK THEORY WITH THE GENERALIZED INVERSE
GAUSSIAN LÉVY PROCESS

BY

MANUEL MORALES

ABSTRACT

Dufresne et al. (1991) introduced a general risk model defined as the limit of
compound Poisson processes. Such model is either a compound Poisson process
itself or a strictly increasing Lévy process. Their construction is based on a non-
negative non-increasing function Q that governs the jumps of the process. This
function, it turns out, is the tail of the Lévy measure of the process. We dis-
cuss an illustration of their model using a generalized Inverse Gaussian (GIG)
Lévy process. This increasing Lévy process has the gamma and the inverse
Gaussian process as particular cases. Although mathematically more complex,
the GIG Lévy process keeps some of the nice properties of the simpler gamma
process.
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1. INTRODUCTION

Dufresne, Gerber and Shiu (1991) constructed a general aggregate claims
process S with independent and stationary increments. They define it in terms
of a non-negative and non-increasing function Q defined as

( ) ( ) , > .Q x q s ds x 0
x
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#

Moreover, the function Q should be such that
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0
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The process S is uniquely defined by its Laplace transform
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where the exponent C is given by

( ) ( ) , > .z e dQ x zC 1 0zx

0
= - -

3
-# 7 6A @ (3)

This last equation can be recognized as the Laplace exponent of a Lévy process
with sample paths of finite variation [see Bertoin (1996) or Sato (1999) for an
account on Lévy processes]. The measure q(dx) = – dQ(x) is the Lévy measure
of the process S. Q denotes then the tail of this Lévy measure.

From the theory of Lévy processes we have that S is either a compound
Poisson process (if Q(0) < ∞) or a process with an infinite number of small
jumps (if Q(0) = ∞). In both cases, the process S can be seen as the limit of a
sequence of compound Poisson processes {Se}e>0 described by their Laplace
transform

( ) , > ,� z e z 0( ) ( )
t

t e dQ xe 1zx
e= - -

3 -
0

# 5 ? (4)

where the measure Qe is the restriction to the interval [e,∞) of the tail of Lévy
measure Q, i.e.

dQe(x) = dQ(x)� [e,∞)(x), x > 0.

We can see that 

( ) ( ), > ,lim dQ x dQ x x 0
e

e
0

=
"

which implies that the sequence of compound Poisson processes {Se}e>0 converges
weakly in the Skorokhod topology to the process S defined by (2) [see Jacod and
Shiryaev (1987)].

Notice that (3) implies that S is a Lévy process with Lévy measure – dQ(x),
moreover, condition (1) implies that S is of finite variation.

Dufresne, Gerber and Shiu (1991) explore the process S for

q(dx) = – dQ(x) = x–1e–xdx, x > 0,

and

q(dx) = – dQ(x) = x–3/2e–xdx, x > 0.

The first choice of Q leads to a gamma process while the second leads to an
inverse Gaussian process. These processes are such that their one-dimensional
distributions are gamma and inverse Gaussian respectively.

Here we extend this aggregate claims process S to a generalized inverse
Gaussian Lévy process (GIG). Such a process is a non-decreasing (subordi-
nator) Lévy process exhibiting the intriguing property of having an infinite
number of small jumps. Moreover its increments over periods of length one
follow a generalized inverse Gaussian (GIG) distribution. A standard reference
on GIG distribution is Jørgensen (1982). The inverse Gaussian process and
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the gamma process of Dufresne, Gerber and Shiu (1991) are particular or lim-
iting cases of the GIG Lévy process, which in turn is another example of the
spectrally negative Lévy processes discussed in Yang and Zhang (2001) and of
the general risk models discussed in Morales and Schoutens (2003) and Morales
(2003).

Section 2 introduces some basic facts about the GIG distribution. In Sec-
tion 3 we construct the GIG Lévy process and describe some of the properties
that make it appealing to ruin modeling. In Section 4, 5 and 6 we discuss ruin
theory results for the GIG Lévy process and write down expressions that allows
us to compute bounds for the ruin probabilities. Finally, In section 7 we present
some numerical illustrations.

2. GENERALIZED INVERSE GAUSSIAN DISTRIBUTION

The class of generalized inverse Gaussian distributions is described by three
parameters. It has been extensively studied by Jørgensen (1982). The GIG den-
sity function has support on the positive axis and is given by

gig
l

( ) ( )
/

, > ,expf x K x x x xdg
g d

d g
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0

l
l 1 2 1 2= - +- -^

_
h
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where Kl is the modified Bessel function of the third kind with index l given by
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The parameter domain of the GIG distribution is

d > 0, g ≥ 0, if l < 0,
d > 0, g > 0, if l = 0,
d ≥ 0, g > 0, if l > 0.

If l = – 1/2 the density (5) reduces to that of the inverse Gaussian distribution.
The gamma distribution is a limiting case of the GIG distribution for l > 0
and g > 0 and d → 0. These make the GIG Lévy processes a natural extention
to the gamma processes.

The Laplace transform of the GIG is
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for d > 0 and g > 0. Its domain is z > – g2/2 when l ≥ 0 and z ≥ – g2/2 when l < 0.
Figure 1 shows some GIG densities for different values of the parameters.
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FIGURE 1: Some GIG densities for different values of l and w = dg.

The mean and the variance of a GIG random variable X can easily be
obtained from the Laplace transform. They are given respectively by
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Barndorff-Nielsen and Halgreen (1977) showed that the GIG distribution is
infinitely divisible. We use this property to construct a Lévy process in the fol-
lowing section.
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3. GENERALIZED INVERSE GAUSSIAN LÉVY PROCESS

Let (W, ·, (·)t ≥ 0,�) be a filtered probability space. All the stochastic processes
in the paper are assumed to be in this filtered probability space.

Definition 3.1. An adapted càdlàg �-valued process X = {X(t)}t ≥ 0 with X(0) = 0
is a Lévy process if and only if its characteristic function is of the form zt(s) =
e– tf(s) where

( ) ( ) ( ), ,�s ias b s e isx x dx s Rf n
2

1 ,
�

isx
2

2
1 1

0

!= - + + - + -# ] g8 B! + (7)

while a, b ∈ � and n is a positive measure on �0 = � – {0} satisfying

2 ( ) < .x dxn1
�

/ 3
0

#

The parameters a, b2 and n uniquely determine X. The measure n is called the Lévy
measure and the exponent f is called the characteristic exponent of the process X.

This class of processes is in one-to-one correspondence with the class of
infinitely divisible distributions. Every infinitely divisible distribution generates
a Lévy process and the increments of every Lévy process are infinitely divisible
distributed.

The Lévy measure n governs the occurrence of the jumps of the process X.
If b2 > 0 and the Lévy measure is identically zero then the process is a Brownian
motion (the only continuous Lévy process). If the Gaussian coefficient b2 = 0,
the process is entirely composed of jumps, if in addition #�0

n (dx) < ∞ then the
process is a compound Poisson process where the distribution of the jumps
is ( )

( )

dx

dx

n

n

�
#

and the jumps epochs occur at rate #�n (dx). On the other hand, if

#�0
n (dx) = ∞ and #�0

1 ! |x|n(dx) < ∞, then the process has an infinite number
of small jumps but is of finite variation. Finally, if #�0

n (dx) = ∞ and #�0
1 ! |x|

n(dx) = ∞, the process has infinitely many jumps and is of unbounded varia-
tion.

If the Gaussian coefficient b2 = 0 and if the Lévy measure n is defined on
(0,∞) such that #0∞(1 ! x)n(dx) < ∞ then the corresponding Lévy process is called
a subordinator. Its increments are always positive.

If b2 = 0 and the Lévy measure n satisfies 

( ) < ,x dxn1
�

/ 3
0

# ^ h (8)

then the process X is of finite variation and we can discard the centering func-
tion in (7) and simply write

( ) ( ) ( ), .s is ias e dx s Rf nC 1
�

isx

0

!= - = - + -# 7 A (9)
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The alternative function C is called the Laplace exponent of the process. For
an account of the theory we refer to Sato (1999) or Bertoin (1996) and for
recent applications to Barndorff-Nielsen, Mikosh and Resnick (2001).

Notice that the general aggregate claims process S defined by (3) has a char-
acteristic exponent of the form (9) with Q(x) = #x∞q(s)ds where q(ds) = – dQ(s)
is the Lévy measure. This is because the measure q(ds) is defined on the positive
axis and the increments of the process can only be positive making S a sub-
ordinator. Also notice that the jumps of S larger than e form a compound Pois-
son process with jump rate Q(e) and jump density ( )

( )
Q
q dx

e .
In the spirit of Dufresne, Gerber and Shiu (1991) we define the generalized

inverse Gaussian Lévy process in terms of a non-negative and non-increasing
function Q, which, as we have seen, is the Lévy measure of the process. In Barn-
dorff-Nielsen and Shephard (2001) or Schoutens (2003) we can find that the
Lévy measure in the Lévy-Khintchine representation of the GIG(l, d, g) dis-
tribution is

( ) , , > ,maxq dx x e g t dt e dx xd d l1
2 0 0/xt x

l
g2

0

2 22

= +
3

- -# _ i: D! + (10)

where
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J and N are modified Bessel functions.
Since the GIG distribution is infinitely divisible and with support on the

positive axis we can define a positive Lévy process SGIG described by its char-
acteristic function zt(s) = e– tCGIG (– is) where CGIG is the Laplace exponent of the
GIG distribution, i.e.,

( ) ( ), .�s e q dx sC 1
�

GIG
sx != --

0

# 7 A (11)

This last equation (11) is of the form (3) with Q(x) = #x∞q(dt). Notice that since
SGIG is a subordinator, its Lévy measure satisfies #0∞xq(dx) < ∞. Moreover,
Q(0) = #0∞q(dx) = ∞ and the process SGIG is composed of an infinite number of
small jumps.

Such a process is a generalization of the gamma and inverse Gaussian
process. From the form of its Laplace transform we can see that GIG distrib-
utions are not closed under convolutions. It follows that all increments of
length one follow a GIG distribution. However, increments of other lengths
follow an infinitely divisible distribution that does not belong to the GIG class.
This is because, by construction, � [eizSGIG (t)] = zt(z) = [z1(z)] t.

Nonetheless, we can compute this class of infinitely divisible densities using
the Fourier inversion formula

( ) ( ) .cosf x ux u dup
1

t t
0

= z
3

# ] g (12)
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4. RUIN THEORY FOR THE GIG LÉVY PROCESS

A general risk model based on a GIG aggregate claims process would be

U(t) = u + ct – SGIG(t), t ≥ 0, (13)

where SGIG is a generalized inverse Gaussian Lévy process, u is the initial sur-
plus, c is a constant premium rate defined as c = (1 + q)�[SGIG(1)] where q is the
security loading factor. The risk process defined in (13) belongs to the family of
processes discussed in Morales and Schoutens (2003). For an account on the
classical risk model we refer to Grandell (1991).

Chaubey et al. (1998) show that the inverse Gaussian distribution provides
a good fit for aggregate claims for a wide choice of claim size distributions. The
extra parameter of the GIG distribution might make it a more flexible distri-
bution to model aggregate claims. This is yet to be explored, however it pro-
vides a motivation to model aggregate claims with a GIG distribution.

Despite the fact that such an aggregate claims process has an infinite num-
ber of small claims in any interval, it is a of finite variation and the claims
remain small enough as to assure that the maximum aggregate loss is still a com-
pound geometric random variable.

For the process (13), the maximum aggregate loss is the random variable
defined by

,supL S t ct
>t

GIG
0

= -] g" , (14)

and the ruin probability is

c(u) = P{inf [t > 0 | u + ct – SGIG(t) < 0] < ∞}    u ≥ 0. (15)

In the classical compound Poisson model [see Grandell (1991)], L is related to
the ruin probability c as indicated by the following relation:

c(u) = �(L > u), u ≥ 0, (16)

i.e., the ruin probability c is the tail of the distribution of the maximum aggre-
gate loss. Moreover, L is a compound geometric random variable with para-
meter q1

1
+ and jump distribution given by

( ) , > ,F x
G y dy
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1
0
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h
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where G is the claim distribution of the original compound Poisson risk process.
This last fact, along with (16) implies the following equation for the ruin prob-
ability in the classical case

( ) ( ) , ,u F u uc q
q

q1 1
1

1 0*( )
n

n

n 1

$=
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3

=

!b l 7 A (17)
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where F *(n) indicates the n-fold convolution of F.
For the GIG process we cannot talk about a claim size distribution equiva-

lent to G in (17). However, all of these relations are preserved if the aggregate
claims process is a GIG Lévy process. This result was already pointed out by
Dufresne et al. (1991) and a formal proof for a more general model can be
found in Yang and Zhang (2001). Here we give another proof within the frame-
work of the theory of Lévy processes.

Theorem 4.1. Let U be the process in (13). Also let L and c be as in (14) and
(15) respectively. Then, the ruin probability c is related to L as in (16). Moreover,
L is a compound geometric random variable of the form

,L Li
i

M

1

=
=

!

where M is a geometric random variable with with probability function

( ) , ,p k kq
q

q1 1
1

0
k

$=
+ +

b l

and {Li}i =1,2,… are i.i.d. random variables with density

( )
( )

( )
, > .m x

xdQ x

Q x
x 0

0

= 3

#

Recall that Q is the Lévy measure of the GIG Lévy process with density given by (10).

Proof. This is a direct consequence of the fact that SGIG is a limit of a sequence
of compound Poisson processes as in (4).

The converging sequence {Se}e>0 is defined by its characteristic function

( ) , > ,z e z 0( ) ( )
t

t e dQ xe 1izx
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3
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where qe(dx) = – dQe(x) = – � [e,∞) (x)dQ(x). Therefore, the claim rate is #0∞qe(x)dx

and the claim size density is 
dQ s

dQ x

0

3
e

e

# ]

]

g

g .

For such a compound Poisson process the maximum aggregate loss Le is a
compound geometric r.v. of the form

,L Li
i

M

e
e

0

=
=

!

and it has the following characteristic function [see Asmussen (2000)]:

( )
( )

, > ,z
z

z
1

0
L
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1
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z
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(18)
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where Lez
i
is the characteristic function of the random variable Le

i with density

, > .m x
sq s ds

Q x
x 0

0

= 3e

e

e

#
]

]

]
g

g

g (19)

This is the classical ladder-height decomposition for the classical risk process.
Moreover, we have that the sequence of ruin probabilities ce is such that 

ce(u) = �(Le > u), u > 0. (20)

Now, notice that the density (19) converges to

, > ,m x
sq s ds

Q x
x 0

0

= 3

#
]

]

]
g

g

g (21)

as e $ 0. This is because SGIG is a subordinator and #0∞xq(x)dx < ∞. In con-
sequence, its characteristic function Lz e

i
converges to the characteristic function

Lz
i
of the density m. In light of this we have that the characteristic function (18)

converges to 

( )
( )

, > ,z
z

z
1

0
Lq

q
q

1
1
1=

-
z

z+

+

i

(22)

as e $ 0. This last equation is the characteristic function of a compound geo-
metric random variable with rate q

q
1 + and with jump distribution given by (21).

Further, because of equation (20), we have that the ruin probability c is the
tail of the compound geometric distribution described by (22). This completes
the proof. ¬

Remark 4.1. The result in Theorem 4.1 is valid for a wider class of Lévy processes
as pointed out by Dufresne et al. (1991). In fact, it is true for any risk model
with a subordinator as the aggregate claims process.

In practice, the fact that the ladder height distribution (21) is given in terms
of the integral (10) might be seen as a setback. However this integral might be
computed numerically or as Dufresne, Gerber and Shiu (1991) had already
pointed out for the gamma process, this property leads to upper and lower
bounds for the ruin probability. We can also find in Morales and Schoutens
(2003) extensions of the notion of Lundberg bounds to a more general risk
model based on Lévy processes. These two approaches are further discussed
for a GIG risk model in the following sections.
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5. LUNDBERG-LIKE UPPER BOUNDS FOR THE GIG RISK PROCESS

It is known that for (17) we can construct an exponential upper bound for the asso-
ciated ultimate ruin probability of the form [see Feller (1971) or Asmussen (2000)]:

c(u) ≤ e –Ru, u ≥ 0, (23)

where R is the positive solution of CU– u(r) = 0. Recall that the function CU– u
is the Laplace exponent of the process U(t) – u = ct – S(t) defined in (13).

In this case we have that this generalized Lundberg equation takes the form:

cr = ln[�GIG(– r)], (24)

where �GIG is the Laplace transform of the the GIG distribution given in (6)
and c is the loaded premium defined as c = (1 + q)�[SGIG]. This comes from the
fact that CS(r) = ln�GIG(r).

We can verify that (24) has a non-trivial positive solution. Recall that

C�
S (– r) | r = 0 = dr

d ln�GIG(– r) | r = 0 = � [SGIG].

Then, since C(– r) is a convex function, equation (24) has a positive solution
if c > C�

S (– r) | r = 0 = �[SGIG]. Now, recall that, in order to meet the net profit con-
dition, we have defined

c = (1 + q)� [SGIG] > � [SGIG].

This implies that (24) has a non-trivial positive solution.
Unfortunately, there is no closed form expression for the solution R of (24).

The generalized Lundberg equation (24) can be explicitely written as

( )
,e

K

K

dg

dg

1

1

/r

r

l g

l

l g

2
2

2

=
-

-

-

cr

2

2

`

b

j

l

for r < g2/2 if l ≥ 0 or r ≤ g2/2 if l < 0. We can see that the modified Bessel func-
tion appearing in the equation makes it impossible to obtain a closed form for R.
However we can numerically compute R using available mathematical software
such as Maple. We will illustrate this in a final section regarding numerical results.

In the following section we illustrate some particular cases of the GIG risk
process for which further analysis can be carried on.

RUIN PROBABILITIES FOR THE GIG RISK PROCESS

Theorem 4.1 shows that the ladder height decomposition is still valid for the
GIG risk process. This allows us to derive equations analogous to those in the
classical case. For instance, the ruin probability (15) satisfies
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where M is the distribution function of the density m in (21). This last equation
is the analogous to equation (17).

Furthermore, equation (25) implies that c satisfies the following renewal
equation

( )
, .u

M u
u y dM y uc q q c

1
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0
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0
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+
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+
+

-#] ^ ^g h h (26)

Just as in the classical case, the computation of (25) and (26) is complicated.
This situation is aggravated by the form of the distribution M. Recall that

, ,m x
t dQ t
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tq t dt
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where q(dx) is the Lévy measure of the GIG process given by (10) and that
involves all three modified Bessel functions.

However, we can compute bounds for the ruin probability (15). In Dufresne
et al. (1991), they compute bounds for the gamma process using a discretiza-
tion method suggested in Dufresne and Gerber (1989). This recursive method
can be implemented for any values of u in a GIG risk model despite the numer-
ical integrations involved. We compute these bounds for a numerical example
in Section 7.

We can also compute analytical bounds using existing results for compound
geometric tails. For instance, Cai and Garrido (1998) give lower and upper bounds
for ruin probabilities satisfying equations of the form (25). These bounds, for
u ≥ 0, are given by

/
/

,
�

�

u
u

u L M u u
u L M u u

q
c qM

M M
1

# #
+ + +

+

]

]
]

] ]

] ] ]

g

g
g

g g

g g g (27) 

where M(x) = 1 – M(x) and �(L) is the expected value of the maximum aggre-
gate loss random variable. We have gone around the problem of computing
convolutions of M by using analytical bounds, this will have an impact in the
accuracy of these bounds.

Regardless the type of bounds we want to implement, we still have to deal
with M(x) and �(L). These two functions are given in terms of the Lévy mea-
sure (10) as follows:

,

,
, ,
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(28)
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and

,� L x dxq M1
0

=
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#] ]g g (29)

where 
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-

_ _i i8 B( 2

Integrals involving modified Bessel functions can be computed numerically.
Here, we illustrate the particular cases l = 1/2 and l = – 1/2. For these choices
of the parameter l, the function gl takes a much simpler form thanks to the
following relations [see Abramowitz and Stegun (1970)]

sinJ y y yp
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2
1 =^ ^h h and .cosN y y yp
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This yields

.g y g y y J y N y
y

p
p2

12
2 2

1

2
1

2
1

2
1

2
1= = + =-

-

^ ^ _ _h h i i; E( 2 (30)

Using (30) we get that, for l = 1/2, equation (28) becomes

.

x
dt e dx

dt e d dy

e dx

e d dy

x e dx e dx

e d e d dy

e d e d dy

d

d z

d

d z

z z z z

dg
g

p

d
z z z z

G

M

1 2

/

/

/ /

/ /

/ / / /

/ / / /

t
e x

t
e

yx

x
x

yx

x x

y yx

yyx

pd
g

z pd
g z

pd
g

z pd z
g z

p
g g

p
g z g z

z z

G

G

dG

dG

2

2 2
1

0

2

0

1 2

2 2
1

0

2

2

2

1 2

2
1 2

0

1 2

2

1 2

2
1 2

2

1 2 1 2 2

0
2
1 2

0

2

1 2 3 2 2
2
1 1 2

2
2
1

2
1 1

xt

tz

g g

2

2

2

2

2 2

2 2

2
3

2

2

2

2

=
+

+

=
+

+

=
+

+

=
+

+

33

333

3

33

3 3

3 33

333

-

-

-

-

- - -

- - - -

- - - -

-

-

##

###

#

##

# #

# ##

###

]

]

]

]

]

_

g

g

g

g

g

i
R

T

S
SS

:

:

9

9

;

V

X

W
WW

D

D

C

C

E

This last equation comes from the fact that G( 2
1 ) = p which reduces the denom-

inator to the constant 
g

dg 1

2

+ . As for the numerator, if we integrate by parts, we
can rewrite
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(31)

The function inside the integral is the ladder height density m. If we change
the order of integration in (31), it simplifies even further yielding
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(32)

where G(u; �) = #u∞x�–1e –xdx is the incomplete gamma function. Notice that
G(u; 0) is the exponential integral function – Ei (– u) [see Abramowitz and Stegun
(1970)].

Consequently, �(L) is given by

.� L x dxq M1
0

=
3

#] ]g g

If we substitute M by (31) and compute the double integrals by changing the
order of integration we have that

.� L q dg
g

g
d

g
1

1 2
1

2

3 4=
+

+] g ( 2 (33)

In this last equality we use the fact that G( 2
3 ) = 2

1 G( 2
1 ), G( 2

5 ) = 4
3 G( 2

1 ) and G(2) = 1.
Substituting (32) and (33) into the expressions (27) yields lower and upper

bounds for the ruin probability of the GIG risk process with l = 2
1 .

Bounds for the ruin probability for the inverse Gaussian case (l = – 2
1) can

be derived in the same manner. The first integral in the numerator and denom-
inator of (28) simplifies since max{0, – 2

1} = 0 implying the following forms for
M and �(L):

;

; ; ,

x x

x x x

d
g

pg
d g

p
d

g
g

g
g

G
G

G
G G

M
2

2 2
1

2
2 2

3
2 2

1

2
1 2

2
1 2 2

=

- -

]
_

e

_
e e

g
i

o

i
o o> H

*

4

(34)
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TABLE 1: Upper and lower bounds for a GIG risk process for different values of q.
The parameters of the underlying GIG distribution are l =

2

1 , g =
10

1 and d = 10 2 .

and

.� L q d
g

g
d1

2 3=] g < F

Equations (32) and (34) generalize similar expressions for the gamma and the
inverse Gaussian processes in Dufresne et al. (1991).

7. NUMERICAL RESULTS

We carry out the numerical evaluation of the bounds defined by (23), (27),
(32) and (33) for the case l = 2

1 as an illustration. The incomplete gamma and
exponential integral functions were computed using Maple. There exist also
well-known analytical expansions [see Abramowitz and Stegun (1970)]. The
solutions of equation (23) were computed using Maple.
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In Table 1 we present bounds for the ruin probability of a GIG risk process
with parameters l = 2

1 , g = 2
1 and d = 10 2 which correspond to an expected

aggregate claim value of 142.42 per unit time. Different values for the safety
loading q are shown. The solutions of equation (23) are 0.00165289, 0.00277801,
and 0.00355029 for values of q of 0.1, 0.2 and 0.3 respectively. The Lundberg
upper bounds are shown under column UPPER L.

We can see that bounds computed using (27) are not bad for small values
of u. However, we can see that for small values these bounds are still not tight
enough. The Lundberg upper bounds are tighter for large values of u. This is
the region we are particular interested in when we compute ruin probabilities.
The discretization method described in Gerber and Dufresne (1989) provides
better bounds.
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TABLE 2: Upper and lower bounds for a GIG risk process for different values of q using
an interval of discretization D of 0.5 and 0.25.

The parameters of the underlying GIG distribution are l =
2

1 , g =
10

1 and d = 10 2 .

We computed bounds for the ruin probability using a discretization method
(length of interval is 0.5 and 0.25) just like in Dufresne et al. (1991). In Table 2
we can see how we can achieve a higher level of accuracy by refining the inter-
val of discretization. For large values of u the computing time increases because
of the recursive nature of the method. This is not a major problem since math-
ematical software, like Maple, can evaluate the integral functions in (32) and
(34) in a reasonable amount of time. Table 2 presents these bounds for small
values of u.

8. CONCLUSIONS

We present another example of the risk processes of Dufresne et al. (1991).
We illustrate their approach with a wider class of Lévy processes generated by
the generalized inverse Gaussian distribution. This family of processes is a
generalization of the gamma and inverse Gaussian process first discussed in
Dufresne et al. (1991). We showed that they share the same counterintuitive
property of having infinitely many claims, and, in spite of which, they accept
a ladder height-like decomposition.

The fact that increments over periods of length one follow a GIG distribu-
tion makes it interesting for applications since aggregate claims are better fitted
by an inverse Gaussian distribution. The extra parameter of the GIG would
make a more flexible model for aggregate claims.

This larger class of processes contains the particular cases of the gamma
and inverse Gaussian processes explored in Dufresne et al. (1991).

We have shown how Lundberg-like upper bounds can easily be computed.
These bounds were seen to be too large (for small values of u) to be of any
practical use. We, then, turned our efforts into using existing bounds in the lit-
erature for compound geometric sums. The ladder-height decomposition has
been used in the literature [Cai and Garrido (1998)] to produce bounds for the
corresponding ruin probability. We implemented these bounds and showed
that they are given in terms of Bessel functions. These take on a simple form
in the case l = 2

1 . Numerical results for this case are provided. In Table 1 we
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can see that for large values of u these upper bounds are not as sharp as the
Lundberg-like bounds.

A discretization method can also be implemented for a GIG risk process.
This is illustrated in Table 2 for some values of u and for different values of q.
Despite the integral functions involved in the GIG risk process, this method
can still be easily implemented using readily available mathematical software
which performs numerical integration of functions like the incomplete gamma
or the exponential integral. This method provides bounds for any values of u
with a high level of accuracy.

In conclusion, the GIG risk process belongs to the family originally study
by Dufresne et al. (1991) and it contains as particular cases the gamma and
the inverse Gaussian risk processes. We have seen how despite the counterin-
tuitive property of having an infinite number of small jumps, this process
retains basic properties of classical risk processes. This makes it appealing as
a risk model. The suitability of GIG distributions as models for aggregate
claims is a topic of further research.
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