
J. Functional Programming 11 (5): 467–492, September 2001. Printed in the United Kingdom

c© 2001 Cambridge University Press

467

Inductive graphs and
functional graph algorithms

MARTIN ERWIG

Department of Computer Science, Oregon State University, Corvallis, Oregon 97331, USA

(e-mail: erwig@cs.orst.edu)

Abstract

We propose a new style of writing graph algorithms in functional languages which is based

on an alternative view of graphs as inductively defined data types. We show how this graph

model can be implemented efficiently, and then we demonstrate how graph algorithms can be

succinctly given by recursive function definitions based on the inductive graph view. We also

regard this as a contribution to the teaching of algorithms and data structures in functional

languages since we can use the functional-style graph algorithms instead of the imperative

algorithms that are dominant today.

1 Introduction

How should I implement a graph algorithm in a functional programming language?

This seemingly simple question has attracted attention for quite a long time, and

there are many different proposals for how to do so. Of course, it is not really difficult

to somehow realize graph algorithms in functional languages. The real challenge is

to obtain clear and efficient programs, that is, functional programs that do not

lose their elegance and simplicity and that have the same asymptotic complexity as

imperative ones.

The main difficulties that arise when dealing, for example, with depth-first search

in functional languages are caused by the fact that a node might be reachable via

different edges, whereas the algorithm requires that it must be visited at most once.

In traditional descriptions of graph algorithms and in imperative languages this

behavior is achieved by simply marking a node as being visited after it has been

encountered the first time. When a node is reached again, checking its mark prevents

the algorithm from re-processing it (and also from possibly running into an infinite

loop). This node-marking strategy can easily be mimicked in functional languages:

remember visited nodes in a data structure and pass this data structure through all

function calls that occur in the context of the algorithm. In this way a local state

of node marks is maintained by the algorithm. However, this approach bears two

problems with regard to efficiency and clarity. First, whereas in the imperative setting

marking a node and testing for a node mark can be performed in constant time by

using an array, functional set data structures generally cannot meet this time bound:
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for example, using balanced binary search trees, set insertion and membership test

take O(log n) time (where n denotes the number of elements in the set). Second,

the threading of data structures requires all participating functions to have an

additional parameter for passing the state around, and this affects the readability of

the algorithms and, what is worse, the ease of manipulating programs and proving

program properties, which is a key attribute of functional programming.

One solution to the first problem is to use monads to thread arrays with constant-

time access through function calls (King & Launchbury, 1995; King, 1996). However,

this complicates the function definitions, making them less readable and more

difficult to understand, as well as forcing the algorithms to be written in an imperative

style. Another answer to the first problem is the use of uniqueness types (offered,

for example, by the Clean language (Barendsen & Smetsers, 1996)) or to rely

on automatic discovery of single-threadedness and generate in these cases safe

imperative code (Hudak & Bloss, 1985; Sastry et al., 1993). Despite the facts

that uniqueness types are not widespread (for example, neither Standard ML nor

Haskell has them) and that single-threaded analysis cannot discover all cases, both

approaches adhere to the imperative node marking view of graph algorithms and

thus provide no answer to the question of functional style.

Another aspect is that of teaching graph algorithms in functional languages.

Why, the reader might ask, is this an issue at all? It can be seen from newsgroup

discussions that re-appear in rather regular intervals that functional languages are

still in need of defending themselves and demonstrating that they can be used as

well as mainstream imperative or object-oriented languages.

Now the proof of usability of a programming language manifests itself not only

in applications that are written in that language, but also to a certain degree in the

available teaching materials for that language. For example, textbooks can convince

programmers and students that a language is really usable. First of all, explanations

of the language itself are needed, so that programmers and students are able to learn

the language and its programming style. There are quite a few textbooks available

introducing functional programming in general and also particular functional lan-

guages, but only very few that could be used for a (general) course in algorithms

and data structures – one example is Rabhi and Lapalme (1999). However, to be

really cogent in saying that functional languages are a true alternative to imperative

or object-oriented languages, it is indispensable to have also teaching material in

functional languages to demonstrate that functional languages are not just toys,

but can also address standard topics in algorithms and data structures. Moreover,

this teaching material could also be used to implement a typical (undergraduate)

curriculum completely in a functional language. If, on the other hand, functional

algorithm and data structure textbooks are not available, the fatal impression is

conveyed that to implement real data structures, one has resort to C or the like.

We believe that this leaves a very negative impression of the usability of functional

languages in general.

Why do so few functional data structure textbooks exist? We believe that one

reason is that the treatment of graphs in functional languages has been rather weak

so far.
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Hence, the goal of this paper is twofold. First, we want to demonstrate that

it is possible to define graph algorithms in a distinctive functional style and that

these algorithms are at the same time often competitive in terms of efficiency with

typical imperative implementations. Secondly, by giving a collection of algorithms

typically found in courses on algorithms and data structures, we try to close a gap

in functional algorithms and data structure textbooks. In section 2 we review related

work. The foundations for functional graph algorithms are laid in section 3 where

the inductive graph view is explained. There we also discuss the implementation of

these functional graphs. In section 4 we then define several graph algorithms by

recursive function definitions that follow the inductive graph structure. Conclusions

given in section 5 complete this paper.

The source code for all the examples of this paper are available as part of the

Functional Graph Library (FGL) that can be obtained through the World-Wide

Web from www.cs.orst.edu/~erwig/fgl/. Throughout this paper we use Haskell

notation. As an extension we employ active patterns, which provide a special kind

of pattern matching explained in Section 3.2, because this allows a more succinct

description of most algorithms. The use of active patterns is is helpful, but not

essential, and the versions of the algorithms in the FGL are actually defined without

using them.

2 Related work

A straightforward approach to implementing graph algorithms in functional lan-

guages proposed in Burton & Yang (1990) is to pass the state used by graph

algorithms through function calls where the state itself is represented by a func-

tional array. This is certainly a standard way of implementing any imperative

algorithm in a functional language. Burton and Yang show how classical algorithms

can be translated into a lazy functional language, but no particular use of functional

languages is made in the design of the algorithms themselves.

In contrast, Kashiwagi & Wise (1991) describe algorithms as fixed points of

recursive equations, which essentially relies on lazy evaluation. The algorithms

become quite complex and are rather difficult to comprehend. As with Burton

and Yang (1990) this approach does not achieve the asymptotic running time of

imperative algorithms.

A kind of combinator approach was presented in Erwig (1992), which identified

some classes of graph algorithms and introduced a few corresponding predefined op-

erators. A graph algorithm is realized by selecting an operator and providing it with

appropriate parameter functions and data structures. We believe that the approach

reflects the structure of graph algorithms very well. However, like in the previous two

approaches there is not much potential for formal program manipulation. Another

drawback is that the combinator approach is limited in expressiveness.

The proposal of King & Launchbury (1995) is concerned only with depth-first

search, and the focus is on a generated data structure, the depth-first spanning

forest, instead of the underlying graph algorithm. This facilitates formal reasoning –

in particular, the formal development of many algorithms based on depth-first search
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becomes possible. The depth-first search function itself is realized nicely in a generate-

and-prune manner. Monads are used to implement the state maintained during the

search (that is, the vertices visited) to achieve linear running time. At this point the

approach is stuck with the imperative programming style. Although encapsulated

and restricted to a single point, it comes up in the process of program fusion

where transformations become quite complex when functions are moved across

state transformers. For example, see Launchbury (1995) where it is demonstrated

how phase fusion can be applied to eliminate intermediate results of some of these

algorithms. King (1996) defines in his thesis many more algorithms, but as with

depth-first search, the defined functions are mainly implementations of imperative

algorithms.

Fegaras & Sheard (1996) investigate a generalization of fold operations to data

types with embedded functions. As one motivating example they show how to model

graphs. However, that approach is somewhat limited (it is not clear how to define,

for example, a function for reversing all edges in a graph) and it is highly inefficient

since direct access to a node requires, in general, traversal of the whole graph.

Also related is the work of Gibbons (1995), who considers the definition of

graph fold operations within an algebraic framework. But he deals only with acyclic

graphs, and an implementation is not discussed. A categorical definition for fold

operators on abstract data types was proposed in Erwig (2000). In that approach the

decomposition of ADTs can be controlled by external values. One main application

was the definition of graph operations like depth-first search that, in contrast to

Gibbon’s approach, work on arbitrary graphs.

In contrast to the monolithic view of graphs which is so dominating that it is

even adopted by most functional approaches, we suggest to view graphs inductively,

as a data type defined by two constructors, much like lists or trees. This view

was first presented in Erwig (1997b) where the focus was to define several kinds

of graph fold operations and to identify laws for them that can be used for

program transformation. Also a first implementation of functional graphs was

provided. In Erwig (1997a) we have extended the implementation in several ways and

have compared different representation schemes by performing some benchmarks.

The inductive graph view has also applications that go beyond the realization

of functional graph algorithms. For example, inductive graphs have facilitated

the denotational semantics definition of visual languages (Erwig, 1998b). Another

application, which has a strong educational component, is the purely functional

description of graph reduction (Erwig, 1998a). Still another application that we are

currently investigating is the treatment of graph grammars in a functional setting.

Most of the existing textbooks on functional programming concentrate on ex-

plaining the fundamental programming and language concepts. To a certain extent

data structures are sometimes covered, too. In fact, most books contain examples

of list and tree algorithms, for example, Bird (1998) and Ullman (1998), but they

do not treat graphs. Some books mention graphs, but do so rather superficially

(Paulson, 1996; Reade, 1989).

A dedicated data structure textbook is Rabhi and Lapalme (1999). To some degree

the book by Harrison (1989) could also be used. Both books contain material about
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graphs and graph algorithms, but the representations chosen are those known from

the imperative world. This causes a breach in the presentation since the distinctive

clear and succinct functional programming style is lost to some degree. Several

graph algorithms are also contained in King’s PhD thesis (King, 1996). These make

heavy use of monads and rely very much on state-based computations. Hence, the

algorithms are as well mainly those known from the imperative world. The most

comprehensive and most advanced book on data structures in functional languages

is that of Chris Okasaki (1998). However, it does not contain material on graphs or

graph algorithms.

3 Inductive graphs

The prevailing view of graphs in programming is that of a large monolithic block:

disregarding node and edge labels, a graph is viewed as a pair G = (V , E) where V

is a set of nodes and E ⊆ V ×V is a set of edges. The descriptions of algorithms that

work incrementally on graphs, i.e. algorithms that visit nodes one after the other,

then need an additional data structure for remembering the parts of the graph that

have already been dealt with. Alternatively, the graph representation is defined to

have additional fields that allows for marking nodes and edges directly in the graph

structure itself.

This ‘node marking’ strategy reflects an inherently imperative style of algorithms,

and this also shows up a bit painfully when one tries to implement these algorithms

in a functional language: one has to thread a data structure for the node marks

through all the functions that are involved in the implementation of an algorithm.

This might be done by passing an additional parameter or by using monads. In

any case, a state has to be threaded through the algorithm, and this complicates all

aspects of the algorithm. Moreover, it complicates correctness proofs and program

transformations considerably.

This has to be seen in contrast to list or tree algorithms that have beautiful and

simple definitions not needing additional bookkeeping. The reason is that lists and

trees are inductively defined data types, and function definitions, which can follow

quite naturally the definition of the argument data type, are inductive in style, too.

Finally, the use of pattern matching contributes significantly to the succinctness and

elegance of those function definitions.

Now what we are proposing is essentially to regard a graph as an inductive data

type. This makes graph algorithms amenable to inductive function definitions with

all their advantages.

Graphs will conceptually be represented by two constructors; we will introduce

these constructors in section 3.1. Simple algorithms can be implemented immediately

using pattern matching on these two basic constructors. However, more advanced

algorithms require the ability to visit nodes in specific order, and this is supported by

a particular kind of pattern matching, which is described in section 3.2. In section

3.3 we describe and discuss several ways to implement inductive graphs. In the

following we denote by n (m) the number of nodes (edges) in a graph.
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Fig. 1. Directed graph with two inductive constructions.

3.1 Graph constructors

A graph consists of a set of nodes that are connected by edges. For simplicity we

assume that nodes are represented by integers, and for generality we define a single

graph type for directed node- and edge-labeled multi-graphs. Other graph types can

be obtained as special cases: for example, undirected graphs can be simulated by

directed graphs having a symmetric edge structure, where we say that a directed

graph g properly represents an undirected graph if for each edge (v, w) in g there

is also an edge (w, v) in g with the same label. Moreover, unlabeled graphs simply

have the node and/or edge label type ‘()’ (unit).

The inductive view of graphs is captured in the following description: a graph is

either the empty graph or a graph extended by a new node v together with its label

and with edges to those of v’s successors and predecessors that are already in the

graph. The representation of each edge contains the successor/predecessor node and

the label of the edge. This information about a one-step inductive graph extension

is contained in a type called the context.

type Node = Int

type Adj b = [(b,Node)]

type Context a b = (Adj b,Node, a ,Adj b)

The graph type itself is implemented for efficiency reasons as an abstract type (see

section 3.3). However, it is very convenient to think of the graph type being defined

as an algebraic type with two constructors Empty and & (used in infix notation):

data Graph a b = Empty | Context a b & Graph a b

The above definition suggests that graphs are isomorphic to lists, however this is not

the case because graphs are not freely generated by Empty and &. With these two

constructors we can now denote graphs by data type terms. Consider, for instance,

the graph shown (on the left) in figure 1.

We can build this graph, for example, with the following expression (first the solid,

then the dashed, and finally the dotted part, see graph in the middle of figure 1):

([(”left”, 2), (”up”, 3)], 1, ’a ’, [(”right”, 2)]) &

([ ], 2, ’b’, [(”down”, 3)]) &

([ ], 3, ’c’, [ ]) & Empty

The chosen order of inserting node contexts is not the only possible one. For
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example, we can also reverse the order. Then, however, the contexts have to be

changed accordingly since we can refer in predecessor and successor lists only to

nodes that are already present in the graph to be extended (see graph on the right

in figure 1).

([(”down”, 2)], 3, ’c’, [(”up”, 1)]) &

([(”right”, 1)], 2, ’b’, [(”left”, 1)]) &

([ ], 1, ’a ’, [ ]) & Empty

Since & is defined as a function, consistency checks for graph construction can

be integrated. In fact, an error is reported when a context is added for a node

that is already present in the graph or when a node mentioned in the successor or

predecessor list is missing in the graph.

Actually, we can choose an arbitrary order of node insertion for building a

graph. This is a very important property that sets the theoretical foundation for the

possibility of a powerful kind of pattern matching on graphs to be described in the

next subsection. We express this result by the following two facts:

Fact 1 (Completeness)

Each labeled multi-graph can be represented by a graph term.

Fact 2 (Choice of Representation)

For each graph g and each node v contained in g there exist p, l, s and g′ such that

(p, v , l , s) & g ′ denotes g.

These two observations can also be established more formally: we can define a

semantics of the graph constructors and express the relationships based on this

semantics, see Erwig (1997b).

The inductive graph view does not mean that one is always forced to invent a

proper sequence of contexts to define graphs. In fact, this can become quite tedious,

and we have therefore defined a number of operations to insert lists of nodes and

edges into a graph. In this connection we also mention the function newNodes that

yields a list of nodes that are not contained in a graph.

newNodes :: Int → Graph a b → [Node]

newNodes i g = [n + 1..n + i ] where n = foldr max 0 (nodes g)

This function is particularly useful for extending a graph whose construction history

is not known. The function nodes extracts the node values from a graph; it is defined

in the next subsection.

3.2 Pattern matching on graphs

Having introduced and described inductive graphs as terms, we can use pattern

matching on this representation. First, we can define elementary functions like:

isEmpty :: Graph a b → Bool

isEmpty Empty = True

isEmpty = False
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But we can also realize more interesting operations. For example, we can define a

map function for graphs by simple term pattern matching:

gmap :: (Context a b → Context c d ) → Graph a b → Graph c d

gmap f Empty = Empty

gmap f (c & g) = f c & gmap f g

Note that gmap preserves the structure of the nodes, but not necessarily of the edges.

A graph reversal function can be easily defined using gmap:

grev :: Graph a b → Graph a b

grev = gmap swap where swap (p, v , l , s) = (s , v , l , p)

The advantages of this programming style are, in particular, very simple proofs of

program properties or transformation rules. For example, it needs just a couple of

lines to prove by induction, say, a fusion law for gmap and an inversion rule for

grev :

gmap f . gmap f ′ = gmap (f . f ′) (gmap fusion)

grev . grev = id (grev inversion)

We can prove gmap fusion by induction on the graph structure. For g = Empty we

have by definition gmap f (gmap f ′ Empty) = gmap f Empty = Empty = gmap (f . f ′)
Empty . Otherwise, with g = c & g ′ we conclude by induction:

gmap f (gmap f ′ g) = gmap f (gmap f ′ (c & g ′)) (Def . g)

= gmap f (f ′ c & (gmap f ′ g ′)) (Def . gmap)

= f (f ′ c) & gmap f (gmap f ′ g ′) (Def . gmap)

= (f . f ′) c & gmap (f . f ′) g ′ (Ind. Hyp.)

= gmap (f . f ′) (c & g ′) (Def . gmap)

= gmap (f . f ′) g (Def . g)

In the proof for the second equation we need the following two obvious facts about

swap and gmap:

swap . swap = id (swap idempotency)

gmap id = id (gmap unit)

Now we can prove grev inversion with the help of the gmap fusion law.

grev . grev = gmap swap . gmap swap (Def . grev)

= gmap (swap . swap) (gmap fusion)

= gmap id (swap idempotency)

= id (gmap unit)

To really appreciate the elegance of this proof, the reader might try to prove the

same property for the imperative graph reversal algorithm that works by iterating

over all adjacency lists.

Another useful basic function on graphs is ufold .1

1 The ‘u ’ stands for unordered and emphasizes that the order of encountering nodes is not important.
Other fold operations, in particular, using ordered graph decomposition, are defined in Erwig (1997b).
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ufold :: (Context a b → c → c) → c → Graph a b → c

ufold f u Empty = u

ufold f u (c & g) = f c (ufold f u g)

With ufold we can implement gmap and a couple of other graph functions:

gmap f = ufold (\c→ (f c &)) Empty

nodes :: Graph a b → [Node]

nodes = ufold (\(p, v , l , s)→ (v :)) [ ]

undir :: Eq b ⇒ Graph a b → Graph a b

undir = gmap (\(p, v , l , s)→ let ps = nub (p++s) in (ps , v , l , ps))

Since graphs are implemented in FGL as an abstract type, the reader should be

aware of the fact that & is a function and not a constructor and therefore cannot

be used in patterns. Instead, FGL defines the predicate isEmpty and a function for

extracting an arbitrary context:

matchAny :: Graph a b → (Context a b,Graph a b)

Note that matchAny reports an error when it is applied to empty graphs.

Now a function like gmap is implemented in FGL typically as follows.

gmap f g | isEmpty g = g

| otherwise = f c & (gmap f g ′)
where (c, g ′) = matchAny g

In general, contexts are not encountered in the reverse order in which they were

inserted into a graph. However, this does not affect reasoning as demonstrated

above since preconditions like g = c & g ′ refer to arbitrary representations. As far

as practical work with FGL is concerned, not keeping the term representation is not

a problem either since equality of graphs is defined on the basis of the set of nodes

and edges contained in graphs. Thus, like we have in our model g = gmap id g ,

we also find in FGL that g gmap id g evaluates to True. Another question that

arises with different term representations for one graph is whether graph algorithms

defined using ufold or gmap are correct at all because they might encounter an

arbitrary representation. Correctness of an algorithm requires that it is in a certain

sense robust with respect to the term representation of a graph, that is, it works for

an arbitrary (valid) term representation. Indeed, this question has to be considered

for each definition individually. For example, the definition of grev works correctly

since it does not change the order of contexts and since the dependency of the

successor/predecessor nodes on being already inserted by previous contexts is not

affected by exchanging the successor and predecessor lists. In contrast, for functions

f that change the contexts in arbitrary ways, gmap may succeed for some orders and

fail for others, because of the requirement that successor/predecessor nodes already

exist in the graph.

Many other algorithms require contexts to be matched in a very specific order.

At this point, the multiple representations for graphs offer a great opportunity to
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define a special kind of pattern matching that just allows the selection of contexts

for specific nodes.

In Erwig (1996) we introduced active patterns, which essentially extend patterns

by a function component that is applied to the argument value before it is matched

against the pattern. This function can be used to transform the argument into the

desired form so that matching can extract afterwards just the parts in their desired

form. In this respect active patterns are similar to views (Wadler, 1987; Burton &

Cameron, 1993). However, an active pattern’s function has access to external values

other than the argument, which facilitates the external control of the argument

reorganization. This is not possible with views, but it is possible with the approach

presented in Erwig & Peyton Jones (2000) and, to a limited degree, also with the

proposal of Palao Gostanza et al. (1996). (For a more detailed comparison with

several other pattern-matching extensions, see Erwig & Peyton Jones (2000).)

We are not going to explain active patterns in full detail here; for our purpose

it is sufficient just to define an active graph pattern: Fact 2 tells us that for each

node v contained in a graph there is a term representation (p, v , l , s) & g for some

suitable p, l, s, and g. Now the active pattern (c &
v

g) is matched against a graph g′
by searching for node v in g′ and transforming, at least conceptually, g′ into a term

representation in which v’s context is inserted last, so that it is the argument of the

outermost application of &. Of course, this can be done only if v is contained in g′.
In that case the pattern is said to match and v’s context is bound to c, and the graph

without the context, that is, without v and its incident edges, is bound to g. On the

other hand, if v is not contained in g′, the pattern fails, no bindings are produced,

and pattern matching continues as after a normal pattern-match failure. Note that

the v in &
v

is an expression, not a pattern. If it is a variable, then it must already be

bound to a value when the active graph pattern is evaluated. This typically happens

by using v as a parameter preceding the graph pattern.

Some examples of the use of active graph patterns are determining a node’s

successors, computing the degree of a node, or deleting a node from a graph:

gsuc :: Node → Graph a b → [Node]

gsuc v (( , , , s) &
v

g) = map snd s

deg :: Node → Graph a b → Int

deg v ((p, , , s) &
v

g) = length p + length s

del :: Node → Graph a b → Graph a b

del v ( &
v

g) = g

Note that the use of active patterns is not essential; we can always rewrite functions

by explicitly calling a function match that searches for the context of a given node v

in a graph g and returns this context (if found) together with the remaining graph:

match :: Node → Graph a b → (Maybe (Context a b),Graph a b)

Then a function f that uses an active pattern in the following way:
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Table 1. Basic graph operations

Construction Decomposition

Empty graph (Empty) Test for empty graph (Empty-match)

Add context (&) Extract arbitrary context (&-match)

Extract specific context (&
v
)

f p (c &
v

g) = e

f p g = e′

can be rewritten with a case expression as

f p g ′ = case match v g ′ of

(Just c, g) → e

(Nothing , g) → e′

(Note that other equations for f that precede the one with the active pattern can be

kept unchanged. See, for instance, dfs in section 4.1.)

Now the function gsuc can also be implemented as:

gsuc v g ′ = case match v g ′ of

(Just ( , , , s), g) → map snd s

In fact, this is the way functions are implemented in FGL because active patterns

are not available in Haskell.

In addition to gsuc we will frequently need a function that selects the successors

from a known context. Therefore, we also define:

suc :: Context a b → [Node]

suc ( , , , s) = map snd s

3.3 Implementation and complexity

The implementation of inductive graphs has to support the operations for construct-

ing and decomposing graphs shown in Table 1.

In particular, graphs have to be fully persistent, i.e. updates on a graph must leave

previous versions intact.

3.3.1 Graph representations and persistence

One idea is to use a plain term representation, which offers persistence for free.

However, a closer look rules out this option because the implementation of the &
v

pattern is hopelessly inefficient, and even the implementation of the & function is

inefficient since it has to ensure the existence of the predecessors and successors and

the non-existence of the newly inserted node, and testing this takes at least linear

time with respect to the size of the graph.
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Considering the imperative world, there are two main representations: adjacency

lists and incidence matrices. Each has strengths and weaknesses. Except for special

applications, adjacency lists are generally favored over incidence matrices because

1. adjacency lists require less space for all but very dense graphs and

2. adjacency lists offer O(1) access time to the successors of an arbitrary node in

contrast to Ω(n) time needed to scan a complete row in an incidence matrix.

We have therefore concentrated on two alternatives for making adjacency lists

persistent: the first representation uses a variant of the version-tree implementation

of functional arrays, and the second representation stores successor and predecessor

lists in a balanced binary search tree. The version-tree implementation is based on

Aasa et al. (1988) and records changes to the original array in an inward directed

tree of (index, value) pairs that has the original array at its root.2 Each different

array version is represented by a pointer to a node in the version tree, and the nodes

along the path to the root mask older definitions in the original array (and the tree).

Adding a new node to the version tree can be done in constant time, but index

access might take up to u steps where u denotes the number of updates to the array.

This basic structure can be extended by an additional cache array, and we add a

further array carrying time stamps for nodes. Moreover, to support some specialized

operations efficiently, this structure is supplemented by a two-array implementation

of node partitions to keep track of inserted and deleted nodes.

3.3.2 Optimizing the version-tree array representation

In the version-tree representation, the implementation of &
v

becomes quite inefficient

since the deletion of a context (p, v , l , s) requires the removal of v from each

predecessor’s successor list and from each successor’s predecessor list. When c

denotes the size of the context (c ≈ length p + length s), this means a running time

of O(uc2) (recall that u gives the total number of previous updates to the graph). By

keeping the predecessors and successor in balanced binary search trees, the effort

can be reduced to O(uc log c).

Avoiding Node Deletion. To avoid these costly deletion activities we equip each node

in the graph with a positive integer, and this integer is negated once the node is

deleted. Positive node stamps are also put into successor/predecessor lists. Now

when a node context is deleted, we need not remove v from all referencing successor

and predecessor lists because when a successor list l (of a node w) is accessed that

contains v, all elements that have non-matching stamps are ignored, that is, v will

not be returned as a successor because it has a negative node stamp whereas l

contains v with a positive stamp. When v is re-inserted into the graph later, we make

the stamp of v positive again and increase it by 1, and we take this new stamp over

2 In fact, there are more sophisticated functional array implementations available, for example, Dietz
(1989) and O’Neill and Burton (1997). However, the implementation of these data structures requires
considerable effort, and benchmarks have shown that even the simpler version-tree implementation
does not deliver in practice what its asymptotic complexity promises (Erwig, 1997a).

https://doi.org/10.1017/S0956796801004075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004075


Inductive graphs and functional graph algorithms 479

to all newly added predecessors and successors. Now if w is not among the new

predecessors, the old entry in l is still correctly ignored when l is accessed because

its value is smaller than v’s current stamp.

In practice, the garbage nodes in successor and predecessor lists (that is, invalid

and unused references to deleted nodes) do not seem to be a significant source of

inefficiency for most applications. For example, in the case of graph reduction, where

graphs are heavily updated, only 25–30% of nodes in successor and predecessor lists

are filtered out due to invalid stamps.

Avoiding Version-Tree Lookups. We can define the ‘leftmost’ node of a version tree

as the leaf that is reached by repeatedly following the first added version of each

node starting at the root. Now we add an imperative cache array to the leftmost

node of the version tree. This means that the array represented by that node is, in

fact, duplicated. Since index access within this array is possible in constant time,

algorithms that use the functional array in a single-threaded way have the same

complexity as in the imperative case because the version tree degenerates to a

left spine path with the leaf node offering constant-time access during the whole

algorithm.

There is a subtlety in this implementation involving having just one cache array:

if a functional array is used a second time, the cache has already been consumed

for the previous computation and cannot be used again. This gives a surprising

time behavior: the user executes a program on a functional array, and it runs quite

fast. However, running the same program again results, in general, in much larger

execution times since all access now goes through the version tree. Therefore, we

create in our implementation a new cache for each new version derived from the

root of the version tree.

Support for Special Operations. The version-tree implementation described so far is

surprisingly inefficient for the operations Empty-match and &-match. Testing for

the empty graph can be easily supported by extending the graph representation to

include the number of nodes in the graph. The operation &-match is more difficult

to realize because we must, in general, scan the whole stamp array to find a valid

(i.e. non-deleted) node. Note that even a simple imperative array implementation

requires, in general, linear time for this operation because it scans the whole array.

(This is not surprising since the question of graph updates is completely ignored

anyway in almost all descriptions of imperative graph representations.)

To account for &-match we keep for each graph a partition of inserted nodes

(that is, nodes existent in the graph) and deleted nodes: when a node is deleted

(decomposed), it is moved from the inserted-set into the deleted-set, when a node is

inserted into the graph, it is moved the other way. The node partition is realized by

two arrays, index and elem , and an integer k giving the number of existent nodes,

or, equivalently, pointing to the last existing node. The array elem stores all existent

nodes in its left part and all deleted nodes in its right part, and index gives for

each node its position in the elem array. A node v is existent if index [v ] 6 k , and

it is deleted if index [v ] > k . Inserting a new node v means to move it from the
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deleted-set into the inserted-set. This is done by exchanging v’s position in elem with

the node stored at elem[k + 1] (that is, the first deleted node) followed by increasing

k by 1. The entries in index must be updated accordingly. To delete node v, first

swap v and elem[k ], and then decrease k by 1. All this is possible in constant time.

Now all the above mentioned graph operations can be implemented to work in

constant time: &-match can be realized by calling &
v

with elem[1], and Empty-

match is true if k = 0. Moreover, some other useful graph operations are efficiently

supported by the node partition: a list of i fresh nodes as required for the imple-

mentation of newNodes is simply given by [elem[k + 1], . . . , elem[k + i ]], k gives the

number of nodes in the graph, and all nodes can be reported in time O(k) which

might be much less than the size of the array. The described implementation of node

partitions is an extension of the sparse set technique proposed in Briggs & Torczon

(1993). The drawback of this extension is that keeping the partition information

requires additional space and causes some overhead. Moreover, graphs still are not

truly dynamic since arrays can neither grow nor shrink.

3.3.3 Binary search tree representation

A binary search tree can also be used as a functional array implementation, and

this offers an immediate realization of functional graphs: a graph is represented by

a pair (t, m) where t is a tree of pairs (node, (predecessors, label, successors)) and

m is the largest node occurring in t. Note that m is used to support the creation of

new nodes, which is possible in O(1) time.

However, inserting and deleting a node context (p, v, l, s) requires considerable

effort. For insertion we have to insert the context itself, which takes O(log n) steps,

and we have to insert v as a successor (predecessor) for each node in p (s), which

requires O(c log n) steps. Hence, insertion runs in O(c log n) time which can be as

large as O(n log n) for dense graphs. Context deletion takes even more time since

we have to remove v from the successor (predecessor) list for each element of p

(s), which requires searching these lists for v. Altogether deletion runs in O(c2 log n)

time or O(c log c log n) if predecessors/successors are stored as search trees. In dense

graphs, this gives a complexity of O(n2 log n) or O(n log2 n).

Although the asymptotic behavior of the search tree representation is clearly

worse (at least for single-threaded graph uses) than the array implementation, it

performs very well in practice (see Erwig (1997a)), maybe because it is much simpler

and does not require so much tuning. It also has the great advantage that it is a truly

dynamic structure that supports unbounded growth of graphs. A further problem

with the array implementation is that it is difficult to realize in Haskell. Either

unsafe features have to be exploited, or operations like constant time array updates

have to be encapsulated in a monad. Since such a monad has to extend as far as

access to the array is made, the monad would eventually show up in the algorithms

and cannot be hidden in the graph implementation. This is very bad and would

completely destroy the functional flavor of the algorithms using inductive graphs.

The version-tree implementation is therefore contained only in the ML version of

FGL, the Haskell version currently provides only the search-tree representation.
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4 Functional graph algorithms

We are now ready to present a collection of graph algorithms based on the inductive

view of graphs. We describe a selection of algorithms that are often used in courses

on algorithms and data structures. This should serve as evidence that it is possible

to teach graph algorithms using functional languages.

We will, however, not provide all the additional explanations that are required

for a potential graph chapter of a textbook. Rather we shall discuss the different

flavor of the functional algorithms compared with the imperative versions. We also

comment on complexity, and we assume that & and &
v

are O(1), even though that

may not be true for some implementations. More example programs can be found

in Erwig (1997b) where we have concentrated on the definition of several kinds of

graph fold operations and on optimization rules for these and in Erwig (1997a)

where we have used example programs to benchmark different inductive graph

implementations. One of these examples is a completely functional graph reducer

that is also described in more detail in Erwig (1998a).

4.1 Depth-first search

Depth-first search is one of the most basic and most important graph algorithms.

It can reveal a lot about the internal structure of a graph, and this information

can be used to implement several other algorithms, such as topological sorting or

computing strongly connected components.

A depth-first walk through a graph essentially means to visit each node in the

graph once by visiting successors before siblings. The parameters of depth-first

search are, of course, the graph to be searched and a list of nodes saying which

nodes might be left to visit. This list is needed for unconnected graphs where, after

having completely explored one component, a node of another component is needed

to continue the search. The result of depth-first search can be, for example, the

list of nodes in the order visited (this list is said to be in depth-first order) or a

depth-first spanning forest, which keeps the edges that have been traversed to reach

all the nodes.

We begin by giving an algorithm that yields a list of nodes in depth-first order:

dfs :: [Node] → Graph a b → [Node]

dfs [ ] g = [ ]

dfs (v :vs) (c &
v

g) = v :dfs (suc c++vs) g

dfs (v :vs) g = dfs vs g

The algorithm works as follows. If there are no nodes left to be visited (first case), dfs

stops without returning any nodes. In contrast, if there are still nodes that must be

visited, dfs tries to locate the context of the first of these nodes (v) in the argument

graph. If this is possible (second equation), which is the case whenever v is contained

in the argument graph, v is the next node on the resulting node list, and the search

continues on the remaining graph g with the successors of v to be visited before the

remaining list of nodes vs . The fact that the successors are put in front of all other

nodes causes dfs to favor searching in the depth and not in the breadth. Finally, if
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v cannot be matched (last line), dfs continues the search with the remaining list of

nodes vs . Note that the last case can only occur if v is not contained in the graph

because otherwise the pattern in the second equation would have matched.

The reader might have noticed a source of optimization in the above definition:

in fact, we can immediately terminate dfs and return an empty node list when nodes

to be visited are still left but the graph is empty. This can be achieved by either

adding as a first or second equation

dfs vs Empty = [ ]

or changing the first equation to something like:

dfs vs g | null vs || isEmpty g = [ ]

This does not affect the computed results, but might improve efficiency, in particular,

in dense graphs, where all the expanded edges can cause up to Ω(n2) nodes to be

checked even after the graph has been already completely traversed.

It is interesting to note how the single-visit constraint of depth-first search is

realized through active patterns: once a node v is visited, that is, once v has been

successfully matched in the second equation, the algorithm continues with a graph

that does not contain v anymore. So instead of remembering visited nodes, be it

imperatively by node marks or functionally by threading a set structure, in our

approach visited nodes are simply forgotten! Also consider how easy it is to realize

breadth-first search: simply replace suc c++vs by vs++suc c in the second equation –

the new nodes (of the deeper level) are not visited until all other nodes (of the current

level) have been visited. Of course, this treatment of lists as queues is inefficient – sec-

tion 4.2 discusses how to replace lists with a more efficient implementation of queues.

As mentioned above, in its general form dfs needs as a parameter the list of

possibly unvisited nodes. To run dfs on a graph g without mentioning a start node,

it is sufficient to call dfs g (nodes g). Note, however, that this works for bfs only if

we use a list of queues as a parameter. Otherwise, we would end up in visiting all

nodes in the same order as the list provided. Therefore, bfs defined to work on just

one queue always needs a single start node as a parameter.

Once again we note that the use of active patterns is just for notational conve-

nience, and we could implement dfs by using the match function:

dfs [ ] g ′ = [ ]

dfs (v :vs) g ′ = case match v g ′ of

(Just c, g) → v :dfs (suc c++vs) g

(Nothing , g) → dfs vs g

Computing a depth-first spanning forest is slightly more complex because we have to

distinguish between the relationship of a node to its successors and that to its siblings

to obtain the spanning tree structure. This was not needed in dfs since all nodes

were just put into one list, that is, successors as well as siblings were concatenated.

In contrast, to compute a tree structure, the spanning trees for siblings have to be

concatenated whereas otherwise a node makes up a new branch of the tree with the

spanning trees of its successors as subtrees.
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First, we need a definition of multi-way trees together with a postorder traversal

function that visits the nodes of all subtrees before the root.

data Tree a = Br a [Tree a]

postorder :: Tree a → [a]

postorder (Br v ts) = concatMap postorder ts++[v ]

Note that concatMap is a function defined in the Haskell prelude:

concatMap :: (a → [b]) → [a] → [b]

concatMap f = concat . map f

Of course, the given simple implementation for postorder has quadratic running

time, but by using an accumulating parameter or an O(1) queue data structure we

can obtain linear complexity.

Now we can define a function to compute spanning forests. The function is very

similar to dfs; it mainly differs in the second equation which applies when the next

node to be visited v can be found in the graph. In that case we have to create

independently two spanning forests: one forest f for all successors of v; these trees

become the subtrees of the newly created tree with root v, and this tree is added

to the second forest f′ that is computed for the remaining nodes to be visited. To

ensure that each node is used only once we have to remember the unused graph

parts in a second result and thread this graph through successive function calls.

df :: [Node] → Graph a b → ([Tree Node],Graph a b)

df [ ] g = ([ ], g)

df (v :vs) (c &
v

g) = (Br v f :f ′, g2) where (f , g1) = df (suc c) g

(f ′, g2) = df vs g1
df (v :vs) g = df vs g

Since the graph result from df is only used internally, we define an additional

function dff that returns just the computed forest.

dff :: [Node] → Graph a b → [Tree Node]

dff vs g = fst (df vs g)

Being able to compute depth-first spanning forests we can now implement quite

easily functions for topologically sorting a graph and computing strongly connected

components (Erwig, 1992; King & Launchbury, 1995; King, 1996): a topological

sorted list of nodes can be obtained by a reversed postorder list of nodes of the

depth-first spanning tree, and Sharir’s algorithm for computing strongly connected

components works by computing a depth-first spanning forest on the reversed graph

starting with a topologically sorted list of nodes.

topsort :: Graph a b → [Node]

topsort = reverse . concatMap postorder . dff

scc :: Graph a b → [Tree Node]

scc g = dff (topsort g) (grev g)
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These two examples demonstrate nicely how the compositional style of functional
languages can be used to give succinct descriptions of graph algorithms. In Launch-
bury (1995) and Erwig (1997b) it is shown how these definitions can be optimized
further.

4.2 Breadth-first search

Breadth-first search essentially means visiting siblings before successors. This has
the effect of first visiting all nodes of a certain distance (measured in number
of edges) from the start node before visiting nodes that are further away. This
property is exploited by the shortest-path algorithm esp given below that is based
on breadth-first search.

bfs :: [Node] → Graph a b → [Node]
bfs [ ] g = [ ]

bfs (v :vs) (c &
v

g) = v :bfs (vs++suc c) g

bfs (v :vs) g = bfs vs g

The algorithm works very much like depth-first search, except for the treatment
of newly found successors, and this reflects exactly the way in which the nodes to
be visited are implicitly ordered: for dfs these are kept in a stack, that is, newly
discovered nodes are put in front of previously discovered (but not yet visited) ones,
for bfs the nodes are kept in a queue, that is, new nodes are appended to old ones.

Using lists to realize a queue is not very efficient due to the append operation
taking linear time in the size of its first argument. However, there are several queue
implementations available that guarantee constant time operations either amortized
over all operations (Gries, 1981; Burton, 1982) or even for a single operation (Hood
& Melville, 1981; Chuang & Goldberg, 1993; Okasaki, 1995). For our purpose, an
amortized constant-time queue implementation is sufficient; this keeps bfs a linear
algorithm. Moreover, we can enhance the above definition in the same way as dfs
or df by aborting the search on encountering the empty graph.

To build a breadth-first spanning tree we again have to keep more information

than just the order of nodes. Before we present the algorithm we make two ob-

servations. First, it is quite difficult to efficiently build a breadth-first spanning tree

represented, for example, as a Tree Node value as was done by df (see also Okasaki

(2000)). The problem is that the expressions denoting such trees have to be built

bottom-up whereas the recursion in bfs delivers nodes in a way that is per se suited

for top-down construction. Secondly, such a representation is not so important any-

how because one of the most important uses of a breadth-first spanning tree is to

find shortest paths3 (from the root to any other node), and this is supported by

inward directed trees, that is, trees whose edges point from the successors toward

predecessors: finding a shortest path from node s to node t can be achieved by

(i) computing the breadth-first spanning tree rooted at s, (ii) locating node t in it,

and (iii) following the edges from t to the root. Then the reverse list of traversed

nodes/edges gives the shortest path.

3 Here the distance is measured in number of edges. A shortest-path algorithm that uses edge weights
is presented in Section 4.3.
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Now an inward directed tree can be represented simply as a mapping with domain

and range of type Node mapping nodes to their predecessors. Since such a mapping

is built incrementally either during breadth-first search or after it using a list of

traversed edges, we cannot use a monolithic array for implementing it. In fact, the

array construct proposed in Johnsson (1998) could be used to build up such a tree,

but this requires the reformulation of the whole algorithm so that it follows the

array construction, and this destroys the simplicity and elegance of the functional bfs

algorithm. Instead we can use a binary search tree, but this adds a logarithmic factor

on each operation for (i) building up the spanning tree and (ii) for reconstructing

the shortest path after that.

The latter problem can be addressed by not just mapping nodes to their prede-

cessor, but to the whole path to the root, which we call the root path or r-path for

short. This does not really make the implementation more complex: to insert u as a

predecessor of v instead of just inserting u with key v into the tree, we first locate

the root path already stored at u, say p, and then insert u:p with key v into the tree.

In this way we only need to locate t in the inward directed tree, and we can just

reverse the list of stored nodes to obtain the shortest path from s to t. Note that this

representation causes only minimal space overhead: since common prefixes of paths

(that is, common suffixes of r-paths) are shared, this representation is linear in the

number of stored nodes. However, the complexity of computing the breadth-first

spanning tree and thus also for computing shortest paths is still O(n log n+ m).

Now a further improvement is to represent a breadth-first spanning tree by a

list (instead of a tree) of r-paths from each node to the root. We call this kind of

tree a root-path tree. Again, to have a linear space requirement the r-paths should

share common suffixes. This can be achieved quite easily by keeping the r-paths in

the queue of bfs . Below we define the function bft that takes a single node v and

computes the breadth-first spanning tree rooted at v as a list of r-paths by calling

the function bf which works much like bfs but uses a queue of r-paths as its first

argument. The expression map (:p) (suc c) extends the root path p by v’s successors

and thus yields a new root path for each of v’s successors. These new root paths are

appended to the rest of the queue ps .

type Path = [Node]

type RTree = [Path]

bft :: Node → Graph a b → RTree

bft v = bf [[v ]]

bf :: [Path] → Graph a b → RTree

bf [ ] g = [ ]

bf (p@(v : ):ps) (c &
v

g) = p:bf (ps++map (:p) (suc c)) g

bf (p:ps) g = bf ps g

Again the optimizations for termination on empty graphs and for using a more

efficient queue implementation apply.

Now the algorithm for finding the shortest path between two nodes s and t first

computes the breadth-first spanning tree rooted at s. This spanning tree is represented

https://doi.org/10.1017/S0956796801004075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004075


486 M. Erwig

as a list of root paths, and from these the first one that has t as a first element is

extracted. This root path has then only to be reversed to obtain the shortest path.

first :: (a → Bool ) → [a] → a

first p = head . filter p

esp :: Node → Node → Graph a b → Path

esp s t = reverse . first (\(v : )→ v t) . bft s

This breadth-first search algorithm is much simpler than the one given by King

(King, 1996), which uses two rather subtle functional programming tricks. Moreover,

the computation of shortest paths is efficient, and esp has linear running time (assum-

ing the usual optimization and O(1) graph operations). This is not the case for King’s

algorithm that has to perform an uninformed search for the target node t. The reason

is that King has chosen the same kind of ‘top-down’ tree as for depth-first search.

4.3 Shortest paths

Very closely related to the shortest-path algorithm of the preceding section is

Dijkstra’s algorithm for computing shortest paths in graphs with positive edge

labels. The main difference is that the length of a path is now defined to be the sum

of its edge labels and that a shortest path between two nodes is accordingly one

that has a minimum path length. Dijkstra’s algorithm can be described similar to

bfs . The only difference is that root paths are not kept in a queue but in a heap that

is ordered with regard to the lengths of the paths.

We first define a type for labeled nodes and labeled paths. A labeled root path is

a list of labeled nodes representing a path from a node to the root, and each node v

is paired with the length of the path to the root. Thus, the label of the first node of

the r-path gives the length of the complete path (and the length of an r-path’s last

node, which is always the root, is always 0). As we have represented breadth-first

spanning trees with lists of plain r-paths, we now represent shortest-path trees with

lists of labeled r-paths. We define labeled paths as instances of the Ord and Eq

classes so that we can store them in heaps. The function getPath extracts a path to

a specific node from a labeled root tree and drops all labels.

type LNode a = (Node, a)

type LPath a = [LNode a]

type LRTree a = [LPath a]

instance Eq a ⇒ Eq (LPath a) where

(( , x ): ) (( , y): ) = x y

instance Ord a ⇒ Ord (LPath a) where

(( , x ): ) < (( , y): ) = x < y

getPath :: Node → LRTree a → Path

getPath v = reverse . map fst . first (\((w , ): )→w v )
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The labeled root paths stored in a heap represent the currently expanded shortest-

path tree. In particular, all their first nodes represent the fringe of the search, and

the labels give the tentative costs for these nodes. All other nodes of the r-paths are

nodes already known to belong to the shortest path tree. Now Dijkstra’s algorithm

works by repeatedly selecting the r-path p with the least labeled first node, say v.

(This corresponds to making v permanent.) Then new r-paths are created by putting

v’s successors in front of p using as labels the label of v plus the cost associated

with the edge leading to the successor. This is done by the function expand . Storing

different root paths for one node in the heap presents no problem (with regard to

correctness) since only the one with the least cost is selected. Should a node be

selected a second time, it will simply be ignored because matching in the graph will

fail. However, since the heap now contains up to O(m) entries, deleting a minimum

from the heap will be performed up to O(m) times causing a running time of

O(m logm) (= O(m log n)). Altogether, this version of Dijkstra’s algorithm runs in a

worst case time of O(m+m log n) which asymptotically worse, at least for non-sparse

graphs, than the imperative algorithm that runs in O(m+ n log n).

We use a pairing heap implementation as described in Okasaki (1998). The

operation unitHeap wraps a single value into a heap, and the operation mergeAll

combines a list of heaps into a single heap. The operation splitMin applied to a

non-empty heap returns a pair containing its minimum and the remaining heap

without the minimum. (Even though, strictly speaking, we do not need a mergeable

heap, we have chosen pairing heaps because they are reported to be very efficient

in practice and the mergeAll operation is very convenient in describing the node

expansion.)

Again to have a concise notation, we use an active pattern x≺h that is based on

splitMin and matches any non-empty heap h′; it binds the minimum of h′ to x and

the heap without x to h.

expand :: Real b ⇒ b → LPath b → Context a b → [Heap (LPath b)]

expand d p ( , , , s) = map (\(l , v )→ unitHeap ((v , l + d ):p)) s

dijkstra :: Real b ⇒ Heap (LPath b) → Graph a b → LRTree b

dijkstra h g | isEmptyHeap h || isEmpty g = [ ]

dijkstra (p@((v , d ): )≺h) (c &
v

g) = p:dijkstra (mergeAll (h:expand d p c)) g

dijkstra ( ≺h) g = dijkstra h g

Note that Real is a subclass of Num containing all standard numeric types that are

also a subclass of Ord ; Real contains all standard numeric types except Complex .

Next we define an additional function spt , which encapsulates the construction of

the initial heap, and a function sp for computing shortest paths.

spt :: Real b ⇒ Node → Graph a b → LRTree b

spt v = spt (unitHeap [(v , 0)])

sp :: Real b ⇒ Node → Node → Graph a b → Path

sp s t = getPath t . spt s
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4.4 Minimum spanning tree

A minimum spanning tree of a labeled undirected graph is a spanning tree of

minimal total edge length. Hence, in our context of directed graphs the algorithms

described below work, in general, only for directed graphs that properly represent

undirected graphs. We can easily convert any directed graph into one representing

an undirected one with the function undir described in section 3.2.

The two most popular minimum spanning tree algorithms are those of Kruskal

and Prim. Kruskal’s algorithm works by repeatedly taking edges in order of increas-

ing edge length as long as they do not form a cycle. The graph is used only to get

the list of edges, and the crucial part of the algorithm is an efficient implementation

of a union/find data structure to enable fast cycle detection.

In contrast, Prim’s algorithm performs a usual walk through the graph. It is a

greedy algorithm, like Dijkstra’s algorithm, which means that in each step one new

part of the result is computed. Prim’s algorithm keeps a heap of edges that start

from the currently computed part of the minimum spanning tree, and selects in each

step the smallest of these edges and extends the fringe around the tree by those

edges that start from the selected edge’s target node.

Before we can define Prim’s algorithm we have to decide about the representation

of the spanning tree, and this decision depends on the context in which the spanning

tree is used. One application can be found in telecommunication: some telephone

companies calculate the costs of phone calls by the length of a path between two

nodes in a precomputed minimum spanning tree. This is supported again by labeled

root path trees.

We first need a function for creating new root paths for the successors of the node

expanded last. This function is quite similar to expand , but it has to consider only

the edge costs instead of the costs of the complete root paths.

addEdges :: Real b ⇒ LPath b → Context a b → [Heap (LPath b)]

addEdges p ( , , , s) = map (\(l , v )→ unitHeap ((v , l ):p)) s

Now we can define Prim’s minimum spanning tree algorithm. We parameterize the

function mst also by a Node-value to provide some flexibility for specifying the root

of the spanning tree. One can easily define a function that does not need a root by

using the operation matchAny .

mst :: Real b ⇒ Node → Graph a b → LRTree b

mst v g = prim (unitHeap [(v , 0)]) g

prim :: Real b ⇒ Heap (LPath b) → Graph a b → LRTree b

prim h g | isEmptyHeap h || isEmpty g = [ ]

prim (p@((v , ): )≺h) (c &
v

g) = p:prim (mergeAll (h:addEdges p c)) g

prim ( ≺h) g = prim h g

The striking similarity to Dijkstra’s algorithm has been known for a long time and

becomes very clear in the presented programming approach. In fact, all algorithms
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considered so far follow the same basic traversal scheme and differ essentially in

the data structure that is used to control the traversal. This fact can be exploited

in teaching graph algorithms by presenting the different algorithms as instances of

this scheme, which has already been emphasized in Erwig (1992; 2000).

Going back to Prim’s algorithm, it remains to be shown how paths can be found

in a minimum spanning tree represented by a root path tree. The idea is quite simple:

first, select the root paths for the two nodes, and then join their non-common parts

at their least common ancestor. This path reconstruction is realized by the functions

joinPaths and joinAt .

mstp :: Real b ⇒ LRTree b → Node → Node → Path

mstp t a b = joinPaths (getPath a t) (getPath b t)

joinPaths :: Path → Path → Path

joinPaths p q = joinAt (head p) (tail p) (tail q)

joinAt :: Node → Path → Path → Path

joinAt x (v :vs) (w :ws) | v w = joinAt v vs ws

joinAt x p q = reverse p++(x :q)

All the algorithms described so far use the graph in a single-threaded way. Since

our data type of graphs is persistent, we shall consider at least one application that

uses graphs persistently, that is, different versions of a graph are employed at the

same time. This is described next.

4.5 Maximum independent node sets

An independent node set is a subset of the nodes of a graph such that no two

nodes of this set are connected by an edge. A maximum independent node set is an

independent node set of maximum cardinality. The problem of finding a maximum

independent node set is in a sense the dual of the maximum clique problem which

asks for a maximal set of nodes such that each pair of nodes is connected by an edge.

Both problems are NP-hard. Hence there is little chance that there exist efficient

algorithms for solving them. Nevertheless, there are algorithms that are much better

than blindly trying all possible node subsets.

The algorithm defined below works by recursively comparing two alternatives:

1. the maximum independent node set of a graph g from which the node v with

maximum degree is removed, and

2. the maximum independent node set of g from which the neighbors of v have

been removed, extended by the node v itself.

Then the larger of the two sets is the maximum independent node set of g.
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indep :: Graph a b → [Node]

indep Empty = [ ]

indep g = if length i1 > length i2 then i1 else i2
where vs = nodes g

m = maximum (map (flip deg g) vs)

v = first (\v→ deg v g m) vs

c &
v

g ′ = g

i1 = indep g ′
i2 = v :indep (foldr del g ′ (pre c++suc c))

Note that pre is defined analogously to suc.

5 Conclusions

We have proposed an inductive definition of graphs that encourages the definition of

graph algorithm as recursive functions. We hope that this functional style of writing

graph algorithms eventually finds its way into teaching graph algorithms. Active

patterns make the function definitions more succinct, but all functions can be easily

rewritten without using them. We have also described an efficient implementation

of inductive graphs, which shows that the alternative algorithmic style gives both

efficiency and clarity.
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