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Abstract

Compare first-order functional programs with higher-order programs allowing functions as

function parameters. Can the the first program class solve fewer problems than the second?

The answer is no: both classes are Turing complete, meaning that they can compute all

partial recursive functions. In particular, higher-order values may be first-order simulated

by use of the list constructor ‘cons’ to build function closures. This paper uses complexity

theory to prove some expressivity results about small programming languages that are less

than Turing complete. Complexity classes of decision problems are used to characterize the

expressive power of functional programming language features. An example: second-order

programs are more powerful than first-order, since a function f of type [Bool]->Bool is

computable by a cons-free first-order functional program if and only if f is in ptime, whereas

f is computable by a cons-free second-order program if and only if f is in exptime. Exact

characterizations are given for those problems of type [Bool]->Bool solvable by programs

with several combinations of operations on data: presence or absence of constructors; the

order of data values: 0, 1, or higher; and program control structures: general recursion, tail

recursion, primitive recursion.

1 On expressivity in programming languages

Does the programming style we use affect the problems we can solve, or the efficiency

of the programs we can write to solve a given problem? Some questions especially

relevant to this journal:

1. Does the use of functions as data values give a greater problem-solving ability?

2. Is recursion more powerful than iteration?

3. Would the use of a strongly normalizing programming language, as proposed

by several researchers (Crockett and Spencer, 1991; Voda, 1994; Turner, 1996;

Lloyd, 1999), impose any limitations on the problems that can be solved?

This paper gives some answers to these questions, when restricted to simply typed

functional programs without ‘cons’. In particular, the answer to question 1 is ‘yes’,

higher-order programs can solve problems that first-order programs cannot. The

answer to question 2 for first-order programs is ‘yes’ if and only if ptime 6= logspace
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(and so not likely to be decided in the foreseeable future). A partial (positive) answer

to question 3 will be given later.

Programming styles. Factors that affect efficiency and ease of programming include

the forms of control that are used: general recursion, primitive recursion, tail recur-

sion, exceptions, backtracking, etc.; the data operations used: is data basic or higher

order, is it untyped or typed by various regimes, are ‘logic variables’ allowed, etc.;

and other semantic issues: eager or lazy evaluation, memoization of function results,

presence or absence of a global state, static or dynamic name binding, etc.

Our main goal is to understand (and delineate) the expressive power of various

programming language features. In general, one can distinguish between absolute

expressivity questions and relative expressivity questions. An ‘absolute expressivity’

question on programming language feature X: “Do there exist problems that can

be solved by programs with feature X, and cannot be solved without feature X?”

A ‘relative expressivity’ question: “Is there a problem that can be solved both with

and without feature X, but such that any solution without feature X is necessarily

less efficient than some solution using X?” (Efficiency will measured by time usage

throughout this paper.)

How can expressivity questions be formulated in a precise and meaningful way,

and how can their answers be found? Our approach is to use complexity theory,

which provides a powerful means to classify problems according to their solution

difficulty. In particular, there are theorems proving that, under suitable assumptions,

increasing the available computation time provably enlarges the class of problems

that can be solved, with analogous results for other resources such as memory.

An obstacle to studying absolute expressivity. Absolute expressivity questions are

irrelevant to sufficiently strong languages. The reason is that any Turing complete

language can compute all partial recursive functions (modulo data encoding) – and

thus in an absolute sense all are equally expressive. We get around this by studying

Turing-incomplete sublanguages.

Obstacles to studying relative expressivity. One difficulty is the existence of many

rather efficient simulations of one programming language feature by others. A

consequence is that in a strong language it is hard to answer relative expressivity

questions since any expected complexity differences would be very small. This is due

to the ability efficiently to ‘program your way around a problem’ in a sufficiently

strong language. Two related facts of this sort follow. (Running time is measured as

the number of atomic computational steps as a function of input length n.)

• A random-access machine can simulate a first-order or higher-order functional

program (or Turing machine) with at most a constant slowdown.

• A first-order functional program can simulate a random-access machine with

at most a logarithmic slowdown, from time T (n) to T (n) logT (n).

Such results tend to minimize the meaning of differences in programming paradigm,

provided the languages involved are sufficiently rich in ways to ‘program around’.
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Table 1. Expressivity of several combinations of control and data orders

Program Data

class order 0 Order 1 Order 2 Order 3 Limit

rw, unrestricted rec.enum rec.enum rec.enum rec.enum rec.enum

rwpr, fold only prim.rec prim1rec prim2rec prim3rec primωrec

ro, unrestricted ptime exptime exp2time exp3time elementary

rotr tail recursive logspace pspace expspace exp2space elementary

ropr, fold only logspace ptime pspace exptime elementary

Our approach to studying expressivity. A language having unbounded storage/

memory for data values, plus control allowing an unbounded number of opera-

tions on data values, will almost certainly be Turing complete. A way around this

obstacle is progressively to restrict language features, removing one at a time until

the resulting programming language is no longer Turing complete, and then to use

computability and complexity theory to compare the absolute expressive power of

the resulting ‘minilanguages’. The effect is to study expressivity of language con-

structions using complexity theory to compare different choices of language features.

2 Overview and interpretation of results

We precisely characterize, in terms of complexity classes, the effects on expressive

power of various combinations of three program restrictions. The first concerns

creation of new storage: are constructors of structured data allowed, or not? The

second concerns the order of data values: 0, 1 or higher. The third concerns program

control structures: general recursion, or only tail recursion, or only primitive recur-

sion. The links are summed up in Table 2.1, and confirm programmers’ intuitions

that higher-order types indeed give a greater problem-solving ability. In this paper

we prove only the results of rows 3 and 4, the others being included for the sake of

context.

Many combinations are Turing-complete, so such programs compute all the partial

recursive functions. A classic Turing-incomplete language is got by restricting data

to order 0 and control to ‘fold’. Such programs compute the primitive recursive

functions.

Table 2.1 shows the effect of higher-order types on the computing power of

programs of type [Bool]->Bool. Each entry is a complexity class, i.e. the collection

of decision problems solvable by programs restricted by row and column indices.

ro stands for ‘read-only’, i.e. programs without constructors, and rw stands for

‘read-write’.

First, we need to justify the formulation, i.e. to argue that Table 2.1’s results say

meaningful things about programming languages. Complexity theory is traditionally

used to classify hardness of decision problems, so we need to link decision problems

with programs and their computations.
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Linking decision problems and functional programs. In complexity theory a decision

problem A is a set of strings over a finite alphabet Σ, so A ⊆ Σ∗. A solution to the

problem is an algorithm that, given any x = a1a2 . . . an ∈ Σ∗, decides whether or not

x ∈ A. On the other hand, the effect of a functional program p is to compute an

input-output function [[p]]: In → Out over data sets In, Out given by p’s declarations.

To solve a decision problem, program p can take as input a list of symbols, and

return a truth value.

We can without loss of generality choose Σ = {0, 1}, since larger alphabets can

be encoded as bit strings. The characteristic function fA of set A ⊆ {0, 1}∗, of type

type fA : {0, 1}∗ → {0, 1}, satisfies for all a1, a2, . . . , an ∈ {0, 1}
f(a1a2 . . . an) = if a1a2 . . . an ∈ A then 1 else 0

Henceforth we shall identify 0,1 with False, True and encode string a1a2 . . . an
as boolean list [a1, a2, . . . , an], making the analogy between decision problems and

programs with input-output type [Bool] -> Bool exact.

More generally, Table 2.1 concerns computational power of fully typed functional

programs whose internal types τ are limited to ones formed from Bool and [Bool]

by function spaces τ → τ′ and Cartesian products τ × τ′. No type of numbers is

included, since if the numbers are bounded they can be simulated by tuples of

Booolean variables; and if the numbers are unbounded, strange and unrealistic

computations can be performed (as will be seen below).

Further, complexity and computability classes are invariant under many changes

of data, problem and even function representation. For example, if f : {0, 1}∗ →
{0, 1}∗ is in logspace, ptime, etc. and |f(x)| is bounded by a polynomial in |x|, then

f is computable if and only if the function ‘λx, i . the ith bit of f(x)’ is computable.

This justifies considering only programs with a single bit as output.

Restricting programs to input-output type [Bool]->Bool side-steps two superficial

differences in expressivity having to do with computed values. One is that if a larger

computation time is available, a longer results can be written out. Another is that

higher-order data types allow new values to be expressed. It seems unreasonable,

though, to regard either ability as greater expressiveness. If input-output data is

restricted to [Bool]->Bool then higher-order data, whether or not used internally,

have no effect on observable program behavior.

2.1 Interpretation of results

Table 2.1 shows the effect of higher-order types on the computing power of various

restricted program classes. Some of the table entries have analogues, more or

less close, in the existing literature (see below). The formulations, definitions and

contructions using functional programming are our own, and row 4, on higher-order

tail recursive programs are new, to the best of the author’s knowledge.

Explanation of the table. The restrictions ro and rw were explained above. With or

without these restrictions, programs may have general recursion, tail recursion, or

primitive recursion, yielding six combinations. There are only five rows, though, since
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rw=rwtr because an unrestricted program can be converted into a tail recursive

equivalent by standard techniques involving a stack of activation records.

The column indices restrict the orders of program data types. An ‘order k + 1’

program can have functions of type τ → τ′ where data type τ is of order k. Thus,

for instance, the first column describes first-order programs, whose parameters are

booleans or lists of booleans. Each entry is the collection of decision problems

solvable by programs restricted by row and column indices.

Row 1: these program classes are all Turing complete. Consequently, they can accept

exactly the recursively enumerable subsets of {0, 1}∗.
Row 2: these programs have unlimited data operations and types, but control is

limited to primitive recursion, familiar to functional programmers under the name

‘fold right’.1 Such first-order programs accept exactly the sets whose characteristic

functions are primitive recursive (true regardless of whether data are strings or

natural numbers).

Higher-order primitive recursive functions appeared in Gödel’s System T many

years ago (Girard et al., 1989; Voda, 1997). They are currently of much interest

in the field of constructive type theory due to the Curry–Howard isomorphism,

which makes it possible to extract programs from proofs. Primitive recursion comes

because of proofs by induction; extraction of programs using general recursion is

much less natural.

Row 3: these programs have unlimited control, but allow only read-only access to

their data. List destructor operations hd and tl are allowed, but not the constructor

cons. Even though this may seem a draconian restriction from a programmer’s

viewpoint, the class of problems that can be solved is respectably large. Order 1

programs can solve any problem that lies in ptime; order 2 programs, with first-order

functions as data values, can solve any problem in the quite large class exptime, etc.

In general, any increase in the order of data types leads to a proper increase in the

solvable problems, since it is known that ptime is properly contained in exptime,

and so on up the hierarchy.

Row 4 characterizes read-only programs restricted to tail recursion, in which no

function may call itself in a nested way. Order 1 tail recursive programs accept all

and only problems in logspace, a well-studied subset of ptime. Higher-order tail

recursive programs accept problems in the (properly) larger space-bounded classes

pspace, expspace, etc.

(Tail recursion is of operational interest because at run time (assuming eager

evaluation, i.e., call-by-value semantics) the call stack depth has a constant depth

bound, regardless of input data. Such a program may be converted to nonrecursive

imperative form by replacing each function call by a GOTO, and realizing function

parameter passing by assignments to global variables.)

Row 5 characterizes read-only programs restricted so all recursion must be expressed

1 Kleene’s definition of primitive recursion is a bit more general than ‘fold right’, but is easily programmed
using fold right and composition. See Hutton (1999) for details.
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using ‘fold right’, i.e. only primitive recursion is allowed. Order 1 read-only primitive

recursive programs accept only problems in logspace and are thus equivalent to

tail-recursive programs. At higher orders this equivalence vanishes; the primitive

recursive read-only programs’ abilities to solve decision problems grow only at ‘half

speed’: a data order increase of 2 is needed to achieve the same increase in decision

ability that an increase of 1 achieved for general or tail recursive programs.

Limit of rows 3, 4 and 5: It is clear that the union of the classes in row 3 equals

the union for row 4 and for row 5. This is the class of problems solvable in time

bounded by 22···2n , where the height of the exponent stack is any natural number.

This is well-known as the class of elementary sets, and was studied by logicians

before complexity theory began.

Scope and contribution of this paper. The results in Rows 1 and 2 are classical, and

not repeated here. We prove the results in rows 3 and 4 of Table 2.1. The results

in Row 4 appear to be new; and the results in Row 3, while in a sense anticipated

by Goerdt (1992), are here proven for the first time in a programming language

context. The results in Row 5 are obtained from Goerdt (1992a, 1992b) and Goerdt

and Seidl (1996) by re-interpreting results from finite model theory as sketched in

the Appendix.

2.2 On the questions opening this article

It has long been known that order k + 1 primitive recursive programs are prop-

erly more powerful than order k primitive recursive programs, i.e. primkrec. ⊂
primk+1rec. This is of little practical interest, however, since even the order 0 class

prim.rec. is enormous, properly containing such classes as nptime and elementary.

Does the use of functions as data values give a greater problem-solving ability? By

Table 2.1 the answer is ‘no’ for unrestricted programs, and ‘yes’ for all the restricted

languages we consider. The only uncertainty is with the read-only primitive recursive

programs; for these, an increase in data order of at least 2 is needed to guarantee a

proper increase in problem-solving power.

Is general recursion more powerful than tail recursion? For first-order read-only

programs, this question has classical import since, by the table’s first column (rows

3, 4) this is equivalent to the question: Is ptime a proper superset of logspace? This

is, alas, an unsolved question, open since it was first formulated in the early 1970s.

An equivalent question (rows 3, 5): Is general recursion more powerful than primitive

recursion?

However, the situation is different for second and higher orders. For higher-order

read-only programs, the question of whether general recursion is stronger than tail

recursion is also open, equivalent to exptime ⊃ pspace? But the answer is ‘yes’ when

comparing general recursion to primitive recursion, since it is known that exptime

properly includes ptime.

On strongly normalizing languages. If we assume as usual that programs in a strongly

normalizing language have only primitive recursive control, there exist problems
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solvable by read-only general recursive programs with data order 1, 2, 3, . . ., but not

solvable by read-only strongly normalizing programs of the same data orders. This

suggests an inherent weakness in the extraction of programs from proofs by the

Curry–Howard isomorphism.

2.3 A paradox? Intensional versus extensional program behavior

Row 3, column 1 of Table 2.1 asserts that first-order cons-free read-only programs

can solve all and only the problems in ptime. Upon reflection, this claim seems quite

improbable, since it is easy (without using higher-order functions) to write cons-free

read-only programs that run exponentially long before stopping. For example:

f x = if x = [] then true else

if f(tl x) then f(tl x) else false

runs in time Ω(2n) on an input list of length n (regardless of whether call-by-value

or lazy semantics are used), due to computing f(tl x) again and again.

What is wrong? The seeming paradox disappears once one understands what it

is that the proof accomplishes2. It has two parts:

• Construction 1 shows that any first-order cons-free read-only program decides

a problem in ptime. Method: show how to simulate an arbitrary first-order

cons-free read-only program by a polynomial-time algorithm.

• Construction 2 shows that any problem in ptime is computable by some first-

order cons-free read-only program. Method: show how to simulate an arbitrary

polynomial-time Turing machine by a first-order cons-free read-only program.

The method of Construction 1 in effect shows how to simulate a cons-free read-

only program faster than it runs. It is not a step-by-step simulation, but uses a

nonstandard ‘memoizing’ semantic interpretation. (For the example above, the value

of f(tl x) would be saved when first computed, and fetched from memory each

time the call is subsequently performed.)

The method of Construction 2 yields programs that almost always take expo-

nential time to run; but this is not a contradiction, since by Construction 1, the

problems they are solving can be decided in polynomial time.

3 Related work

Much work that relates complexity and logical or programming languages has dif-

ferent starting points and motivations. Many papers have as goal to characterize

resource-bounded computational complexity classes in terms of logical, recursion-

theoretic or other formalisms. Examples (ordered by increasing distance from pro-

gramming languages) include recursive functions, the lambda calculus, program

schemata, finite model theory and category theory.

2 For first-order cons-free read-only programs see Jones (1997, 1999), who uses a technique from Cook
(1971). For higher-order read-only programs, see Theorem 7.17 later in this article.
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Work directly relating programming languages and complexity theory. This paper’s

aim is precisely to characterize the computational power of several restrictions of

a realistic programming language. Jones (1999) is one of the few papers focused

on that interface; it characterizes the power of first-order read-only programs in

complexity terms. The logspace and ptime entries in column 1 appear there, and in

Jones (1997) as Theorems 24.1.7, Corollary 24.2.4 and Theorem 24.2.5. Here these

results are extended to arbitrary finite data orders, and to tail recursive programs.

The results have still deeper roots. The logspace result strengthens a ‘folklore’

result on multihead read-only Turing machines; and the ptime result corresponds

to a result on ‘two-way auxiliary pushdown automata’ proven by Cook, before his

P-NP paper (Cook, 1971). The contribution of Jones (1997, 1999) was to re-express

Cook’s result using a recursive programming language.

Relative expressivity. A significant step forward in relative expressivity (a field with

many conjectures but few proven results) was Pippenger (1997), which showed

that pure LISP must be slower by a logarithmic factor than ‘impure’ LISP. More

precisely, a certain problem (applying a permutation on-line) was proven to require

time Ω(n log n) in pure Lisp, but to be solvable in time O(n) in impure Lisp with

setcar and setcdr. Interestingly, Bird et al. (1998) show that the same problem

can be solved in time O(n) in a language with lazy evaluation, so such languages are

intrinsically faster than first-order eager languages. A proof that their construction

actually runs in linear time is found in Neergaard (1999).

Recursive function and category theory. Recursive function definition schemes can

be regarded as defining programming languages, for instance the primitive recursive

function definitions, and the subhierarchy studied by Grzegorczyk (1953) and others.

Cobham (1964) gave an early characterization of ptime involving external size

bounds analogous to those of Grzegorczyk, but using recursion on notation. Voda

(1994) relates primitive recursion and subrecursion to programming languages, using

a data structure like that of Jones (1997). An ‘intrinsic’ approach characterizing ptime

by tiered recursion on notation3 is seen in Bellantoni and Cook (1992), and has

inspired much work since then, some involving categorical concepts (Bellantoni et

al., 1998; Hofmann, 1999).

Typed lambda calculi. A series of papers by Leivant (some with Marion) characterize

complexity clases in terms of simply typed lambda calculi with recurrence constants

(Leivant, 1989; Leivant and Marion, 1993, 1999). In particular, they study calculi

extended by functions and operations on an algebra of words over {0, 1}, and

characterize ptime, pspace and several other classes. The earlier works had rather

complex formulations mostly related to ramified recurrence, but Leivant (1999)

characterizes these classes by much simpler syntactic restrictions on the form of

program control.

3 The idea is that recursion over inputs is allowed (first tier), but not recusrsion over computed values
(second tier). A type system keeps track of the tier levels.
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Hillebrand and Kanellakis (1996) study expressivity of lambda calculus variants

that abstract an ML subset, characterizing the regular sets, and k-Exptime and

k-Expspace queries over ordered finite structures. The paper makes an odd assump-

tion, that encodings of first-order data can vary from one program to another.

Hillebrand (1994) studies relations among the lambda calculus, finite model theory,

and databases.

Program schemata. Paterson and Hewitt (1970) was a pathbreaking early paper, and

recursion removal has been a recurring theme in this field. Complexity character-

izations related to data types appear in Kfoury et al. (1987, 1992). The difference

between recursion and iteration when higher order data are involved is studied in

Kfoury (1997, 1999).

From a schematic viewpoint, answers to the questions asked about program

behavior must be valid for all possible interpetations of the domains and base

functions appearing in a given program. Such results are less directly relevant to

programming languages than ours; programmers naturally use a single, fixed data

interpretation.

Finite model theory. Many complexity characterizations have been made of problems

involving finite model theory, with Jones and Selman (1974) apparently the first in

a field developed quite considerably since then (Gurevich, 1983, 1984; Immerman,

1987; Goerdt, 1992).

There is a natural connection between computation by read-only programs and

in finite model theory as defined by Gurevich and others, close enough that some

complexity characterizations from finite model theory imply corresponding results

about read-only programs. The connection requires enough definitional machinery,

though, that to avoid breaking the continuity of the presentation we defer it to an

Appendix. The only results we do not prove here using functional programming are

those of row 5.

Finite model versions of the logspace and ptime entries in column 1 were shown

by Gurevich. Goerdt proved finite model versions of all of row 3. Some rather

complex constructions establish the first four columns in row 5 in Goerdt (1992a,

1992b); and Goerdt and Seidl (1996) show that the space-time alternation extends

to arbitrary data orders.

4 A functional programming language and some sublanguages

4.1 Syntax

Our programs are all expressed in a Haskell-like named combinator form. This

is well-known to be equivalent to the lambda calculus with explicit binding and

recursion operators λ and µ. Semantics-preserving constructions taking named com-

binator to lambda form and vice versa may be seen in Goerdt (1992a), or in many

other sources. For notational simplicity, syntax and semantics are first given for

untyped programs.
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Definition 4.1

Syntax: programs and expressions have forms given by the grammar

p ∈ Program ::= def1 def2 . . . defm
def ∈ Definition ::= f x1x2 . . . xn = ef

e ∈ Expression ::= x | f | e1e2 | False | True | if e0 e1e2

| [] | e1:e2 | hd e | tl e | null e

| (e1,e2) | fst e | snd e

x ∈ Parameter ::= identifier

f ∈ FcnName ::= identifier, disjoint from Parameter

The main function f1 of program p is the one in def1 above. (It will later be required

to have type [Bool]->Bool, defined below.) The definition of function f has form

f x1x2 . . . xn = ef, where ef is called the body of f. The number n > 0 of parameters

in the definition of f is called its arity. The main function must have arity(f1) = 1.

A read-only (or cons-free) program is one with no constructor operator ‘:’.

Program examples will be given in a Haskell-like syntax, using if e0 then e1 else e2

in place of if e0 e1 e2, and Haskell conveniences such as pattern matching, where

and case expressions. We leave it to the reader to check that they may be converted

into the simple syntax above.

4.2 Semantics

Our language has a closure-based call-by-value semantics (laziness would give no

programming advantages, and would require a more complex semantics). Expression

evaluation is based on a set of inference rules appearing in Figure 4.1, one for each

form of expression in the language.

The principal judgement form for running program p is: [[p]]v = w, signifying that

p, when given input v, terminates with output w. The form for evaluating expressions

is p, env ` e→ v, signifying that expression e in program p evaluates to value v if its

free variables have values defined by environment env . Environments, values, etc.

are defined by

env ∈ Env ::= Parameter → Value

u, v, w ∈ Value ::= True | False | (v, w) | [ ] | v : v | cl
cl ∈ Closure ::= 〈f, v1, . . . , vi〉

A ‘closure’ is a device to represent a data value which is a function. In λ-calculus

implementations a closure consists of a λ-abstraction together with an environment

holding the values of all its free variables. In our named combinator syntax, a

simpler form can be used: a closure is a function name together with an incomplete

parameter list, written 〈f, v1 . . . vi〉.
The rules are rather traditional for a call-by-value semantics. The rules for if,

calls and null test are slightly nonstandard, in order to make the rules locally

deterministic (term defined in section 7). For example, to evaluate if e1 e2 e3, first

evaluate the test e1, and then use an auxiliary judgement `if to select between then

and else branches.
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Expression evaluation

Some axioms

p, env ` x→ env (x) p, env ` f→ 〈f, ε〉

p, env ` False→ False p, env ` True→ True p, env ` []→ []

Cons and pairs

p, env ` e1→ v1 p, env ` e2→ v2

p, env ` e1:e2→ v1:v2

p, env ` e→ v1:v2

p, env ` hd e→ v1

p, env ` e→ v1:v2

p, env ` tl e→ v2

p, env ` e1→ v1 p, env ` e2→ v2

p, env ` (e1,e2)→ (v1, v2)

p, env ` e→ (v1, v2)

p, env ` fst e→ v1

p, env ` e→ (v1, v2)

p, env ` snd e→ v2

Null test

p, env ` e→ v `null v → w

p, env ` null e→ w `null [ ]→ True `null v1:v2 → False

Conditional

p, env ` e1→ w p, env `if e2,e3,w → v

p, env ` if e1e2e3→ v

p, env ` e2→ v

p, env `if e2,e3, True→ v

p, env ` e3→ v

p, env `if e2,e3, False→ v

Function call

p, env ` e1→ u p, env ` e2→ v p`call u, v → w

p, env ` e1e2→ w

p`call 〈f, v1 . . . vi−1〉, vi → 〈f, v1 . . . vi−1vi〉 (If i < arity(f))

p, [x1 7→ v1, . . . , xm 7→ vm]` ef→ w

p`call 〈f, v1 . . . vm−1〉, vm → w
(If p contains f x1x2 . . . xm = ef) )

Program execution:

p, [x 7→ v]` ef→ w

[[p]]v = w
(If p begins with f x = ef)

Fig. 1. Expression evaluation.

4.3 Types

A typed program has explicit simple types, without polymorphism. A complete

program p must have type p::[Bool] -> Bool. All occurrences of a function name

f in a program must have the same type throughout the program; but parameter

name types need only be consistent within each function definition.
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Definition 4.2

Types have a usual syntax and semantics with two basic types: Booleans and lists

of Booleans.

τ ∈ Type ::= Bool | [Bool] | τ->τ | (τ,τ)
Judgement e :: τ, signifying that expression e has type τ is defined in Figure 4.3.

A fully type-annotated function definition has form

fτ1→τ2→...τm→τxτ1

1 x
τ2

2 . . . x
τm
m = eτ

Henceforth, all programs are assumed to be well-typed and fully annotated, i.e.

a Church-style syntax is used. For readability type superscripts are omitted from

program examples when clear from context.

xτ:: τ fτ:: τ False :: Bool True :: Bool [ ] :: [Bool]

e1 :: τ→ τ′ e2 :: τ

e1e2 :: τ′
e1 :: Bool e2 :: τ e3 :: τ

if e1e2e3 :: τ

e1 :: Bool e2 :: [Bool]

e1:e2 :: [Bool]

e :: [Bool]

null e :: Bool

e :: [Bool]

hd e :: Bool

e :: [Bool]

tl e :: [Bool]

e1 :: τ e2 :: τ′

(e1,e2) :: (τ, τ′)
e :: (τ, τ′)
fst e :: τ

e :: (τ, τ′)
snd e :: τ′

Fig. 2. Expression types.

Definition 4.3

The order of a type is defined by order(Bool) = order([Bool]) = 0; order((τ, τ′)) =

max(order(τ), order(τ′)); and order(τ→ τ′) = max(1 + order(τ), order(τ′)).

Definition 4.4

Program p has data order k if every τ, τi in any defined function has order k or less.

Thus f above has order k + 1 if at least one τi or τ has order k, justifying the usual

term ‘first-order program’ for one that manipulates data of order 0.

Definition 4.5

Type τ denotes a set of values [[τ]] defined as follows:

[[Bool]] = {True, False}
[[[Bool]]] = {[a1, a2, . . . , an] | ai ∈ [[Bool]], 1 6 i 6 n}
[[(τ,τ′)]] = {(v1, v2) | v1 ∈ [[τ1]], v2 ∈ [[τ2]]}
[[τ1->τ2]] = {f : [[τ1]]→ [[τ2]]}
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Remarks on types: The restriction of our language to well-typed programs of type

[Bool]->Bool is quite significant: the untyped version of the language contains the

λ-calculus, and so is Turing complete.

We believe that the language could be simplified by removing pair construction

and fst, snd, and still yield the same complexity class results. The Turing machine

simulations would, however, become more complex.

4.4 Decision problems

Definition 4.6

Suppose program p of type [Bool]->Bool terminates on all inputs. Define:

1. Program p accepts string a1a2 . . . an ∈ {0, 1}∗ iff [[p]] [a1, . . . , an] = 1.

2. The set accepted by program p is

Acceptp = {x ∈ {0, 1}∗ | p accepts x }
Definition 4.7

Two classes of decision problems defined by syntactic restrictions on programs4:

rok = {Acceptp | read-only program p has data order k}
rotrk = {Acceptp | read-only tail recursive program p has data order k}

We will see that the problem of deciding question ‘x ∈ A?’ for a set A ⊆ {0, 1}∗ can

be solved by a first-order read-only program if and only if the question is decidable

by a polynomial-time algorithm, i.e. iff the set A is in ptime. Analogous results will

be seen for higher types and complexity classes.

5 Turing machines and complexity classes

Definition 5.1

A Turing machine program has form tm = I1 I2 . . . Im where each instruction

I` has one of the forms right, left, write S or if S goto `′ else `′′ where

S ∈ {0, 1, B} and `, `′ ∈ {1, 2, . . . , m, m + 1}. A tape is a sequence of symbols from

{0, 1, B}. Conceptually, the tape has an infinite number of blanks to the right, even

though any single computation will be finite. However, time- and space-bounded

Turing machines will have natural bounds for tape length. A configuration C is a

pair of control point and tape with scanned symbol:

C = (`, b0b1 . . . bi bi+1 . . .)

where ` ∈ {1, 2, . . . , m, m+1} is a control point (and m+1 indicates ‘end of execution’),

each bi ∈ {0, 1, B}, all but finitely many bi’s are B, and the underline indicates the

scanned symbol. We call i the scanning position in C , and write scanpos(C) = i.

Semantics is as usual. A computation by program tm on input a1a2 . . . an ∈ {0, 1}∗
(each ai ∈ {0, 1}) is a series tm : C0 ` C1 ` . . . ` Cr where

4 The restriction ‘tail recursive’ will be defined later, shortly before its use.
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• C0 = (1, Ba1 . . . an B . . .), the initial configuration for a1a2 . . . an ∈ {0, 1}∗.
• The final configuration is of form Cr = (m+ 1, b0b1 . . . bi bi+1 . . .).

• Each configuration Ct+1 for t < r follows from Ct = (`, b0b1 . . . bi bi+1 . . . bq) by

applying instruction I`. In general, the tape component and scanning position

of Ct+1 are identical to those of Ct, unless changed by instruction I` as now

described.

• The effect of I` = right, left are to move the scanning position one symbol

right or left, though a move beyond the tape’s left end has no effect. The effect

of write S is to overwrite the scanned square’s content bi with S. Instruction

I` = if S goto `′ else `′′ sets the control point in Ct+1 to `′ if bi = S, else

to `′′, and leaves the tape unchanged.

Definition 5.2

Let S, T : N→ N be functions where S(n) > n, T (n) > n.

1. String a1a2 . . . an ∈ {0, 1}∗ is accepted by tm iff the scanned symbol bi in Cr is

1.

2. Suppose Turing machine program tm terminates on all inputs. We define the

set accepted by tm to be

Accepttm = {x ∈ {0, 1}∗ | tm accepts x }
3. Turing program tm runs in time T (n) if for all a1a2 . . . an ∈ {0, 1}∗, tm has a

computation tm : C0 ` C1 ` . . . ` Cr where r 6 T (n).

4. Turing program tm runs in space S(n) if if for all a1a2 . . . an ∈ {0, 1}∗, tm

has a computation tm : C0 ` C1 ` . . . ` Cr with scanpos(Ci) 6 S(n) for

i ∈ {0, 1, . . . , r}.
5. time(T (n)) = {Accepttm | Turing machine tm runs in time T (n)}
6. space(S(n)) = {Accepttm | Turing machine tm runs in space S(n)}

Definition 5.3

exp0(n) = n

expk+1(n) = 2expk(n)

We use base 2 logarithms and assume log 0 = log 1 = 1 to avoid special cases for

program inputs of length 0 or 1. Time or space bounds will have form expk(a log n).

This is a polynomial for k = 1 since 2a log n = na.

Definition 5.4

expktime =
⋃
atime(expk+1(a log n)) For k > 0

expkspace =
⋃
aspace(expk+1(a log n)) For k > 0

ptime = exp0time

pspace = exp0space

exptime = exp1time

expspace = exp1space
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Sublinear time or space bounds. A bound of form exp0(a log n) = a log n does not fit

our formulation, since a log n is less than the minimum space n required to store the

input, or the time to read all of it.

For space, however, a well-studied generalization is to use a Turing machine with

two tapes: a read-only input tape containing the input, and a read-write work tape,

whose length is the measure of space usage. Formal definition is omitted, as we

make no constructions with this model, only referring to results known from the

literature. Given this extended definition, class space(exp0(a log n)) = space(a log n)

is meaningful, and we define

logspace = exp−1space =
⋃
aspace(a log n)

Theorem 5.5

1. exp−1space ⊆ exp0time ⊆ exp0space ⊆ exp1time ⊆exp1space ⊆. . .

2. Thus

logspace ⊆ ptime ⊆ pspace ⊆ exptime ⊆ expspace ⊆. . .

3. expispace 6= expi+1space for i = −1, 0, 1, . . . and

expitime 6= expi+1time for i = 0, 1, 2, . . .

Proof

Classical (from the 1970s); recent proofs may be found in Savage (1989) or Jones

(1997). q

6 Simulating Turing machines by read-only functional programs

We now prove Table 2.1’s containments one way: given a problem A ⊆ {0, 1}∗
in a Turing-defined complexity class, we show there is an appropriately restricted

functional program that accepts A. The starting point is a Turing machine tm

accepting A.

6.1 Simulation approach

Section 6.2 shows how to simulate a space-bounded Turing program by a tail-

recursive functional program that in essence executes it one step at a time in the

forward direction. The forward simulation shows all the space bounds in row 4 of

Table 2.1 except the first. It is not needed here since it was established in Jones

(1999).

Section 6.4 shows how to simulate the effect of a time-bounded Turing program

by a general recursive functional program that in essence does a backward execution

of the Turing program. The backward simulation establishes all the time bounds in

row 3 of Table 2.1.

The main parts of both simulations are first-order, and represent information

about the Turing machine’s configurations using our functional language, with a

temporary extension to natural numbers. At first we simply assume existence of

an unbounded built-in abstract data type Nat for the natural numbers, and natural
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operations on them. Once the algorithms are understood, and bounds established for

the numbers involved, the natural number type and operations will be eliminated,

replaced by encodings into higher-order types realized by a ‘counting module’. This is

a set of tail-recursive read-only programs that realize the needed numeric operations

without using numbers.

Definition 6.1

A number program is a functional program, as defined as in Section 4, but with an

additional type Nat denoting the natural numbers: [[Nat]] = {0, 1, 2, . . .}, and with

the operations +,−, ∗,÷,mod,=,6 (syntax +,-,‘div‘,‘mod‘,==,<=). Subtraction

x− y yields 0 if x 6 y, and ÷ is integer division. Program and data order is defined

as before, with the extension that type Nat is considered of order 0 as well as Bool

and [Bool].

SPACE

0 1 2 . . . n . . . i . . . S(n)

B a1 a2 . . . an B . . . B . . . B B0

1

2
...

t→ b0 b1 b2 . . . bi

T (n)

...

T
I
M

E

Fig. 3. Space-time diagram of a Turing computation.

The space-time diagram of figure 3 may be of assistance. Each row represents a

Turing machine ‘configuration’ as defined above.

6.2 Simulation of a space-bounded Turing machine

A tape containing b0. . . bibi+1 . . . bm. . . can be represented by a pair of numbers l, r,

where

• l is the value of string b0. . . bi encoded as a base 3 number (with b0 as most

significant digit, with digit values 0, 1, 2 for symbols B, 0 and 1, respectively).

• r is the value of string ...bmbm−1. . . bi+1, also as a base 3 number. (Note the

order reversal, and the fact that ending blanks do not contribute to r.)

Lemma 6.2

A Turing machine program tm = I1 I2 . . . Im can be simulated by a read-only

number program. Further, if tm runs in space S(n) on inputs of length n, and

S(n) > n, then the natural numbers used by Trtm are at largest 3S(n).
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Proof

The simulation is carried out by the program Trtm of figure 4, whose variables l, r

represent the Turing machine’s current tape contents as above. Correctness: It is easy

to see that the tape representation invariant is maintained whever a computation

step is performed.

Main program:

runTR:: [Bool] -> Bool

execute1,...,executem+1:: (Nat, Nat) -> Bool

runTR as = bits2number 0 1 as

bits2number s val [] = execute1(s, val)

bits2number s val (False:as) = bits2number (s+1*val) (3*val) as

bits2number s val (True:as) = bits2number (s+2*val) (3*val) as

execute1(l,r) = SIMULATE1

... ...

executem(l,r) = SIMULATEm
executem+1(l,r) = if l‘mod‘3==2 then True else False

For ` = 1, 2, . . . , m, SIMULATE` is defined as follows, where S = 0, 1, 2, respectively, if S =

B, 0 or 1:

Form of instruction I` Expression SIMULATE`

right execute`+1 (l*3+r‘mod‘3, r‘div‘3)

left execute`+1 (l‘div‘3,r*3+l‘mod‘3)

write S execute`+1 (3*(l‘mod‘3)+S, r)

if S goto `′ else `′′ if (l‘mod‘3 == S)

then execute`′(l,r) else execute`′′(l,r)

Fig. 4. Program Trtm: tail recursive Turing machine simulation.

The Turing machine’s initial tape contents, given input string a1...an ∈ {0, 1}∗, is

Ba1 . . . an B . . .. Program Trtm first constructs the pair (0,r) representing the tape,

where number r (computed by ‘bits2number’) encodes input list as = [a1,...,an]

as described above. Functions execute1, etc., are executed, each simulating the

corresponding Turing instruction.

Program Trtm clearly has data order 0, and is read-only. If program tm is a

space S(n)-bounded Turing machine, then the number of nonblank symbols in any

reachable configuration (`, b0b1 . . . bi bi+1 . . .) is at most S(n). The tape is encoded as

a pair(l, r) of ternary numbers, so l, r 6 3S(n). q
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6.3 Tail recursion for first-order programs

Before arguing that Trtm is tail recursive, the term must be defined. This is straight-

forward for first-order programs; the more subtle higher-order case is discussed in

section 6.7.

The following definitions concern an occurrence of one expression e within another

e0, for example, the first ‘hd x’ within ‘if null(hd x) then tl x else hd x’. An

occurrence of e within e0 may be identified with a path from the root of e0’s syntax

tree to a subtree containing e.

Definition 6.3

1. An occurrence of expression e in e0 is in tail position in e0 if either e0 = e, or

e0 has form if e1 then e2 else e3, and the e occurrence is in tail position in

either e2 or e3. This definition is recursive, so in case e0 is a decision tree, all

of its leaves are in tail position.

2. Let a complete call be an application g e1e2 . . . er where r = arity(g). A tail call

is a complete call in tail position. A program p is strictly tail-recursive if every

complete call g e1e2 . . . er is a tail call.

3. A program p is tail recursive if there is a partial order > on p’s function names

such that for every complete call

f x1...xm = ... g e1e2 . . . ek ...

in p, either (a) f>g, or (b) f≡g and the call is a tail call.

Remarks

(A) A strictly tail recursive first-order program may be implemented imperatively

(without stack or recursion) by replacing each function call by a GOTO, and

realizing function parameter passing by assignments to global variables.

(B) Condition 3 allows ‘mutual tail recursion’, for instance

even x = if x = 0 then True else odd(x-1)

odd x = if x = 0 then False else even(x-1)

by choosing a function name partial order with even ≡ odd.

(C) A program satisfying condition 3 above can also be implemented imperatively

since at run time the call stack depth has a constant depth bound, regardless

of input data, so again a static storage layout may be used.

(D) This fact implies that any tail recursive program may be translated into strict

tail recursive form. The strictness requirement has, however, deleterious effects

on program readability (e.g. greatly increasing the numbers of functional

arguments), so we use the more general Condition 3 or its higher-order

analogue in the rest of the paper.

We will discuss higher-order tail recursive programs in section 6.7, after some

examples have been seen. First, consider tail recursiveness of program Trtm above.
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Lemma 6.4

If A ∈ space(S(n)) and S(n) > n, then A is accepted by a first-order read-only

tail-recursive number program Trtm. Further, the natural numbers used by Trtm on

length n inputs never exceed 3S(n).

Proof

Program Trtm from Lemma 6.2 is tail recursive (in fact, strictly tail recursive). q

6.4 General recursive simulation of a Turing machine

Proposition 6.5

If A ∈ time(T (n)) where T (n) > n and T (n) is computable by a first-order read-only

number program, then A is accepted by a first-order read-only tail-recursive number

program Ftm. Further, the natural numbers used by Ftm on length n inputs are never

exceed T (n).

Proof

Let A be accepted by Turing machine program tm = I1 I2 . . . Im that runs in

time T (n). Idea: in the space-time diagram seen before, data propagation is local;

the information (scanned symbol, program counter in tm, etc.) at time t and tape

position i is a mathematical function of the information at time t − 1 and tape

positions i− 1, i, i+ 1. This connection can be used to compute the contents of any

tape cell at any time, including the final result of the computation.

Given input as = a1a2 . . . an ∈ {0, 1}∗, question ‘as ∈ A?’ is decided by computing

the final tape cell in the computation of tm on as, answering ‘yes’ if it is 1, else ‘no’.

The functional program computes, for any time t ∈ {0, 1, 2, . . . , T (n)}, functions

scan t = the scanning position i ∈ {0, 1, 2, . . . , T (n)} at time t

pgmctr t = the label ` of the instruction executed at time t

tape t i = the tape symbol found at position i at time t

All these are computed by backward simulation of Turing machine program tm on

input as = a1a2 . . . an ∈ {0, 1}∗. The simulating functional program Ftm appears in

figure 6.4.

Remarks on how the simulator works.

1. On input [a1, . . . , an], program Ftm first computes t = T (n) (via timebound).

2. It computes the position i = scan t of the symbol scanned at the end of the

computation, and finds tape t i, the tape symbol scanned at time T (n). If

this is 1 then program Ftm returns True, else False.

3. Explanation of scan t code. At start (t=0), position 0 is scanned. Otherwise

the position of the scanned tape symbol at time t is the same as at time t-1,

unless the instruction executed at time t-1 was right or left.

4. Explanation of tape t i code. At start (t=0), the tape is B a1. . . an B...B.

Functions inputtape and ith find the appropriate symbol within this. If

t > 0, the i-th tape symbol at time t is the same symbol as at time t-1,

unless the instruction executed at time t-1 wrote some symbol S over it.
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-- Data types (Can be eliminated)

data Symbol = Zero | One | Blank

type Label = Lab1 | Lab2 | ...| Labm| Labm+1

-- Function types

run:: Program -> [Bool] -> Bool

scan:: Nat -> Nat

pgmctr:: Nat -> Label

tape:: Nat -> Nat -> Symbol

timebound :: [Bool] -> Nat (Code not given here)

inputtape :: [Bool] -> Nat -> Symbol

ith :: [Bool] -> Nat -> Symbol

-- Function definitions

run as = let t = (timebound as) in (tape t (scan t) == One)

where

scan t = if (t == 0) then 0 else let i = scan (t-1) in

case pgmctr(t-1) of

Lab1 -> if I1==‘right‘ then i+1 else if I1==‘left‘ then i-1 else i

Lab2 -> if I2==‘right‘ then i+1 else if I2==‘left‘ then i-1 else i

...

Labm -> if Im==‘right‘ then i+1 else if Im==‘left‘ then i-1 else i

Labm+1-> i

tape t i = if (t == 0) then (inputtape as i) else

if scan (t-1) == i then case pgmctr(t-1) of

Lab1 -> if I1 == ‘write S‘ then S else tape (t-1) i

...

Labm -> if Im == ‘write S‘ then S else tape (t-1) i

Labm+1-> tape (t-1) i

else tape (t-1) i

pgmctr t = if (t == 0) then 1 else let i = scan(t-1) in

case pgmctr(t-1) of

Lab1 -> if I1==‘if S then `′ else `′′‘ then

(if S == tape (t-1) i then Lab`′ else Lab`′′) else Lab2

...

Labm -> if I1==‘if S then `′ else `′′‘ then

(if S == tape (t-1) i then Lab`′ else Lab`′′) else Labm+1

Labm+1-> Labm+1

inputtape as i = if i == 0 then Blank else ith (i-1) as

ith i as = if (i == 0) then (if head as then One else Zero) else

if (null as) then Blank else ith (i-1) (tl as)

Fig. 5. Turing machine simulation by general recursive program.
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5. Explanation of pgmctr t code. At start (t=0), instruction 1 is to be executed.

If t > 0, the instruction executed at time t depends on the instruction I`
executed at time t-1. If I` is not a test, the next instruction is I`+1, otherwise

the branch taken depends on the scanned symbol. If ` = m+ 1, then execution

has terminated so the final program counter has the value it had at time t-1.

Remarks on the form of the simulator. For the sake of readability, program Ftm was

written with a few violations of the requirement that all parameters must be of order

0 built from Bool and [Bool], or natural numbers bounded by T (n) for inputs of

length n. We show that the violations are easily overcome.

1. Program Ftm uses types Label and Symbol.

2. Ftm has numerous tests such as

if I2==‘right‘ then i+1 else if I2==‘left‘ then i-1 else i

Being finite, the values of Label and Symbol can be represented using tuples of

Boolean values. Further, the Turing program tm being simulated is fixed, so all the

tests on Ii can be eliminated – one can simply replace the line above by i+1 , or

i-1, or i, in case I2 = right, or I2 = left, or neither (respectively). q

6.5 Counting

Our current goal is to prove Table 2.1’s containments one way: given problem

A ⊆ {0, 1}∗ in a Turing-defined complexity class, we show that there exists an appro-

priately restricted functional program that accepts A, i.e. computes its characteristic

function. To complete the proofs we show that read-only functional programs with

data order k can count as high as expk+1(a log n) when given an input of length

n, using neither ‘cons’ nor built-in arithmetic. Further, the arithmetic computations

needed in the Turing machine simulations just seen can be done.

Definition 6.6

Let f : N → N+. An f-counting module is a tuple C = (Nat, decode, seed, ztest,

pred) containing

1. A data type Nat, built from Bool and [Bool].

2. A function decode : [[Nat]]→ N (a mathematical function, not a program).

3. Terminating programs

seed::[Bool]->Nat, pred::Nat->Nat, ztest::Nat->Bool

such that for any Boolean list as = [a1, . . . an] with n > 0, and any expression exp

built by applying pred and ztest to seed, the following hold.5

5 For brevity we write [[exp]]as for the result of evaluating exp, instead of the longer ‘v, where
p, [as 7→ [a1, . . . an]]` exp→ v’.
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decode([[seed]]as) = f(|as|)− 1

[[ztest exp]]as =

{
False if decode([[exp]]as) > 0

True if decode([[exp]]as) = 0

decode([[pred(exp)]]as) =

{
decode([[exp]]as)-1 if decode([[exp]]as) > 0

0 if decode([[exp]]as) = 0

The first condition is that the seed function yields a representation of f(n) − 1,

if given an arbitrary [a1, a2, . . . , an] of length n > 0. The remaining conditions are

that ztest represents the zero test on natural numbers, and pred represents the

predecessor. Lemma 6.11 will show that the other functions used in the Turing

simulations can also be computed by read-only programs.

Lemma 6.7

There is a λn . n+ 1-counting module C with data-order 0, read-only programs.

Proof

Represent a number between 0 and n by the length of a suffix bs of input as =

[a1,a2. . . ,an]. Choose Nat = [Bool], and define decode(bs) = |bs|. This ranges

from 0 to n (n = n+ 1− 1) as bs ranges over suffixes of as. The following program

fragment defines seed, ztest and pred.

type Nat = [Bool];

seed as = as

ztest([]) = True

ztest(bs) = False

pred([]) = []

pred(b:bs) bs

The conditions above are satisfied with C = ([Bool], decode, seed, ztest, pred). q

Lemma 6.8

If C1, C2 are f- and g-counting modules (respectively) then f+g- and f ·g-counting

modules (resp.) C+, C∗ can be built from them. Further, if C1, C2 consist of

data-order k, read-only programs, then so do C+ and C∗.
Proof

Let Ci = (Nati, decodei, seedi, ztesti, predi) for i = 1, 2. For C∗, define the needed

functions by the code:

type Nat∗ = (Nat_1,Nat_2,Nat_2);

seed∗ as = (seed1 as, seed2 as, seed1 as)

ztest∗ (r,s,m) = (ztest1 r) and (ztest s)

pred∗ (r,s,m) = if (ztest2 s)

then if (ztest1 r) then (r,s,m) else ((pred1 r),m,m)

else (r, (pred2 s), m)
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with

decode∗(r, s, m) = (m+ 1) · decode1(r) + decode2(s)

Explanation: think of (r, s, m) as a 2-digit number rs where r ranges from 0 to

f(n)− 1, and s ranges from 0 to m = g(n)− 1.

For C+, define the needed functions by the code:

type Nat+ = (Nat_1,Nat_2,Bool);

seed+ as = (seed1 as, seed2 as, True)

ztest+ (r,s,flag) = (ztest1 r) and (ztest s) and not flag

pred+ (r,s,flag) = if flag

then if (ztest2 s) then (r, s, False)

else (r, (pred2 s), flag)

else if (ztest1 r) then (r, s, flag)

else ((pred1 r), s, flag)

with
decode+(r, s, True) = decode1(r)

decode+(r, s, False) = decode1(r) + decode1(s) + 1
and

Explanation: count down from (f(n)− 1, g(n)− 1, True) to (0, g(n)− 1, True) in the

first component, then to (0, g(n) − 1, False), and so down to (0, 0, False) in the

second component, for a total of f(n) + g(n) steps. q

Corollary 6.9

For any positive polynomial π : N → N+, there is a π-counting module C with

data-order 0, read-only programs.

Lemma 6.10

For any k > 0 and a > 0 there exists a λn . expk+1(a log n)-counting module C defined

by read-only programs with data order k.

Proof

The case k = 0 was just shown (since 2a log n = na). Let f(n) = expk+1(a log n), and

suppose inductively that an f-counting module

Ck = (Natk, decodek, seedk, ztestk, predk)

with read-only programs is given, representing numbers up to f(n)− 1 when seedk
is given a length-n boolean list as parameter. We need to represent any number

between 0 and 2f(n) − 1 = expk+1(a log n) − 1. Thinking of such a number as a bit

string bf(n)−1. . . b1b0 of length f(n), it can be represented by a function from bit

positions into booleans, i.e. a function g : Natk → {True, False}. We thus construct

a λn . 2f(n)-counting module

Ck+1 = (Natk+1, decodek+1, seedk+1, ztestk+1, predk+1)

where Natk+1 = (Natk->Bool,Natk). In a value (g, m) of type [[Natk+1]], g is a
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function defining a bit string, and m (never changed) is the bit string’s length. Given

the ‘bitwise’ view, function decodek+1 : Natk+1 → N is naturally defined by:

decodek+1(g, m) = g(0) + 2g(1) + . . .+ 2m−1g(m− 1)

where m = decodek(m) is the length of the bit string and g(i) = decodek(g i), where

i is the coding in Natk of natural number i. The maximum representable number is

thus 2f(n) − 1 = decodek+1(big, m) where big i = True for all i, and m = seedk as

represents the largest number f(n)− 1 in Natk .

This line of thought leads to the program code of figure 6.5. The seedk+1 code

constructs a list all of whose bits are 1 (True). The ztestk+1 code tests its argument

to see that every bit is 0, scanning from the left until the right end is reached (found

by counting m down to zero). The predk+1(g,m) code returns (onetorightk+1,m)

where bit i of onetorightk+1 is found by scanning g’s bits from position i. If any

among g(i-1),. . . , g(1), g(0) was True, then bit i of onetorightk+1 is unchanged;

but if all were False, then bit i of onetorightk+1 is changed to its negation. q

type Natk+1 = (Natk->Bool, Natk)

seedk+1 :: [Bool] -> Natk+1

seedk+1 as = (bigk+1, seedk as)

bigk+1 :: Natk->Bool

bigk+1 i = True

ztestk+1 :: Natk+1 -> Bool

ztestk+1 (g,m) = iszk+1 g m

iszk+1 g i = if (g i) then False else

if (ztestk i) then True else iszk+1 g (predk i)

predk+1 :: Natk+1 -> Natk+1

predk+1 (g,m) = if ztestk+1(g,m) then (g,m) else (bitsk+1 g, m)

bitsk+1 g i = if onetorightk+1 g i then (g i) else not(g i)

onetorightk+1 g j = if (ztestk j) then False else

let prev = predk j in

g prev || onetorightk+1 (g prev)

Fig. 6. Counting module for level k + 1.

Lemma 6.11

Given a λn . expk+1(a log n)-counting module Ck , there exist read-only programs that

define the following natural number functions and relations, where c > 1 is a natural

number, assuming that no argument or result exceeds expk+1(a log n).
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• λ x . 0, λ x . x+ 1, λ x . x · c, λ x . x÷ c, λ x . x mod c

• Relations 6 and =

Proof

Straightforward programming using the techniques seen above. q

Theorem 6.12

expktime ⊆ rok for any k > 0.

Proof

Let A be accepted by Turing machine program tm that runs in time expk(a log n).

By Proposition 6.5, A is accepted by a program Ftm using natural numbers bounded

by expk(a log n), and Ftm is a data order 0 read-only functional number program.

By Lemma 6.10 there exists a λn . expk+1(a log n)-counting module C defined by

read-only programs with data order k. By Lemma 6.11, the functions used in Ftm’s

Turing simulation can also be computed by order k read-only programs. Combining

these three (Ftm, the function definitions of C and those from Lemma 6.11) yields

an order k read-only program that simulates tm. q

6.6 Intensional versus extensional polynomial time

Theorem 6.12 shows that read-only programs are quite expressive: even order 0

programs can decide all problems that lie in ptime. However, this does not imply that

these programs themselves run in polynomial time. The point is that the order k

programs were defined by restrictions on program syntax, and not on their resource

consumption.

While fully satisfying from a theoretical viewpoint, Theorem 6.12 is thereby much

less satisfying from a programmer’s perspective. The reason is that it is easy to

construct data-order 0 read-only programs that run in exponential time (regardless

of whether call-by-value or lazy semantics are used), for instance the one in section

2.3. Thus, the very same programs that characterize the time complexity class ptime

are running in times that lie outside that class.

There is no logical or mathematical conflict here. The proofs are by two simu-

lations. The one direction (just seen) shows how, given a polynomial-time-bounded

Turing machine, to build from it a read-only program that accepts the same inputs.

However, it is easily verified that the constructed program will nearly always take

exponential time to run! This is due to repeated solution of the same subproblems.

Concretely, functions scan, tape and pgmctr of the Turing machine simulator of

Proposition 6.5 call one another recursively, e.g. scan t calls both scan(t-1) and

pgmctr(t-1), both of these call both of scan(t-2) and pgmctr(t-2), etc.

In the other direction we will show how, given an arbitrary read-only data-order

0 program (regardless of its running time), to build a polynomial-time-bounded

Turing machine that accepts the same inputs. The construction uses a ‘memoizing’

simulation technique quite different from normal functional program execution –

particularly interesting since it in fact runs faster than the program it is simulating.
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6.7 Tail recursion for higher-order programs

On function arities. Operationally, a higher-order value is a closure 〈f, v1 . . . vi〉 where

i < arity(f). Such values are obtained by incomplete applications, e.g. a call f(x+1)

where f has arity 2. Tracing control flow is complicated by the fact that a higher-

order program may contain an application such as (u v), where u is a function-

valued parameter, as in twice u v = u (u v).

The problem of finding a satisfactory syntactic formulation of higher-order tail

recursiveness is decidedly nontrivial, for instance two definitions, both reasonable

from a lambda calculus viewpoint, are given by Kfoury (1997, 1999), and then

proven incomparable. Rather than enter into the issues raised by those papers, we

take an operational approach sufficient for the programs appearing in this paper.

Definition 6.13

Program p is tail recursive if there is a partial order > on the function names such

that for any application f x1. . . xm =. . . e1 e2. . . such that e1 can evaluate to a

closure 〈g, v1 . . . varity(g)−1〉, either (a) f>g, or (b) f≡g and the call (e1 e2) is in tail

position.

The definition is semantic, referring to all program executions, and so undecidable

in general. (Abstract interpretation can, however, safely approximate it.)

Lemma 6.14

The programs in the λn . expk+1(a log n)-counting modules Ck shown to exist in

Lemma 6.11 are all tail-recursive.

Proof

First, C0 has no recursion at all. Second, note that functions in Ck+1 call only

functions in Ck+1 and Ck , or the function parameter g. The programs in Ck+1

contain definitions of

seedk+1, bigk+1, ztestk+1, iszk+1, predk+1, bitsk+1, onetorightk+1

Order the functions just listed linearly, with seedk+1 greatest and onetorightk+1

least; and order the functions in Ck ,. . . , C0 in the same way, but all less than

onetorightk+1. Inspecting the program code in the proof of Lemma 6.10 it is easy

to see that

1. The only directly recursive calls are from iszk+1 and onetorightk+1 to them-

selves; and these calls are in tail position.

2. The remaining calls are all to functions lower in the order, or to parameter g.

3. g, of type Natk->Bool, is called only from iszk+1, bitsk+1, and onetorightk+1.

Thus the only functions callable via g are ones in Ck . These are lower in the

function name order, so no recursion (tail or otherwise) can ensue.

q

Theorem 6.15

expk−1space ⊆ rotrk for any k > 0.
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Proof

First, if k = 0, then exp−1space = logspace ⊆ rotr0 as proven in (Jones, 1999). Now

suppose k > 0 and A ∈ space(expk(a log n)), so A is accepted by a Turing machine

running in space expk(a log n). Without loss of generality, a > 1. Now k > 0 implies

expk(a log n)) > n, so by Lemma 6.4, A is accepted by a tail-recursive functional

program Trtm with natural numbers bounded by 3expk(a log n)) for inputs of length n.

It is easy to verify that 3expk(a log n)) 6 expk+1(2a log n)).

A data order k read-only functional program that accepts A can thus be obtained

by combining this program Trtm with those shown to exist earlier. Lemma 6.10

shows existence of a k-order λn . expk+1(2a log n))-counting module, and Section 6.5

shows it can be extended to compute the functions on numbers needed by Trtm. By

Lemma 6.14, the counting module programs are (higher-order) tail recursive. q

7 Simulating read-only functional programs in bounded time or space

The remaining task is to prove that read-only functional programs can be simulated

by Turing machines in sufficiently small time or space. Unfortunately, this seems

impossible by direct step-by-step simulation, due to the problem of exponential

running times even for k = 0 pointed out in sections 2.3 and 6.6.

We resolve this problem by defining two new semantics, one to minimize time,

the other to minimize space. The desired results follow by analyzing the time and

memory needed to execute the alternative semantics. Key points include the fact that

the semantics are deterministic and allow left-to-right satisfaction of judgements in

a rule; plus an observation on the size of the sets of data values computable by

order k programs on inputs of length n.

The first semantics accumulates during execution a ‘cache’ recording, for all

function calls that have been completed, both the input parameter values and the

function’s return value. This data structure allows repeated computations to be

avoided completely, making in some cases an exponential improvement in running

times.

The second semantics uses a stack of environments, pushed on function call and

popped on return. Further, it uses the ‘tail recursion hack’ to reduce memory usage:

the environment on the stack top is overwritten whenever a function call in tail

position is executed.

The two semantics are claimed to be equivalent to the original semantics on all

programs. Their equivalence with the original are left as exercises for the reader.

Proof is straightforward since both are based on familiar implementation concepts.

7.1 Some observations about the semantics

We now introduce some concepts that will be useful for establishing time and space

bounds. These ideas, concerning the problem of executing an operational semantics,

have roots in both logic programming and attribute grammars.
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Input-output moding. This paper’s three semantics all have a common principal

judgement form, namely [[p]]v = w. Its usage is that, given p and v as ‘inputs’, one

wishes to find an ‘output’ value w such that [[p]]v = w. We generalize this idea to

assign a mode in {in , out} to each field i of each judgement form J( , . . . , ) in a given

semantics. For the judgement forms in figure 4.1 the natural modings are:

[[pin]]vin = wout for programs

pin, env in ` ein → wout for expressions

`null vin → wout auxiliary for null

pin, env in `if ein2 , e
in
3 , v

in → wout auxiliary for if

pin `call uin, vin → wout auxiliary for call

Definition 7.1

Consider inference rule:
J1( , . . . , ) J2( , . . . , ) . . . Jn( , . . . , )

J( , . . . , )
(Side conditions)

• The binding fields in this rule are the input fields of J and the output fields of

J1, . . . , Jn.

• The computed fields in this rule are the remainder: the output fields of J and

the input fields of J1, . . . , Jn.

Definition 7.2

Inference rule
J1( , . . . , ) J2( , . . . , ) . . . Jn( , . . . , )

J( , . . . , )
(. . . ) is well-moded if

• Each binding field is a pattern built from variables, values and constructors.

• Each computed field, and each side condition, is an expression built from

values, operators and variables defined in binding fields.

Definition 7.3

Rule
J1( , . . . , ) J2( , . . . , ) . . . Jn( , . . . , )

J( , . . . , )
(. . . ) is LR if it is well-moded, and

1. For each i = 1, 2, . . . , n, the input fields of Ji are computable from the binding

fields of J and J1, . . . , Ji−1.

2. The output fields of J are computable from the binding fields of J and

J1, . . . , Jn.

Remarks

1. The output fields of a well-moded axiom are computable from its input fields.

2. If a rule has premises, conditions (1) and (2) above imply they may be satisfied

in a left-to-right order.

Lemma 7.4

Each rule in figure 4.1 is LR.
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Definition 7.5

Given an inference rule R, let R′ be the result of replacing every computed field in

R by a new variable. A rule set is locally deterministic if for any two rules R1, R2, R′1
and R′2 have no common instance6.

Definition 7.6

Consider a ‘principal’ n-ary judgement Jpr( , . . . , ) and any m-ary judgement J( , . . . , ).

Field i of J is called structural in field j of Jpr if for every proof tree T with

Jpr(v1, . . . , vn) as root, in every occurrence of J(w1, . . . , wm) in T , field wi is a substruc-

ture of vj .

Lemma 7.7

The semantics of figure 4.1 is locally deterministic. Further, field e in judgement

p, env ` e→ v is structural in field p of principal judgement [[p]]v = w.

Proof

Inspection of the rules reveals that (a) no two rules R have unifiable binding fields

in the conclusion, except for the `call rules; (b) the side conditions in the `call rules

are disjoint. Structurality of e in p follows by induction over proof trees, since field

p is never changed in a rule, and every e occurring in a field or a closure is either

the right side of a function definition from p, or a substructure of another e field.

q

Lemma 7.8

If a rule set is LR and locally deterministic, then for any values of the principal

judgement’s input fields there exists at most one proof tree T with those input

fields at the root. Further, T can be constructed systematically (bottom-up, left-right

without backtracking), starting with a root with unfilled output fields.

The basis for the remaining proofs is an analysis of the time and space to do this

for the two semantics to be presented.

7.2 An observation on cardinality

The key point for efficient simulation is the fact that during the computation of

[[p]][a1, a2, . . . , an], all values of type [Bool] must be suffixes [ai, . . . , an] of the input

for 1 6 i 6 n+ 1, and thus can assume at most n+ 1 different values. This in turn

bounds the cardinality of the set of order k values of type τ by expk+1(a log n)), for

some a independent of n.

The following makes this precise, letting Valueτ([a1, a2, . . . , an]) ⊆ Value be the set

of all order k values of type τ that can be built while computing [[p]][a1, a2, . . . , an].

Note that the last line below estimates the set of closures of type τ → τ′, and not

the set of functions of that type (there may be more closures than functions, since

different expressions may compute the same function).

6 Meaning: there is no substitution θ : Variables → Values such that θR′1 = θR′2, and the side conditions
of R′1, R′2 are satisfied.
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Definition 7.9

Let p be a read-only program with data order k, let as = [a1, . . . , an] ∈ {0, 1}∗ and

let τ be a type. Define value set Valueτ(as) ⊆ Value by the following equations:

ValueBool(as) = { 1, 0 }
Value[Bool](as) = { [ai, . . . , an] | 1 6 i 6 n+ 1}
Value(τ,τ′)(as) = { (v, v′) | v ∈ Valueτ(as), v′ ∈ Valueτ

′
(as)}

Valueτ→τ
′
(as) = { 〈f, v1 . . . vi > | f xτ1

1 x
τ2

2 . . . x
τm
m = eτm+1 , 0 6 i < m and

v1 ∈ Valueτ1 (as), . . . , vi ∈ Valueτi(as)) , and

τ = τi+1 and τ′ = τi+2 → . . .→ τm → τm+1}

Lemma 7.10

Let p be a read-only program with data order k, and as = [a1, . . . , an] ∈ {0, 1}∗.
Let T be a computation tree by the rules of figure 4.1 proving [[p]] as = a, and let

p, env ` e→ v be a T node. If e has type τ then v ∈ Valueτ(as); and if variable x of

type τ′ is free in e, then env (x) ∈ Valueτ
′
(as).

Proof

An easy induction to check that each inference rule preserves the property. q

The following frequently used property asserts that the set of bounds expk(a log n)

is ‘closed under product’, if a is allowed to vary.

Lemma 7.11

For any a, b and k > 1, for all n

expk(a log n) · expk(b log n) 6 expk((a+ b) log n)

Lemma 7.12

Let p be a read-only program with data order k. For any type τ in p, there is an a

such that |Valueτ(as)| 6 expk+1(a log n)) for any as = [a1, . . . , an], where |Valueτ(as)|
is the cardinality of Valueτ(as).

Proof

Proof is by induction, first on k and then on the structure of τ. Basis k = 0:

immediate if τ is Bool. If τ = [Bool] we have |Valueτ(as)| = n+ 1 6 exp1(2 log n)).

Products (τ, τ′) are straightforward for any k > 0, by Lemma 7.11.

Induction on k: assume true for k, and consider Valueτ→τ
′
(as) with k + 1 =

order(τ→ τ′). Now consider a function definition of form

f xτ1

1 x
τ2

2 . . . x
τm
m = eτm+1

where τ = τi+1 and τ′ = τi+1 → . . . → τm → τ. The number of function closures of

form 〈f, v1 . . . vi〉 is at most Πi
j=1 |Valueτj (as)|. Each τj has order at most k, so by

induction on k, |Valueτj (as)| 6 expk+1(aj log n)) for constants a1, . . . , ai. Consequently

Πi
j=1 |Valueτj (as)| 6 expk+1((a1 + . . .+ ai) log n))
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bounds the number of closures (Lemma 7.11 again). Finally, the value of m and the

number of function definitions depends only on program p and not on the input

length n, so the total size of Valueτ→τ
′
(as) is bounded by a finite sum of numbers of

form expk+1(a′ log n)), and so is bounded by expk+1(a log n)) for some a. q

p, env , c` x→ env (x), c p, env , c` f→ 〈f, ε〉, c
Function call

p, c, env ` e1→ u, c′ p, c′, env ` e2→ v, c′′ p, c′′ `call u, v → w, c′′′

p, c, env ` e1e2→ w, c′′′

p, c `call 〈f, v1 . . . vi−1〉, vi → 〈f, v1 . . . vi−1vi〉, c (If i < arity(f))

p, c, [x1 7→ v1, . . . , xm 7→ vm]` ef→ w, c′

p, c `call 〈f, v1 . . . vm−1〉, vm → w, c′ ∪ {(f, v1 . . . vm, w)}
(If f x1x2 . . . xm = ef in p

and (f, v1 . . . vm, ) /∈ c)

p, c `call 〈f, v1 . . . vm−1〉, vm → w, c

(If f x1x2 . . . xm = ef is in p and

(f, v1 . . . vm, w) ∈ c )

Program execution:

p, [x 7→ [a1, . . . , am]], ∅ ` ef→ a, c

[[p]] [a1, a2, . . . , an] = a
(If p begins with f x = ef)

Fig. 7. Semantics for time-economical expression evaluation

7.3 A time-economical caching semantics

This alternative semantics is essentially the original one, augmented with a cache

defined by

c ∈ Cache = P(FcnName× Value∗ × Value)

The idea is to keep a record of all values already calculated in the current com-

putation; and to save time in case a function is called with arguments that have

been seen before. Concretely, if a call to f is encountered with complete argument

sequence v1 . . . vm, and if (f, v1 . . . vm, w) ∈ c, then f has been called before with these

arguments, and yielded w as result. Thus no recomputation is needed, as value w

can be returned at once. If c contains no such triple, then f’s body ef is evaluated.

When it returns with some value w a new triple (f, v1 . . . vm, w) ∈ c is added to the

cache.

Figure 7.2 only shows the modified rules for variables and function application;

extension to the others is routine. The judgement form for evaluating expressions is
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p, env , c` e→ v, c′. It signifies that expression e is evaluated under environment env

and cache c, yielding value v and cache c′, which perhaps extends c with some newly

computed argument-value pairs. The judgement form for running programs is [[p]]

[a1, a2, . . . , an] = a as before.

Theorem 7.13

Let p be any program and as an input. There exists a computation tree T proving

[[p]] as = a by the inference rules of Section 4 if and only if there exists a computation

tree Tcache proving [[p]] as = a by the inference rules of figure 7.2.

Proof

Omitted for brevity, since based on standard implementation concepts. q

Lemma 7.14

Let p be a read-only program with data order k. Then the size of a computation tree

Tcache proving [[p]] [a1, a2, . . . , an] = a by the inference rules of Figure 7.2 is bounded

by expk+1(a log n)), for a constant a independent of n.

Proof

An observation: the cache is nondecreasing, i.e. if node p, env , c` e→ v, c′ is in Tcache
then c ⊆ c′. By the LR property the nodes in Tcache can be linearly ordered, with

nondecreasing caches. By determinism, no two are identical (else evaluation would

not terminate.) Consequently the number of nodes p, env , c` e→ v, c′ is a bound on

the size of Tcache.

Let as = [a1, a2, . . . , an]. Cache entries are of form (f, v1 . . . vm, w) where ef appears

in p and v1, . . . , vm, w are computed values. The values vi, w are in Valueτ(as) for their

appropriate types τ, by Lemma 7.10 (which also applies to the new semantics). By

Lemma 7.12, the cardinality of Valueτ(as) is bounded by expk+1(a log n)) for some a

and all n. The number of cache triples is also bounded by expk+1(a′ log n)) for some a′.
The number of nodes in Tcache is at most the product of the number of cache

triples, the number of environments, the number of expressions in p, and the number

of values. By earlier lemmas these are all bounded by expk+1(a log n)) for various a’s

and all n, so the result follows by Lemma 7.11. q

A cache-based algorithm to compute [[p]] as

Lemma 7.15

The inference rules of figure 7.2 are locally deterministic, and LR with respect to

moding pin, env in, cin ` ein → vout, c′out and pin, cin `call uin, vin → wout, c′out.

By Lemmas 7.8 and 7.15, the encoding of Figure 7.2 in program form shown in

figure 7.3 computes [[p]] as.

Analysis of running time

Theorem 7.16

If p is a terminating read-only program of data order k, then for some constant a,

Acceptp ∈ time(expk+1(a log n)).
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evalprogram p as = fst(evalexp p [(x,as)] [] e)

where [[f x = e def 2 ... def m]] = p

evalexp p c env [[x]] = (env(x), c)

evalexp p c env [[f]] = ((f,[]), c)

evalexp p c env[[e_1 e_2]] = let (u,c’) = evalexp p c env e1 in

let (v,c’’) = evalexp p c’ env e2 in

evalcall p c’’ u v

- other cases -

evalcall p c (f,vs) v = let args = vs++[v] in

if length args < (arity f p) then ((f, args),c)

else

case (lookupcache c f args) of

Notin: let (params, body) = (lookupfunction f p) in

let newenv = zip params args in

let (w,c’) = evalexp p c newenv body in (f,args,w):c’

Hit(w): (w,c)

Fig. 8. Algorithm for time-economical expression evaluation.

Proof

The algorithm above calls evalexp and evalcall a number of times proportional

to the size of tree Tcache, which by Lemma 7.14 is bounded by expk+1(a log n)) for

appropriate a.

The time to look up any one cache entry (lookupcache) is at most logarithmic

in the cache’s total size, which is also dominated by expk+1(a′ log n)) for suitable a′.
The amount of time for calls to arity, lookupfunction and zip are independent

of as.

These operations can be implemented on a Turing machine with at most poly-

nomial slowdown. Consequently, the total time is bounded by expk+1(a′′ log n)) for

suitable a′′. q

Theorem 7.17

rok = expkspace.

Proof

Immediate from Theorems 6.12 and 7.16. q

7.4 A semantics that is space-economical for tail recursive programs

The previous construction’s running time was bounded by the product of the number

of nodes in Tcache and the time to process any one node. The situation is more delicate

for space bounds, as the memory size goal to be achieved is considerably less than

the size of the proof tree. Thus, a careful analysis of the space required to traverse

it will be needed.
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Expression evaluation:

p, env : s` x→ env (x), env : s p, s` f→ 〈f, ε〉, s
Function call

p, s` e1→ u, s′ p, s′ ` e2→ v, s′′ p, s′′ `call e1e2, u, v → w, s′′′

p, s` e1e2→ w, s′′′

p, s `call e1e2, 〈f, v1 . . . vi−1〉, vi → 〈f, v1 . . . vi−1vi〉, s (If i < arity(f))

p, [x1 7→ v1, . . . , xm 7→ vm] : s` ef→ w, env ′ : s′

p, s `call e1e2, 〈f, v1 . . . vm−1〉, vm → w, s′
(If e1e2 is not in tail position and

p contains f x1x2 . . . xm = ef)

p, [x1 7→ v1, . . . , xm 7→ vm] : s` ef→ w, s′

p, env : s `call e1e2, 〈f, v1 . . . vm−1〉, vm → w, s′
(If e1e2 is in tail position and

p contains f x1x2 . . . xm = ef)

Program execution:

p, [x 7→ [a1, . . . , am]] : []` ef→ a, s

[[p]] [a1, a2, . . . , an] = a
(If p begins with f x = ef)

Fig. 9. Semantics for space-economical expression evaluation.

This alternative semantics is obtained from the original one by two changes. First,

the environment is replaced by a stack of environments s ∈ Stack = Env ∗. As usual,

this stack is pushed when a function is called, and popped when control returns.

Secondly, the semantics is defined so that whenever a tail call is executed, the current

topmost environment on the stack is removed before pushing a new one.

The judgement form for evaluating expressions is p, s` e→ v, s′ meaning that

expression e is evaluated under environment env , which is the top of the stack s,

yielding value v and final stack s′. The judgement form for running programs is, as

before, [[p]] [a1, a2, . . . , an] = a. The inference rules for evaluation are based on the

following stack invariant:

1. If e is not in tail position and p, s` e→ v, s′ then s = s′.
2. If e is in tail position and p, env : s` e→ v, env ′ : s′ then s = s′.

Figure 7.3 only shows the modified rules for variables and function application;

extension to the others is routine.

We check that the stack invariant holds, by induction on the size of proof trees

of judgements p, s` e→ v, s′. The two axioms trivially preserve it. Expressions e1, e2

in a call e1 e2 are not in tail position, so s = s′ = s′′ in the first call rule. We now

check cases for the judgement p, s′′ `call e1e2, u, v → w, s′′′.
The rule for incomplete calls leaves the stack unchanged so s′′ = s′′′, preserving

the invariant. The next rule, for a complete non-tail call, increases the stack length
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by 1 before doing the call and then decreases the resulting stack’s length by 1 on

return. By inductive assumption on the body of the called function, this implies

s′′ = s′′′ as desired.

The rule for a complete tail call changes stack s′′ = env : s to env ′ : s (where

env = [x1 7→ v1, . . . , xm 7→ vm]. Inductively this becomes of form env ′′ : s, with the

same s, and so the second part of the invariant is satisfied.

Theorem 7.18

Let p be any program and as an input. There exists a computation tree T proving

[[p]] as = a by the inference rules of section 4 if and only if there exists a computation

tree Ttail proving [[p]] as = a by the inference rules just given.

Proof

Omitted for brevity, since based on standard implementation concepts. q

Lemma 7.19

The inference rules of figure 7.3 are locally deterministic and LR.

Lemma 7.20

Let p be a tail recursive read-only program. Then any computation tree Ttail proving

[[p]] [a1, a2, . . . , an] = a by the inference rules just given has stack depth bounded by

the number r of names of functions defined in p.

Proof

Let > be the partial order on p’s function names. Let f x1. . . xm =. . . e1 e2. . . be a

complete call such that e1 evaluates to a closure (g, v1, . . . , varity(g)−1). Since p is tail

recursive, f ≡ g if this is a tail call, and f > g if it is not a tail call.

Examination of the inference rules just given reveals that the stack depth is

increased only for non-tail calls, otherwise the stack depth stays unchanged. Since

there are only r distinct function names, creation of a stack s of depth greater than

r is impossible. q

A space-economical algorithm to compute [[p]] as

Lemma 7.21

The inference rules of figure 7.3 are locally deterministic, and LR with respect to

moding pin, sin ` ein → vout, s′out and pin, sin `call uin, vin, ein → wout, s′out.

By Lemmas 7.8 and 7.21, the encoding of figure 7.3 in program form shown in figure

7.4 computes [[p]] as.

Analysis of memory usage

Theorem 7.22

If p is a terminating tail recursive read-only program of data order k > 1, there is a

constant a such that Acceptp ∈ space(expk(a log n)).
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evalprogram p as = fst(evalexp p ([(x,as)]:[]) e)

where [[f x = e def 2 ... def m]] = p

evalexp p s env [[x]] = let env:s’ = s in (env(x), s)

evalexp p s env [[f]] = ((f,[]), s)

evalexp p s env [[e_1 e_2]] = let (u,s’) = evalexp p s e1 in

let (v,s’’) = evalexp p s’ e2 in

evalcall p s’’ e u v

- other cases -

evalcall p s (f,vs) v e = let args = vs++[v] in

if length args < (arity f p) then ((f,args),s)

else

let (params, body) = (lookupfunction f p) in

let newenv = zip params args in

if not (tailposition e p) then

let (w, env’:s’) = evalexp p newenv:s body in (w,s’)

else let env:s’=s in evalexp p newenv:s’ body

Fig. 10. Algorithm for space-economical expression evaluation.

Proof

We show that the algorithm above uses memory can be implemented using at most

expk(a log n)) bits for some a and all n. Note that any value depending only on

program p is constant, since p is fixed.

Memory for the stack: first, the program uses s in a ‘single-threaded’ way, i.e. any

time a new stack s′, etc. is constructed, the previous version will never be used again.

Consequently only one copy of stack s is needed, and it can be stored globally.

By Lemma 7.12, at most log(expk+1(a log n)) = expk(a log n)) bits are required to

store any one variable. This implies that any stack frame (an environment env ) on

the stack occupies at most this amount multiplied by the number of p’s parameters.

By Lemma 7.20, the stack depth is bounded by a program-dependent constant r, so

the space to store the entire stack is a constant multiple of expk(a log n) bits.

Local memory for the evaluation functions: any one call of evalexp needs memory

for the values of program p and expression e, plus the two values u and v. The

first two are constant, and the others each bounded by expk(a log n) bits. Function

evalcall follows the same pattern.

Global memory for the evaluation functions: each call from function evalexp to

itself decreases the syntactic argument e, so their depth is bounded by a constant.

The call from evalexp to evalcall is a tail call and so requires no extra storage.

The first call from evalcall to evalexp is a non-tail call which implements a

non-tail call in p; by Lemma 7.20 the call depth is bounded by r. The second call

from evalcall to evalexp is a tail call which implements a tail call in p. Thus, the

current arguments to evalcall can be overwritten by evalexp’s new arguments.

Conclusion: the memory required to implement the algorithm is at most a constant
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multiple of expk(a log n) bits, and so is bounded by expk(a
′ log n) bits for some a′.

The same space bound can be realized on a Turing machine implementation. q

Theorem 7.23

expk−1space = rotrk , for any k > 1.

Proof

Immediate from Theorems 6.15 and 7.22. q

Appendix: Connections with finite model theory

Given a fixed many-sorted signature S, an S-algebra A specifies a carrier set for

every sort in S, and assigns a function of appropriate type as meaning to every

operator symbol in S. In finite model theory S is often assumed to contain fixed

sorts ‘bool’ and ‘ind’. Algebra A respectively interprets these as sets {0, 1} and

{0, 1, . . . , n} (for varying n), and interprets operations MIN,MAX : ind,NEXT :

ind→ ind respectively as minimum 0, maximum n, and λx . min(x+ 1, n).

One concern of finite model theory is computation of ‘global functions’ on finite

S-algebras A. A program to define a global function f(A, x1, . . . , xm) is given by

a term t in a simply-typed lambda calculus containing the operator symbols of S,

and either general fixpoint operators or primitive recursion. Program semantics is

defined by evaluating the term, given as input a finite algebra A and values of

appropriate types for x1, . . . , xm. Program terms t always have type boolean.

A typical theorem (Gurevich, 1983) is that a global function f is definable by

a first-order primitive recursive term if and only if there exists a logspace Turing

machine which, given as input

• an encoded algebra A defining all the sort sets and operators in S, and

• some encoded inputs i1, . . . , im to f,

terminates with the encoded value of f(A, i1, . . . , im).

A connection with traditional complexity theory. What does this have to do with

deciding membership in a set of strings A ⊆ {0, 1}∗? A connection can be made

by considering signature S with sorts ‘bool’ and ‘ind’ and an operator symbol

ϕ : ind→ bool.

Then an input-free global function f(A) of type f : → bool is Turing-computed,

as defined above, by providing the machine with input that encodes

(Abool,Aind,Aφ,AMIN,AMAX,ANEXT)

where Abool = {0, 1} is the interpretation of bool, and Aind = {0, 1, . . . , n} is the

interpretation of ‘ind’. The third component is ϕ’s interpretation. This has type

Aϕ : {0, 1, . . . , n} → {0, 1}and so is in essence an n+ 1-bit string a0...an in {0, 1}∗.
The machine’s output is the value of term t, a boolean value.

Thus computing f() amounts to producing a 0-1 answer for the bit string a0 . . . an
which is given in the input interpretation, i.e. it amounts to deciding membership in

a subset A of {0, 1}∗. It is furthermore clear that A is in, say, logspace iff the Turing

machine operates in space logarithmic in the size of A’s representation.
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Connection with functional programming. Regard any term p : bool in the lambda

expression language mentioned above as a functional program p:[Bool]->Bool as

follows. Think of the function Aϕ = [0 7→ a0, 1 7→ a1, . . . , n 7→ an] above interpreting

ϕ : ind → bool as p’s input: a string [a0,...,an] of type [Bool]. From this

viewpoint, any variable x of type ‘ind’ in p corresponds to a variable x:[Bool] in

p. This can be done since any p variable x of sort ‘ind’ has value in {0, 1, . . . , n}, so

its value can be represented by a suffix x of input [a0,...,an] (which is passed

as parameter to every function defined in p). Now MAX and MIN are obviously

computable using this representation; and NEXT can be computed with a bit of

programming (even without ‘cons’).

Conversely, from any read-only functional program p one can construct a lambda-

term as in (Goerdt, 1992) that is equivalent in the same sense.
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