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Short Geodesics of Unitaries in the L?
Metric

Esteban Andruchow

Abstract. Let M be a type II; von Neumann algebra, 7 a trace in M, and L*(M, 7) the GNS Hilbert
space of 7. We regard the unitary group Uy as a subset of L>(MV, 7) and characterize the shortest
smooth curves joining two fixed unitaries in the L? metric. As a consequence of this we obtain that

Uxt, though a complete (metric) topological group, is not an embedded riemannian submanifold of
LM, 7)

1 Introduction

Let M be a type II; von Neumann algebra with a faithful and normal tracial
state 7. Let L*(M, 7) be the Hilbert space obtained by completion of M with the
norm ||x||, = 7(x*x)"/2. Denote by Uy the group of unitaries of M. Then Uy, as a
subset of L2(M, 7), is a complete metric space and a topological group. The Hilbert
space norm induces on Uy the strong operator topology. These are well-known
facts (see [10]). In a previous note [1], we showed that Uy, cannot be embedded
as a differentiable submanifold in a way which makes the product of unitaries a dif-
ferentiable map. Here we show that the same question, dropping the requirement
for the product, again has a negative answer: Up¢ C L*(M, 7) is not an embedded
riemannian submanifold.

Hence, it makes sense to study the following: are there curves of unitaries of M
which have minimal length measured in the L* metric? We measure the length of a
curve of unitaries in the following way: let p(t) be a curve in Uy, with ¢(0) = v and
(1) = u, which is piecewise C! as a curve in L*(M, 7), then the length of 1 is

1
) = / 1) d,
0

where, as is the usual notation, ||x||, = 7(x*x)"/2. The usual norm of M is denoted

by |-
Suppose that we fix # and v. Is there a shortest curve joining u and v inside Uy?

We obtain the following answer (Theorem 3.4):

There exists x = x* € M with ||x|| < 7 such that v*u = €. The curve
5(t) = ve'™

has minimal length among piecewise C' curves of unitaries joining u and v.
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1. If ||x|| < m, then such x is uniquely determined and the curve § is unique
among piecewise C° minimizing curves.

2. Otherwise (||x|| = =), & is non unique. Other minimizing piecewise C* curves
are of the form ~y(t) = ve''ts, with ¢ = J¢ € L*(M, 7).

In both cases, the shortest (piecewise C') curve has length ||x||,.
The first condition defines a set of unitaries, namely:

{u € Uyt : v*u = €™ for x* = x with ||x|| < 7},

which is an open neighbourhood of v in the norm topology, but not in the strong op-
erator topology. In [7] Popa and Takesaki found what E. Michael [6] calls a geodesic
structure for the unitary group of certain type Il factors. Such a structure has strong
topological implications, leading for example to a complete elucidation of the homo-
topy type of the unitary group for such factors, in the strong operator topology. We
wanted to know if the naive “geodesic” curves, of the form §(t) = ve'™, could be used
to obtain a geodesic structure for all type II; von Neumann algebras in the strong op-
erator topology, as is the case in the norm topology for arbitrary C*-algebras [2]. The
result above proves that one cannot.

We call these curves § geodesics, because they are the geodesics of a covariant
derivative defined in Uy in a natural way. If Uy were an embedded submanifold
of L>(M, 7), this covariant derivative would be the Levi-Civita derivative. Therefore
the result above also shows that U is not a submanifold of L>(M, 7).

This study was inspired by the paper by Duran, Mata-Lorenzo and Recht [4] which
studied minimal curves of projections for the p-norms.

2 Geodesics in Uy

Let us first define the tangent spaces of Uy in the L? topology. Let J: L*(M, 1) —
L*(M, 7) be the involution, i.e., the extension to L*(M, 7) of the usual involution *
of M. Clearly J*> = I. Let L2X(M, 7); = {£ € L)(M,7) : J¢ = £} and LP(M, 7). =
{€& € I*M, 1) : J¢ = —¢&}, which are real Hilbert spaces. L*(M, 7)_ is the com-
pletion in the L? norm of the set of antihermitian elements of M (x* = —x), which
is the tangent space of Uy at the identity 1 in the norm topology. Let us postulate
T(Up) = L*(M, 7)_. For u € Uy, the map L,: L>(M, 1) — L*(M, 7), defined
on M C L*(M,7) as L,(x) = ux (i.e,, the GNS representation of u as an opera-
tor in L*(M, 7)) is a unitary operator. Then we choose T(Uy¢), = L, (L2(M,7)_).
Also, right multiplication R,,(x) = xu extends to a unitary operator in L>(M, 7). For
brevity, we shall write u¢ and u(L*(M, 7)) (resp. &u and (L*(M, 7)_)u) instead of
L& and L,(L*(M, 7)) (resp. R, (&) and R, (L*(M, 7)_)).

Let 11 be a curve of unitaries which is C! as a curve in the Hilbert space L2(M, 7),
and let X be a differentiable vector field in a neighbourhood of {u(t) : ¢ € [0,1]},
which takes values in TU» when restricted to Uy, i.e., X, € p1(t)L*(M, 7)_. For
obvious reasons, such a field will be called a tangent vector field along 1. The covari-
ant derivative of X along 1 is given by:

DX 1

T E{X — pnJX)p},
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where X denotes the usual derivative with respect to t in the Hilbert space L>(M, 7).
This formula is obtained simply by projecting X orthogonally (with respect to the
inner product given by the real part of 7) onto T(Ux),. Note that if pu(t) is a C?
curve in Uy, then fu is a tangent vector field along p as usual. In particular, p is a
geodesic if

Dju
0=—
dt
or equivalently
(1) = pJ ().

It is straightforward to verify that if x € M with x* = x, and v € Uy, then p(t) =
ve'™ is a C> curve with i(t) = ivxe™.

There are other exponentials which give curves in Uy¢. If € € L2(M, )4, then
¢ induces a possibly unbounded selfadjoint operator L¢ on L*(M, 7), affiliated to M
(see [3, 9]). Namely, L¢ is the closure of the linear map L¢: M C XM, 1) —
L*(M, 7) given by Le(m) = Jm*JE. Therefore pu(t) = ¢ is a continuous curve
in the L? topology, which is differentiable in L*(M, 7). Indeed, the topological em-
bedding Uy C L*(M, 7) can be regarded as evaluation at the vector 1 € L*(M, 7).
Strictly speaking, one should write (t) = e<1. Since 1 lies in the domain of the
operator L¢ [9], by Stone’s theorem u(t) can be differentiated, and the derivative
equals (see [8])

() = ie''ee.

However, this curve ji(t) cannot be differentiated again (in L*(M, 7)) if £2 does not
belong to L*(M, 7). It could be differentiated in L' (M, 7). Clearly it is not in general
aC*> curve of L>(M, 7).

Lemma 2.1 Let& € L*(M, ), then the curve u(t) = e'le is C if and only if L is
bounded, i.e., £ € M.

Proof The “if” part is clear. Suppose that u has derivatives of any order. This im-
plies that all the powers L’g , k > 1lie in L>(M, 7). Denote by m the probability
measure on R given by the trace of the spectral measure of L¢. Then

oo>HL’f‘1H§:A{)\2kdm()\), forall k > 1.

The above statement means that the map R — R, A — Alies in L*°(IR, m), i.e., m has
support contained in a bounded interval [—K, K]. This implies that L¢ is bounded
by K, and therefore lies in M. ]

Note that if £ lies in L2(M, 7) but not in L* (M, 7), then u(t) = ve's is C! but not
C?, etc. Indeed, ju(t) = iL¢e'™ is continuous in the L* norm: if t — t, then

1(t) = falto) |2 = [l "<& = ¢]|, — .

Let us call a C? curve a geodesic in Uy if it is a solution of the differential equa-
tion (1).
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Proposition 2.2 The C™ geodesics in Uy are of the form §(t) = ve'™, for x* =
xe M.

Proof First note that if x* = x, then §(t) = ve™* satisfies (1). Let 2 be a C* curve in
L*(M, 7) with values in Uy, which is a solution of (1), parametrized in the interval
[0, 1], with p(0) = v. Let i¢ = (1(0) and &’ = ju(0), which lie in L>(M, 7) because
is C°.

If v is a solution of (1), then v*v is another solution. Since J(v*i’) = J(i)v,

v oWty = viuJ(0)r = v = v

Therefore we may suppose v = 1 without loss of generality.
Differentiating the identity p(t)u* (t) = 1, one obtains (we omit the parameter t)

fup™ + g (1) = 0

(f+ may lie outside M, so we find more appropriate to write J(j1) instead of ).
Differentiating again,
i + 2] (f1) + pJ (1) = 0.

At t = 0 one obtains the relations
i€+ J(i&) =0, ie &eL*M, 1),

and

26" +2i€J(i€) =0, e &' =—€J(€) = —€.

Consider the curve v(t) = ¢*c. Then (t) = ie*<¢ and 5(t) = ¢*l¢&’. Therefore
v is C* (¢ € L*(M, 7)), and the relations above show that it is a solution of (1),
satisfying

7(0) = i€ = 1(0) and §(0) = &" = j1(0).

We claim that these facts imply that 1 = . To prove this claim, one needs a result
on uniqueness of solutions of second order differential equations on Banach spaces.
Let us first obtain a new form for equation (1). Consider again the identity jiu* +
24 J(fe) + pJ(jr) = 0 and multiply it on the right by

ot 2pJ(p+ pJ(fp = 0.
Then the identity (1) ji1 = uJ(ji), replaced above gives
(2) o= —pJ (@,
which we shall adopt. We need a Banach space on which this equation will be con-
sidered. Our L?(M, 7) is not appropriate, since the right-hand side of the equation

does not make sense for arbitrary j(¢) with derivatives in L*(M, 7), because /1 J(j1)
may lie outside L?>(M, 7). We are not worried about existence—we already know
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the solutions—we need a uniqueness result. Let us consider L*(M, 7). The map
LAM, 1) — L*(M, 1), € — EJ(€) is differentiable. It follows that the function

F(x,£) = —J(E)x

with variables x € M and ¢ € L*(M, 7) and values in L*(M, 7), satisfies a Lipschitz
condition. Therefore the differential equation (2), ji = F(u, 1) has unique local
solutions for any given set of initial conditions. Note that any solution x of (2) should
satisfy o € L*(M, T) anyway.

Therefore ;u(t) = e*L<. The fact that u is C* implies, by the lemma above, that
& = x is a selfadjoint element of M. ]

Remark 2.3 The same argument can be used to prove that the C? geodesics are of
the form 6(t) = ve''s, with € € L*(M, 7).

Our next result is borrowed and adapted from [4]. There it is stated for variations
of geodesics of the grassmannian manifold (i.e., manifold of selfadjoint projections)
of a C*-algebra with trace. Also, there the p-length functionals are considered (in-
duced by the p-norms ||x||, = 7((x*x)?/2)/?), for p = 2n. We are interested only
in the case p = 2. Our exposition in the rest of this section follows [4] with slight
modifications. We want to compute the extremals of the functional

1
) = / ) .
0

Let U(t,s): [0,1] x (—¢,€) — Uy be a variation of a curve p: [0, 1] — Uy, with
fixed endpoints, i.e.,
U(t,0) = p(t) forallt € [0,1],

and
U(0,s) = u(0), U(l,s) = u(l) forallse [0,1].

The variation is through piecewise C 2 curves, i.e., for each fixed s, the curve U (¢, s) is
piecewise C? in the parameter ¢, and vice versa. Denote by 0/(s) the variation

a 1
0l(s) = a/o

The extremals of ¢ are the curves p such that §¢(0) = 0 for any U(t,s) as above.

Denote V = %—Lf and W = %—Ls]. Let us compute

1 1 /
st =5 [ arloa= [ (50 )

An easy computation shows that if £(s) # 0 is differentiable in L?(M, 7), then

%szt'

d /2 1 dx(s) dx(s)
T (JEsNE) —sz(S)HZT(I( ) x(s) + TN =)
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In our case this gives

50(s) = /01 2”‘1/"27( [%](V)} Vi ](V)%V) dt.

We shall assume that the curve 1 is parametrized by a multiple of arc length. In other
words, |V|, is constant for s = 0. One should make the further assumption that
V does not vanish for all s, ¢, in order that the above expression makes sense. Let
us point out that at the final stages of this computation we put s = 0. Therefore it
suffices to have that V (¢, s) does not vanish for all ¢+ and small s (which is attained if
we suppose 1 with constant speed).

Since U is (piecewise) C? we may interchange

. 9,0 90 9
o = a(a) ~ala) ~a

Therefore the variation formula equals

! 0 0
%/0 (1(5w) ||‘Y||2 “J( vauz) 5"

Fixs,andlet0 = t; < t; < --- < t, = 1 be a partition of [0, 1] such that U(¢,s)
is C? in the interior of the smaller intervals. We may integrate the above formula by
parts in each interval [t;_,t;] to obtain

%/riﬂlT(](gw)ﬁ+1(ﬁ) Sw) di =
%{T(nmﬁww(ﬁ))}

- %/ni17<1(w)%(ﬁ) ”‘%I(ﬁ)) dr.

Recall from the beginning of this section the definition of the covariant derivative of
a tangent vector field X along a curve 4 of unitaries:

t

DX 1 . .
- E{X — pJX)p}.
In our case, for each fixed s, the field ﬁ is tangent along the curve U(t,s), so we
have DV 178 V o v
— =l _yj=——)ul.
dt |V ||, 2{ ot [V])» (8t HVH2) }

Now we differentiate the identity U*U = 1 with respect to t. It was pointed out
in the introduction that the product of unitaries is not a differentiable map of the
arguments in the L? topology. However a product u(t)v(t) of C? curves of unitaries
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u(t) and v(¢) can be differentiated twice with respect to t. Indeed, the first derivative
yields #v + uv. Since u and v are C?, the norms ||v(t)||, and ||i(t)]|, are uniformly
bounded, and the second derivative can be computed. In our case, the derivative of
the identity U*U = 1 gives

V=-UJ(V)U,
ie.,
v _ uJ( v Ju
IV Vi’
Before computing the second derivative we puts = 0
g 14
d (Y
[rae [rae

Differentiating this expression with respect to ¢ (recall that we assume that y is
parametrized proportionally to arc length, i.e., |||, is constant)

0 fu . 14 AW 9 fu
- = A — {7 — I 51 .
ol = () =1 ) = (s ) #
Combining these one obtains
20 _,D i
ot |l fliellz [l

J(i) e
I e )
2l

9 _fr
) ot Jixll2
[ti_1,t;], and use these relations to obtain,

with an analogous expression for 2] ( ) . We add the integrals over the intervals

n

0l(s) = %Z{T(](W)L +W]( ||5\|2)) }

il

ti

L1

1 [ I D 4
- W) (1 —2J(W)=
*z/o T<’( Wl () =2 Gl

wiri(i) (i) -2 (G) ) #

We can deal better with this expression if we relate it to the second differential of the
map x — 7(x*x), which is the (real) bilinear form

H(&,n) = 7(&](n) + J(E)n).

H: L*M,7) x L*(M,7) — R,

Then the expression for the variation of ¢ becomes

ti

Iy
56(0)—5;H(m,w)
1

L1

D
+/OH(;L W, Ui = 1G0) = H( g ol w)
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A fact used here is that the field W satisfies relations analogous as V, i.e., U*W =
—J(W)U. A remark is in order. The element ji](j1) (resp. j1](1)) lies in L*(M, 7).
This is a consequence of y being (piecewise) C2, namely, its second derivatives, which
involve such terms, lie in L*(M, 7).

Note that m(](;z)u — [J(f)) lies in L2(M, 7)4 (is “hermitian”) and p*W lies
in L*(M, 7)_ (“antihermitian”). Indeed, the latter has just been remarked. The
former holds because ji can be approximated by elements x of M, and therefore
J(i)je — f1J(j1) can be approximated by x*x — xx*. Now if £ € L*(M,7)_ and
n € L*(M, 7),, it is clear that H(¢,n) = 0. Therefore we arrive at our final expres-

sion for the variation
t; 1 D (|
—/ H(—,L,W) dt.
tier Jo dr ||l

1 — 1
@ o0 =3 3 H (W)

Let us transcribe Theorem 3.3 by Duran, Mata-Lorenzo and Recht [4], which ap-
plies to our situation, with minor adaptations, once we have (3) analogous to their
expression for the variation.

If a piecewise C? curve y has minimal length among all the piecewise C* curves of
unitaries joining the same endpoints, then clearly 6£(0) vanishes for any variation U
of p1. As is standard use, let us call a curve for which all variations make §£(0) vanish,
an extremal of /.

Theorem 2.4  The extremals of { (among piecewise C*-curves) are precisely the geo-
desics of Uy

Proof Clearly a geodesic is an extremal of £. Suppose now that y is a piecewise C?
curve of unitaries. The converse is proven as in [4], by means of the following facts:

1. If pv is an extremal of /, then for all ¢ € [0, 1] and every vector field W along

D fu(t)
H(W®), ) =0
dt || ()]l

2. If pu is an extremal of ¢, then p is C2.
3. If v is C* and satisfies that for any vector field W along 1

D pt) \ _
(WO 3 o) =°

then p is a geodesic.

For the first assertion, suppose that for some t, (a point where p is C?) one has

D juto)
H(W(to), Eillﬂ(to)\lz) >0

for some variation U. Let us consider another variation
Ult,s) = Ult, o(t)s),

where ¢ is a scalar function satisfying
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1. 0 < p(t) < 1,with ¢(0) = 1 and (1) = 1.
2. (ty) = 1 and ¢ vanishes on small intervals around the points t1, . . . , t, where the
derivative of y is not continuous.
Note that U(t,0) = U(t,0) = u(t). Also the first condition above implies that
U(0,s) = U(s,0) = u(0) and U(1,s) = U(1,s) = wu(1). In other words, U is
another variation of y with fixed endpoints. Moreover

- oUu oU
W(t,S) - E - E(ta QO(l’)S) - Qp(t)w(tv 80(1‘)5)7

and therefore W (t) = W (¢, 0) = (t)W (t). Note that since ©(t;) = 1,

(D (%)

i @) >0

We can further choose ¢ in order that

D () _ D ju(t)
H(E o 7 0) = O (G iR V) 20

Since W(t) = @(t)W(t) vanishes at the points ¢y, ..., t,, it follows that for U the

variation is X
1 D () -
6€0=——/H— ,W(t)) dt >0,
©==3 |, #(G foom V)

and therefore p is not an extremal.
To prove the second assertion, suppose that p is an extremal of ¢, and that ¢, is a
point where /1 is not continuous. Denote by Vi and V; the lateral limits of £ /4

dt Tl
att = ty. Note that Vi and V; are unit vectors. Put

N
Ult,s) = e,

where () is a smooth scalar function, which satisfies that 0 < () < 1, ¢(ty) = 1
and ¢ vanishes on the other points where /i is not continuous. By the first assertion,
the integral term in the expression of the variation of y vanishes. Moreover, by the
choice of ¢, one has

50(0) = H(W (%), Vy) — HW (%), Vs ) = H(Vy, Vi) — H(Vy, V).

Now
H(V§,Vy) = 7(Vi J(VE) + J(VHVE) = 2|V |3 = 2.

On the other hand, the fact that % has a jump at t = #; implies that the unit

vectors Vi and V do not point in the same direction, i.e., the Cauchy—Schwarz
inequality is strict:
T(VeJVe)) < IVall2IVo Il = 1,

https://doi.org/10.4153/CMB-2005-032-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2005-032-0

Short Geodesics of Unitaries in the L> Metric 349
and analogously 7(J(V§)V, ) < 1. It follows that
6¢(0) >0

for this U, and p is not an extremal.
The third assertion is straightforward. Since in our case, the form H is nondegen-

erate, the identity
Dt
H(W(t) ) ) —0

"t ()]
for any field W implies that
D an)
dt [|1(t)]|2
i.e., pu is a geodesic. |

3 Short Curves
The key to our main result is the following:
Lemma 3.1 Let x be a selfadjoint element of M with finite spectrum and ||x|| < .

Then §(t) = €' has minimal length amongst piecewise C' curves joining 1 and €, in
the L* metric.

Proof The element x is of the form x = 25:1 a;p;, where py, ..., py are pairwise
orthogonal projections and v, . . . , . are real numbers with |o;| < 7. The length of

the geodesic § is || x|, = (E:;l a2r)'/2, where r; = 7(p;). Suppose that 4 is another
piecewise C! curve of unitaries with 1(0) = 1 and (1) = ¢*. Then

1 k

(S rtputinipn)  ar

i=1

1
0 = [ (rO)a= [
0 0

For each 1 < i < k denote by S the sphere of radius ril/2 in L2(M, 1),
Sy ={6 € XM, 7): (£,€) =}
Note that the curves p;d and p;p are curves in S 1». Indeed, for example

(pitts pipt) = T((pip)* pipt) = 7(pi) = ;.

/

Moreover, p;d is a geodesic of S 1> with length strictly less than 7rri1 ?. An elementary

spectral argument shows that

pid(t) = pie"™ = pie"™,
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which is clearly a geodesic of the sphere S ». The length of p;d is

1/2 1/2

Lpid) = |aipill> = |ailr,

In other words, p;d is the shortest curve in S /> joining its endpoints.

Consider the riemannian submanifold of L?(M, Tk
8 = Sr]l/z X X Sri/z

with its Levi—Civita connection. The curve A(t) = (p19(t), ..., pxd(#)) is a geodesic
of 8, since it is a k-tuple of geodesics of the coordinates. Moreover, it is the shortest
curve of § joining its endpoints. Indeed, none of its coordinates could be replaced by
a shorter curve. Therefore it is shorter than the curve M(¢) = (p1u(t), ..., pru(t)).
Now the length of M in § is measured as follows:

k

1 1
[ vt = [ (S rtpusuenaen) e = e
0 0

i=1
Analogously, the length of A coincides with £(9). It follows that
U(p) = €(9). |

Lemma 3.2 Letx € M be a selfadjoint element with ||x|| < 7, andv € Upq. Then the
geodesic §(t) = ve'™ has minimal length among piecewise C' curves of unitaries joining
its endpoints. It is unique among piecewise C° curves with this property.

Proof There is no loss in generality if we suppose v = 1. Indeed, for any curve p of
unitaries, (i) = £(v* ). Suppose that there exists a piecewise C! curve of unitaries
o which is strictly shorter than 6, £(u) < £(6) — € = ||x|| — €. The element x can be
approximated in the norm topology of M by selfadjoint elements of M, say z, with
finite spectrum and the following conditions:

L lz]| < il <.

2. |xfl2 = €/2 < lzll < [|x]-

3. ||e* — €7 < 2. A A

4. There exists a C*° curve of unitaries joining e'* and e'* of length less than €/2.

The first three are clear. The fourth condition can be obtained as follows. By the
third condition e~**¢? = ¢/, with y* = y € M. Moreover z can be adjusted so as to
obtain y of arbitrarily small norm. Then the curve of unitaries y(t) = e*e/” is C*°,
joins e* and ¢’?, with length || y||, < ||ly|| < €/2.

Consider now the curve ', which is the curve i followed by the curve ee”
above. Then clearly

0y < 00u) + llylla < €0u) +€/2.
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Therefore £(1') < ||x||2 — €/2. On the other hand, since x’ joins 1 and €%, by the
lemma above, it must have length greater than or equal to ||z]|,. It follows that

lzll2 < [lxll2 — €/2,

a contradiction.

Let us now show that § is unique. Let §’ be another piecewise C*° curve joining
the same endpoints, parametrized proportional to arc length, with £(§) = £(67). The
minimality of §” implies, by Theorem 2.4, that it is a C*® geodesic. Then ¢’ (t) = ¢’
for some x™* = x’ € M. We claim that x’ = x.

Since ||x|| < 7, ix can be obtained as an analytic logarithm of ¢* = ¢’ It
follows that x and x” commute. Then ¢/®*") = 1 and therefore x — x" is a selfadjoint
element with finite spectrum, contained in the discrete set {2n7 : n € Z}. Then
x'=x+ Zle 2n;mp; with n; € 7 and p; pairwise orthogonal projections in M,
i=1,...,k. Note that xp; = 0. Therefore

k
113 = =3 + > 4nfn?r(pi)-
i=1

Now, since ||x||, = £(6) = £(6") = ||x'|,, it follows that 7(p;) = 0, for each i =
1,...,kie,x=x. [

Lemma 3.3  Let x be a selfadjoint element of M with ||x|| = . Then § = ve'™ is the
shortest curve joining its endpoints.

Proof The proof is the same as the first part of the above lemma, approximating x
with z of finite spectrum and ||z|| < 7. Note that any unitary u € Uy, is of the form
u = €™ with x* = x and ||x|| < 7. This element x is non unique. [ |

We may summarize these lemmas in our main result.

Theorem 3.4  Let u, v be unitaries in M, and x = x* € M with ||x|| < , such that

viu = e*,

1. If ||x|| < m, then there exists a geodesic joining u and v, which has minimal length
among piecewise C' curves with these endpoints. It is unique with this property
among piecewise C°° curves.

2. If ||x|| = =, there exist many minimal C* geodesics joining u and v.

Remark 3.5 1In case 2, the multiple C> geodesics are of the form §(t) = ve'™* for
diverse x = x* € M with ||x|| = 7 such that v*u = ¢™*. If one only requires that the
curves be C?, other minimizing curves appear. Namely, by Remark 2.3 they are of the
form (t) = ve'’s, where ¢ lies in L*(M, 7), and satisfies J¢ = £ and v*u = ¢'l.

The following corollary might be obtained in a more straightforward way.
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Corollary 3.6  Let x,y € M be selfadjoint elements of norm less than or equal to 7
such that e* = €. Then 7(x*) = 7(y?).

Proof Both §(t) = ¢* and y(t) = €'’ are minimizing geodesics joining 1 and e,
therefore £(8) = £(7), i.e., T(x*) = T(y?). [ ]

4 Non Embeddability of Uy in L*(M, 7)

In this section we show that Uy is not a riemannian submanifold of L?(M, 7). By this
we mean that Uy, is not a riemannian manifold with the inner product of L2(M, 7)
at each tangent space. We also consider other aspects of the local structure of Uyy.

Lemma 4.1 There exists a sequence of selfadjoint elements a, € M such that ||a,||, =
€ for a given € > 0 and || — 1||, tends to zero.

Proof For each n > 1 pick a projection p,, in M such that 7(p,) = ;—22 Puta, =
np,. Note that ||a, ||, = n7(p,)"/? = €. On the other hand

le =13 = 2 = (™) — (e ™).

Clearly
2

7€) =1+ 6—2(ei” - 1),
n
which tends to 1. Analogously for 7(e~"). ]
Corollary 4.2 Uy is not a riemannian submanifold of L*(M, 7).

Proof Consider u, = €™ € Uy as above. Then the sequence u, tends to 1 in
the L2 metric. If Uy were a riemannian submanifold, then §,(t) = ¢ would
be a geodesic. If one adjusts € smaller than the radius of a normal neighbourhood
around 1 € Uy, then ,, would be a minimizing geodesic. It follows that the geodesic
distance between 1 and e'* equals ¢ for all n. This leads to contradiction: in a rie-
mannian manifold the topology given by the geodesic distance and the underlying
topology are equivalent. ]

Note that ,, above is in fact not a minimizing geodesic, according to our discussion of
the previous section. Indeed, ||a,|| = n. If one tries to compute minimizing geodesics
joining 1 and €', one must replace the exponent a, = np, by x, = (n — 2k, 7)pn,

where k, is an integer such that |n — 2k,7| < 7 (in this case it will be strictly smaller
than 7). Such x,, satisfy

2
x,|? :(11—2kn71')2—€ — 0asn — oo.
2 2
n

In other words, these minimizing geodesics have lengths which tend to 0.
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Let us denote by d, the geodesic distance in Uy, i.e.,
do(u,v) = inf{£(p) : p1 piecewise C' curve of unitaries with 1£(0) = u, (1) = v}.
Since Uy is not a riemannian manifold, we must prove the following:
Proposition 4.3  d, is a metric in Uyy.

Proof Clearly dg(u,v) > 0 and dg(u,v) = 0 imply u = v. Also it is clear that
dg(u,v) = dg(v, u). Let us verify that the triangle inequality holds. Let u, v, w € Uny.
We need to show that

dg(u,v) < do(u, w) + do(w, v).

By Theorem 3.4, u and w are joined by a minimizing geodesic 4 and w and u are
joined by a minimizing geodesic ¢, with both curves realizing the geodesic distance.
The curve § followed by the curve §’ is a piecewise C! curve of unitaries joining u
and v, with length d, (u, w) + dg(w, v). Therefore do(u, v) < dy(u, w) + dg(w,v). R

Proposition 4.4 The metrics dy and || ||, are equivalent in Uy.

Proof Both metrics are invariant by left translation with elements of Uy, i.e.,
de(u,v) = de(v*u,1) and ||u — v||; = ||v*u — 1||,. Therefore it suffices to com-
pare dg(u, 1) and ||u — 1|5, for u € Upr. Let x = x* € M with ||x|| < 7 and u = ™.
Then by Theorem 3.4

do(1,1) = ||x], = TV

On the other hand
2 4 6
|‘M—1‘|%:2—T(61x+€71)€):2 T(X ) _ T(x ) +7'(X ) .
2 4! 6!
Note that foralln > 1,
T(XZn) T(x2n+2)
— > 0.
(2n)! @n+2)! —
Indeed, it is apparent that this inequality is equivalent to (2n +2)(2n + 1) > TT(’(C;:;)
Since x* < 72,
() r(x"xx) TRt
T2 T T ey

and the above claim holds. First, note that with this inequality one has

T(xh)  T(x°)

4! 6!

=113 = 2[ 5762 - ( )~ ] <76,

ie, |lu— 1] < dg(u,l).
On the other hand, the same inequality proves that

A e

1 1
2 - VAN 4
””_1”2*2[27(“ 4!T(x)+( 2 41
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. 2 2 .
Since 1 — 35 > 1 — 5 > 0, it follows that
1 1 1 1 1 e
2 4 2 2 2
S0 = ) = ST - =) 2 o (1= )6,
2 4! 2 12 2 12
In other words,
lu— 1|, > Cdg(u, 1),
— m?
forC=,/1—- 3. [ ]
Further properties of this metric d; will be studied elsewhere.
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