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ABSTRACT 
Applications of machine learning technologies are becoming ubiquitous in many sectors and their 
impacts, both positive and negative, are widely reported. As a result, there is substantial interest from 
the engineering community to integrate machine learning technologies into design workflows with a 
view to improving the performance of the product development process. In essence, machine learning 
technologies are thought to have the potential to underpin future generations of data-enabled engineering 
design system that will deliver radical improvements to product development and so organisational 
performance. In this paper we report learning from experiments where we applied machine learning to 
two shape-based design challenges: in a given collection of designed shapes, clustering (i) visually 
similar shapes and (ii) shapes that are likely to be manufactured using the same primary process. Both 
challenges were identified with our industry partners and are embodied in a design case study. We report 
early results and conclude with issues for design descriptions that need to be addressed if the full 
potential of machine learning is to be realised in engineering design. 
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1 INTRODUCTION 

Despite major advances in computer science, computational support for engineering design practice 

remains limited. For example, applications such as that outlined by Cavalcantea et al. (2019), who report an 

application of machine learning for the selection of suppliers in manufacturing supply chains, have the 

potential to improve the effectiveness and efficiency of procurement processes, and so reduce time to 

market and costs. However, the impact of such improvements on design quality (e.g., creating a design that 

better meets its design requirements or is easier (and so quicker and cheaper) to manufacture or support 

through life) is limited.  For design definition, e.g., in computer aided design, and design analysis and 

optimisation applications (collectively referred to as CAD here), design information captures the results of 

design processes. In mechanical design, this information includes geometric models of individual parts and 

geometric constraints between them, often attributed with further information such as material 

specifications. However, a given design can be described in many ways, typically driven by the preferences 

and capabilities of the CAD system used to create it and its users. As a result, the structure of a given shape 

model is user defined and there is no guarantee that, in a given collection of shape models, the logic behind 

the structures of the models will be meaningful or consistent. 

This paper reports experiments using a machine learning application to address two shape-based challenges 

in engineering design practice: clustering of (i) similar part shapes in a given design and (ii) shapes that are 

likely to be manufactured using a given process.  The focus of this paper is on the application of machine 

learning in design rather than the development of the machine learning system itself although, given the 

research was driven through the development of a series of prototypes, these two processes are intertwined.  

For this reason, the paper begins with a review of literature on applications of machine learning in 

engineering design (Section 2).  This is followed, in Section 3 with an outline of the approach used and in 

Section 4 with a brief description of the machine learning system that was used in our design experiments.  

Results are provided in Section 5.  The paper concludes, in Sections 6 and 7, by outlining issues that need 

to be addressed if the full potential of machine learning is to be realised in engineering design.    

2 LITERATURE REVIEW 

There are numerous models and manifestations of the engineering design process. Common features are 

their integration of divergent and convergent thinking and, in this context, cycles of synthesis, analysis and 

decision making (Suh, 1990). In mechanical design, design requirements are transformed into assemblies 

of parts where each part has a geometry that, coupled with geometric constraints between parts, govern the 

behaviours of the final design. Computational design tools are available to support many aspects of this 

process. However, while there are experimental systems that support conceptual design (Pokojski et al., 

2019), the most widely used in design practice are those based on geometric models of a developing 

design. Human designers are critical to the process because they bring creativity, to generate new solution 

principles in response to design requirements, and innovation, where constraints inform the development of 

a design. Further complexity is added by the fact that real-world design processes are typically delivered by 

teams of designers, often working across networks of organisations. To support such ways of working, 

design problems are decomposed into system architectures and design requirements are allocated to 

specific subsystems (Blanchard and Fabrycky, 1990). Thus, the results of a given engineering design 

process are design descriptions of assemblies of parts (either references to models of standard parts or 

shape models and associated information of designed parts), assembly relationships between these parts, 

and product architectures (typically, a product decomposition with requirements allocated to each part and 

relationships, often geometric, between parts) (Shapiro and Voelcker, 1989) . The research reported here 

focussed on component parts and associated shape models. 

An important prerequisite for applications of machine learning is the availability of training data on a 

scale large enough to train algorithms for a target activity. The only available design data on this scale 

are libraries of shape models such as the ABC and FabWave datasets (Koch et al., 2018; Starly et al., 

2019) that were used in the experiments reported in this paper. However, in practice, design definition 

data is significantly richer than the shape models in such libraries. A second feature common to all 

engineering design processes lies in the broad categories of information that they use and produce. In 

essence, engineering design can be seen as a mapping process, from customer needs and design 

requirements (Suh’s customer and functional domains (Suh, 1990)) to design definitions (Suh’s 

physical domain) and associated processing information for, e.g., manufacturing, and lifecycle support 
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and end of life processes (Suh’s process domain). As a result, engineering design information relates 

to all of these domains (McKay et al., 1996) along with information on the mappings themselves and 

rationale for decisions made (e.g., see Design Rationale editor (Bracewell, et al., 2009). Some authors 

report work using design analysis and optimisation approaches to generate training data (Pilarski et al., 

2021; Sharpe et al., 2019; Tallman et al, 2019) but, again, this is limited to shape models and 

associated analysis parameters and objective functions that do not reflect the full richness of the design 

requirements being addressed. In addition, the problems addressed tend to be focussed on specific 

design problems for which it is possible to specify specific design parameters and goals. This research 

is more widely focussed and, given the available training data, our experiments explored applications 

of machine learning that could be trained using shape models. 

The DeCoDE lab1 at MIT is doing work on the use of artificial intelligence to support engineering design 

activities and so-called “cognitive design assistants” are emerging as a means by which machine learning 

and other branches of artificial intelligence can support such activities. Maier et al. (2019) propose an 

ontology for cognitive assistants that includes categories covering degrees of natural language 

processing, and levels of functionality and learning. Zhang et al. (2021) report a study, using a model 

bridge design activity, which highlights the importance of considering human and team performance in 

the introduction of artificial intelligence to the design process. The long-term goal of the experiments 

reported in this paper is to inform the development of design assistants that can support real-world 

engineering design and development processes. While there are numerous opportunities, a limiting factor 

lies in the availability of suitable training data. The first experiment in this paper explored the use of 

machine learning to assist designers in finding shapes that are similar to the one they are working on. In 

the second experiment, the general problem addressed lay in identifying clusters of similar shapes to 

support, e.g., manufacturing planning. Corney et al. (2002) describe an early web-based search engine 

that finds shapes similar to a given shape and highlight the need for shape representations that support 

similarity detection as a major challenge. In this paper, representations of topology are used to identify 

clusters of topologically similar shapes.  

3 APPROACH 

The approach used is illustrated in Figure 1. Three key aspects are highlighted: the creation of a 

machine learning-based design system, the formulation of a design case study and the application of 

the machine learning-based system to the case study.  The focus of this paper lies in the application 

of the systems to two design challenges (both of which were identified by industry partners as being 

important for improving product development process performance) and the learning, in the form of 

feedback to inform future generations of machine learning-based design system and potential design 

cases, which 

 

Figure 1: Research approach 

 
1 decode.mit.edu/ 
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was generated.  Details of how the machine learning-based systems were created are reported 

elsewhere but a summary of key points necessary for this paper is provided in Section 4. This paper 

reports three research cycles using three different machine learning-based systems: two, trained with 

different training data, used shape similarity to cluster shapes from a case study and the third used 

training data that had been labelled by hand to cluster the same shapes based their primary 

manufacturing process. 

A subsystem of a prototype 3D sintering machine (the cakebox shown in Figure 2) was used as the 

design case study. As a prototype machine, some design features were not as would be found in a 

production machine. For example, the prototype used Rexroth sections which would be unlikely to be 

used in a production machine. However, the sintering machine was selected as a suitable case study 

for two reasons: a full set of CAD models was available and the design definition was not subject to 

confidentiality constraints. CAD models for each mechanical part were provided as STEP (ISO10303-

203, 1994) files that had been exported from PTC Creo. 

From discussions with the case study owners and other industry partners, two design challenges 

were identified.  The first aimed to reduce time and cost by reducing unnecessary design work on 

new parts when existing designs were available either for direct use or adaptation.  To achieve this, 

the need to be able to identify parts with similar shapes, so that feasibility of reuse could be 

assessed, was identified.  The second challenge related to improving quality in procurement 

processes: so reducing cost and time for manufacturing, and ultimately the production of scrap.  

Achieving this requires procurement teams, with limited design and manufacturing knowledge, to be 

able to identify parts likely to be made using the same primary manufacturing process.   For both 

challenges all parts of the cakebox were selected that were not standard parts and whose primary 

manufacturing process could be one of: machined bar or other raw material with a constant cross-

section (e.g., materials such as Rexroth), casting or forging, and sheet metal processes such as 

bending and stamping. A subset of 71 distinct parts were selected: bar (18 parts), casting or forging 

(28 parts), and sheet metal (25 parts).  

A key conclusion from the first two research cycles (shape clustering with FabWave data and 

clustering by manufacturing process) was the need to improve the quality of the training data.  In 

response, survey-based experiments (to be reported elsewhere) were carried out to assess how 

people perceive visual similarity of selected shapes. The survey used data from the ABC dataset. 

Survey results, on human perceptions of shape similarity, were used to train a third, shape 

clustering, system.  In preparing the surveys, a need was identified to refine the ABC data used with 

a view to assuring its quality. This was done using a manual process where shapes from the data set 

were sifted so that only valid looking parts were included. The user, who kept a record of reasons 

for rejecting shapes, was offered one image at a time with options to accept or reject it. The sifting 

was done in 30 minute blocks to reduce the risk of bias.  Details of reasons for rejection of shapes is 

provided later (in Section 5) along with the impact the use of the new training data set had on the 

results. 

 
Figure 2: Sintering machine cakebox from case study  
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4 MACHINE LEARNING-BASED DESIGN SYSTEMS 

The machine learning based systems used in this research were developed using a two-step process: 

(1) common features in large volumes of input data (so-called "training data") are identified; and (2) 

these features are used to form an n-dimensional latent space into which all items from the training 

data are embedded. In our case, each system had a 16-dimensional latent space.  Given its latent space, 

the system can then embed new input data (in our case, shapes from the cakebox) into the latent space.  

The remainder of this section is structured around the three steps needed to create a machine learning-

based design system shown on the left-hand side of Figure 1.  

4.1 Acquire training data 

Given the focus of this paper on design descriptions, the method for developing the latent space is out 

of scope and reported elsewhere (DCS, 2022).  Three prototype systems were built, each with distinct 

training data described in Table 1.  For version 1, the FabWave dataset was used which contains 

around 4,500 CAD models, each labelled with one of 43 part categories. For version 2, a human based 

similarity study was carried out using hand selected models from the ABC dataset which is more 

general than FabWave.  

Table 1: Summary of design systems and training data used 

Shape clustering goal Training data 

Visual similarity (Version 1) Raw FabWave data 

Same primary manufacturing process Labelled cakebox parts 

Visual similarity (Version 2) ABC data with human perception 

4.2 Extract training data 

CAD models with STEP file formats were used because this format makes explicit the geometry of 

faces and their topological connectivity.  The category labels from the FabWave data set allowed a 

simple measure of similarity to be defined though, on detailed examination, there were inconsistencies 

in the category labels.  A widely recognised issue with CAD systems is that a given shape can be 

defined in multiple ways. This means that two shapes that are visually the same (e.g., a circle of radius 

R and an ellipse with both minor and major radii R) are not the same in their definition.  To avoid this, 

a graph representation of the topology of each CAD model was used. As a result, as the first stage of 

mapping to a latent space, each CAD model was converted into a graph with n nodes, where each node 

represents a face in the CAD model and each edge represents a connection between a pair of faces that 

are in contact with one another. Nodes have a single attribute: type of face.  Edges have four attributes: 

the angle between the connected surfaces, the ratio of the sizes of the two surfaces, the type of the 

curve of the edge, and the relative edge size compared to size of face.  Results for three example 

shapes are illustrated in Figure 3.  

 
Figure 3: Training data example 
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4.3 Train design system 

A given machine learning-based system is underpinned by a neural network. Given the different goals, 

different neural networks were required for the two design challenges.  The Fabwave data was used to 

train the neural networks for clustering similar shapes, by providing triplets of models, an anchor 

model, a similar model, i.e., one in the same category and a dissimilar model, one in a different 

category. Later, when training the network on the human obtained similarity data, the direct results of 

the study were used in the same way. For the manufacturing process challenge, a small dataset of 

labels for the putative manufacturing processes for 71 parts was provided; this enabled further training 

based on the FabWave dataset. Our approach was to use the latent space for shape similarity as an 

intermediate representation for parts and to train a conventional fully connected neural network with 

three hidden layers on this space, instead of attempting to train a classifier on the original model 

graphs. Here the mapping into a low-dimensional latent space that has been optimised is leveraged on 

a large dataset of part models (from FabWave). This is an instance of transfer learning. The classifier 

was trained on 90% of the data (71 models) over 100 epochs and tested on the remaining 10% (7 

models). 10-fold cross-validation was used to obtain an estimate of 70.53% for classification accuracy 

with a standard deviation of 6.69.  Further details of the training process are outside the scope of this 

paper but available at (DCS, 2022). 

5 RESULTS 

Results from the three research cycles, each using the cakebox case study, are presented in this section 

followed by results of the sifting process used to prepare the ABC data for the human perception survey. 

Figure 4 shows the way in which the shapes from the cakebox were clustered by the machine learning 

system using topological features but trained using two different datasets: the Fabwave dataset in 4(a) 

and the ABC dataset augmented by human perceptions of shape similarity from the survey in 4(b). In 

both cases an emergent clustering of parts can be seen to the human eye though, again with the human 

eye, shapes such as those at the top of the plot in Figure 4(b) seem to be better clustered with the 

second dataset.  Further work is needed to quantify the quality of the clustering and the level of quality 

needed in engineering design applications. However, a practical application of this is that, given a part 

mapped into the latent space, a search can be carried out for the closest vectors in that space to find 

parts with similar shapes.  Figure 5 shows a different clustering that incorporates the manufacturing 

processes from the labelled dataset. The clustering of the whole dataset is shown in 5(a) and a screen 

capture from the interactive plot (see caption for link) is shown in 5(b) to highlight some clustered  

 

  

(a) Shape clustering trained using 
FabWave data 

(b) Shape clustering trained using human 
perception similarity data from ABC data 

Figure 4: Results from clustering of shapes by visual similarity (Notes: Interactive versions of  
these plots are available at https://dcsleeds.github.io/) 
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(a) Clustering of shapes trained using 
manufacturing process labelled data 

(b) Screen capture from interactive plots 
highlighting three clustered shapes 

 

Figure 5: Results from clustering the shapes by primary manufacturing process classifier  
(Note: Interactive versions of these plots are available at https://dcsleeds.github.io/.) 

shapes themselves. As with Figure 4, a visual assessment of the interactive plot shows that most 

shapes were categorised appropriately though further work is needed to quantify the quality of the 

clustering. 

In the third research cycle, a survey was conducted to build understanding of how people perceive 

shape similarity. Results from the survey were then used to provide a training dataset that included 

human perceptions of similarity. In the survey participants were given three models from which to 

pick the two most similar. Each triplet of models was presented to three different participants to 

confirm results.  Answers that did not agree were left in the dataset as this ambiguity is something that 

was desirable in the trained network; however this means 100% accuracy is not achievable.   In 

preparing the survey it was noticed that a significant proportion of the shapes in the training data were 

unsuitable for use in engineering design of component parts. For this reason, a manual sift of the 

shapes was carried out to ensure that survey participants were only provided with appropriate shapes.  

A summary of the results from this selection process is shown in Table 2 along with reasons for 

rejecting shapes.   

Table 2: Reasons for rejecting shapes in survey 

 

As can be seen from Table 2, of the 6687 shapes (from the ABC dataset) that were candidates for use 

in the survey, only 28% were regarded as being suitable for use.  Five reasons for rejecting shapes, 

based on a visual assessment of individual shapes, were identified.  12% of shapes did not look like a 

single discrete solid because they included more than one shape that was not physically connected to 

other shapes. As a result, these shapes could not be regarded as the shapes of single discrete parts.  
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586 1209 1093 1669 334 

12% 25% 23% 34% 7% 
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25% of rejected shapes were rejected because there looked like standard parts, e.g., nuts, bolts & 

screws, pins, spacers, bushes, bearings, pulleys, wheels, springs, gears and splines. Such parts are 

typically mass-produced and a design engineer would use these parts rather than generate new designs 

for them.  23% of rejected shapes were rejected because they appeared to be abstract or invalid 3D 

shapes.  For example, these included shapes that looked odd (e.g., a cylinder intersected with a curved 

surface); shapes where the visible detail was insufficient to judge; and shapes such as chess and Lego 

pieces.  A further 34% of rejected shapes were rejected because they looked like assemblies modelled 

as solids. For example, this group included products that were obvious assemblies, e.g., mechanisms, 

architectural products (though some of these may have been Lego buildings), process plants, 

electronic circuits and fabricated shapes such as welded structures. Finally, 7% were rejected because 

they could not reasonably be manufactured with our target processes: i.e., casting/forging, sheet metal, 

bar/section.  

6 DISCUSSION 

The experiments reported in this paper are promising in that they demonstrate the potential value of 

machine learning-based design systems in improving the time, cost and quality performance of 

activities within product development processes that require engineering expertise coupled with 

representations of designed shapes. In particular, the use of topology, which is a lighter weight 

representation of shape than a full CAD model but which can be computed from a STEP file, was 

important because, for a given shape, it remains constant regardless of how the shape was initially 

defined.  However, a number of issues for design description have been identified; these need to be 

addressed if the full potential of machine learning is to be realised in engineering design.   This section 

draws together learning from the experiments to identify issues in design description that need to be 

addressed for the effective deployment of machine learning in engineering design. Section 6.1 outlines 

primarily technical issues related to the availability and quality of training data for shape-based 

systems.  In Section 6.2 issues related to the development of machine learning systems for wider 

design processes are considered. This feeds into Section 6.3 which discusses wider business issues 

related to the quality assurance of such systems and their suitability for use, especially in highly 

regulated application areas.  

6.1 Training data requirements 

Given available data, especially for use in safety critical design applications, approaches for the 

validation and verification of the data will be necessary. This will include ensuring both the quality of 

data and that data are used in appropriate settings. With respect to the quality of design data, the 

engineering design community currently has very limited ways of evaluating this. For example, in the 

training dataset used in these experiments, there were numerous models that gave attractive looking 

renderings of part shapes but where the defined assembly structure was either incoherent or only 

sufficient for shape visualisation purposes. Current practice in assessing the quality of design 

descriptions tends to consider wider factors, such as data provenance (e.g., the level of expertise and 

competency of the person who created it) and the after-effects of a given design description (e.g., the 

number of queries generated from downstream processes to design and the amount of rework it 

generates). These approaches are effective in current practice but the necessary data to support such 

analyses is not available in current archives. For machine learning applications, further work is needed 

to (a) measure the inherent quality of given shape models and (b) establish the sensitivities of machine 

learning algorithms to weaknesses in the training data.  An alternative, and perhaps more viable, 

source of shape data could be in organisations' own design archives, from which training data could be 

harvested.  However, as highlighted by Raina et al. (2022), regardless of the training data used, it will 

be important to ensure that machine learning-based design systems are not biased, through their 

training, by existing solutions.  

6.2 Machine learning in engineering design 

A prerequisite for any machine learning application lies in the data used to train the algorithms that 

underpin it. In engineering design, the only data currently available on the necessary scale are large 

databases of shape models. However, shape models are just part of the result of a design process. The 

design process itself is a creative and iterative one that translates design requirements into design 
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solutions that include shape in addition to other product-related knowledge and information. While 

there is literature that provides data formats for non-shape data, this work is at a very early stage in its 

development and standard, neutral formats to enable sharing of non-shape data created in different 

vendor systems do not exist. For this reason, the potential for machine learning-based applications in 

mechanical design, where shape and material combinations govern function and so are closely aligned 

to design requirements, is likely to be limited to applications that can be driven from shape models. At 

first sight this seems narrow. However, beyond design analyses such as FEA and CFD that predict the 

behaviour of a design against functional requirements, there are opportunities to generate training data, 

e.g., employing approaches currently used in design optimisation (Sharpe et al., 2019). This paper has 

shown just one, where manufacturing methods, implied by but not specified in shape models, can be 

gleaned. 

6.3 Verification, validation and maintenance of applications using the data 

Given a trained design system, especially if it is to be used in highly regulated sectors such as 

aerospace where, e.g., the chief engineer in the prime contractor is responsible for the whole design 

and the processes used to create it, there is a need to be able to establish its capability to ensure that it 

is used appropriately.  Lavin et al. (2021) define technology readiness levels for machining learning 

systems that will be essential in assuring the quality of such systems. Further, if a system were able to 

continue to learn, this would need to be a continuous – and so, ideally, automated – quality assurance 

process. For example, even in less heavily regulated sectors, it would be important that the training 

status of the design system be kept up to date, e.g., with new manufacturing processes that become 

available to manufacturers. This, in turn, is linked to wider data sources than shape, e.g., it relates to 

the manufacturing capabilities of the supply chain to which the manufacturer has access. An 

opportunity here, however, is that a given design could be evaluated with respect to the capabilities in 

multiple supply bases and so support decisions related to production strategies. However, open 

questions remain, e.g., “How should results from a machine learning-based design system be verified 

and validated?” and “If learning is taking place, are there learning outcomes to be achieved and, if so, 

what are they?” Zhang et al. (2021) highlight differences in how design systems enhance (or not) the 

performance of novice and experienced designers using a simple design test case. Again, this points to 

a need for design system to be developed for, or able to adapt to, the needs, capabilities and 

preferences of specific users which, in turn, points to a need for better ways of assessing such things. 

7 CONCLUSIONS 

This paper has shown how machine learning-based design systems have the potential to improve the 

productivity of product development processes by reducing redesign work and errors e.g., in 

manufacturing planning.  However, in line with Lavin et al. (2021), more controlled development 

processes are needed if such systems are to be integrated into engineering practice. As a prerequisite to 

this, there is a need for more advanced approaches to assuring the quality of training data used.  Our 

research has highlighted three specific concerns: two related to the quality of geometric models and 

supplementary information associated with this data in available repositories, and a third in assessing 

the appropriateness of training data.  For example, while there are similarities, data used to train an 

aircraft designer is very different to that used to train a car designer.  

Despite these difficulties, there is a growing body of evidence demonstrating the potential value of 

machine learning in design and its potential to lead to a new generation of shape-based design tools. 

However, in addition to the demands this places of the computer science community where underlying 

methods or machine learning are under development, there are also significant demands emerging for 

design descriptions in the engineering design community.  Firstly, shape is just one of two intrinsic 

characteristics of any mechanical piece part:  the other being its material (McKay et al, 2015).  Current 

repositories do not include material specifications and there is significant further work needed if such 

information is to be used to train machine learning algorithms.  Further complexities relate to 

assembly information which, along with the shapes of individual parts, influence product 

functionalities and behaviour; such data are not captured in repositories but are critical in any design 

process (e.g., see Shapiro and Voelcker, 1989).  In considering design for manufacturing and later 

lifecycle processes, further training data from these processes would be needed.  While there is 

substantial anecdotal evidence that such data is being captured, significant further work is needed to 
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ensure that such data is captured in sharable formats and associated with descriptions of the designs 

the data relate to.   
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