ON VARIANTS OF A SEMIGROUP

J.B. HICKEY

If S is a (multiplicative) semigroup and $\alpha \in S$, the binary operation \circ defined on the set S by $x \circ y = x \alpha y$ is associative and the resulting semigroup is called a variant of S. We study the congruence α defined on S by saying that two elements are α -related if and only if they determine the same variant of S. Certain quotients of variants are used to provide an arbitrary semigroup with a generalised local structure. The variant formulation of Nambooripad's partial order on a regular semigroup is used to show that the order possesses a certain property (involving \mathcal{D} -equivalence).

If S is a (multiplicative) semigroup and $a \in S$, the binary operation \circ defined on the set S by $x \circ y = x \ a \ y$ is associative; the resulting semigroup is denoted (S,a) and called a variant of S [4]. In this paper we investigate the congruence α defined on a semigroup S by saying that two elements of S are α -related if and only if they determine the same variant of S. We consider also, for $a \in S$, a congruence δ^a on (S,a), and show that the quotients $(S,a)/\delta^a$ generalise (up to isomorphism) to an arbitrary semigroup the local

Received 5 February 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

subsemigroups in a semigroup with idempotents. Finally, Nombooripad's partial order on a regular semigroup (in its variant formulation [4,1]) is considered and shown to possess a certain 'local' property.

In Section 2 we show that, for an arbitrary semigroup with an idempotent, the α -class of each idempotent is an ideal extension of a rectangular sub-band of S by a semigroup U satisfying $U^3=0$. If S is regular then the α -class of an idempotent e is a rectangular sub-band of S contained in $V(e) \cap E(S)$ (the containment being strict, in general); in particular, α is idempotent-determined here.

The congruence δ^a is defined in Section 3. (It was introduced in the context of sandwich semigroups by Symons [10] and was further studied in [7].) We see that δ^a is contained in the congruence α on (S,a) and that these two congruences coincide if a is regular in S. The quotient semigroups $(S,a)/\delta^a$ $(a \in S)$ are considered: it is shown that $(S,e)/\delta^e \cong eSe$ when $e \in E(S)$ and that, if a and b are b-equivalent in S, then $(S,a)/\delta^a \cong (S,b)/\delta^b$.

1. Preliminaries.

The notation of [5,2] will be used throughout.

We first recall some ideas and results from [4,1]. If (S,.) is a semigroup and $a \in S$, the <u>variant</u> (S,a) of S is the semigroup obtained by taking the set S under the binary operation \circ defined by $x \circ y = x \circ y (x, y \in S)$ [4]. We adhere to the convention that, if it is stated or implied that S (or a subset of it) is a semigroup, then the multiplication in question will be that in (or inherited from) (S,.).

Let α be an element of a semigroup S. By a <u>pre-inverse</u> of α we mean an element $b \in S$ satisfying $a \ b \ \alpha = \alpha$ [4]. We shall denote the set of preinverses[inverses] of α by $Pre(\alpha)$ [$V(\alpha)$].

By a <u>mididentity</u> in a semigroup S we mean an element u with the property that $x \ u \ y = xy$ for all $x,y \in S$. If u is a mididentity in S then clearly the variant (S,u) coincides with S.

Nambooripad's partial order \leq on a regular semigroup S is defined in [9]. We shall use the following equivalent formulation of it [4, Theorem 5.1], where E(S,a) denotes the set of idempotents of (S,a):

$$x \le y \iff \begin{cases} \text{there exists} & a \in S \text{ with } x,y \in E(S,a) \\ & \text{and } x = x \circ y = y \circ x \end{cases}$$

The following lemma shows that, in order to determine whether or not the statement $x \le y$ is true in S, we may choose any pre-inverse y' of y and calculate in (S,y').

LEMMA 1.1 [1]. Let x,y be elements of a regular semigroup and let $y' \in Pre(y)$. Then

$$x \le y \iff (x \in E(S, y') \text{ with } x = x \circ y = y \circ x \text{ in } (S, y')).$$

We note that this partial order \leq on a regular semigroup S extends the usual partial order on E(S).

For a congruence $\,\rho\,$ on a regular semigroup $\,S\,$ we shall need the following definitions: $\,\rho\,$ is said to be strictly compatible [9] if

$$(\forall x, y \in S)$$
 $x \cap y$ and $x \leq y \Rightarrow x = y$,

and to be <u>idempotent-determined</u> [3] if the ρ -class of each idempotent consists entirely of idempotents.

By the local subsemigroups of a semigroup S we mean the subsemigroups of S of the form eSe $(e \in E(S))$ [6].

LEMMA 1.2 [8]. If e and f are D-equivalent idempotents in a semigroup S then $eSe \cong fSf$.

We will close this section with an example, constructed by McAlister [6] for use in a context somewhat different from the present one. First we need to describe a certain type of regular semigroup.

Let S be a regular semigroup, let I, Λ be sets and let P be a $\Lambda \times I$ matrix over S. Then the set of all triples $(i,s,\lambda) \in I \times S \times \Lambda$ is a semigroup under the multiplication

$$(i,s,\lambda)(j,t,\mu) = (i,sp_{\lambda j}t,\mu)$$
.

This semigroup is not regular, in general, but the set of regular elements in it forms a regular semigroup. This latter semigroup is denoted by $RM(S; I, \Lambda; P)$ and termed a regular Rees matrix semigroup over S[6].

EXAMPLE 1.3 [6]. Let S be the chain semilattice $\{1,a,b,0\}$ with 1 > a > b > 0. Let $I = \Lambda = \{1,2\}$ and let P be the 2×2 matrix $\binom{1}{b} = \binom{a}{0}$. Then $RM(S; I, \Lambda; P)$ contains precisely eleven elements, namely (1,1,1), (1,a,1), (2,a,1), (2,a,1), (1,b,1), (1,b,2), (2,b,1), (2,b,2), (1,0,1), (1,0,2), (2,0,1), (2,0,2).

The element (2,b,2) is the only non-idempotent in the semigroup.

2. The congruence α .

Let S be a semigroup. The relation α defined on S by $(x,y) \in \alpha \iff s \ x \ t = s \ y \ t$ for all $s,t \in S$

is a congruence on S , as is readily verified. Clearly, two elements x,y are α -related in S precisely when the variants (S,x) and (S,y) coincide.

When two or more semigroups are being discussed we may write $\alpha(S)$ instead of α in order to avoid confusion; also, we will denote the congruence α on (S,a) by $\alpha(S,a)$.

If a, b are two regular elements in S that are α -related then the set of mididentities [idempotent mididentities] in (S,a) coincides with the set of mididentities [idempotent mididentities] in (S,b). Thus Pre(a) = Pre(b) [V(a) = V(b)] by [4, Lemma 3.1]. It follows that α is the equality relation on an inverse semigroup.

Two α -related idempotents in a semigroup S must be mutually inverse, as is easily proved. Suppose again that a, b are regular elements that are α -related in S, and let $x \in \operatorname{Pre}(a) = \operatorname{Pre}(b)$. Then $(ax,bx)\in \alpha$, since α is a congruence. But ax, $bx\in E(S)$ and so these elements are mutually inverse. We now have a R ax, ax D b x, bx R b. It follows that a D b. In particular, if S is a regular

semigroup then $\alpha \subseteq \mathcal{D}$.

When S is a monoid, α is clearly the equality relation ^{1}S on ^{2}S ; a stronger result in the same vein, however, is the following.

LEMMA 2.1. Let a and b be regular elements of a semigroup S. Then a \cap (aSb \times aSb) is the equality relation on aSb .

Proof. Let $a' \in Pre(a)$, $b' \in Pre(b)$. Then, for $x, y \in S$,

$$(a \ x \ b, \ a \ y \ b) \in \alpha \implies a \ a'(a \ x \ b)b'b = a \ a'(a \ y \ b)b'b$$

$$\implies a \ x \ b = a \ y \ b.$$

The result follows.

LEMMA 2.2. Let S be a semigroup. Then $\alpha \cap H = 1_S$.

Proof. Let $(x,y) \in \alpha \cap H$ $(x,y \in S)$ and suppose that $x \neq y$. Then x = ys, y = tx for some $s,t \in S$. So txs = x, tys = y. But txs = tys since $(x,y) \in \alpha$, giving x = y, a contradiction. This proves the lemma.

LEMMA 2.3. Let S be a regular semigroup and let x, y, $z \in S$ be such that $x \le z$ and $y \le z$. Then $(x,y) \in \alpha \Rightarrow x = y$.

Proof. Suppose $(x,y) \in \alpha$ and let $z' \in \operatorname{Pre}(z)$. Then, by Lemma 1.1, x = x z'z = zz'x, so x = zz'xz'z. Similarly y = zz'yz'z. Since $(x,y) \in \alpha$, we have x = y, as required.

We immediately have

COROLLARY 2.4. For a regular semigroup the congruence $\,\alpha\,$ is strictly compatible.

Let S be a regular semigroup and let $e \in E(S)$. Then Corollary 2.4 and [9], Theorem 2.8] tell us that the α -class $e\alpha$ is a completely simple subsemigroup of S; further, by Lemma 2.2, $e\alpha$ has trivial \mathcal{H} -classes and so is a rectangular sub-band of S. In particular, α is idempotent-determined.

In the next result we take an arbitrary semigroup S containing an idempotent and improve on the results stated in the previous paragraph.

We recall [2], Section 4.4] that if I is an ideal of a semigroup T then T is said to be an ideal extension of I by the (Rees quotient) semigroup T/I.

For any semigroup S , let $\operatorname{Reg}(S)$ denote the set of regular elements of S .

THEOREM 2.5. Let S be a semigroup and let $e \in E(S)$. Write $T=e\alpha$, $I=e\alpha \cap Reg(S)$. Then I is a rectangular sub-band of S and T is an ideal extension of I by a semigroup U satisfying $U^3=0$.

Proof. We note at the outset that T is a subsemigroup of S, being a congruence class of an idempotent. Suppose now that $x \in I$ and that $x' \in \operatorname{Pre}(x)$. Then $(x,x^2) \in \alpha$, so $xx' \cdot x \cdot x' \cdot x = xx' \cdot x^2 \cdot x' \cdot x$, that is $x = x^2$. Thus $I \subset E(S)$.

Now let $x,y \in I$. Then $(xy)^2 = xyxy = xyyy = xy$, so that xy is regular and hence belongs to I. Thus I is a subsemigroup of S. Further, for $x,y \in I$, we have xyx = xxx = x, so I is a rectangular band [5, Chapter IV, Proposition 3.2].

If $x \in T$, $y \in I$ then we argue as above to get that $(xy)^2 = xy$, $(yx)^2 = yx$, so that xy, $yx \in I$. Thus I is an ideal of T. Finally, if x, y, $z \in T$, then

$$(xyz)^2 = xyzxyz = xe^4z = xez = xyz$$
,

so that $xyz\in I$. This shows that the Rees quotient semigroup U=T/1 satisfies $U^3=0$. The theorem is now proved.

The next result follows from Theorem 2.5 and the fact that $\alpha\text{-}$ equivalent idempotents are mutually inverse.

COROLLARY 2.6. Let S be a regular semigroup and let $e \in E(S)$. Then the congruence class $e\alpha$ is a rectangular sub-band of S contained in $V(e) \cap E(S)$.

The containment in the statement of Corollary 2.6 is strict in general: in the semigroup of Example 1.3 the idempotents (1,a,1) and (2,a,1) are mutually inverse but are not α -related, since, for example,

$$(1,b,2)(1,a,1)(1,b,2) = (1,b,2), (1,b,2)(2,a,1)(1,b,2) = (1,0,2).$$

In fact this semigroup has just one non-trivial α -class, namely

$$\{(1,0,1), (1,0,2), (2,0,1), (2,0,2)\}$$
.

The next result shows that α -equivalence of regular elements is

closely linked to that of related idempotents. The proof is straightforward and is omitted; it uses the fact, noted earlier, that if two regular elements a, b in a semigroup are α -equivalent then Pre(a) = Pre(b).

THEOREM 2.7. Let a, b be regular elements in a semigroup. Then $(a,b) \in \alpha \iff \text{there exists } x \in \text{Pre}(a) \cap \text{Pre}(b) \text{ such that } (ax,bx) \in \alpha$ and $(xa,xb) \in \alpha$.

3. A generalization of local structure.

Let S be a semigroup. For each $\alpha \in S$ we define a relation δ^{α} on the set S by the rule

$$x \delta^{a} y \iff a x a = a y a$$
.

This relation was one of three congruences introduced in the context of sandwich semigroups (where it was denoted d) by Symons [10]; it was studied further in [7].

LEMMA 3.1. Let S be a semigroup and let $a \in S$. Then

- (i) δ^a is a congruence on (S,a) and $\delta^a \subset \alpha(S,a)$,
- (ii) if a is regular in S then $\delta^a = \alpha(S,a)$.

Proof. (i) Clearly δ^a is an equivalence relation on the set S. Suppose $x\delta^a y$ $(x,y\in S)$ and let $z\in S$. Then $az\,ax\,a=az\,ay\,a$, that is $a(z\circ x)a=a(z\circ y)a$, where \circ denotes multiplication in (S,a). So $z\circ x\,\delta^a\,z\circ y$. Similarly $x\circ z\,\delta^a\,y\circ z$. Thus δ^a is a congruence on (S,a). Further suppose $x\,\delta^a\,y\,(x,y\in S)$. Then, if $s,\,t\in S$,

$$s \circ x \circ t = s a x a t = s a y a t = s \circ y \circ t$$
,

so $(x,y) \in \alpha(S,a)$. This proves (i).

(ii) Now let a be a regular in S. Let $x,y \in S$ be such that $(x,y) \in \alpha(S,a)$. Then, for all $s,t \in S$, $s \circ x \circ t = s \circ y \circ t$, that is $s(a \ x \ a)t = s(a \ y \ a)t$. Thus $(a \ x \ a, \ a \ y \ a) \in \alpha(S)$, so $a \ x \ a = a \ y \ a$ by Lemma 2.1. Thus $\alpha(S,a) \subseteq \delta^a$, and hence $\alpha(S,a) = \delta^a$, by part (i). This completes the proof.

For S a semigroup, the quotients $(S,a)/\delta^a$ $(a \in S)$ provide a generalisation of (semigroups isomorphic to) the local subsemigroups of S, as the following lemma shows.

LEMMA 3.2. Let S be a semigroup and let $e \in E(S)$. Then $(S.e)/\delta^e \cong eSe$

Proof. The mapping $\psi\colon S\to eSe$ defined by $x\,\psi=e\,x\,e$ is a homomorphism from (S,e) onto $e\,S\,e$, and $\psi\circ\psi^{-1}=\delta^e$. The result follows.

THEOREM 3.3. Let S be a semigroup and let a, b be \mathfrak{D} -related elements of S. Then $(S,a)/\delta^a \cong (S,b)/\delta^b$.

Proof. Since $a\ \mathcal{D}\ b$ in S we can find $c\ \epsilon\ S$ such that $a\ \mathcal{R}\ c$, $c\ \mathcal{L}\ b$. Then there exist elements s, s', t, $t'\ \epsilon\ S^1$ such that

(1)
$$as = c, cs' = a, tc = b, t'b = c.$$

Then

(2)
$$ass' = t'ta = t'bs' = a, bs's = tt'l = b.$$

We may now define a mapping $\theta: (S,a)/\delta^a \to (S,b)/\delta^b$! y the rule $(x \delta^a)\theta = (s'xt')\delta^b$. For suppose that $x\delta^a = y\delta^a$ $(x,y \in S)$. Then axa = aya and, using (1), we get

$$b(s'xt')b = tcs'xc = taxas = tayas$$
$$= tcs'yc = b(s'yt')b.$$

This shows that the mapping θ is well-defined.

Similarly the rule $(x \delta^b) \phi = (s x t) \delta^a$ $(x \in S)$ defines a mapping $\phi \colon (S,b)/\delta^b \to (S,a)/\delta^a$. Now, for $x \in S$,

$$(x \delta^{\alpha})\theta \phi = [(s'xt')\delta^{b}]\phi = (ss'xt't)\delta^{\alpha}$$
.

But a(s s' x t't)a = a x a, by (2), and so $(x \delta^a)\theta \phi = x \delta^a$. Similarly we may show, using (2), that $(x \delta^b)\phi \theta = x \delta^b$ for $x \in S$, and so θ , ϕ are mutually inverse bijections.

Finally, for x, $y \in S$, consider the product $(x \delta^a) \circ (y \delta^a)$ in $(S,a)/\delta^a$. We have

$$(x \delta^a) \circ (y \delta^a) = (x \circ y)\delta^a$$
 (where • is multiplication in (S,a))
$$= (x a y)\delta^a,$$

and so

$$[(x\delta^a)\circ(y\delta^a)]\theta = (s'xayt')\delta^b.$$

Then, in $(S,b)/\delta^b$

$$\begin{split} & [(x \, \delta^a) \theta] \circ [(y \, \delta^a) \theta] = [(s' x \, t') \delta^b] \circ [(s' y \, t') \delta^b] \\ &= [(s' x \, t') \circ (s' y \, t')] \delta^b \quad \text{(where } \circ \text{ is multiplication in } (S, b)) \\ &= (s' x \, t' b \, s' y \, t') \delta^b = (s' x \, a \, y \, t') \delta^b \quad \text{(using (2))}. \end{split}$$

Thus $[(x \delta^a) \circ (y \delta^a)]\theta = [(x \delta^a)\theta] \circ [(y \delta^a)\theta]$, and so θ is an isomorphism. This proves the result.

The following is an obvious consequence of Theorem 3.3 and Lemma 3.2.

COROLLARY 3.4. Let a be a regular element of a semigroup S and let $e \in E(S)$ be such that $e \ D \ a$ in S . Then $(S,a)/\delta^a \cong eSe$.

We note that Corollary 3.4 implies Lemma 1.2.

THEOREM 3.5. Let S be a semigroup and let $a \in S$. Then, for $x \in S$, $x \delta^a$ is regular in $(S,a)/\delta^a \iff axa$ is regular in S; consequently, $(S,a)/\delta^a$ is regular $\iff aSa \subseteq Reg(S)$.

Proof. We use \circ to denote the operation in (S,a) and also that in $(S,a)/\delta^a$. Let $x \in S$. Then

$$x \delta^a$$
 is regular in $(S,a)/\delta^a \iff (\exists y \in S)(x \delta^a = (x \delta^a) \circ (y \delta^a) \circ (x \delta^a))$

$$\iff (\exists y \in S)((x,x \circ y \circ x) \in \delta^a)$$

$$\iff (\exists y \in S)(a x a = a x a y a x a)$$

 $\iff a \times a$ is regular in S ,

proving the first assertion. The second assertion follows immediately.

COROLLARY 3.6. In a regular semigroup S each quotient $(S,a)/\delta^a$ $(a \in S)$ is a regular monoid.

This is a consequence of Corollary 3.4 and Theorem 3.5; alternatively, it follows from Corollary 3.4 and the well-known fact that the

local subsemigroups of a regular semigroup are regular.

The relations $\alpha(S,a)$ and δ^a coincide when a is a regular element in a semigroup S (by Lemma 3.1 (ii)). We will frame the final results of this section in terms of $\alpha(S,a)$ rather than δ^a .

COROLLARY 3.7. (i) Let S be a monoid with identity element 1. Then, for all $a \in D_1$, $(S,a)/a(S,a) \cong S$.

(ii) If u is an idempotent middentity in a semigroup S then $S/\alpha(S) \cong uSu$.

Proof. (i) follows from Corollary 3.4; to prove (ii) we use Lemma 3.2 and note that, for a mididentity u in a semigroup S, the semigroups (S,u) and S coincide, so $\alpha(S,u)=\alpha(S)$.

Note. Let S be the full transformation semigroup T (X) on a set X . Then Symons [10, Theorem 1.7] has shown that, for $\theta \in S$,

 $(S,\theta)/\delta^{\theta} \not = T(X\theta)$. It follows from this (and known properties of T(X)) that, for $\theta, \phi \in S$,

$$(S,\theta)/\delta^{\theta} \cong (S,\phi)/\delta^{\phi} \iff \theta \ \mathcal{D} \ \phi \ \text{in} \ S$$
.

(see also [7, Theorem 3.2].)

In an arbitrary regular semigroup S, however, we may have $(S,a)/\delta^a$ and $(S,b)/\delta^b$ isomorphic $(a,b\in S)$ without a and b being \mathcal{D} -related. For example, let E be a uniform semilattice (that is a semilattice with the property that $Ee\cong Ef$ for all $e,f\in E$) with |E|>1. Then for all $e,f\in E$ we have $eEe\cong fEf$, that is $(E,e)/\delta^e\cong (E,f)/\delta^f$ (by Lemma 3.2). However, no two distinct elements of E are \mathcal{D} -related.

4. Nambooripad's order.

Let S be a regular semigroup and let \leq denote Nambooripad's partial order on S . For $x \in S$ write

$$\forall x = \{ s \in S \colon s \le x \} .$$

and, for $A,B\subseteq S$, write $A\cong B$ to mean that A and B are order-isomorphic under \leq .

The following lemma is an easy consequence of the results

Proposition 1.2(d) and Corollary 1.3 of [9]; alternatively our Lemma 1.1
can be used to prove it.

LEMMA 4.1. Let S be a regular semigroup and let $e \in E(S)$. Then +e = E(eSe).

LEMMA 4.2. Let a be an element of a regular semigroup S, let $a' \in Pre(a)$ and let e = a a'. Then $+a \cong +e$.

Proof. We have a mapping $\phi: +\alpha \to +e$ defined by the rule $x \phi = x a'$ $(x \in +\alpha)$. To check that ϕ maps $+\alpha$ into +e, suppose that $x \le \alpha$. Then, by Lemma 1.1, we can work in (S,α') to get

$$x = x \circ x = x \circ a = a \circ x$$
,

that is

$$x = xa'x = xa'a = aa'x$$
.

Then $(x \alpha')^2 = x \alpha'$, that is $x \phi \in E(S)$. Also,

$$xa' \cdot aa' = aa' \cdot xa' = xa'$$

so that $x \phi \leq e$. Thus ϕ does indeed map $\forall a$ into $\forall e$.

Similarly we may show that the rule $f\psi=f\alpha$ ($f\in +e$) defines a mapping $\psi\colon +e\to +a$. Further, if $x\in +a$, $x\phi\psi=x\alpha'\alpha=x$, and if $f\in +e$, $f\psi\phi=f\alpha\alpha'=fe=f$, and so ϕ , ψ are mutually inverse bijections.

Suppose next that $x,y \in +\alpha$ with $x \leq y$. Thus $x \leq y \leq \alpha$. Since $y \leq \alpha$ we have, by Lemma 1.1, $y \in E(S,\alpha')$, that is $y \alpha' y = y$. So $\alpha' \in \operatorname{Pre}(y)$ and, by Lemma 1.1 again, we may express the inequaltiy $x \leq y$ in (S,α') . We thus have

$$x = xa'x = xa'y = ya'x.$$

So (xa')(ya') = (ya')(xa') = xa', that is $x\phi \le y\phi$.

Finally, suppose that $f \leq g$ $(f,g \in {}^{\downarrow}e)$. Then, calculating in (S,a') , we get

$$(fa) \circ (fa) = faa' fa = fefa = fa$$
,

and, similarly, $(ga) \circ (ga) = ga$. Also,

$$(fa) \circ (ga) = faa'ga = fega = fa$$
,

and, similarly, we have $(ga) \circ (fa) = fa$. Thus $f \psi \leq g \psi$.

We have thus shown that ϕ is an order-isomorphism from $\forall a$ to $\forall e$ and the lemma is proved.

We can now state the main result of this section.

THEOREM 4.3. If a and b are two D-equivalent elements of a regular semigroup then $+a \cong +b$.

Proof. Let S be a regular semigroup and let $a\ \mathcal D\ b\ (a,b\ \epsilon\ S)$. Let $e=a\ a'$, $f=b\ b'\ (a'\ \epsilon\ \operatorname{Pre}(a),\ b'\ \epsilon\ \operatorname{Pre}(b))$. Then $a,\ b,\ e,\ f$ are all $\mathcal D$ -related in S. The subsemigroups $e\ S\ e$ and $f\ S\ f$ are isomorphic and so, under the ordering of idempotents, $E(e\ S\ e)$ is order-isomorphic to $E(f\ S\ f)$. Thus

This proves the result.

References

- [1] T. S. Blyth and J. B. Hickey, "RP-dominated regular semigroups",

 Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 185-191.
- [2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, (Vol. 1, Math. Surveys No. 7, Amer. Math. Soc. Providence, R.I., 1961).
- [3] D. G. Green, "Extensions of a semilattice by an inverse semigroup", Bull. Austral. Math. Soc. 9 (1973), 21-31.
- [4] J. B. Hickey, "Semigroups under a sandwich operation", *Proc. Edinburgh Math. Soc.* 26 (1983), 371-382.
- [5] J. M. Howie, An introduction to semigroup theory, (Academic Press, 1976).
- [6] D. B. McAlister, "Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups", J. Austral. Math. Soc. (A) 31 (1981), 325-336.
- [7] K. D. Magill, Jr., P. R. Misra and U. B. Tewari, "Symons' d-congruence on sandwich semigroups", Czechoslovak Math. J. 33 (1983), 221-236.

- [8] W. D. Munn, "The idempotent-separating congruences on a regular O-bisimple semigroup", Proc. Edinburgh Math. Soc. (2) 15 (1967), 233-240.
- [9] K. S. S. Nambooripad, "The natural partial order on a regular semigroup", Proc. Edinburgh Math. Soc. (2) 23 (1980), 249-260.
- [10] J. S. V. Symons, "On a generalization of the transformation semigroup", J. Austral. Math. Soc. (A) 19 (1975), 47-61.

Department of Mathematics University of Glasgow GLASGOW Gl2 8QW.