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ON SPREADS IN PG(3,2S) THAT ADMIT
PROJECTIVE GROUPS OF ORDER 2s

by V. JHA and N. L. JOHNSON*

(Received 23rd May 1984)

Let F be a spread in 9 = PG(3, q); thus F consists of a set of q2 +1 mutually skew
lines that partition the points of 2P. Also let A be the group of projectivities of $P that
leave F invariant: so A is the "linear translation complement" of F, modulo the kern
homologies. Recently, inspired by a theorem of Bartalone [1], a number of results have
been obtained, in an attempt to describe (F, A) when q2 divides |A|. A good example of
such a result is the following theorem of Biliotti and Menichetti [3], which ultimately
depends on Ganley's characterization of likeable functions of even characteristic [5].

Theorem A (Biliotti, Menichetti, Ganley [3,5]. Suppose q is even and A contains a
2-group G such that

(i) G fixes one component of F and acts regularly (and transitively) on the other q2

components; and
(ii) the elations in G form a subgroup of order q.

Then F is a spread of a semifield plane, a Luneburg plane [11], a Betten plane [2], or the
Biliotti-Menichetti "elusive" plane of order 82; in this case |A| = 82 [3, Theorems 3.1 and
3.2].

The object of this note is to derive the following consequence of Theorem A.

Theorem B. Let F be a spread in PG(3, q) with q even and let A be the group of
projectivities leaving F invariant. Assume u is a 2-primitive divisor of q— 1. Then uq2 |A|
only ifT is a semifield spread, a Betten spread or a Luneburg spread.

Some background

To prove Theorem B we shall require in addition to Theorem A, the following recent
results.

Result 1 (Jha, Johnson and Wilkie [8, Theorem 1.1])). A spread of even order n
admitting a shears group of order n/2 is a semifield spread.

Result 2 (Dempwolff [4], Johnson and Wilkie [10]). Let II' be an qffine translation
plane of even order q2. Suppose Aut II ' contains a group B of order q such that B fixes

*This work was done when the first author was visiting the University of Iowa during 1983-84.
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elementwise a Baer subplane JT0 of order q and assume B centralizes a group of kern
homologies of order q—l. Then B cannot normalize an elation group of order q unless

Proof. Let x be the axis of an affine elation group E, of order q, that is normalized
by B. Thus x is in n 0 and by Dempwolff [4,2.7] E centralizes B. Now apply Johnson
and Wilkie [10, Lemma 2.7].

Result 3 (Jha, Johnson and Wilkie [8, Theorem 1.2]). Let G be in the linear
translation complement of an affine translation plane II ' of even order q2, with F, in its
kern. Suppose G is nonsolvable and contains no elations. Then if G is reducible

(i) every involution in G fixes A, a derivable slope set; and
(ii) every affine elation with axis through A leaves A invariant.

Proof of Theorem B

We begin by restating the hypothesis of Theorem B in the following convenient form.

Hypothesis (H). II' is an affine translation plane of even order q2 with F9 in its kern
and A denotes the linear translation complement of II' based at an affine point 0. A
satisfies both the following conditions.

(i) q2||A|;and
(ii) 30eA such that (9 l±identity and & is a u-element, where u is a 2-primitive

( = "primitive" from now on) divisor of q — l.

A Baer subplane of II cannot be centralized by a group of order q2. So hypothesis
(H) implies that every Sylow 2-subgroup of A fixes exactly one line of II'. Hence the
following conventions are justified.

Notation (N). G is a Sylow 2-subgroup of A and x is the unique component of the
spread associated with II' that is invariant under G. Let E denote the group of elations
in G with axis x and let XG = F«

Now hypothesis (H)(i) immediately implies the following.

Lemma 1. / / II' is not a semifield plane then XG is a one-dimension F4 subspace of x
and \E\U\G\/q)^q.

Lemma 2. x is left invariant by a u-element <f>eA such that <j>I =/= identity.

Proof. Let /* be the set of lines through 0 that are fixed by at least one Sylow 2-
subgroup of A. Also let £ be the group generated by all the shears in A. If |/*| = 1 we are
done (hypothesis (H)(ii)), so assume |/*|>1. Now the Hering-Ostrom theorem [11,
Theorem 35.10] and Lemma 1 show that for some li^Owe have either

(i) Z^SZ(2hq) and \n\=(2hq)2 + l, or
(ii) Z^SL(2,2hq) and \n\=2"q+l.
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As n has order q2, case (i) only occurs when \fi\ =q2 + l, ~L = SZ{q) and so by Liebler
[11, Theorem 31.1], n is a Liineburg plane and the lemma holds. It remains to consider
the case Z^SL{2,2hq). Now I.^SL(2,q) or SL(2,q2), e.g., use the fact that Iog22

)l4
divides Iog2<j2 (Johnson and Ostrom [9, Theorem 2.12]). Hence by Schaeffer's theorem
(see [11, Theorem 49.6]), II is Desarguesian. Hence the lemma is valid.

We now require some information about the action of GL(2,q) on its standard
module x-

Lemma 3. Let V be a 2-dimensional vector space over ¥q and let F = GL{ V, F?).
Suppose Gt and G2 are 2-groups in F such that Fix(G1)^=Fix(G2) but G1 = GV

2 for a u-
element veT. Assume |G1 |>2. Then H, the full group of unimodular elements in <^G1,v'), is
isomorphic to SL(2,qa) for a = j or 1. Moreover, the Sylow 2-subgroup of <G1(v> are in H.

Proof. As q is even, F = E © C , where £ = SL(2, q) and C is the scalar group in T.
Thus v = v1©y where v^ell is a v-element and yeC); also v t ^ l because otherwise
G2 = G\ = GV Now H 2 < G 1 ; G2, Vj> and H is unimodular. Hence by Dickson's list of
subgroups of PSL(2,q) [7, Hauptsatz 8.27], we must have H^SL(2,2*) for some s
dividing r = log2q. Since u|22s—1 and u is a primitive divisor of 2r — 1, we now have
r\2s. The lemma follows.

Lemma 4. Suppose Tl is not a semifield plane. Then there is a u-element v e A such
that

(i) v leaves % invariant;
(ii) v\l^identity; and

Proof. Let U be a maximal u-group in A that leaves x invariant. By Lemma 2,
U | / =/= identity. So it is sufficient to verify that XG is invariant under U. Assume this is
false. Now there is a v in U such that Fix(Gv)n^^=^G. Next consider T=(v,G} and let
T=T\x- Observe that 4 | |T | because otherwise by Result 1, n is a semifield plane. So
Lemma 3 applies to T and hence H, its unimodular subgroup, satisfies

H^SU2,q°) for < x = | o r l .

Now let H be the preimage of the restriction map T-*T\x. We now proceed in a series
of steps.

Step A. | £ | ^ q 2 ~ a and Q, the set ofnontrivial E-orbits on I, has cardinality ^

Proof. By Lemma 3, H=>G and so H=>G. Thus G = G\x has order precisely q*. Since
E is the kernel of the restriction map G-»G|x we now have \E\^q2/q" and the step
follows.

Step B. H fixes some member ofQ.
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Proof. Suppose first that a nontrivial homology in H has % as its axis. Now by
Andre's theorem [6, Theorem 4.25] the set # of centres of all the nontrivial homologies
in H with axis x form an £-orbit that is clearly H invariant. So we may assume H
contains no homologies with axis x- Now H = H/E is a permutation group of £1 But
\n\^q" (Step A) and H^SL(2,qa) and so by Galois [7, Satz 8.28], H acts trivially on fi.
Hence Step B is valid.

S t e p C . H = EH,, where t is a p o i n t of I — ( I n x).

Proof. By Step B we may choose t to be in an £-orbit that is H invariant. Now
\H\ = \E\\H,\=>H = EH,.

Step D. H, fixes elementwise q+l distinct slopes and H contains no homologies with
affine axis.

Proof. By Step C, H,^H/E is certainly nonsolvable and contains no elations. So by
Result 3, H, fixes elementwise q + l slopes. Thus Ht contains no homologies. Hence H
does not contain any homology because any prime order homology in H would fix
some slope in the E-orbit of t. This could imply that H, contains a homology. Hence the
step is valid.

Since H contains no homologies the restriction map H-+H\% has kernel E and now
H,^H/E^H^SL(2,q2) for u.=\ or 1. Now by Schaffer's theorem (see [11, Theorem
49.6]), IT is a Hall plane or a Desarguesian plane. Only the latter plane is consistent
with our hypothesis and so the lemma is proved.

Lemma 5. / / n is not a semifield plane then A contains a subgroup H such that

(i)
(ii) |H| = ua|G| for some a ^ l ; and

(hi) H\xG = identity.

Proof. Choose v to satisfy conditions (i)—(iii) of Lemma 4 and let U be the Sylow u-
subgroup of the kern homologies in A; thus U is the biggest subgroup of A fixing /
elementwise. Now if i / = |l / | then up||g —1 (or n is Desarguesian and the lemma holds).
Now v$U and so the u-group U1 = (^v,t/> leaves %G invariant and clearly cannot be
faithful on it. So we may choose Vj^l in the kern of Ui^>UI\XG a nd let L = (yuGy.
Since L fixes Xa an<l X it is readily seen to be solvable. Thus a Hall {u, 2} subgroup of L
can be written as H.

We now use the following lemma on vector spaces to study the action of H on the
elation group E.

Lemma 6. Let V be a vector space of order n = 2s<q2. Suppose & is a u-element in
GL(V,+). Then either Fix(0)=£O or \V\=q.

Proof. Suppose W is an irreducible <#> submodule of V and that 01W =/= identity.
Hence (9 is clearly semiregular on the nonzero points of W and so u divides | W| — 1. But
now as u is a primitive divisor of q — 1 we get 1̂ 1 = "̂" for some integer m ^ l . But
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|K |<g 2 and so every irreducible module W, not in Fix(0), has order q. However, by
Maschke's theorem, V is a direct sum of irreducible <0>-module and so either V = W ox
Fix(C)^o. The lemma follows.

From now on H will always be as in Lemma 5, and we shall tacitly assume that IT is
not a semifield.

Lemma 7. H has no homologies with axis x-

Proof. If false then by Andre's theorem (cf. Step B of Lemma 4) we have

for some homology centre xel—(lnot).
Now if h e Hx is a nontrivial homology then h normalizes E but cannot centralize any

element of £—{1}. But we also have | £ | < q 2 since II is not a semifield plane. Hence
Lemma 6 implies that |£ | = q and now q\\HX\, contrary to Result 2.

Lemma 8. G<i H.

Proof. We must verify that H is 2-closed. So let o^ and <r2 be distinct 2-elements in
H. Since Fix(H) = XG, ^ I U G a n d ^I\XG a r e both involutions fixing %G elementwise and so
ai(J2\lG is a ' s o a n involution. Thus ((7la2)

2 is a central collineation with axis x- Now by
Lemma 7, (o^o^)2 is a t most an elation and so (ff1a2)*=l. Hence H is 2-closed and the
lemma is proved.

Lemma 9. Suppose 6^\ is a u-element in H and let geG — E. Then

Proof. Assume false and let Jt be the set of all Maschke complements of XG m X>
relative to & | x- Now g leaves Jt globally invariant and yet cannot fix any MeJi since
then g would become an elation: recall g already fixes XG elementwise. Thus \Jl\^2 and
so 0\x is a scalar map. But since &\XG=1> @ must now be a homology, contrary to
Lemma 7.

Lemma 10. |GX| = 1 for some xel — (lnx)-

(N.B. This lemma fails in some semifield planes.)

Proof. Let U be a Sylow w-subgroup of H. So U fixes some xel—(lnx)- Suppose if
possible that Gx^l. Now by Lemma 8, H, and therefore Hx, are 2-closed. Thus Gx is
normalized by U as U^HX. Now by Lemma 9, U is semiregular on Gx and so u\\GX\ — 1.
Hence the primitivity of u implies that |Gx|^g; now Lemma 1 contradicts Result 2.
Hence the lemma is valid.

We can now verify the conditions (i) and (ii) of Biliotti and Menichetti (Theorem A).

Proposition 11. Assume TV is a translation plane satisfying hypothesis (H) but that Yll

is not a semifield plane. Let G be a Sylow 2-sub-group of A, the linear translation
complement of II, and E the elation subgroup of G. Then
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(i) \E\ = q;and
(ii) G fixes exactly one point xel and is regular on I — {x}; in particular |G| = q2.

Proof. Part (ii) is Lemma 10. If part (i) fails then by Lemma 1, |£ | = 2eq for some
^.1. Now Lemmas 8 and 9 imply that u\\G\~\E\ and so

Hence we contradict the primitivity of u if |£|=f q. Hence the proposition is valid.
Now Theorem B immediately follows from Proposition 11 and Theorem A.
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