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Short Geodesics of Unitaries in the L
2

Metric

Esteban Andruchow

Abstract. Let M be a type II1 von Neumann algebra, τ a trace in M, and L2(M, τ ) the GNS Hilbert

space of τ . We regard the unitary group UM as a subset of L2(M, τ ) and characterize the shortest

smooth curves joining two fixed unitaries in the L2 metric. As a consequence of this we obtain that

UM , though a complete (metric) topological group, is not an embedded riemannian submanifold of

L2(M, τ )

1 Introduction

Let M be a type II1 von Neumann algebra with a faithful and normal tracial
state τ . Let L2(M, τ ) be the Hilbert space obtained by completion of M with the

norm ‖x‖2 = τ (x∗x)1/2. Denote by UM the group of unitaries of M. Then UM, as a
subset of L2(M, τ ), is a complete metric space and a topological group. The Hilbert
space norm induces on UM the strong operator topology. These are well-known
facts (see [10]). In a previous note [1], we showed that UM cannot be embedded

as a differentiable submanifold in a way which makes the product of unitaries a dif-
ferentiable map. Here we show that the same question, dropping the requirement
for the product, again has a negative answer: UM ⊂ L2(M, τ ) is not an embedded
riemannian submanifold.

Hence, it makes sense to study the following: are there curves of unitaries of M

which have minimal length measured in the L2 metric? We measure the length of a
curve of unitaries in the following way: let µ(t) be a curve in UM, with µ(0) = v and
µ(1) = u, which is piecewise C1 as a curve in L2(M, τ ), then the length of µ is

ℓ(µ) =

∫ 1

0

‖µ̇(t)‖2 dt,

where, as is the usual notation, ‖x‖2 = τ (x∗x)1/2. The usual norm of M is denoted
by ‖ ‖.

Suppose that we fix u and v. Is there a shortest curve joining u and v inside UM?
We obtain the following answer (Theorem 3.4):

There exists x = x∗ ∈ M with ‖x‖ ≤ π such that v∗u = eix. The curve

δ(t) = veitx

has minimal length among piecewise C1 curves of unitaries joining u and v.
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1. If ‖x‖ < π, then such x is uniquely determined and the curve δ is unique

among piecewise C∞ minimizing curves.

2. Otherwise (‖x‖ = π), δ is non unique. Other minimizing piecewise C2 curves

are of the form γ(t) = veitLξ , with ξ = Jξ ∈ L4(M, τ ).

In both cases, the shortest (piecewise C1) curve has length ‖x‖2.
The first condition defines a set of unitaries, namely:

{u ∈ UM : v∗u = eix for x∗ = x with ‖x‖ < π},

which is an open neighbourhood of v in the norm topology, but not in the strong op-

erator topology. In [7] Popa and Takesaki found what E. Michael [6] calls a geodesic
structure for the unitary group of certain type II1 factors. Such a structure has strong

topological implications, leading for example to a complete elucidation of the homo-
topy type of the unitary group for such factors, in the strong operator topology. We
wanted to know if the naive “geodesic” curves, of the form δ(t) = veitx, could be used
to obtain a geodesic structure for all type II1 von Neumann algebras in the strong op-

erator topology, as is the case in the norm topology for arbitrary C∗-algebras [2]. The
result above proves that one cannot.

We call these curves δ geodesics, because they are the geodesics of a covariant
derivative defined in UM in a natural way. If UM were an embedded submanifold

of L2(M, τ ), this covariant derivative would be the Levi–Civita derivative. Therefore
the result above also shows that UM is not a submanifold of L2(M, τ ).

This study was inspired by the paper by Durán, Mata-Lorenzo and Recht [4] which
studied minimal curves of projections for the p-norms.

2 Geodesics in UM

Let us first define the tangent spaces of UM in the L2 topology. Let J : L2(M, τ ) →
L2(M, τ ) be the involution, i.e., the extension to L2(M, τ ) of the usual involution ∗
of M. Clearly J2

= I. Let L2(M, τ )+ = {ξ ∈ L2(M, τ ) : Jξ = ξ} and L2(M, τ )− =

{ξ ∈ L2(M, τ ) : Jξ = −ξ}, which are real Hilbert spaces. L2(M, τ )− is the com-
pletion in the L2 norm of the set of antihermitian elements of M (x∗ = −x), which

is the tangent space of UM at the identity 1 in the norm topology. Let us postulate
T(UM)1 := L2(M, τ )−. For u ∈ UM, the map Lu : L2(M, τ ) → L2(M, τ ), defined
on M ⊂ L2(M, τ ) as Lu(x) = ux (i.e., the GNS representation of u as an opera-
tor in L2(M, τ )) is a unitary operator. Then we choose T(UM)u = Lu(L2(M, τ )−).

Also, right multiplication Ru(x) = xu extends to a unitary operator in L2(M, τ ). For
brevity, we shall write uξ and u(L2(M, τ )) (resp. ξu and (L2(M, τ )−)u) instead of
Luξ and Lu(L2(M, τ )−) (resp. Ru(ξ) and Ru(L2(M, τ )−)).

Let µ be a curve of unitaries which is C1 as a curve in the Hilbert space L2(M, τ ),

and let X be a differentiable vector field in a neighbourhood of {µ(t) : t ∈ [0, 1]},
which takes values in TUM when restricted to UM, i.e., Xµ(t) ∈ µ(t)L2(M, τ )−. For
obvious reasons, such a field will be called a tangent vector field along µ. The covari-
ant derivative of X along µ is given by:

DX

dt
=

1

2
{Ẋ − µ J(Ẋ)µ},
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where Ẋ denotes the usual derivative with respect to t in the Hilbert space L2(M, τ ).
This formula is obtained simply by projecting Ẋ orthogonally (with respect to the

inner product given by the real part of τ ) onto T(UM)µ. Note that if µ(t) is a C2

curve in UM, then µ̇ is a tangent vector field along µ as usual. In particular, µ is a
geodesic if

0 ≡
Dµ̇

dt

or equivalently

(1) µ̈ = µ J(µ̈)µ.

It is straightforward to verify that if x ∈ M with x∗ = x, and v ∈ UM, then µ(t) =

veitx is a C∞ curve with µ̇(t) = ivxeitx.
There are other exponentials which give curves in UM. If ξ ∈ L2(M, τ )+, then

ξ induces a possibly unbounded selfadjoint operator Lξ on L2(M, τ ), affiliated to M

(see [3, 9]). Namely, Lξ is the closure of the linear map Lξ : M ⊂ L2(M, τ ) →
L2(M, τ ) given by Lξ(m) = Jm∗ Jξ. Therefore µ(t) = eitLξ is a continuous curve
in the L2 topology, which is differentiable in L2(M, τ ). Indeed, the topological em-

bedding UM ⊂ L2(M, τ ) can be regarded as evaluation at the vector 1 ∈ L2(M, τ ).
Strictly speaking, one should write µ(t) = eitLξ 1. Since 1 lies in the domain of the
operator Lξ [9], by Stone’s theorem µ(t) can be differentiated, and the derivative
equals (see [8])

µ̇(t) = ieitLξξ.

However, this curve µ̇(t) cannot be differentiated again (in L2(M, τ )) if ξ2 does not
belong to L2(M, τ ). It could be differentiated in L1(M, τ ). Clearly it is not in general

a C∞ curve of L2(M, τ ).

Lemma 2.1 Let ξ ∈ L2(M, τ )+, then the curve µ(t) = eitLξ is C∞ if and only if Lξ is

bounded, i.e., ξ ∈ M.

Proof The “if” part is clear. Suppose that µ has derivatives of any order. This im-

plies that all the powers Lk
ξ , k ≥ 1 lie in L2(M, τ ). Denote by m the probability

measure on R given by the trace of the spectral measure of Lξ . Then

∞ > ‖Lk
ξ1‖2

2 =

∫

R

λ2k dm(λ), for all k ≥ 1.

The above statement means that the map R → R, λ 7→ λ lies in L∞(R, m), i.e., m has

support contained in a bounded interval [−K, K]. This implies that Lξ is bounded
by K, and therefore lies in M.

Note that if ξ lies in L2(M, τ ) but not in L4(M, τ ), then µ(t) = veitLξ is C1 but not

C2, etc. Indeed, µ̇(t) = iLξeitLξ is continuous in the L2 norm: if t → t0, then

‖µ̇(t) − µ̇(t0)‖2 = ‖ei(t−t0)Lξξ − ξ‖2 → 0.

Let us call a C2 curve a geodesic in UM if it is a solution of the differential equa-
tion (1).
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Proposition 2.2 The C∞ geodesics in UM are of the form δ(t) = veitx, for x∗ =

x ∈ M.

Proof First note that if x∗ = x, then δ(t) = veitx satisfies (1). Let µ be a C∞ curve in
L2(M, τ ) with values in UM, which is a solution of (1), parametrized in the interval
[0, 1], with µ(0) = v. Let iξ = µ̇(0) and ξ ′

= µ̈(0), which lie in L2(M, τ ) because µ
is C∞.

If ν is a solution of (1), then v∗ν is another solution. Since J(v∗ν̈) = J(ν̈)v,

v∗ν J(v∗ν̈)v∗ν = v∗ν J(ν̈)ν = v∗ν̈ = ¨v∗ν.

Therefore we may suppose v = 1 without loss of generality.

Differentiating the identity µ(t)µ∗(t) = 1, one obtains (we omit the parameter t)

µ̇µ∗ + µ J(µ̇) = 0

(µ̇ may lie outside M, so we find more appropriate to write J(µ̇) instead of µ̇∗).
Differentiating again,

µ̈µ∗ + 2µ̇ J(µ̇) + µ J(µ̈) = 0.

At t = 0 one obtains the relations

iξ + J(iξ) = 0, i.e. ξ ∈ L2(M, τ )+

and

2ξ ′ + 2iξ J(iξ) = 0, i.e. ξ ′
= −ξ J(ξ) = −ξ2.

Consider the curve γ(t) = eitLξ . Then γ̇(t) = ieitLξξ and γ̈(t) = eitLξξ ′. Therefore
γ is C2 (ξ ′ ∈ L2(M, τ )), and the relations above show that it is a solution of (1),
satisfying

γ̇(0) = iξ = µ̇(0) and γ̈(0) = ξ ′
= µ̈(0).

We claim that these facts imply that µ = γ. To prove this claim, one needs a result
on uniqueness of solutions of second order differential equations on Banach spaces.
Let us first obtain a new form for equation (1). Consider again the identity µ̈µ∗ +

2µ̇ J(µ̇) + µ J(µ̈) = 0 and multiply it on the right by µ

µ̈ + 2µ̇ J(µ̇)µ + µ J(µ̈)µ = 0.

Then the identity (1) µ̈ = µ J(µ̈)µ, replaced above gives

(2) µ̈ = −µ̇ J(µ̇)µ,

which we shall adopt. We need a Banach space on which this equation will be con-
sidered. Our L2(M, τ ) is not appropriate, since the right-hand side of the equation
does not make sense for arbitrary µ(t) with derivatives in L2(M, τ ), because µ̇ J(µ̇)
may lie outside L2(M, τ ). We are not worried about existence—we already know
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the solutions—we need a uniqueness result. Let us consider L4(M, τ ). The map
L4(M, τ ) → L2(M, τ ), ξ 7→ ξ J(ξ) is differentiable. It follows that the function

F(x, ξ) = −ξ J(ξ)x

with variables x ∈ M and ξ ∈ L4(M, τ ) and values in L2(M, τ ), satisfies a Lipschitz
condition. Therefore the differential equation (2), µ̈ = F(µ, µ̇) has unique local
solutions for any given set of initial conditions. Note that any solution µ of (2) should
satisfy µ̇ ∈ L4(M, τ ) anyway.

Therefore µ(t) = eitLξ . The fact that µ is C∞ implies, by the lemma above, that
ξ = x is a selfadjoint element of M.

Remark 2.3 The same argument can be used to prove that the C2 geodesics are of

the form δ(t) = veitLξ , with ξ ∈ L4(M, τ ).

Our next result is borrowed and adapted from [4]. There it is stated for variations

of geodesics of the grassmannian manifold (i.e., manifold of selfadjoint projections)
of a C∗-algebra with trace. Also, there the p-length functionals are considered (in-
duced by the p-norms ‖x‖p = τ ((x∗x)p/2)1/p), for p = 2n. We are interested only
in the case p = 2. Our exposition in the rest of this section follows [4] with slight

modifications. We want to compute the extremals of the functional

ℓ(µ) =

∫ 1

0

‖µ̇(t)‖2 dt.

Let U (t, s) : [0, 1] × (−ǫ, ǫ) → UM be a variation of a curve µ : [0, 1] → UM, with

fixed endpoints, i.e.,

U (t, 0) = µ(t) for all t ∈ [0, 1],

and
U (0, s) = µ(0), U (1, s) = µ(1) for all s ∈ [0, 1].

The variation is through piecewise C2 curves, i.e., for each fixed s, the curve U (t, s) is
piecewise C2 in the parameter t , and vice versa. Denote by δℓ(s) the variation

δℓ(s) =
∂

∂s

∫ 1

0

∥

∥

∥

∂U

∂t

∥

∥

∥

2
dt.

The extremals of ℓ are the curves µ such that δℓ(0) = 0 for any U (t, s) as above.
Denote V =

∂U
∂t

and W =
∂U
∂s

. Let us compute

δℓ(s) =
∂

∂s

∫ 1

0

∥

∥

∥

∂U

∂t

∥

∥

∥

2
dt =

∫ 1

0

∂

∂s
τ
(

J
( ∂U

∂t

) ∂U

∂t

) 1/2

dt.

An easy computation shows that if ξ(s) 6= 0 is differentiable in L2(M, τ ), then

d

ds
τ
(

J(ξ(s))ξ(s)
) 1/2

=
1

2‖ξ(s)‖2

τ
(

J
( dx(s)

ds

)

x(s) + J(x(s))
dx(s)

ds

)

.
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In our case this gives

δℓ(s) =

∫ 1

0

1

2‖V‖2

τ
([ ∂

∂s
J(V )

]

V + J(V )
∂

∂s
V

)

dt.

We shall assume that the curve µ is parametrized by a multiple of arc length. In other

words, ‖V‖2 is constant for s = 0. One should make the further assumption that
V does not vanish for all s, t , in order that the above expression makes sense. Let
us point out that at the final stages of this computation we put s = 0. Therefore it
suffices to have that V (t, s) does not vanish for all t and small s (which is attained if

we suppose µ with constant speed).
Since U is (piecewise) C2 we may interchange

∂

∂s
V =

∂

∂s

( ∂U

∂t

)

=
∂

∂t

( ∂U

∂s

)

=
∂

∂t
W.

Therefore the variation formula equals

1

2

∫ 1

0

τ
(

J
( ∂

∂t
W

) V

‖V‖2

+ J
( V

‖V‖2

) ∂

∂t
W

)

dt.

Fix s, and let 0 = t0 < t1 < · · · < tn = 1 be a partition of [0, 1] such that U (t, s)
is C2 in the interior of the smaller intervals. We may integrate the above formula by

parts in each interval [ti−1, ti] to obtain

1

2

∫ ti

ti−1

τ
(

J
( ∂

∂t
W

) V

‖V‖2

+ J
( V

‖V‖2

) ∂

∂t
W

)

dt =

1

2

{

τ
(

J(W )
V

‖V‖2

+ W J
( V

‖V‖2

))}
∣

∣

∣

ti

ti−1

−
1

2

∫ ti

ti−1

τ
(

J(W )
∂

∂t

( V

‖V‖2

)

+ W
∂

∂t
J
( V

‖V‖2

))

dt.

Recall from the beginning of this section the definition of the covariant derivative of
a tangent vector field X along a curve µ of unitaries:

DX

dt
=

1

2
{Ẋ − µ J(Ẋ)µ}.

In our case, for each fixed s, the field V
‖V‖2

is tangent along the curve U (t, s), so we

have
D

dt

V

‖V‖2

=
1

2

{ ∂

∂t

V

‖V‖2

−U J
( ∂

∂t

V

‖V‖2

)

U
}

.

Now we differentiate the identity U ∗U = 1 with respect to t . It was pointed out
in the introduction that the product of unitaries is not a differentiable map of the
arguments in the L2 topology. However a product u(t)v(t) of C2 curves of unitaries
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u(t) and v(t) can be differentiated twice with respect to t . Indeed, the first derivative
yields u̇v + uv̇. Since u and v are C2, the norms ‖v̇(t)‖2 and ‖u̇(t)‖2 are uniformly

bounded, and the second derivative can be computed. In our case, the derivative of
the identity U ∗U = 1 gives

V = −U J(V )U ,

i.e.,
V

‖V‖2

= −U J
( V

‖V‖2

)

U .

Before computing the second derivative we put s = 0

µ̇

‖µ̇‖2

= −µ J
( µ̇

‖µ̇‖2

)

µ.

Differentiating this expression with respect to t (recall that we assume that µ is
parametrized proportionally to arc length, i.e., ‖µ̇‖2 is constant)

∂

∂t

µ̇

‖µ̇‖2

= −µ̇ J
( µ̇

‖µ̇‖2

)

µ − µ J
( µ̇

‖µ̇‖2

)

µ̇ − µ J
( ∂

∂t

µ̇

‖µ̇‖2

)

µ.

Combining these one obtains

2
∂

∂t

µ̇

‖µ̇‖2

= 2
D

dt

µ̇

‖µ̇‖2

−
µ̇ J(µ̇)

‖µ̇‖2

µ − µ
J(µ̇)µ̇

‖µ̇‖2

,

with an analogous expression for 2 J
(

∂
∂t

µ̇
‖µ̇‖2

)

. We add the integrals over the intervals

[ti−1, ti], and use these relations to obtain,

δℓ(s) =
1

2

n
∑

1=1

{

τ
(

J(W )
µ̇

‖µ̇‖2

+ W J
( µ̇

‖µ̇‖2

))}∣

∣

∣

ti

ti−1

+
1

2

∫ 1

0

τ

(

J(W )(µµ̇ J
( µ̇

‖µ̇‖2

)

− 2 J(W )
D

dt

µ̇

‖µ̇‖2

+ W (µ∗µ̇ J
( µ̇

‖µ̇‖2

)

+ J
( µ̇

‖µ̇‖2

µ̇µ∗
)

− 2 J
( D

dt

µ̇

‖µ̇‖2

)

)

dt.

We can deal better with this expression if we relate it to the second differential of the
map x 7→ τ (x∗x), which is the (real) bilinear form

H : L2(M, τ ) × L2(M, τ ) → R, H(ξ, η) = τ (ξ J(η) + J(ξ)η).

Then the expression for the variation of ℓ becomes

δℓ(0) =
1

2

n
∑

i=1

H
( µ̇

‖µ̇‖2

,W
)

∣

∣

∣

ti

ti−1

+

∫ 1

0

H
(

µ∗W,
1

2‖µ̇‖2

( J(µ̇)µ̇ − µ̇ J(µ̇))
)

− H
( D

dt

µ̇

‖µ̇‖2

,W
)

dt.
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A fact used here is that the field W satisfies relations analogous as V , i.e., U ∗W =

− J(W )U . A remark is in order. The element µ̇ J(µ̇) (resp. µ̇ J(µ̇)) lies in L2(M, τ ).

This is a consequence of µ being (piecewise) C2, namely, its second derivatives, which
involve such terms, lie in L2(M, τ ).

Note that 1
‖µ̇‖2

( J(µ̇)µ̇ − µ̇ J(µ̇)) lies in L2(M, τ )+ (is “hermitian”) and µ∗W lies

in L2(M, τ )− (“antihermitian”). Indeed, the latter has just been remarked. The
former holds because µ̇ can be approximated by elements x of M, and therefore
J(µ̇)µ̇ − µ̇ J(µ̇) can be approximated by x∗x − xx∗. Now if ξ ∈ L2(M, τ )− and
η ∈ L2(M, τ )+, it is clear that H(ξ, η) = 0. Therefore we arrive at our final expres-

sion for the variation

(3) δℓ(0) = −
1

2

n
∑

i=1

H
( µ̇

‖µ̇‖2

,W
)∣

∣

∣

ti

ti−1

−

∫ 1

0

H
( D

dt

µ̇

‖µ̇‖2

,W
)

dt.

Let us transcribe Theorem 3.3 by Durán, Mata-Lorenzo and Recht [4], which ap-
plies to our situation, with minor adaptations, once we have (3) analogous to their
expression for the variation.

If a piecewise C2 curve µ has minimal length among all the piecewise C2 curves of

unitaries joining the same endpoints, then clearly δℓ(0) vanishes for any variation U

of µ. As is standard use, let us call a curve for which all variations make δℓ(0) vanish,
an extremal of ℓ.

Theorem 2.4 The extremals of ℓ (among piecewise C2-curves) are precisely the geo-

desics of UM.

Proof Clearly a geodesic is an extremal of ℓ. Suppose now that µ is a piecewise C2

curve of unitaries. The converse is proven as in [4], by means of the following facts:

1. If µ is an extremal of ℓ, then for all t ∈ [0, 1] and every vector field W along µ

H
(

W (t),
D

dt

µ̇(t)

‖µ̇(t)‖2

)

= 0.

2. If µ is an extremal of ℓ, then µ is C2.

3. If µ is C2 and satisfies that for any vector field W along µ

H
(

W (t),
D

dt

µ̇(t)

‖µ̇(t)‖2

)

= 0

then µ is a geodesic.

For the first assertion, suppose that for some t0 (a point where µ is C2) one has

H
(

W (t0),
D

dt

µ̇(t0)

‖µ̇(t0)‖2

)

> 0

for some variation U . Let us consider another variation

Ũ (t, s) = U (t, ϕ(t)s),

where ϕ is a scalar function satisfying
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1. 0 ≤ ϕ(t) ≤ 1, with ϕ(0) = 1 and ϕ(1) = 1.
2. ϕ(t0) = 1 and ϕ vanishes on small intervals around the points t1, . . . , tn where the

derivative of µ is not continuous.

Note that Ũ (t, 0) = U (t, 0) = µ(t). Also the first condition above implies that
Ũ (0, s) = U (s, 0) = µ(0) and Ũ (1, s) = U (1, s) = µ(1). In other words, Ũ is

another variation of µ with fixed endpoints. Moreover

W̃ (t, s) =
∂Ũ

∂s
=

∂U

∂s
(t, ϕ(t)s) = ϕ(t)W (t, ϕ(t)s),

and therefore W̃ (t) = W̃ (t, 0) = ϕ(t)W (t). Note that since ϕ(t0) = 1,

H
( D

dt

µ̇(t0)

‖µ̇(t0)‖2

,W̃ (t0)
)

> 0.

We can further choose ϕ in order that

H
( D

dt

µ̇(t)

‖µ̇(t)‖2

,W̃ (t)
)

= ϕ(t)H
( D

dt

µ̇(t)

‖µ̇(t)‖2

,W (t)
)

≥ 0.

Since W̃ (t) = ϕ(t)W (t) vanishes at the points t1, . . . , tn, it follows that for Ũ the

variation is

δℓ(0) = −
1

2

∫ 1

0

H
( D

dt

µ̇(t)

‖µ̇(t)‖2

,W̃ (t)
)

dt > 0,

and therefore µ is not an extremal.

To prove the second assertion, suppose that µ is an extremal of ℓ, and that t0 is a
point where µ̇ is not continuous. Denote by V +

0 and V−
0 the lateral limits of D

dt
µ̇(t)

‖µ̇(t)‖2

at t = t0. Note that V +
0 and V−

0 are unit vectors. Put

U (t, s) = eisϕ(t)V +

0 ,

where ϕ(t) is a smooth scalar function, which satisfies that 0 ≤ ϕ(t) ≤ 1, ϕ(t0) = 1
and ϕ vanishes on the other points where µ̇ is not continuous. By the first assertion,

the integral term in the expression of the variation of µ vanishes. Moreover, by the
choice of ϕ, one has

δℓ(0) = H(W (t0),V +
0 ) − H(W (t0),V−

0 ) = H(V +
0 ,V +

0 ) − H(V +
0 ,V−

0 ).

Now

H(V +
0 ,V +

0 ) = τ (V +
0 J(V +

0 ) + J(V +
0 )V +

0 ) = 2‖V +
0 ‖

2
2 = 2.

On the other hand, the fact that µ̇(t)

‖µ̇(t)‖2

has a jump at t = t0 implies that the unit

vectors V +
0 and V−

0 do not point in the same direction, i.e., the Cauchy–Schwarz
inequality is strict:

τ (V +
0 J(V−

0 )) < ‖V +
0 ‖2‖V−

0 ‖2 = 1,
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and analogously τ ( J(V +
0 )V−

0 ) < 1. It follows that

δℓ(0) > 0

for this U , and µ is not an extremal.

The third assertion is straightforward. Since in our case, the form H is nondegen-

erate, the identity

H
(

W (t),
D

dt

µ̇(t)

‖µ̇(t)‖2

)

= 0

for any field W implies that
D

dt

µ̇(t)

‖µ̇(t)‖2

= 0

i.e., µ is a geodesic.

3 Short Curves

The key to our main result is the following:

Lemma 3.1 Let x be a selfadjoint element of M with finite spectrum and ‖x‖ < π.

Then δ(t) = eitx has minimal length amongst piecewise C1 curves joining 1 and eix, in

the L2 metric.

Proof The element x is of the form x =
∑k

i=1 αi pi , where p1, . . . , pk are pairwise

orthogonal projections and α1, . . . , αk are real numbers with |αi | < π. The length of

the geodesic δ is ‖x‖2 = (
∑k

i=1 α2
i ri)

1/2, where ri = τ (pi). Suppose that µ is another
piecewise C1 curve of unitaries with µ(0) = 1 and µ(1) = eix. Then

ℓ(µ) =

∫ 1

0

(

τ ( J(µ̇)µ̇)
) 1/2

dt =

∫ 1

0

(

k
∑

i=1

τ (pi J(µ̇)µ̇pi)
) 1/2

dt.

For each 1 ≤ i ≤ k denote by S
r

1/2

i

the sphere of radius r
1/2

i in L2(M, τ ),

S
r

1/2

i

= {ξ ∈ L2(M, τ ) : 〈ξ, ξ〉 = ri}.

Note that the curves piδ and piµ are curves in S
r

1/2

i

. Indeed, for example

〈piµ, piµ〉 = τ ((piµ)∗piµ) = τ (pi) = ri.

Moreover, piδ is a geodesic of S
r

1/2

i

with length strictly less than πr
1/2

i . An elementary

spectral argument shows that

piδ(t) = pie
itx

= pie
itαi ,
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which is clearly a geodesic of the sphere S
r

1/2

i

. The length of piδ is

ℓ(piδ) = ‖αi pi‖2 = |αi |r
1/2

i < r
1/2

i π.

In other words, piδ is the shortest curve in S
r

1/2

i

joining its endpoints.

Consider the riemannian submanifold of L2(M, τ )k

S = S
r

1/2

1

× · · · × S
r

1/2

k

with its Levi–Civita connection. The curve ∆(t) = (p1δ(t), . . . , pkδ(t)) is a geodesic
of S, since it is a k-tuple of geodesics of the coordinates. Moreover, it is the shortest
curve of S joining its endpoints. Indeed, none of its coordinates could be replaced by
a shorter curve. Therefore it is shorter than the curve M(t) = (p1µ(t), . . . , pkµ(t)).

Now the length of M in S is measured as follows:

∫ 1

0

〈Ṁ(t), Ṁ(t)〉1/2 dt =

∫ 1

0

(

k
∑

i=1

τ (pi J(µ̇(t))µ̇(t))
) 1/2

dt = ℓ(µ).

Analogously, the length of ∆ coincides with ℓ(δ). It follows that

ℓ(µ) ≥ ℓ(δ).

Lemma 3.2 Let x ∈ M be a selfadjoint element with ‖x‖ < π, and v ∈ UM. Then the

geodesic δ(t) = veitx has minimal length among piecewise C1 curves of unitaries joining

its endpoints. It is unique among piecewise C∞ curves with this property.

Proof There is no loss in generality if we suppose v = 1. Indeed, for any curve µ of
unitaries, ℓ(µ) = ℓ(v∗µ). Suppose that there exists a piecewise C1 curve of unitaries

µ which is strictly shorter than δ, ℓ(µ) < ℓ(δ) − ǫ = ‖x‖2 − ǫ. The element x can be
approximated in the norm topology of M by selfadjoint elements of M, say z, with
finite spectrum and the following conditions:

1. ‖z‖ ≤ ‖x‖ < π.
2. ‖x‖2 − ǫ/2 < ‖z‖2 ≤ ‖x‖2.
3. ‖eix − eiz‖ < 2.

4. There exists a C∞ curve of unitaries joining eix and eiz of length less than ǫ/2.

The first three are clear. The fourth condition can be obtained as follows. By the

third condition e−ixeiz
= ei y , with y∗ = y ∈ M. Moreover z can be adjusted so as to

obtain y of arbitrarily small norm. Then the curve of unitaries γ(t) = eixeit y is C∞,
joins eix and eiz, with length ‖y‖2 ≤ ‖y‖ < ǫ/2.

Consider now the curve µ ′, which is the curve µ followed by the curve eixeit y

above. Then clearly

ℓ(µ ′) ≤ ℓ(µ) + ‖y‖2 < ℓ(µ) + ǫ/2.
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Therefore ℓ(µ ′) < ‖x‖2 − ǫ/2. On the other hand, since µ ′ joins 1 and eiz, by the
lemma above, it must have length greater than or equal to ‖z‖2. It follows that

‖z‖2 ≤ ‖x‖2 − ǫ/2,

a contradiction.

Let us now show that δ is unique. Let δ ′ be another piecewise C∞ curve joining
the same endpoints, parametrized proportional to arc length, with ℓ(δ) = ℓ(δ ′). The

minimality of δ ′ implies, by Theorem 2.4, that it is a C∞ geodesic. Then δ ′(t) = eitx ′

for some x ′∗
= x ′ ∈ M. We claim that x ′

= x.

Since ‖x‖ < π, ix can be obtained as an analytic logarithm of eix
= eix ′

. It
follows that x and x ′ commute. Then ei(x−x ′)

= 1 and therefore x− x ′ is a selfadjoint

element with finite spectrum, contained in the discrete set {2nπ : n ∈ Z}. Then

x ′
= x +

∑k
i=1 2niπpi with ni ∈ Z and pi pairwise orthogonal projections in M,

i = 1, . . . , k. Note that xpi = 0. Therefore

‖x ′‖2
2 = ‖x‖2

2 +

k
∑

i=1

4n2
i π

2τ (pi).

Now, since ‖x‖2 = ℓ(δ) = ℓ(δ ′) = ‖x ′‖2, it follows that τ (pi) = 0, for each i =

1, . . . , k, i.e., x = x ′.

Lemma 3.3 Let x be a selfadjoint element of M with ‖x‖ = π. Then δ = veitx is the

shortest curve joining its endpoints.

Proof The proof is the same as the first part of the above lemma, approximating x

with z of finite spectrum and ‖z‖ < π. Note that any unitary u ∈ UM is of the form
u = eix with x∗ = x and ‖x‖ ≤ π. This element x is non unique.

We may summarize these lemmas in our main result.

Theorem 3.4 Let u, v be unitaries in M, and x = x∗ ∈ M with ‖x‖ ≤ π, such that

v∗u = eix.

1. If ‖x‖ < π, then there exists a geodesic joining u and v, which has minimal length

among piecewise C1 curves with these endpoints. It is unique with this property

among piecewise C∞ curves.

2. If ‖x‖ = π, there exist many minimal C∞ geodesics joining u and v.

Remark 3.5 In case 2, the multiple C∞ geodesics are of the form δ(t) = veitx for

diverse x = x∗ ∈ M with ‖x‖ = π such that v∗u = eix. If one only requires that the
curves be C2, other minimizing curves appear. Namely, by Remark 2.3 they are of the
form γ(t) = veitLξ , where ξ lies in L4(M, τ ), and satisfies Jξ = ξ and v∗u = eiLξ .

The following corollary might be obtained in a more straightforward way.
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Corollary 3.6 Let x, y ∈ M be selfadjoint elements of norm less than or equal to π
such that eix

= ei y . Then τ (x2) = τ (y2).

Proof Both δ(t) = eitx and γ(t) = eit y are minimizing geodesics joining 1 and eix,

therefore ℓ(δ) = ℓ(γ), i.e., τ (x2) = τ (y2).

4 Non Embeddability of UM in L
2(M, τ )

In this section we show that UM is not a riemannian submanifold of L2(M, τ ). By this
we mean that UM is not a riemannian manifold with the inner product of L2(M, τ )
at each tangent space. We also consider other aspects of the local structure of UM.

Lemma 4.1 There exists a sequence of selfadjoint elements an ∈ M such that ‖an‖2 =

ǫ for a given ǫ > 0 and ‖eian − 1‖2 tends to zero.

Proof For each n ≥ 1 pick a projection pn in M such that τ (pn) =
ǫ2

n2 . Put an =

npn. Note that ‖an‖2 = nτ (pn)1/2
= ǫ. On the other hand

‖eian − 1‖2
2 = 2 − τ (eian ) − τ (e−ian ).

Clearly

τ (eian ) = 1 +
ǫ2

n2
(ein − 1),

which tends to 1. Analogously for τ (e−ian ).

Corollary 4.2 UM is not a riemannian submanifold of L2(M, τ ).

Proof Consider un = eian ∈ UM as above. Then the sequence un tends to 1 in
the L2 metric. If UM were a riemannian submanifold, then δn(t) = eitan would

be a geodesic. If one adjusts ǫ smaller than the radius of a normal neighbourhood
around 1 ∈ UM, then δn would be a minimizing geodesic. It follows that the geodesic
distance between 1 and eian equals ǫ for all n. This leads to contradiction: in a rie-
mannian manifold the topology given by the geodesic distance and the underlying

topology are equivalent.

Note that δn above is in fact not a minimizing geodesic, according to our discussion of
the previous section. Indeed, ‖an‖ = n. If one tries to compute minimizing geodesics
joining 1 and eian , one must replace the exponent an = npn by xn = (n − 2knπ)pn,

where kn is an integer such that |n − 2knπ| ≤ π (in this case it will be strictly smaller
than π). Such xn satisfy

‖xn‖
2
2 = (n − 2knπ)2 ǫ2

n2
→ 0 as n → ∞.

In other words, these minimizing geodesics have lengths which tend to 0.
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Let us denote by dg the geodesic distance in UM, i.e.,

dg(u, v) = inf{ℓ(µ) : µ piecewise C1 curve of unitaries with µ(0) = u, µ(1) = v}.

Since UM is not a riemannian manifold, we must prove the following:

Proposition 4.3 dg is a metric in UM.

Proof Clearly dg(u, v) ≥ 0 and dg(u, v) = 0 imply u = v. Also it is clear that

dg(u, v) = dg(v, u). Let us verify that the triangle inequality holds. Let u, v, w ∈ UM.
We need to show that

dg(u, v) ≤ dg(u, w) + dg(w, v).

By Theorem 3.4, u and w are joined by a minimizing geodesic δ and w and u are
joined by a minimizing geodesic δ ′, with both curves realizing the geodesic distance.
The curve δ followed by the curve δ ′ is a piecewise C1 curve of unitaries joining u

and v, with length dg(u, w) + dg(w, v). Therefore dg(u, v) ≤ dg(u, w) + dg(w, v).

Proposition 4.4 The metrics dg and ‖ ‖2 are equivalent in UM.

Proof Both metrics are invariant by left translation with elements of UM, i.e.,

dg(u, v) = dg(v∗u, 1) and ‖u − v‖2 = ‖v∗u − 1‖2. Therefore it suffices to com-
pare dg(u, 1) and ‖u − 1‖2, for u ∈ UM. Let x = x∗ ∈ M with ‖x‖ ≤ π and u = eix.
Then by Theorem 3.4

dg(u, 1) = ‖x‖2 = τ (x2)1/2.

On the other hand

‖u − 1‖2
2 = 2 − τ (eix + e−ix) = 2

[ τ (x2)

2
−

τ (x4)

4!
+

τ (x6)

6!
− · · ·

]

.

Note that for all n ≥ 1,
τ (x2n)

(2n)!
−

τ (x2n+2)

(2n + 2)!
≥ 0.

Indeed, it is apparent that this inequality is equivalent to (2n + 2)(2n + 1) ≥ τ (x2n+2)

τ (x2n)
.

Since x2 ≤ π2,
τ (x2n+2)

τ (x2n)
=

τ (xnx2xn)

τ (x2n)
≤

τ (xnπ2xn)

τ (x2n)
= π2,

and the above claim holds. First, note that with this inequality one has

‖u − 1‖2
2 = 2

[ 1

2
τ (x2) −

( τ (x4)

4!
−

τ (x6)

6!

)

− · · ·
]

≤ τ (x2),

i.e., ‖u − 1‖2 ≤ dg(u, 1).
On the other hand, the same inequality proves that

‖u−1‖2
2 = 2

[ 1

2
τ (x2)−

1

4!
τ (x4)+

( τ (x6)

6!
−

τ (x8)

8!

)

+ · · ·
]

≥ 2
[ 1

2
τ (x2)−

1

4!
τ (x4)

]

.
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Since 1 − x2

12
≥ 1 − π2

12
> 0, it follows that

1

2
τ (x2) −

1

4!
τ (x4) =

1

2
τ (x2(1 −

1

12
x2)) ≥

1

2

(

1 −
π2

12

)

τ (x2).

In other words,
‖u − 1‖2 ≥ Cdg(u, 1),

for C =

√

1 − π2

12
.

Further properties of this metric dg will be studied elsewhere.
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