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ON VARIANTS OF A SEMIGROUP

J.B. HlCKEY

If S is a (multiplicative) semigroup and a e S , the binary

operation 0 defined on the set 5 by x ° y = x a y is

associative and the resulting semigroup is called a variant of

S . We study the congruence a defined on S by saying that

two elements are oc-related if and only if they determine the

same variant of S . Certain quotients of variants are used to

provide an arbitrary semigroup with a generalised local structure.

The variant formulation of Nambooripad's partial order on a

regular semigroup is used to show that the order possesses a

certain property (involving P-equivalence).

If S is a (multiplicative) semigroup and a € S , the binary

operation ° defined on the set S by x ° y = x a y is associative;

the resulting semigroup is denoted (S,a) and called a variant of S [4].

In this paper we investigate the congruence a defined on a semigroup S

by saying that two elements of 5 are a-related if and only if they

determine the same variant of 5. We consider also, for a e S , a

congruence 6 on (S,a) , and show that the quotients (S,a)/S

generalise (up to isomorphism) to an arbitrary semigroup the local
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448 J. B. Hickey

subsemigroups in a semigroup with idempotents. Finally, Nombooripad's

partial order on a regular semigroup (in its variant formulation \_43 7])

is considered and shown to possess a certain 'local' property.

In Section 2 we show that, for an arbitrary semigroup with an idem-

potent, the a-class of each idempotent is an ideal extension of a rect-

angular sub-band of S by a semigroup U satisfying U = 0 . If S is

regular then the a-class of an idempotent e is a rectangular sub-band

of S contained in V(e) n E(S) (the containment being strict, in

general) ; in particular, a is idempotent-determined here.

The congruence 6 is defined in Section 3. (It was introduced in

the context of sandwich semigroups by Symons [70] and was further studied

in [7].) we see that 6 is contained in the congruence a on (S,a)

and that these two congruences coincide if a is regular in S . The

quotient semigroups (S}a)/& (a e S) are considered: it is shown that

(S,e)/Se = eSe when e e E(S) and that, if a and b are V-

equivalent in S , then (S,a)/&a 2 (S3b)/6 .

In the final section we consider the subsets +£ of a regular semi-

group S defined by +a; = {s e S: s £ x] , where 2 denotes Nambooripad's

partial order on S . Using the variant formulation of < , we show that,

if x and y are P-equivalent elements of 5 then -kr is order-

isomorphic to \y .

1. Preliminaries.

The notation of [5̂ ,2] will be used throughout.

We first recall some ideas and results from [4,1]. If (S,.) is a

semigroup and a e S , the variant (S3a) of S is the semigroup

obtained by taking the set S under the binary operation ° defined by

x o y = x a y (x,y e S) [4]. we adhere to the convention that, if it is

stated or implied that S (or a subset of it) is a semigroup, then the

multiplication in question will be that in (or inherited from) (S,.).

Let a be an element of a semigroup S . By a pre-inverse of a

we mean an element b e S satisfying a b a = a [4]. We shall denote

the set of preinverses [inverses] of a by Pre(a) [V(a)~\.
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By a mididentity in a semigroup 5 we mean an element u with the

property that x u y = xy for all x,y e S . If u is a mididentity in

S then clearly the variant (S3u) coincides with 5 .

Nambooripad's partial order ^ on a regular semigroup S is

defined in [ 9]. We shall use the following equivalent formulation of it

[4, Theorem 5.1], where E(S^a) denotes the set of idempotents of (S3a):

rhere exists a e. S with x,y e E(S,a)
•

and x = x°y=y°x.

The following lemma shows that, in order to determine whether or not the

statement x £ y is true in S , we may choose any pre-inverse y ' of

y and calculate in (S,y').

LEMMA 1.1 [/]. Let x}y be elements of a regular semigroup and

let y' e Pre(y). Then

x < y <=> (x e E(S,y') with x = x°y = y°x in (S,y')).

We note that this partial order < on a regular semigroup S

extends the usual partial order on E(S).

For a congruence p on a regular semigroup S we shall need the

following definitions: p is said to be strictly compatible [9] if

(V x,y e S ) x p y a n d x £ y = * > x = y,

and to be idempotent-determined [3] if the p-class of each idempotent

consists entirely of idempotents.

By the local subsemigroups of a semigroup S we mean the subsemi-

groups of 5 of the form eSe (e e E(S)) [6].

LEMMA 1.2 [S]. If e and f are V-equivalent idempotents in a

semigroup S then eSe = fSf.

We will close this section with an example, constructed by McAlister

[6] for use in a context somewhat different from the present one. First

we need to describe a certain type of regular semigroup.

Let S be a regular semigroup, let I , A be sets and let P be

a A x J matrix over S . Then the set of all triples (i,s,\) e J x S x A

is a semigroup under the multiplication
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This semigroup is not regular, in general, but the set of regular

elements in i t forms a regular semigroup. This latter semigroup is

denoted by RM(S; I,k; P) and termed a regular Rees matrix semigroup

over 5C6] .

EXAMPLE 1.3 16]. Let S be the chain semilattice {l,a,b,O} with

1 > a > b> 0 . Let J = A = {1,2} and let P be the 2x2 matrix

(, -J . Then RM(Sj I,h; P) contains precisely eleven elements, namely

(l,b,l), (l,b,2), (2,b,l), (2,b,2),

(1,0,1), (1,0,2), (2,0,1), (2,0,2).

The element (2,b,2) is the only non-idempotent in the semigroup.

2. The congruence a.

Let 5 be a semigroup. The relation a defined on 5 by

(x,y) e a <=^ s x t = s y t for all s,t e S

is a congruence on S , as is readily verified. Clearly, two elements

x,y are a-related in 5 precisely when the variants (S,x) and

(S,y) coincide.

When two or more semigroups are being discussed we may write a(S)

instead of a in order to avoid confusion; also, we will denote the

congruence a on (S,a) by a(S,a).

If a, b are two regular elements in S that are a-related then

the set of mididentities [idempotent mididentities] in (S,a) coincides

with the set of mididentities [idempotent mididentities] in (S,b) . Thus

Vre(a) = PreCW LV(a) = V(b)~\ by 14, Lemma 3.1]. It follows that a is

the equality relation on an inverse semigroup.

Two a-related idempotents in a semigroup S must be mutually

inverse, as is easily proved. Suppose again that a, b are regular

elements that are a-related in S , and let x e Pre(a) = Pre(b). Then

(ax,bx )e a , since a is a congruence. But ax , bx e E(S) and so

these elements are mutually inverse. We now have a R ax , ax V b x,

bx R b . It follows that a V b . In particular, if 5 is a regular
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semigroup then a ĉ  V .

When S is a monoid, a is clearly the equality relation 1^ on

S ; a stronger result in the same vein, however, is the following.

LEMMA 2.1. Let a and b be regular elements of a semigroup S.

Then a n (aSb x aSb) is the equality relation on aSb .

Proof. Let a' e Pxe(a), b' e Pre(b) . Then, for xsy e S 3

(a x b, a y b) e a => a a'(a x b)b'b = a a'(a y b)b'b

=> a x b = a y b .

The result follows.

LEMMA 2.2. Let S be a semigroup. Then a n H = ls .

Proof. Let (x,y) e a nH (x,y e S) and suppose that x ^ y . Then

x = ys , y = tx for some s,t e S . So txs = Xj tys = y. But

txs = tys since fa:.,y/> e a , giving x = y , a contradiction. This

proves the lemma.

LEMMA 2.3. Let S be a regular semigroup and let x, y, z e S be

such that x < z and y < z . Then (x,y) e a => x = y .

Proof. Suppose (x,y) e a and let z' e Pre(z) . Then, by Lemma

1.1, x = xz'z = zz'x, so x = z z' x z' z . Similarly y = z z' y z' z .

Since (x,y) e a } we have x = y , as required.

We immediately have

COROLLARY 2.4. For a regular semigroup the congruence a is

strictly compatible.

Let 5 be a regular semigroup and let e e. E(S) . Then Corollary

2.4 and [9, Theorem 2.8] tell us that the a-class ea is a completely

simple subsemigroup of 5; further, by Lemma 2.2, ea has trivial H-

classes and so is a rectangular sub-band of 5 . In particular, a is

idempotent-determined.

In the next result we take an arbitrary semigroup 5 containing an

idempotent and improve on the results stated in the previous paragraph.

We recall [2, Section 4.4] that if J is an ideal of a semigroup

T then T is said to be an ideal extension of I by the (Rees quotient)

semigroup T/I,
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For any semigroup S , le t Reg(S) denote the set of regular

elements of 5 .

THEOREM 2.5. Let S be a semigroup and let e e E(S). Write

T = ea , I = ea n Reg(S). Then I is a rectangular sub-band of S and

T .is an ideal extension of I by a semigroup U satisfying U3 = 0 .

Proof. We note at the outset that T is a subsemigroup of S ,

being a congruence class of an idempotent. Suppose now that x e J and

2 2

that x' e Pre(x). Then (x,x ) e a , so xx' ,x.x' x = xx'.x .x'x,

that is x = x2. Thus J £ E(S).

Now let x,y e I . Then (xy)2 = xyxy = xyyy = xy , so that

x y i s regular and hence belongs to I . Thus J i s a subsemigroup of

S . Fur ther , for x,y e J , we have xyx = xxx=x3so I i s a

rec tangula r band [ 5 , Chapter IV, Proposition 3 . 2 ] .
2

If x £ T, y e J then we argue as above to get that (xy) = xy ,
n

(yx) = y x, so that x y 3 y x el. Thus J is an ideal of T .

Finally, if x3 y, z e T, then

(xyz) = xy z xy z = x e z = xez = xyz,

so that xy z € I . This shows that the Rees quotient semigroup U = T/l

satisfies U = 0 . The theorem is now proved.

The next result follows from Theorem 2.5 and the fact that a-

equivalent idempotents are mutually inverse.

COROLLARY 2.6. Let S be a vegular semigroup and let e e E(S).

Then the congruence class ea is a rectangular sub-band of S contained

in V(e)nE(S) .

The containment in the statement of Corollary 2.6 is strict in

general: in the semigroup of Example 1.3 the idempotents (l3a,l) and

(2,asl) are mutually inverse but are not a-related, since, for example,

(l,b,2)(l,a,l)(l,b,2) = (l3b32), (l,b,2) (2,a,l) (1^,2) = (1,0,2) .

In fact this semigroup has just one non-trivial a-class, namely

{(1,0,1), (1,0,2), (2,0,1), (2,0,2)} .

The next result shows that a-equivalence of regular elements is
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closely linked to that of related idempotents. The proof is straight-

forward and is omitted; it uses the fact, noted earlier, that if two

regular elements a, b in a semigroup are a-equivalent then

Pve(a) = Vre(b).

THEOREM 2.7. Let a, b be regular elements -in a semigroup. Then

(a,b) e a <=» there exists x e Pre(a) n Pre(b) such that (ax,bx) e a

and (xa,xb) e a .

3. A generalization of local structure.

Let S be a semigroup. For each a e S we define a relation 6

on the set S by the rule

x 8 y <=> ax a = ay a .

This relation was one of three congruences introduced in the context of

sandwich semigroups (where it was denoted d) by Symons [10]; it was

studied further in [7].

LEMMA 3.1. Let S be a semigroup and let a e S. Then

(i) Sa is a congruence on (S,a) and 6a £ a(S,a),

(ii) if a is regular in S then 6 = a(S}a).

Proof. (i) Clearly 6 is an equivalence relation on the set S.

S u p p o s e xS y (x,y e S) a n d l e t z e S . T h e n a z a x a = a z a y a ,

that is a(z •> x)a = a(z ° y)a , where ° denotes multiplication in

(S3a) . So z ° x 6 z ° y . Similarly x ° z 6 y ° z . Thus 6 is

a congruence on (S,a) . Further suppose x 6 y (x,y e S) . Then, if

s, t e S ,

s ° x ° t = s ax at = s ay at = s ° y ° t j

so (x>y) e a.(S,a) . This proves (i) .

(ii) Now let a be a regular in S . Let x3y e S be such that

(x,y) e a(S}a). Then, for all s,t e. S, s°x°t = s°y°t, that is

s(axa)t = s(ay a)t . Thus (a x a, a y a) e a(S) ,,so a x a = a y a

by Lemma 2.1. Thus a(S3a) £ 6 3 and hence a(S,a) = 6a , by part (i).

This completes the proof.
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For S a semigroup, the quotients (S,a)/S (a e S) provide a

generalisation of (semigroups isomorphic to) the local subsemigroups of

S , as the following lemma shows.

LEMMA 3.2. Let S be a semigroup and let e e E(S) . Then

(S,e)/6e = eSe

Proof. The mapping ty: S -*• eSe defined by x ty = exe is a

—1 e
homomorphi sm from (S,e) onto eSe , and \fi ° ip = S . The result

follows.

THEOREM 3.3. Let S be a semigroup and let a, b be V-related

elements of S. Then (S,a)/6a s (S,b)/&b .

Proof. Since a V b in S we can find c e 5 such that a R o,

o L b . Then there exist elements Sj s', t, t' e S such that

(1) as = Q, os'=a, tc = b,t'b=a.

Then

(2) ass' = t' ta = t'bs' = a, bs's = tt'b = b.

We may now define a mapping 9: (S,a)/& •*• (S}b)/S .'y the rule

(x 6a)Q = (s'xt')S . For suppose that x Sa =y&a (x3y e S) . Then

ax a = ay a and, using (1), we get

b(s ' xt')b = t a s ' xa = t ax as = t ay as

= tos' ye = b(s' y t')b .

This shows that the mapping 9 is well-defined.

Similarly the rule (x 6 ) <t> = (sxt)S (x e S) defines a mapping

4>: (S,b)/6 -»• (S,a)/&a . Now, for x e S ,

(x6a )B$ = Us'xt')&bl<p = (ss'xf t)6a .

But a(s s'Xt't)a = axa , by (2), and so (x 6a )Q§ = x 6a . Similarly

we may show, using (2) , that (x 6 )$$ = x 6 for x e S , and so 9, ij>

are mutually inverse bijections.

Finally, for x3 y e S , consider the product (x 6 ) ° (y 6 J in

(S,a)/6a. We have
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(x &a) ° (y 6a) = (x ° j/>)6 (where ° i s multiplication in (Sta))

= (x a y)S ,

and so

i(x&a ) o (ys
a)-]Q = (s' xayt')&b .

Then, in (S,b)/6 ,

= i(s'xt') ° (s'yt')lS (where « ±s multiplication in (S}b))

= (s' xt'bs'yt')Sb = (s'xayt')6b (using (2)).

Thus l(x 6a) o (y 6a)le = Ux Sa)Ql o [ (y 6a)el , and so 8 is an

isomorphism. This proves the result.

The following is an obvious consequence of Theorem 3.3 and Lemma

3.2.

COROLLARY 3.4. Let a be a regular element of a semigroup S and

let e £ E(S) be such that e V a in S . Then (S,a)/6a s eSe .

We note that Corollary 3.4 implies Lemma 1.2.

THEOREM 3.5. Let S be a semigroup and let a e S . Then, for

x e. S, x 6a is regular in (S,a)/Sa <=> axa is regular in S;

consequently, (S,a)/6a is regular <=> &Sa c_Reg(S).

Proof. We use o to denote the operation in (S3a) and also

that in (S,a)/&a . Let x e 5 . Then

xSa is regular in (S,a)/6a <=* (3 y e S) (x Sa =(x &a) o(y$a) o(x 6
a))

<=> (2 y eS) ((x,x o y o x) e S
a)

<=> fgye S) (ax a = axay axa)

<=> axa is regular in S ,

proving the first assertion. The second assertion follows immediately.

COROLLARY 3.6. In a regular semigroup S each quotient (S,a)/&a

(a e S) is a regular monoid.

This is a consequence of Corollary 3.4 and Theorem 3.5; alternat-

ively, it follows from Corollary 3.4 and the well-known fact that the
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local subsemigroups of a regular semigroup are regular.

The relations a(S,a) and 6 coincide when a is a regular

element in a semigroup S (by Lemma 3.1 (ii) ) . We will frame the final

results of this section in terms of a(S}a) rather than 6

COROLLARY 3.7. (i) Let S be a monoid with identity element 1.

Then, for all a e Z^ , (S3a)/a(S,a) = S .

(ii) If u is an idempotent mididentity in a semigroup S then

S/a(S) s uSu .

Proof. (i) follows from Corollary 3.4; to prove (ii) we use Lemma

3.2 and note that, for a mididentity u in a semigroup S , the semigroups

(S,u) and 5 coincide, so a(S,u) = a(S).

Note. Let S be the full transformation semigroup T (X) on a set

X . Then Symons [70, Theorem 1.7] has shown that, for 9 e S ,

(SjQj/S S T(XQ) . It follows from this (and known properties of T(X))

that, for e,^ £ S ,

(S,B)/6e s (SA)/^ « 8 ^ in S .

(see also [7, Theorem 3.2].)

In an arbitrary regular semigroup S , however, we may have

(S,a)/& and (S,b)/& isomorphic (a,b e S) without a and b being

D-related. For example, let E be a uniform semilattice (that is a

semilattice with the property that Ee = E f for all e,f e E) with

\E\ > 1 . Then for all e,f e E we have eEe = fEf , that is

(E,e)/6 2 (E,f)/(> (by Lemma 3.2). However, no two distinct elements

of E are P-related.

4. Nambooripad's order.

Let S be a regular semigroup and let < denote Nambooripad' s

par t ia l order on S . For x e S write

+x = is e S: s < x} ,

and, for A}B £ S , write A =. B to mean that A and B are order-

isomorphic under < .
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The following lemma is an easy consequence of the results

Proposition 1.2(d) and Corollary 1.3 of [9]; alternatively our Lemma 1.1

can be used to prove i t .

LEMMA 4 . 1 . Let S be a regular semigroup and let e e E(S) . Then

+e = E(eSe).

LEMMA 4.2. Let a be an element of a regular semigroup S, let

a' e Pre(a) and let e =aa' . Then +cz a +e .

Proof. We have a mapping <ji: +a •*• +e defined by the rule x <\> = x a'

(x e ±a) . To check tha t <j> maps +<2 in to +e , suppose tha t x ^ a .

Then, by Lemma 1.1, we can work in (S,a') t o get

x = x°x=x°a = a ° x ,

that is x = xa' x = xa' a = aa' x.

Then (xa' ) 2 =xa' , that is x <f> e E(S) . Also,

xa' .aa' = aa' .xa' = xa' ,

so that x <(> < e . Thus if> does indeed map +a into \e .

Similarly we may show that the rule fty= f a (f e ^e) defines a

mapping tjj; +e •+ \a . Further, if x e ±a} x$i}> = xa'a = x , and if

/ e \e3 fty<\> = fa a' = fe= f , and so (f, $ are mutually inverse

bijections.

Suppose next that x,y e +a with x < y . Thus x < y < a . Since

y •& a we have, by Lemma 1.1, y e E(S,a') , that is y a' y = y . So

a' e Pre(y) and, by Lemma 1.1 again, we may express the inequaltiy

x <, y in (S,a') . We thus have

x = xa'x = xa'y = ya'x .

So (xa' )(y a' ) = (y a' ) (x a' ) = xa', that is x $ <i/ji.

Finally, suppose that / < g (f3g e \e) . Then, calculating in

(S3a') , we get

(fa) ° (fa) = faa' fa = fefa = fa,

and, similarly, (g a) ° (g a) = ga. Also,

(fa) ° (ga) = faa' g a = fega = fa,

and, similarly, we have (g a) ° (fa) = fa. Thus f \\i ^ gi|i.
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We have thus shown that ij> is an order-isomorphism from +a to

+e and the lemma is proved.

We can now state the main result of this section.

THEOREM 4.3. If a and b are two V-equivalent elements of a

regular semigroup then +a = +i .

Proof. Let S be a regular semigroup and let a V b (a,b e. S).

Let e = a a' , f = bb' (a' e Pre(a), b' e Pre(b)). Then a, b, e, f

are all V-related in S . The subsemigroups eSe and fSf are

isomorphic and so, under the ordering of idempotents, E(eSe) is

order-isomorphic to E(fSf) . Thus

4-a = +e by Lemma 4.2

= E(eSe) by Lemma 4.1

= E(fSf)

= +/ by Lemma 4.1

= +2? by Lemma 4.2.

This proves the result.
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