ON SPREADS IN $P G\left(3,2^{s}\right)$ THAT ADMIT PROJECTIVE GROUPS OF ORDER 2^{s}

by V. JHA and N. L. JOHNSON*

(Received 23rd May 1984)

Let Γ be a spread in $\mathscr{P}=P G(3, q)$; thus Γ consists of a set of $q^{2}+1$ mutually skew lines that partition the points of \mathscr{P}. Also let Λ be the group of projectivities of \mathscr{P} that leave Γ invariant: so Λ is the "linear translation complement" of Γ, modulo the kern homologies. Recently, inspired by a theorem of Bartalone [1], a number of results have been obtained, in an attempt to describe (Γ, Λ) when q^{2} divides $|\Lambda|$. A good example of such a result is the following theorem of Biliotti and Menichetti [3], which ultimately depends on Ganley's characterization of likeable functions of even characteristic [5].

Theorem A (Biliotti, Menichetti, Ganley [3,5]. Suppose q is even and Λ contains a 2-group G such that
(i) G fixes one component of Γ and acts regularly (and transitively) on the other q^{2} components; and
(ii) the elations in G form a subgroup of order q.

Then Γ is a spread of a semifield plane, a Lüneburg plane [11], a Betten plane [2], or the Biliotti-Menichetti "elusive" plane of order 8^{2}; in this case $|\Lambda|=8^{2}$ [3, Theorems 3.1 and 3.2].

The object of this note is to derive the following consequence of Theorem A.
Theorem B. Let Γ be a spread in $P G(3, q)$ with q even and let Λ be the group of projectivities leaving Γ invariant. Assume u is a 2-primitive divisor of $q-1$. Then $u q^{2}| | \Lambda \mid$ only if Γ is a semifield spread, a Betten spread or a Lüneburg spread.

Some background

To prove Theorem B we shall require in addition to Theorem A, the following recent results.

Result 1 (Jha, Johnson and Wilkie [8, Theorem 1.1])). A spread of even order n admitting a shears group of order $n / 2$ is a semifield spread.

Result 2 (Dempwolff [4], Johnson and Wilkie [10]). Let Π^{l} be an affine translation plane of even order q^{2}. Suppose Aut Π^{l} contains a group B of order q such that B fixes
*This work was done when the first author was visiting the University of Iowa during 1983-84.
elementwise a Baer subplane Π_{0} of order q and assume B centralizes a group of kern homologies of order $q-1$. Then B cannot normalize an elation group of order q unless $q=2$.

Proof. Let χ be the axis of an affine elation group E, of order q, that is normalized by B. Thus χ is in Π_{0} and by Dempwolff $[4,2.7] E$ centralizes B. Now apply Johnson and Wilkie [10, Lemma 2.7].

Result 3 (Jha, Johnson and Wilkie [8, Theorem 1.2]). Let G be in the linear translation complement of an affine translation plane Π^{l} of even order q^{2}, with \mathbb{F}_{q} in its kern. Suppose G is nonsolvable and contains no elations. Then if G is reducible
(i) every involution in G fixes Δ, a derivable slope set; and
(ii) every affine elation with axis through Δ leaves Δ invariant.

Proof of Theorem B

We begin by restating the hypothesis of Theorem B in the following convenient form.
Hypothesis $(H) . \quad \Pi^{l}$ is an affine translation plane of even order q^{2} with \mathbb{F}_{q} in its kern and Λ denotes the linear translation complement of Π^{l} based at an affine point $0 . \Lambda$ satisfies both the following conditions.
(i) $q^{2}| | \Lambda \mid$; and
(ii) $\exists \mathcal{O} \in \Lambda$ such that $\mathcal{O} \mid \neq$ identity and \mathcal{O} is a u-element, where u is a 2 -primitive ($=$ "primitive" from now on) divisor of $q-1$.
A Baer subplane of Π cannot be centralized by a group of order q^{2}. So hypothesis (H) implies that every Sylow 2-subgroup of Λ fixes exactly one line of Π^{l}. Hence the following conventions are justified.

Notation (N). $\quad G$ is a Sylow 2-subgroup of Λ and χ is the unique component of the spread associated with Π^{l} that is invariant under G. Let E denote the group of elations in G with axis χ and let $\chi_{G}=\operatorname{Fix}(G) \cap \chi$.

Now hypothesis (H)(i) immediately implies the following.
Lemma 1. If Π^{l} is not a semifield plane then χ_{G} is a one-dimension \mathbb{F}_{q} subspace of χ and $|E| \geqq(|G| / q) \geqq q$.

Lemma 2. χ is left invariant by a u-element $\phi \in \Lambda$ such that $\phi \mid l \neq$ identity.
Proof. Let μ be the set of lines through 0 that are fixed by at least one Sylow 2subgroup of Λ. Also let Σ be the group generated by all the shears in Λ. If $|\mu|=1$ we are done (hypothesis $(H)(i i)$), so assume $|\mu|>1$. Now the Hering-Ostrom theorem [11, Theorem 35.10] and Lemma 1 show that for some $h \geqq 0$ we have either
(i) $\Sigma \cong S Z\left(2^{h} q\right)$ and $|\mu|=\left(2^{h} q\right)^{2}+1$, or
(ii) $\Sigma \cong S L\left(2,2^{h} q\right)$ and $|\mu|=2^{h} q+1$.

As Π has order q^{2}, case (i) only occurs when $|\mu|=q^{2}+1, \Sigma \cong S Z(q)$ and so by Liebler [11, Theorem 31.1], Π is a Lüneburg plane and the lemma holds. It remains to consider the case $\Sigma \cong S L\left(2,2^{h} q\right)$. Now $\Sigma \cong S L(2, q)$ or $S L\left(2, q^{2}\right)$, e.g., use the fact that $\log _{2} 2^{h} q$ divides $\log _{2} q^{2}$ (Johnson and Ostrom [9, Theorem 2.12]). Hence by Schaeffer's theorem (see [11, Theorem 49.6]), Π is Desarguesian. Hence the lemma is valid.

We now require some information about the action of $G L(2, q)$ on its standard module χ.

Lemma 3. Let V be a 2-dimensional vector space over \mathbb{F}_{q} and let $\Gamma=G L\left(V, \mathbb{F}_{q}\right)$. Suppose G_{1} and G_{2} are 2-groups in Γ such that $\operatorname{Fix}\left(G_{1}\right) \neq \operatorname{Fix}\left(G_{2}\right)$ but $G_{1}=G_{2}^{v}$ for a uelement $v \in \Gamma$. Assume $\left|G_{1}\right|>2$. Then H, the full group of unimodular elements in $\left\langle G_{1}, v\right\rangle$, is isomorphic to $S L\left(2, q^{\alpha}\right)$ for $\alpha=\frac{1}{2}$ or 1 . Moreover, the Sylow 2 -subgroup of $\left\langle G_{1}, v\right\rangle$ are in H.

Proof. As q is even, $\Gamma=\Sigma \oplus C$, where $\Sigma=S L(2, q)$ and C is the scalar group in Γ. Thus $v=v_{1} \oplus \gamma$ where $v_{1} \in \Sigma$ is a v-element and $\gamma \in C$); also $v_{1} \neq 1$ because otherwise $G_{2}=G_{1}^{v}=G_{1}$. Now $H \supseteq\left\langle G_{1}, G_{2}, v_{1}\right\rangle$ and H is unimodular. Hence by Dickson's list of subgroups of $\operatorname{PSL}(2, q)$ [7, Hauptsatz 8.27], we must have $H \cong S L\left(2,2^{5}\right)$ for some s dividing $r=\log _{2} q$. Since $u \mid 2^{2 s}-1$ and u is a primitive divisor of $2^{r}-1$, we now have $r \mid 2 s$. The lemma follows.

Lemma 4. Suppose Π is not a semifield plane. Then there is a u-element $v \in \Lambda$ such that
(i) v leaves χ invariant;
(ii) $v \mid l \neq$ identity; and
(iii) $v\left(\chi_{G}\right)=\chi_{G}$.

Proof. Let U be a maximal u-group in Λ that leaves χ invariant. By Lemma 2, $U \mid l \neq$ identity. So it is sufficient to verify that χ_{G} is invariant under U. Assume this is false. Now there is a v in U such that $\operatorname{Fix}\left(G^{v}\right) \cap \chi \neq \chi_{G}$. Next consider $T=\langle v, G\rangle$ and let $\bar{T}=T \mid \chi$. Observe that $4||\bar{T}|$ because otherwise by Result $1, \Pi$ is a semifield plane. So Lemma 3 applies to \bar{T} and hence \bar{H}, its unimodular subgroup, satisfies

$$
\bar{H} \cong S L\left(2, q^{\alpha}\right) \quad \text { for } \quad \alpha=\frac{1}{2} \text { or } 1
$$

Now let H be the preimage of the restriction map $T \rightarrow T \mid \chi$. We now proceed in a series of steps.

Step A. $|E| \geqq q^{2-\alpha}$ and Ω, the set of nontrivial E-orbits on l, has cardinality $\leqq q^{\alpha}$.
Proof. By Lemma 3, $\bar{H} \supset \bar{G}$ and so $H \supset G$. Thus $\bar{G}=G \mid \chi$ has order precisely q^{α}. Since E is the kernel of the restriction map $G \rightarrow G \mid \chi$ we now have $|E| \geqq q^{2} / q^{\alpha}$ and the step follows.

Step B. H fixes some member of Ω.

Proof. Suppose first that a nontrivial homology in H has χ as its axis. Now by Andre's theorem [6, Theorem 4.25] the set \mathscr{C} of centres of all the nontrivial homologies in H with axis χ form an E-orbit that is clearly H invariant. So we may assume H contains no homologies with axis χ. Now $\bar{H}=H / E$ is a permutation group of Ω. But $|\Omega| \leqq q^{\alpha}(\operatorname{Step} \mathrm{A})$ and $\bar{H} \cong S L\left(2, q^{\alpha}\right)$ and so by Galois [7, Satz 8.28], \bar{H} acts trivially on Ω. Hence Step B is valid.

Step C. $H=E H_{t}$, where t is a point of $l-(l \cap \chi)$.
Proof. By Step B we may choose t to be in an E-orbit that is H invariant. Now $|H|=|E|\left|H_{t}\right| \Rightarrow H=E H_{t}$.

Step D. H_{t} fixes elementwise $q+1$ distinct slopes and H contains no homologies with affine axis.

Proof. By Step $C, H_{t} \cong H / E$ is certainly nonsolvable and contains no elations. So by Result 3, H_{t} fixes elementwise $q+1$ slopes. Thus H_{t} contains no homologies. Hence H does not contain any homology because any prime order homology in H would fix some slope in the E-orbit of t. This could imply that H_{t} contains a homology. Hence the step is valid.

Since H contains no homologies the restriction map $H \rightarrow H \mid \chi$ has kernel E and now $H_{t} \cong H / E \cong \bar{H} \cong S L\left(2, q^{2}\right)$ for $\alpha=\frac{1}{2}$ or 1 . Now by Schäffer's theorem (see [11, Theorem 49.6]), Π is a Hall plane or a Desarguesian plane. Only the latter plane is consistent with our hypothesis and so the lemma is proved.

Lemma 5. If Π is not a semifield plane then Λ contains a subgroup H such that
(i) $H \supset G$;
(ii) $|H|=u^{\alpha}|G|$ for some $\alpha \geqq 1$; and
(iii) $\left.H\right|_{\chi_{G}}=$ identity .

Proof. Choose v to satisfy conditions (i)-(iii) of Lemma 4 and let U be the Sylow u subgroup of the kern homologies in Λ; thus U is the biggest subgroup of Λ fixing l elementwise. Now if $u^{\beta}=|U|$ then $u^{\beta} \| q-1$ (or Π is Desarguesian and the lemma holds). Now $v \notin U$ and so the u-group $U_{1}=\langle v, U\rangle$ leaves χ_{G} invariant and clearly cannot be faithful on it. So we may choose $v_{1} \neq 1$ in the kern of $U_{1} \rightarrow U_{1} \mid \chi_{G}$ and let $L=\left\langle v_{1}, G\right\rangle$. Since L fixes χ_{G} and χ it is readily seen to be solvable. Thus a Hall $\{u, 2\}$ subgroup of L can be written as H.

We now use the following lemma on vector spaces to study the action of H on the elation group E.

Lemma 6. Let V be a vector space of order $n=2^{s}<q^{2}$. Suppose \mathcal{O} is a u-element in $G L(V,+)$. Then either $\operatorname{Fix}(\mathcal{O}) \neq 0$ or $|V|=q$.

Proof. Suppose W is an irreducible $\langle\mathcal{O}\rangle$ submodule of V and that $\mathcal{O} \mid W \neq$ identity. Hence \mathcal{O} is clearly semiregular on the nonzero points of W and so u divides $|W|-1$. But now as u is a primitive divisor of $q-1$ we get $|W|=q^{m}$ for some integer $m \geqq 1$. But
$|V|<q^{2}$ and so every irreducible module W, not in $\operatorname{Fix}(\mathcal{O})$, has order q. However, by Maschke's theorem, V is a direct sum of irreducible $\langle\mathcal{O}\rangle$-module and so either $V=W$ or $\operatorname{Fix}(\mathcal{O}) \neq \mathbf{0}$. The lemma follows.

From now on H will always be as in Lemma 5, and we shall tacitly assume that Π is not a semifield.

Lemma 7. H has no homologies with axis χ.
Proof. If false then by Andre's theorem (cf. Step B of Lemma 4) we have

$$
H=H_{x} E
$$

for some homology centre $x \in l-(l \cap \alpha)$.
Now if $h \in H_{x}$ is a nontrivial homology then h normalizes E but cannot centralize any element of $E-\{1\}$. But we also have $|E|<q^{2}$ since Π is not a semifield plane. Hence Lemma 6 implies that $|E|=q$ and now $q\left|\left|H_{x}\right|\right.$, contrary to Result 2.

Lemma 8. $G \triangleleft H$.

Proof. We must verify that H is 2-closed. So let σ_{1} and σ_{2} be distinct 2-elements in H. Since $\operatorname{Fix}(H)=\chi_{G}, \sigma_{1} \mid \chi_{G}$ and $\sigma_{2} \mid \chi_{G}$ are both involutions fixing χ_{G} elementwise and so $\sigma_{1} \sigma_{2} \mid \chi_{G}$ is also an involution. Thus $\left(\sigma_{1} \sigma_{2}\right)^{2}$ is a central collineation with axis χ. Now by Lemma $7,\left(\sigma_{1} \sigma_{2}\right)^{2}$ is at most an elation and so $\left(\sigma_{1} \sigma_{2}\right)^{4}=1$. Hence H is 2 -closed and the lemma is proved.

Lemma 9. Suppose $\mathcal{O} \neq 1$ is a u-element in H and let $g \in G-E$. Then $\mathcal{O} g \neq g \mathcal{O}$.
Proof. Assume false and let \mathscr{M} be the set of all Maschke complements of χ_{G} in χ, relative to $\mathcal{O} \mid \chi$. Now g leaves \mathscr{M} globally invariant and yet cannot fix any $M \in \mathscr{M}$ since then g would become an elation: recall g already fixes χ_{G} elementwise. Thus $|\mathscr{M}| \geqq 2$ and so $\mathcal{O} \mid \chi$ is a scalar map. But since $\mathcal{O} \mid \chi_{G}=1, \mathcal{O}$ must now be a homology, contrary to Lemma 7.

Lemma 10. $\left|G_{x}\right|=1$ for some $x \in l-(\ln \chi)$.
(N.B. This lemma fails in some semifield planes.)

Proof. Let U be a Sylow u-subgroup of H. So U fixes some $x \in l-(l \cap \chi)$. Suppose if possible that $G_{x} \neq 1$. Now by Lemma $8, H$, and therefore H_{x}, are 2-closed. Thus G_{x} is normalized by U as $U \subseteq H_{x}$. Now by Lemma $9, U$ is semiregular on G_{x} and so $u\left|\left|G_{x}\right|-1\right.$. Hence the primitivity of u implies that $\left|G_{x}\right| \geqq q$; now Lemma 1 contradicts Result 2. Hence the lemma is valid.

We can now verify the conditions (i) and (ii) of Biliotti and Menichetti (Theorem A).
Proposition 11. Assume Π^{l} is a translation plane satisfying hypothesis (H) but that Π^{l} is not a semifield plane. Let G be a Sylow 2-sub-group of Λ, the linear translation complement of Π, and E the elation subgroup of G. Then
(i) $|E|=q$; and
(ii) G fixes exactly one point $x \in l$ and is regular on $l-\{x\}$; in particular $|G|=q^{2}$.

Proof. Part (ii) is Lemma 10. If part (i) fails then by Lemma $1,|E|=2^{e} q$ for some $e \geqq 1$. Now Lemmas 8 and 9 imply that $u||G|-|E|$ and so

$$
u \left\lvert\, \frac{q}{2^{e}}-1\right.
$$

Hence we contradict the primitivity of u if $|E| \neq q$. Hence the proposition is valid.
Now Theorem B immediately follows from Proposition 11 and Theorem A.

REFERENCES

1. C. Bartalone, On some translation planes admitting a Frobenius group of collineations, Combinatorics '81, Annals Discr. Math. 18 (1983), 37-54.
2. D. Betten, 4-dimensional Translationsebenen mit 8-dimensionaler Kollineations-gruppe, Geom. Ded. 2 (1973), 327-339.
3. M. Biliotti and G. Menichetti, On a genralization of Kantor's likeable planes. Geom. Ded. 17 (1985), 253-277.
4. U. Dempfwolff, Grosse Baer-Untergruppen auf translationsebenen gerader Ordnung, J. Geometry 19 (1982), 101-114.
5. M. J. Ganley, On likeable translation planes of even order, Arch. Math. 41 (1983), 478-480.
6. D. R. Hughes and F. C. Piper, Projective Planes (Springer-Verlag, New York/Heidelberg/Berlin, 1973).
7. B. Huppert, Endliche Gruppen I (Springer-Verlag, Berlin/New York, 1967).
8. V. Jha, N. L. Johnson and F. W. Wilkie, On translation planes of order q^{2} that admit a group of order $q^{2}(q-1)$; Bartalone's theorem, Rendiconti Circolo Mat. Palermo, 33 (1984), 407-424.
9. N. L. Johnson and T. G. Ostrom, Translation planes of characteristic two in which all involutions are Baer, J. Algebra 54 (1978), 447-458.
10. N. L. Johnson and F. W. Wilkie, Translation planes of order q^{2} that admit a collineation group of order q^{2}, Geom. Dedicata 3 (1984), 293-312.
11. H. Luneburg, Translation Planes (Springer-Verlag, Berlin/Heidelberg/New York, 1980).

Department of Mathematics
The University of Iowa
Iowa City, Iowa 52242
U.S.A.

Mathematics Department
Glasgow College of Technology
Cowcaddens Road
Glasgow G4 0BA
Scotland

