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ON VARIANTS OF A SEMIGROUP

J.B. Hickey

If S 1is a (multiplicative) semigroup and a € S , the binary
operation o defined on the set S5 by x oy =xaqy is
associative and the resulting semigroup is called a variant of

S . We study the congruence o defined on S by saying that
two elements are o-related if and only if they determine the

same variant of S . Certain quotients of variants are used to
provide an arbitrary semigroup with a generalised local structure.
The variant formulation of Nambooripad's partial order on a
regular semigroup is used to show that the order possesses a

certain property (invelving D-equivalence).

If S is a (multiplicative) semigroup and a € S , the binary
operation o defined on the set § by x o y =x ay is associative;
the resulting semigroup is denoted (S,a) and called a variant of S [41].
In this paper we investigate the congruence a defined on a semigroup §
by saying that two elements of S are a-related if and only if they

determine the same variant of S. We consider also, for a € S , a

congruence §% on (S,a) , and show that the quotients (S,a)/da

generalise (up to isomorphism) to an arbitrary semigroup the local
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subsemigroups in a semigroup with idempotents. Finally, Nombooripad's
partial order on a regular semigroup (in its variant formulation [4,7])
is considered and shown to possess a certain 'local' property.

In Section 2 we show that, for an arbitrary semigroup with an idem-

potent, the a-class of each idempotent is an ideal extension of a rect-

. , . 3 .
angular sub-band of S by a semigroup U satisfying U =0 . If S |is
regular then the a-class of an idempotent e 1is a rectangular sub-band
of S contained in V(e) n E(S5) (the containment being strict, in

general); in particular, o is idempotent-determined here.

The congruence Ga is defined in Section 3. (It was introduced in

the context of sandwich semigroups by Symons [10] and was further studied

in [71.) we see that 6% is contained in the congruence o on (S,a)

and that these two congruences coincide if ¢ is regqular in S . The
quotient semigroups (S,a)/éa (a € S) are considered: it is shown that

CS,e)/%e eSe when e € E(S5) and that, if a@ and b are D-

equivalent in S , then (S,a)/ﬁa = ﬂS,b)/éb .

In the final section we consider the subsets +Yx of a regular semi-
group S defined by +x = {s € S: s < x} , where < denotes Nambooripad's
partial order on S . Using the variant formulation of < , we show that,
if « and y are D-equivalent elements of S then +x is order-

isomorphic to Yy .
1. Preliminaries.

The notation of [5,2] will be used throughout.

We first recall some ideas and results from [4,1]. If (S,.) is a
semigroup and a € S , the variant (S,a) of S 1is the semigroup
obtained by taking the set S wunder the binary operation ¢ defined by
xoy==xay (x,y € S) [4]. wWe adhere to the convention that, if it is
stated or implied that S (or a subset of it) is a semigroup, then the
multiplication in question will be that in (or inherited from) (S,.).

Let g be an element of a semigroup S . By a pre-inverse of ¢
we mean an element b € S satisfying a b a = a [4]. We shall denote

the set of preinverses[inverses] of a by Pre(a) [V(a)].
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By a mididentity in a semigroup § we mean an element u with the
property that * u y =2y for all x,y ¢ § . If wu is a mididentity in
S then clearly the variant (S,u) coincides with S .

Nambooripad's partial order < on a regular semigroup S is
defined in [9]. We shall use the following equivalent formulation of it
[ 4, Theorem 5.1], where E(S,a) denotes the set of idempotents of (5,a):

here exists a € § with =x,y ¢ E(S,a)
esy = {

and x =x oy =y ox .,
The following lemma shows that, in order to determine whether or not the
statement 2 <y is true in S , we may choose any pre-inverse y' of

y and calculate in (S,y').

LEMMA 1.1 [7]. Let wx,y be elements of a regular semigroup and
let y' € Pre(y). Then

Sy < (x ¢ E(§,y') with zxz=xoy = yox in (S,y')).

We note that this partial order < on a regular semigroup S
extends the usual partial order on E(S).
For a congruence p on a regular semigroup S we shall need the

following definitions: p is said to be strictly compatible [9] if

v z,y e S) xpy and zxsy=>zx=y,

and to be idempotent-determined [3] if the p-class of each idempotent

consists entirely of idempotents.
By the local subsemigroups of a semigroup S we mean the subsemi-

groups of S of the form eSe (e ¢ E(S)) [6].

LEMMA 1.2 (8]. If e and f are D-equivalent idempotents in a
fsf.

semigroup S then eSe

We will close this section with an example, constructed by McAlister
[6] for use in a context somewhat different from the present one. First
we need to describe a certain type of regular semigroup.

ILet S be a regular semigroup, let I , A be sets and let P be
a A x I matrix over S . Then the set of all triples (Z,s,A) € I xSxA

is a semigroup under the multiplication

(i,8,M)(j,t,n) = (i,SPM-t,u)
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This semigroup is not regular, in general, but the set of regular
elements in it forms a regular semigroup. This latter semigroup is
denoted by RM(S; I,A; P) and termed a regular Rees matrix semigroup
over S[6]

EXAMPLE 1.3 [6]. Let S be the chain semilattice {I,a,b,0} with
1>a>b>0. Let I=A={1,2 and let P be the 2x2 matrix

(; 3). Then RM(S; I,A; P) contains precisely eleven elements, namely

(1,1,1),

(1,a,1), (2,a,1) ,

(1,b,1), (1,b,2), (2,b,1), (2,b,2),
(1,0,1), (1,0,2), (2,0,1), (2,0,2).

The element (2,b,2) is the only non-idempotent in the semigroup.

2. The congruence a.
Let S be a semigroup. The relation o defined on S by
(z,y) € o <> sxt =gyt for all g,t € S

is a congruence on S , as is readily verified. Clearly, two elements
x,y are a-related in S precisely when the variants (S,z) and
(S,y) coincide.

When two or more semigroups are being discussed we may write af(S)
instead of o in order to avoid confusion; also, we will denote the
congruence o on (S,a) by a(S,al.

If a, b are two regular elements in S that are o-related then
the set of mididentities [idempotent mididentities] in (S,a) coincides
with the set of mididentities [idempotent mididentities] in (S,b) . Thus
pre(a) = Pre(b) [V(a) = V(b)] by [4, Lemma 3.1]. It follows that ‘a is
the equality relation on an inverse semigroup.

Two oa-related idempotents in a semigroup S must be mutually
inverse, as is easily proved. Suppose again that a, b are regular
elements that are oa-related in S , and let 2 e Pre(a) = Pre(b). Then
(ax,bx Je o , since a is a congruence. But ar , bx € E(S) and so
these elements are mutually inverse. We now have a Rax , ax D b =z,

bx Rb . It follows that a D b . 1In particular, if S is a regular
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semigroup then a c D.

When S is a monoid, @ is clearly the equality relation JS on
S ; a stronger result in the same vein, however, is the following.

LEMMA 2.1. ILet a and b be regular elements of a semigroup S.
Then o n (aSb x aSh) 1is the equality relation on aSb .

Proof. Let a' € prela), b' ¢ Pre(b) . Then, for z,y € S ,

(axb, ayb) ea = aa'(axb)b'hb=aa'lay blb'd
= qxb=ayb.

The result follows.

LEMMA 2.2. Let S be a semigroup. Then a nH = g -

Proof. Let (x,y) ¢ a nH (x,y € S) and suppose that x # y . Then
x=ys , y=1tr for some s,t e 5. So txs = x, tys = y. But
txs = tys since (x,y) € a , giving x =y , a contradiction. This
proves the lemma.

LEMMA 2.3. Let S be a regular semigroup and let x, y, 3 € S be

such that © <3 and y s 2. Then (xz,y) e a = x =1y .

Proof. suppose (x,y) ¢ o and let z' € Pre(z) . Then, by Lemma
1.1, x=x2'a=22"x, so x=z32'xzz'z. Similarly y =z2z'yz’'z.

Since (z,y) € o , we have x =y , as required.
We immediately have

COROLLARY 2.4. For a regular semigroup the congruence o 1is
strictly compatible.

Let S be a regular semigroup and let e ¢ E(S) . Then Corollary
2.4 and [9, Theorem 2.8] tell us that the a-class eac is a completely
simple subsemigroup of §; further, by Lemma 2.2, ea has trivial H-
classes and so is a rectangular sub-band of S . In particular, a 1is
idempotent-determined.

In the next result we take an arbitrary semigroup S containing an
idempotent and improve on the results stated in the previous paragraph.

We recall (2, section 4.4] that if I is an ideal of a semigroup

T then T is said to be an ideal extension of I by the (Rees quotient)

semigroup T/I.
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For any semigroup S , let Reg(S) denote the set of regular

elements of S .

THEOREM 2.5. [Let S be a semigroup and let e e E(S). Write
T=¢o , I =ean Reg(S). Then I <is a rectangular sub-band of S and
T .is an ideal extension of I by a semigroup U satisfying U3 = 0 .

Proof. We note at the outset that 7T is a subsemigroup of § ,

being a congruence class of an idempotent. Suppose now that x € I and

that x' e Pre(x). Then (a:,xz) ea , so zx' xx'zx = xx'.xz.x’x,

that is &« =z%. Thus T < E(S).

Now let x,y € I . Then (ay)?2 =zxyxy =xyyy = xy, so that
xy 1is regular and hence belongs to I . Thus I 1is a subsemigroup of
S . Further, for x,y € I , we have xyxr =xxx=x , so I 1is a
rectangular band [ 5, Chapter IV, Proposition 3.2].

If xe¢ T, y eI then we argue as above to get that (xy)z =zxy,

(yx)2=yx, so that 2y, yx € I. Thus I is an ideal of T ,

Finally, if x, y, 2 ¢ T, then

(zyz)? = zyzzyz = e z2=zxez = xy =z,
so that xyz € I . This shows that the Rees quotient semigroup U = T/1
satisfies U:‘I = (0 . The theorem is now proved.

The next result follows from Theorem 2.5 and the fact that a-

equivalent idempotents are mutually inverse.

COROLLARY 2.6. Let S be a regular semigroup and let e ¢ E(S).
Then the congruence class ea 1is a rectangular sub-band of S contained
in V(e)nE(S) .

The containment in the statement of Corollary 2.6 is strict in
general: in the semigroup of Example 1.3 the idempotents (1,a,1) and

(2,a,1) are mutually inverse but are not a-related, since, for example,
(1,b,2)(1,a,1)(1,b,2) = (1,b,2), (1,b,2)(2,a,1)(1,b,2) = (1,0,2)
In fact this semigroup has just one non-trivial a-class, namely
{(1,0,1), (1,0,2), (2,0,1), (2,0,2)} .

The next result shows that a-equivalence of regular elements is
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closely linked to that of related idempotents. The proof is straight-
forward and is omitted; it uses the fact, noted earlier, that if two
regular elements a, b in a semigroup are a-eguivalent then

Prel(a) = pre(b).

THEOREM 2.7, Let a, b be regular elements in a semigroup. Then
(a,b) € o <> there exists x € Pre(a) n Pre(b) such that (ax,bx) ¢ a
and (xa,xb) € a .

3. A generalization of local structure,

Let S be a semigroup. For each a € S we define a relation 6a

on the set S by the rule
a
x§ y <> axa=aya.

This relation was one of three congruences introduced in the context of
sandwich semigroups (where it was denoted d) by Symons [10]; it was

studied further in [7].
LEMMA 3.1. Let S be a semigroup and let a € S. Then
(z) 6% is a congruence on (S,a) and §¢ < a($,al,

(ii) if a is regular in S then &% = a(S,a).

Proof. (i) Clearly §% is an equivalence relation on the set §S.

a
Suppose 28y (x,y € S) and let 2 e S . Then azaxa=azaya,
that is a(z o x)a = a(z o y)a , where o denotes multiplication in

(S,a) . So zox8¥zoy . Similarly xoz 6%y oz . Thus & is

a congruence on (S,a) . Further suppose &« §¢ y (x,y € S) . Then, if
s, teS,
soxet =saxat =sayat =sgoyot ,

so (z,y) € afS,a) . This proves (i).

(ii) Now let a be a regular in S . Let x,y € S be such that
(x,y) € a(S,a). Then, for all s,t € S, s e x o t =5 oy et , that is

sfaxalt =sfay alt. Thus (axa, aya) eal§) ,s0o axa=aya

by Lemma 2.1. Thus afS,a) E,Ga , and hence afS,a) = 6%, by part (i).

This completes the proof.
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For S a semigroup, the quotients (S_,a)/é(’Z (a € S) provide a
generalisation of (semigroups isomorphic to) the local Subsemigroups of

S , as the following lemma shows,

LEMMA 3.2. Let S be a semigroup and let e € E(S) . Then
(S,e)/de = eSe

Proof. The mapping y: S -+ eSe defined by 2y = exe is a

homomorphism from (S,e) onto eSe , and Yo w—] = §% . fThe result

follows.
THEOREM 3.3. Zet S be a semigroup and let a, b be D-related
elements of S. Then (S,a)/éa E (S,b)/db .

Proof. since a Vb in S we can find ¢ € S such that a R g,

e L b . Then there exist elements s, s', t, t' ¢ 5! such that
(1) ags=¢, ¢s8'=a, te=b, t'b = c.

Then

(2) asg' =t'ta=t'bs'=a, bs's=¢tt'b=>b .

We may now define a mapping 8: (S,a)/(ia > (S,b)/6b }y the rule

(x §%)8 = (s'xt’)éb . For suppose that x &4 =y6a (x,y € S) . Then
axa = aya and, using (1), we get

b(s'xzt')b = tes'zc = taxas = tayas

=tes'ye =bls'yt')b .
This shows that the mapping 6 is well-defined.
Similarly the rule (x 6b )é = (s xt)6% (r € §) defines a mapping

0: (5,0)/80 > (5,a)/6% . Now, for z e S ,

(z6%)8¢ = [(s'zt')6P1p = (ss'xt! t)6% .

But aflss'xt't)a=axa , by (2), and so (6% )e¢ = z 6%, Similarly

we may show, using (2), that (zx Sb)(be =z Gb for x €S , and so 8, ¢

are mutually inverse bijections.
Finally, for z, y € S , consider the product (x §%) o (y §%) in

(S,a)/da. We have
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(x §%) o (y §%) (x o y)Ga (where © is multiplication in (S,al)

(x a y)c'Sa R

and so
C(xs%) o (ys%)le = (s'xay t')Gb .
Then, in (S,b)/60
C(xs%)el o [(y6%)01 = [(s'2t")sPT o [(s’y t1)60]

[(s'xt') o (s'yt')]éb (where o is multiplication in (S,b))

(s'xt’bs'yt’)sb = (s'xayt')&b (using (2)).

Thus [(z 6%) o (y 69016 = [(x 6%)6] o [(y 6%)6) , and so 6 is an
isomorphism. This proves the result.

The following is an obvious consequence of Theorem 3.3 and Lemma

COROLLARY 3.4. ILet a be a regular element of a semigroup S and
let e € E(S5) be such that e Da in S . Then (S,a)/cSCz 2 eSe.
We note that Corollary 3.4 implies Lemma 1.2.

- THEOREM 3.5. Let S be a semigroup and let a e S . Then, for
zes, x6% is regular in (S,a)/s¢ <= axa ig regular in S;
consequently, (s,a) /6% is regular <= aSa < Reg(S).

Proof. wWe use o to denote the operation in (S,a) and also
that in (S,a)/&a . Let x €S . Then
6% is regular in (5,a)/6% <> (3y €8)(x6%=(2§%) o(y §%) o(x 6%))
<> (QyeS)((z,xoyox) e 6%)
<= (Jye S)laxa =axayaxal

<=> gxa 1s regular in S ,
proving the first assertion. The second assertion follows immediately.

COROLLARY 3.6. In a regular semigroup S each quotient (S,a)/da

(a € S) is a regular monoid.
This is a consequence of Corollary 3.4 and Theorem 3.5; alternat-

ively, it follows from Corollary 3.4 and the well-known fact that the
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local subsemigroups of a regular semigroup are regular.

The relations af(S,a) and s coincide when a is a regular
element in a semigroup S (by Lemma 3.1 (ii)). We will frame the final

results of this section in terms of a(S,a) rather than s .

COROLLARY 3.7. (Z) Let S be a monoid with identity element 1.
Then, for all a ¢ D, , (S,a)/alS,a)z S .

(it) If u 1is an idempotent mididentity in a semigroup S then
S/a(S) = uSu .

Proof. (i) follows from Corollary 3.4; to prove (ii) we use Lemma
3.2 and note that, for a mididentity u% in a semigroup S , the semigroups

(S,u) and S coincide, so a(S,u) = afS).

Note. Let S be the full transformation semigroup T (X) on a set
X . Then Symons [10, Theorem 1.7] has shown that, for 6 ¢ § ,

(s, 9)/6e z T(xe) . It follows from this (and known properties of T(X))
that, for 6,$ € S ,

(5,0)/6% = (5,6)/6% <> 6D ¢ in 5.

it

(see also [7, Theorem 3.2].)
In an arbitrary regular semigroup S , however, we may have

(S,a)/rSa and (S,b)/db isomorphic (a,b € §) without a and b being
D-related. For example, let E be a uniform semilattice (that is a
semilattice with the property that Ee 2z Ef for all e,f € E) with
|[E| > 1 . fThen for all e,f ¢ E we have eEe = fEf , that is

(E',e)/Ge = (E',f)/(Sf (by Lemma 3.2). However, no two distinct elements
of E are D-related.

4. Nambooripad's order.

Let S be a regular semigroup and let < denote Nambooripad's

partial order on S . For X € S write

Yr

{s € 5: 8 sz},

and, for A4,B ¢S , write A = B to mean that A and B are order-

isomorphic under < ,
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The following lemma is an easy consequence of the results
Proposition 1.2(d) and Corollary 1.3 of [9]; alternatively our Lemma 1.1

can be used to prove it.

LEMMA 4.1, Let S be a regular semigroup and let e € E(5) . Then
te = E(eSel).

LEMMA 4.2. Let a be an element of a regular semigroup S, let
a' € Pre(a) and let e =aqa' . Then +a = ‘e .

Proof. we have a mapping ¢: Ya = Ye¢ defined by the rule x¢ =x g
(x € Ya) . To check that ¢ maps +Ya into ‘e , suppose that x < a .

Then, by Lemma 1.1, we can work in (S,a’) to get

X =xox =xoeaqa=qaqo°ox ,

that is r=zxa'x=xa'a=aa'x.
Then (::ca')2 =zxa' , that is x¢ ¢ E(S) . Aalso,
zxa' .aa' =aa'.xza' =xa',
so that £¢ < e . Thus ¢ does indeed map +a into +Ye .

Similarly we may show that the rule fy= fa (f € +e¢) defines a
mapping ¢: Ye¢ + Ya . Further, if 2 ¢ Ya, x¢¢ = xa'a =2 , and if
fede, fvé=Ffaa'=fe=Ff, and so ¢, ¥ are mutually inverse
bijections.

Suppose next that X,y € Ya with x <y . Thus & <y <a . Since
Yy S a we have, by Lemma 1.1, y € E(S,a') , that is ya'y =y . So
a' € pre(y) and, by Lemma 1.1 again, we may express the inequaltiy

x £y in (S,a’) . We thus have

So (xa'llya') = (ya'llxa') =xa', that is xz¢ <yé¢.

Finally, suppose that f < g (f,g € ¥e) . Then, calculating in
(S,a’') , we get
(fa)o (fa) = faa' fa= fefa = fa,
and, similarly, (gal) o(ga) =ga. Also,
(fa) o (ga) = faa'ga = fega = fa,

o

(fa) = fa. Thus f¢y <gyvy.

and, similarly, we have (ga)
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We have thus shown that ¢ is an order-isomorphism from +Ja to
Ye¢ and the lemma is proved,

We can now state the main result of this section.

THEOREM 4.3. If a and b are two D-equivalent elements of a
regular semigroup them +Ya = b .

Proof. Let S be a regular semigroup and let a Db (q,b € S).
let e=aa', f=bb' (a' ¢ Pre(a), b' € Pre(b)). Then a, b, e, f
are all UD-related in S . The subsemigroups eSe and fSf are
isomorphic and so, under the ordering of idempotents, E(eSe) is

order-isomorphic to E(fSf) . Thus

Ya = ¥e¢ by Lemma 4.2

E(e Se) Dby Lemma 4.1
E(fSf)

¥f by Lemma 4.1

n

R

+b by Lemma 4.2,

This proves the result.
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