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Abstract

We introduce a technique that is helpful in evaluating the reflexivity index of several classes of topological
spaces and lattices. The main results are related to products: we give a sufficient condition for the product
of a topological space and a nest of balls to have low reflexivity index and determine the reflexivity index
of all compact connected 2-manifolds.
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1. Introduction

Reflexivity was introduced by Halmos in his study of the invariant subspace problem
[4] and has received a lot of attention (see [2]). The notion of reflexivity index, which
in some sense measures the complexity of a lattice, was introduced in [14] in the
context of arbitrary subset lattices. These lattices can be regarded as closed set lattices
equipped with the discrete topology (see [5, 7, 13]). The reflexivity index of various
types of closed subspace lattices has been calculated (see [6, 10]).

In [11], the authors studied the reflexivity index of closed set lattices of topological
spaces equipped with the usual topology and evaluated the index of some examples,
such as spheres and nests of balls with a common centre. However, a direct calculation
of the reflexivity index appears to be difficult in general. By focusing on the product of
lattices and topological spaces, we determine the index of some new examples, such
as closed balls, some new nests and compact connected 2-manifolds.

Let us start with some basic notions. For a topological space X, let S(X) denote
the set of all closed subsets of X and let C(X) denote the set of all continuous
endomorphisms on X. For any L ⊆ S(X) and any F ⊆ C(X), define

AlgL = { f ∈ C(X) : f (A) ⊆ A for all A ∈ L},
LatF = {A ∈ S(X) : f (A) ⊆ A for all f ∈ F }.
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[2] Reflexivity index 377

We say that a subset L of S(X) is reflexive if Lat AlgL = L. Since LatF =
Lat Alg LatF for any F ⊆ C(X),L is reflexive if and only if L = LatF for some
F ⊆ C(X).

The set C(X) is a semigroup under the operation of map composition, with identity
id, where id(x) = x for all x ∈ X. The topology on X induces a topology on C(X),
whose sub-basic open neighbourhoods of ϕ ∈ C(X) are subsets of C(X) of the form
N(x,ϕ, U) = {ψ ∈ C(X) : ψ(x) ∈ U}, where U is any open neighbourhood of ϕ(x) in
X. It can be verified that for any L ⊆ S(X), AlgL is a closed sub-semigroup of C(X).
From [11], we see that for any F ⊆ C(X), LatF = Lat F̂ , where F̂ is the closure in the
induced topology of the semigroup of all finite products of elements in F . It follows
that the set F̂ is also a closed sub-semigroup of C(X).

The meet and join of any collection {Aω : ω ∈ Ω} of closed subsets of X are defined
by
∧
ω∈Ω Aω =

⋂
ω∈Ω Aω and

∨
ω∈Ω Aω =

⋃
ω∈Ω Aω, where A denotes the closure of the

set A. With these operations,S(X) is a complete lattice. We call any complete sublattice
of S(X) containing ∅ and X a closed set lattice. For any F ⊆ C(X), LatF is a closed
set lattice, and so any reflexive family of closed subsets is a closed set lattice.

For any reflexive closed set lattice L, AlgL is the largest of all subsets F of C(X)
with the property that LatF = L. It is of interest to determine the minimal size of such
subsets.

DEFINITION 1.1. The reflexivity index, κ(L), of a reflexive closed set lattice L is

κ(L) = min{|F | : LatF = L}.

IfL = {∅, X}), we denote the reflexivity index ofL by κ(X) for convenience and call
it the reflexivity index of the topological space X. If κ(X) = 1, we say that the space X
is minimal and a map f in F a minimal map.

For a topological space, the reflexivity index is a topological invariant. Intuitively,
a larger reflexivity index suggests a more complicated topological space.

In Section 2 of this paper, we introduce the A-property, which is a property of many
topological spaces, and give a sufficient condition for the product of a topological
space and a nest of balls to have low reflexivity index. By viewing a closed ball as the
product of a lower dimensional ball and a nest consisting of a single element, we show
that all finite dimensional closed balls have reflexivity index 2. In Section 3, we show
that spaces glued together by a finite number of closed balls also have low reflexivity
index, and then determine the index of compact connected 2-manifolds. Finally, in
Section 4, using similar methods, we generalise our results to some noncompact cases.
The main results are Theorems 2.8, 2.9 and 3.2.

2. The A-property and reflexivity index of related products

We introduce some basic notions first. Let H denote a separable infinite dimen-
sional real Hilbert space; H is sometimes written as R∞. Note that any Hilbert
space can be viewed as a topological space equipped with the norm topology. For
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378 B. Ma [3]

1 ≤ n < ∞, let Dn = {x ∈ Rn : ‖x‖ ≤ 1} and Sn = {x ∈ Rn+1 : ‖x‖ = 1}. We also write
D∞ = {x ∈ R∞ : ‖x‖ ≤ 1} and S∞ = {x ∈ R∞ : ‖x‖ = 1}.

For a topological space X ⊂ H , if there is an open neighbourhood O of some
x ∈ X with the property that O ∩ X is strictly contained in X and homeomorphic to
R

n for some n with 1 ≤ n ≤ ∞, then we say that X is an A0-space and O ∩ X is an
A0-part of X with dimension n. An A0-part E of X with the largest (in the sense of
cardinality) dimension N ≤ ∞ is called an A1-part of X. Thus, X is an A0-space if and
only if X contains an A1-part. The fact that E is homeomorphic to RN is sometimes
written dim(E) = N. Let ∂X denote the set of points in X that do not admit open
neighbourhoods whose intersection with X is homeomorphic to Rn for some n with
1 ≤ n ≤ ∞; we call ∂X the boundary of X.

Let F be a set of continuous maps from X to itself and f = gm ◦ gm−1 ◦ · · · ◦ g1
be a finite composition of elements in F . We write f = gmgm−1 · · · g1 or f =

∏m
i=1 gi

for convenience. Fix some f0 ∈ F and denote by Λ the subset of {1, 2, . . . , m} such
that gi = f0 if and only if i ∈ Λ. Let g0 be the identity map and write f =

∏m
i=0 gi and

O f0 ( f , x) = {∏i−1
j=0 gj(x) : i ∈ Λ}.

PROPOSITION 2.1. Suppose that X ⊂ H is a topological space containing an A1-part
E. There is a set of continuous maps F on X with LatF = {∅, X} and there is some
f0 ∈ F such that for any x, y ∈ X and ε > 0, there is a finite composition f of elements
in F such that ‖ f (x) − y‖ < ε and O f0 ( f , x) ∩ E = ∅.

PROOF. From the definition of A0-space, we may choose a point q ∈ X \ E. Let
F = C(X). Choose p ∈ E and let f0 ∈ F be the map satisfying f0(x) = p for all x ∈ X.
For any x ∈ X and y ∈ X \ {p}, there is some constant map in F sending x to y, which
is our desired map. For y = p, there is f1 ∈ F with f1(x) = q for all x. It follows that
f0 f1 maps x to y and O f0 ( f0 f1, x) ∩ E = ∅, and f0 f1 is our desired map. �

We call a set of maps F with the properties in Proposition 2.1 an A1-set of X relative
to E. We call f0 the A- map of the A1-set F . It is easy to see that such a set F contains
more than one element for otherwise, there is no f ∈ F mapping x ∈ E to some other
point with O f0 ( f , x) ∩ E = ∅. This suggests that the minimal cardinality of A1-sets
could be interesting and motivates the following definition.

DEFINITION 2.2. For a topological space X ⊂ H , we say that X has the A-property if
there is an A1-part E of X and the minimal cardinality of A1-sets relative to E is 2. We
call E an A-part of X and a minimal A1-set an A-set of X relative to E.

Note that for any X ⊂ H , the lattice {X,∅} is automatically reflexive [11]. Thus, if
X has the A-property, then κ(X) ≤ 2. Note also that the A-property is a topological
invariant. We say that a topological space Y1 not in H has the A-property if it is
homeomorphic to some space Y2 inH with the A-property, and E1 is an A (or A1)-part
of Y1 if its homeomorphic image E2 inH is an A (or A1)-part of Y2.

For a real number s, let [s] denote the largest integer that is not greater than s, and
let {s} = s − [s]. We record a well-known fact.
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[4] Reflexivity index 379

PROPOSITION 2.3. For an irrational number α, the set {{nα} : n ∈ Z, n > 0} is dense
in [0, 1].

LEMMA 2.4. D1 has the A-property.

PROOF. We study the closed interval X = [0, 1] ⊂ R instead of D1 for convenience.
Note that the open interval E = (3/4, 1) is an A1-part of X. Let α be an irrational
number with 1/4 < α < 1/2 and let

f0(x) = min{x + α, 1}, f1(x) = max{x + α − 1, 0}.

We see that f0 and f1 are continuous maps from X to itself. Given any a, b ∈ [0, 1], let
g0 be the identity map and for n ≥ 1, let inductively gn = f0 if

∏n−1
i=0 gi(a) ∈ [0, 1 − α]

and gn = f1 if
∏n−1

i=0 gi(a) ∈ (1 − α, 1]. From Proposition 2.3, given any ε > 0, there
exists N such that |∏N

i=1 gi(a) − b| < ε. Note that
∏N

i=1 gi is a finite composition of f0
and f1 and O f0 (

∏N
i=1 gi, a) ⊂ [0, 1 − α]. It follows that O f0 (

∏N
i=1 gi, a) ∩ E = ∅. This

completes the proof. �

By saying ‘there exists a finite composition f of f0 and f1 mapping a to some
point close to b’, written f{ f0, f1}(a) ∼ b, we mean that ‘given any ε > 0, we can
find a finite composition F of f0 and f1 satisfying ‖F(a) − b‖ < ε, and f is such a
finite composition for some given ε0 > 0’. If X0, E are subsets of X and we replace
‘‖F(a) − b‖ < ε’ with ‘‖F(a) − b‖ < ε, F(a) ∈ X0 and O f0 (F, a) ∩ E = ∅’, we obtain the
definition of f{ f0, f1;X0;E}(a) � b. Note that f{ f0, f1;X0;E}(a) � b and f{ f1, f0;X0;E}(a) � b have
different meanings: f{ f0, f1;X0;E}(a) � b implies O f0 (F, a) ∩ E = ∅ and f{ f1, f0;X0;E}(a) � b
implies O f1 (F, a) ∩ E = ∅. Note also that if X0 = X and there is no confusion about
the set E, we may write f{ f0, f1}(a) � b instead of f{ f0, f1;X0;E}(a) � b for convenience. The
proof of Lemma 2.4 amounts to ‘there exist continuous maps f0 and f1 on [0, 1] such
that for any a, b ∈ [0, 1], we have f{ f0, f1;[0,1];(3/4,1)}(a) � b’. It will be seen later that these
notions are very convenient.

There is some ‘associativity’ related to these notions: if f0 and f1 are continuous,
then g1{ f0, f1;X;E}(a) � b and g2{ f0, f1;X;E}(b) � c imply g2g1{ f0, f1;X;E}(a) � c.

We introduce a lattice extension before focusing on products in Lemma 2.6. Let
H0 be a nonzero linear subspace of H . For c ∈ H0 and r ≥ 0, let BH0 (c, r) or simply
B(c, r) denote the (closed) ball {x ∈ H0 : ‖x − c‖ ≤ r}. Let N0 = {B(ci, ri) : i ∈ Λ} be
a nonempty set of balls that is totally ordered under the relation of set inclusion.
Assume that sup{ri : i ∈ Λ} < ∞. The set containing ∅,N0, arbitrary intersections and
the closure of unions of elements inN0 is a closed set lattice; we call it a bounded nest
of balls.

For a bounded nest of ballsN , there exists a maximal elementN+ = B(c+, r+) ∈ N
that contains any other element inN . For M ⊂ N+, let M+ denote the intersection of all
elements in N that contain M and M− denote the closure of the union of all elements
in N that do not contain M. For x ∈ N+, let x+, x− denote {x}+, {x}−, respectively.
Write x+ = B(cx+ , rx+), and x− = B(cx− , rx−) if x− is nonempty. For x ∈ N+ with x− being
empty, let x	 = B(cx	 , rx	) = x+. For x with x− being nonempty, there exists a smallest
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tx with 0 ≤ tx ≤ 1 such that x ∈ ∂B((1 − tx)cx− + txcx+ , (1 − tx)rx− + txrx+). To see this,
note that the continuous function ‖x − ((1 − tx)cx− + txcx+)‖ − |(1 − tx)rx− + txrx+ | is
nonnegative when tx = 0, nonpositive when tx = 1 and monotonically decreasing on
[0, 1]. The intermediate value theorem leads to the result. Let t′x = min{2tx, 1} and
let x	 = B(cx	 , rx	) = B((1 − t′x)cx− + t′xcx+ , (1 − t′x)rx− + t′xrx+). It follows that for any
bounded nest of balls N , we have a unique lattice extension N ∪ {x	 : x ∈ N+} of N .

DEFINITION 2.5. We say that a bounded nest of ballsN is well behaved if the function
defined on N+: x �→ rx	 is continuous.

There are examples of bounded nests of balls that are well behaved, such as a finite
nest {[−r, r] ⊂ R : r ∈ {1, 2, . . . , n}} or a continuous nest {[−r, r] ⊂ R : r ∈ [1, 2]}.

The following lemma contains our technique for showing that the product of certain
classes of lattices and topological spaces has low reflexivity index.

LEMMA 2.6. Let H0 be a nonzero linear subspace of H and N be a bounded nest of
balls inH0 that is well behaved. Let X ⊂ H be a topological space with the A-property
and E an A-part of X. Suppose that dim(E) ≥ dim(H0) in the sense of cardinality. Then
the lattice N × X with elements contained in H0 ×H is reflexive and has reflexivity
index no more than 2.

PROOF. We use the notions introduced before Definition 2.5. From [13], we see that
a sufficient condition for N × X being reflexive is that for any (a, b) ∈ N+ × X, the
set {F((a, b)) : F ∈ F } is dense in a+ × X, where F is a set of maps generated by two
elements in Alg (N × X).

Let D denote the unit ball of H0. Note that for any a ∈ N+ and nonzero p ∈ H0,
there is sa,p ≥ 0 such that a + sa,p p ∈ ∂(a	). Define a map φ : D→ C(N+) as follows.
For p ∈ D and p = 0, let φ(p) be the constant map on N+. For 0 < ‖p‖ ≤ 1/2, let
φ(p)(a) = a +min{sa,p, 5r+}p. For 1/2 < ‖p‖ ≤ 1, let φ(p) = φ((1/‖p‖ − 1)p). It can
be shown that φ is continuous with C(N+) equipped with the sup-norm and that for
any a1 ∈ a	, there exists p1 ∈ D with ‖p1‖ ≤ 2/5 < 1/2 such that φ(p1)(a) = a1.

Let { f0, f1} be an A-set of X relative to E with f0 the A-map. Fix some b0 ∈ E. There
exists r0 with 0 < r0 < ∞ such that the set D0 = {b ∈ X : ‖b − b0‖ ≤ r0} is contained in
E. There is a homeomorphism I0 from D0 to the unit ball D1 of a subspace of H , and
since dim(E) ≥ dim(H0), there is an operator P : D1 → D that is a linear projection
mapping D1 onto D. Let ψ = φPI0, so that ψ : D0 → C(N+) is continuous.

Define maps F0, F1 on N+ × X as follows. For any (a, b) ∈ N+ × X, let

F0(a, b) =

⎧⎪⎪⎨⎪⎪⎩
(a, f0(b)) if b ∈ X \ D0,
(ψ(b)(a), f0(b)) if b ∈ D0,

and F1(a, b) = (a, f1(b)).

It can be shown that both of F0 and F1 are continuous. For any (a1, b1) ∈ N+ × X and
(a2, b2) ∈ a+1 × X, if a1 ∈ ∂a+1 , then there exists p1 ∈ D0 such that ψ(p1)(a1) = a2. From
the fact that X has the A-property, we have f{ f0, f1;X;E}(b1) � p1 and after replacing f0
with F0 and f1 with F1 in f, we have F{F0,F1}(a1, b1) ∼ (a1, p1) and F0F{F0,F1}(a1, b1) ∼
(a2, f0(p1)). Note that g{ f0, f1}( f0(p1)) � b2, and after a similar replacement of f0 and
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f1 with F0 and F1, respectively, we have g replaced with G and GF0F{F0,F1}(a1, b1) ∼
(a2, b2), which is our desired result.

If a1 � ∂(a+1 ), then there exists q1 ∈ D0 such that ψ(q1)(a1) = s1 ∈ ∂(a	1) and
q2 ∈ D0 such that ψ(q2)(s1) = s2 ∈ ∂(s	2), and there exists a smallest integer n with
1 ≤ n < ∞ such that ψ(qn)(sn−1) = sn ∈ ∂a+1 . To see this, suppose that t1 ∈ (0, 1)
is the number satisfying a1 ∈ ∂B((1 − t1)ca−1 + t1ca+1 , (1 − t1)ra−1 + t1ra+1 ). Let N1

be the smallest integer satisfying 2−N1 ≤ t1, so that n = N1. Denote the set of
points u in E with the property that ψ(u)(a1) ∈ ∂a	1 by ψ−1(a1 → ∂a	1). Then
g1{ f0, f1;ψ−1(a1→∂a	1);E}(b1) � q1. We also have g2{ f0, f1;ψ−1(s1→∂s	1);E}( f0(q1)) � q2 and
similarly gi+1{ f0, f1;ψ−1(si→∂s	i );E}

( f0(qi)) � qi+1 for all i < n. Let qn+1 ∈ D0 be the point
such that ψ(qn+1)(sn) = a2, so that gn+1{ f0, f1;X;E}( f0(qn)) � qn+1. Finally, we have
gn+2{ f0, f1} f0(qn+1) � b2. Let g∗ = gn+2

∏n+1
i=1 ( f0gi), so that g∗{ f0, f1}(b1) ∼ b2. Replacing f0

with F0 and f1 with F1 in g∗, we obtain a finite composition G∗ and G∗{F0,F1}(a1, b1) ∼
(a2, b2). This completes the proof that the latticeN × X is reflexive and has reflexivity
index no more than 2. �

REMARK 2.7. It will be shown in Example 2.10 that Lemma 2.6 may fail if the
well-behaved property of the nest of balls is omitted.

From Lemma 2.6, we see that the condition ‘N is well behaved and X has the
A-property’ is a sufficient condition for the product to have low reflexivity index.

Now we give our main results of this section. First, note that for 2 ≤ n < ∞, Dn can
be viewed as the product of Dn−1 and a nest consisting of a single element D1.

THEOREM 2.8. For 1 ≤ n < ∞, Dn has reflexivity index 2 and has the A-property.

PROOF. Brouwer’s fixed point theorem implies that for any continuous endomorphism
f on some Dn, Lat { f } contains a singleton. Thus, κ(Dn) > 1 for all n ≥ 1 and Dn has
the A-property implies that Dn has reflexivity index 2.

We show that all Dn have the A-property by induction on n. First, D1 has the
A-property by Lemma 2.4. Suppose now that Dm has the A-property. Then for Dm+1,
which is homeomorphic to D1 × Dm, observe that {D1} is a well-behaved bounded nest
of a single element. We use again the notions from Lemma 2.6. For any (a1, b1) and
(a2, b2) ∈ D1 × Dm, the finite composition of F0 and F1 constructed in Lemma 2.6
and denoted here by F′, which maps (a1, b1) to some point close to (a2, b2), satisfies
OF0 (F′, (a1, b1)) ∩ D1 × (E \ D0) = ∅. Take E0 ⊂ E \ D0 which is homeomorphic to E
and take an open interval I0 ⊂ D1, so that I0 × E0 is an A-part of D1 × Dm. It follows
that Dm+1 has the A-property and the proof is complete. �

Theorem 2.8 will be helpful in proving some new results in following sections.
In [11], the authors determined the reflexivity index of some nests with a require-

ment that any two distinct elements in the nest have disjoint boundaries. Now we give
some new results with this requirement removed. Note, for example, that if we call
a closed interval of positive length a nontrivial closed interval, then the product of a
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bounded nest of nontrivial closed intervals and a topological space homeomorphic to
Dn can be viewed as a nest of spaces homeomorphic to Dn+1, and the intersection of
boundaries of any two nonempty elements is nonempty.

THEOREM 2.9. Let N be a well-behaved bounded nest of closed intervals. For
1 ≤ n < ∞, the nest N × Dn is reflexive and has reflexivity index 2.

PROOF. Reflexivity follows from Lemma 2.6. Brouwer’s fixed point theorem gives
κ(N × Dn) > 1. Then κ(N × Dn) = 2 from Lemma 2.6 and Theorem 2.8. �

We give an example to show that the well-behaved property cannot be omitted in
Lemma 2.6 and Theorem 2.9.

EXAMPLE 2.10. Let N0 = {[−r, r] : r ∈ [1, 2]} ∪ {[−1, 0]} ∪ ∅. Then N0 is a bounded
nest of closed intervals which is not well behaved: the map x �→ rx	 is not continuous
at x = −1. We show that κ(N0 × D1) = ∞.

From [13], we see that N0 is reflexive. Suppose that LatF0 = N0. Let C denote the
set of all constant maps on D1 and let F1 = {( f , id) : f ∈ F0} ∪ {(id, g) : g ∈ C} be a set
of maps onN0 × D1. It can be shown that LatF1 = N0 × D1 and N0 × D1 is reflexive.

Suppose, in contrast, that there exists a finite set F = { fi : i = 1, 2, . . . , n} with
LatF = N0 × D1. For any m ∈ {1, . . . , n} and point T ∈ {−1} × D1, there exists εm,T
such that for any point Z with Z ∈ O(T , εm,T ) = {P ∈ [−2, 2] × D1 : ‖P − T‖ < εm,T },
we have fm(Z) ∈ [−2, 1] × D1. It follows that {O(T , εm,T ) : T ∈ {−1} × D1} is an open
covering of {−1} × D1 which has a finite subcovering, and there exists λm < −1
such that [λm,−1] × D1 is contained in the union of all sets in the subcovering. It
follows that fm([λm, 1] × D1) ⊂ [λm, 1] × D1. Note that each fi ∈ F admits λi < −1
with fi([λi, 1] × D1) ⊂ [λi, 1] × D1. Let λ = max{λi : i = 1, . . . , n}. It follows that
λ < −1 and [λ, 1] × D1 ∈ LatF , which is a contradiction. Thus, κ(N0 × D1) = ∞.

3. An application: determining the index of compact connected 2-manifolds

We wish to determine the reflexivity index of some more complicated topological
spaces, such as the index of a Möbius strip or a Klein bottle. A direct evaluation
appears to be difficult. Our method is to view these spaces as ones glued together
by a finite number of homeomorphic images of closed balls, and then use Theorem 2.8
to show that all of them have low reflexivity index.

We say that a topological space A is glued together by a set of spaces {Ai}i∈Λ if
A =
⋃

i∈Λ Ai is path-connected and Ai ∩ Aj ⊂ ∂Ai ∩ ∂Aj for any i, j ∈ Λ and i � j.

LEMMA 3.1. Let X be a topological space that is glued together by X1, . . . , Xm where
Xi is homeomorphic to Dni for some ni with 1 ≤ ni < ∞, i = 1, . . . , m. Then X has the
A-property.

PROOF. Assume without loss of generality that n1 ≥ ni for 1 ≤ i ≤ m. Write Di instead
of Dni for convenience and let φi : Di → Xi be the homeomorphisms. Note that there
are projections Pi from D1 onto Di for all i = 1, . . . , m. Let D = {x ∈ D1 : ‖x‖ ≤ 1/2}.
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Since φ1(D) has the A-property by Theorem 2.8, let E be an A-part of φ1(D), { f0, f1}
be an A-set of φ1(D) relative to E and f0 the A-map. Take m disjoint closed sets
B1, B2, . . . , Bm such that each of them is contained in E and is homeomorphic to D1.
Let ψi : D1 → Bi denote the homeomorphisms from D1 to Bi, for i = 1, . . . , m.

We define a continuous map F0 on X as follows. For x ∈ Bi for some
i and ‖ψ−1

i (x)‖ ≤ 1/4, let F0(x) = φiPi(4ψ−1
i (x)). For 1/4 < ‖ψ−1

i (x)‖ ≤ 1/2, let
F0(x) = F0((1/2‖x‖ − 1)x). For 1/2 < ‖ψ−1

i (x)‖ ≤ 3/4, let F0(x) = αi(‖x‖), where
αi : [1/2, 3/4]→ X is a path with initial point αi(1/2) = φi(0) and terminal point
αi(3/4) = φ1(0). This can be done since X is path-connected. For 3/4 < ‖ψ−1

i (x)‖ ≤ 1,
let F0(x) = φ1((4‖ψ−1

i (x)‖ − 3)φ−1
1 f0(x)). For all x ∈ φ1(D) \⋃m

i=1 Bi, let F0(x) = f0(x).
For x ∈ φ1(D1) \ φ1(D), let F0(x) = φ1((−2‖φ−1

1 (x)‖ + 2)φ−1
1 f0φ1(φ−1

1 (x)/2‖φ−1
1 (x)‖)).

Finally, for x ∈ X \ φ1(D1), let F0(x) = φ1(0). It can be checked that F0 is continuous.
Define F1 on X similarly. For x ∈ φ1(D), let F1(x) = f1(x). For x ∈ φ1(D1) \ φ1(D),

let F1(x) = φ1((−2‖φ−1
1 (x)‖ + 2)φ−1

1 f1φ1(φ−1
1 (x)/2‖φ−1

1 (x)‖)), and for x ∈ X \ φ1(D1), let
F1(x) = φ1(0). Then F1 is also continuous.

For any a, b ∈ X, notice first that f1(a) ∈ φ1(D) for all a ∈ X. If b ∈ φ1(D), then
f{ f0, f1;φ1(D);E}( f1(a)) � b. Let S ⊂ E be a set that is homeomorphic to E and disjoint
from B1, B2, . . . , Bm, and S is an A1-part of X. Replacing f0 with F0 and f1 with F1
respectively in f, we get F, and FF1{F0,F1;X;S}(a) � b. If b � φ1(D), note that b ∈ Xi0
for some 1 ≤ i0 ≤ m and it can be checked that there exists c ∈ Bi0 with F0(c) = b. It
follows that g{ f0, f1;φ1(D);E}( f1(a)) � c. By the same replacement of f0 with F0 and f1
with F1 respectively in g, we get G, and we have F0GF1{F0,F1;X;S}(a) � b, completing
the proof of the lemma. �

The main result of this section is as follows.

THEOREM 3.2. The 2-torus and the Klein bottle have reflexivity index 1, and all other
compact connected 2-manifolds have reflexivity index 2.

PROOF. From [1], we see that among all compact connected 2-manifolds, only the
2-torus and the Klein bottle admit minimal maps. It follows that they have reflexivity
index 1 and all the others have index no less than 2. From [12], we see that
all closed surfaces admit finite triangulations and from Lemma 3.1, they all have
reflexivity index 2. For a compact connected 2-manifold Y with boundary, from
[8], we see that Y = X \⋃n

i=1 Oi, where X is some compact connected 2-manifold
without boundary and Oi are disjoint open disks. Using the barycentric subdivision
to the triangulation of X finitely many times gives a new triangulation X =

⋃m
j=1 Tm

with the property that each Oi contains some Tji , for ji ∈ 1, . . . , m, i = 1, . . . , n. It
follows that X \⋃n

i=1(Tji \ ∂(Tji )), which is homeomorphic to Y, is glued together by
{Tj : j = 1, . . . , m} \ {Tji : i = 1, . . . , n} and thus has reflexivity index 2. �

4. Generalisations to noncompact cases

We wish to generalise our results to noncompact spaces and related lattices. This
seems difficult in general since a noncompact space is never a continuous image
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of a closed set. Examples of spaces with unknown reflexivity index are given in
Remark 4.7. However, there are some spaces whose reflexivity index can be evaluated,
since a noncompact space can sometimes be written as a countable union of closed
sets.

Let us start with a proposition that will be used later.

PROPOSITION 4.1. Let E =
⋃

n∈Z(n − 1/4, n) ⊂ R. There exists f0, f1 ∈ C(R) such that
for any a, b ∈ R, we have f{ f0, f1;R;E}(a) � b.

PROOF. Let α ∈ (1/4, 1/2) be an irrational number and let f0(x) = x + α and f1(x) =
x + α − 1, x ∈ R, so that f0 and f1 are continuous maps on R.

If b ∈ [[a], [a] + 1), using a method similar to that in Lemma 2.4, we
have f{ f0, f1;R;E}(a) � b. If b ∈ [[a] − m, [a] − m + 1) for some positive integer m,
note that there exists N such that f N

1 (a) ∈ [[a] − m, [a] − m + 1) and we have
g{ f0, f1;R;E}( f N

1 (a)) � b. Let f = g f N
1 and the result follows. If b ∈ [[a] + 1, [a] + 2),

note that we have g1{ f0, f1;([a]+1−α,[a]+3/4);E}(a) � [a] + (7 − 4α)/8. It follows that
f0g1(a) ∈ [[a] + 1, [a] + 2) and g2{ f0, f1;R;E}( f0g1(a)) � b. Let f = g2 f0g1 and the
result follows. It can be shown after repeating the construction for the case when
b ∈ [[a] + 1, [a] + 2) that f{ f0, f1;R;E}(a) � b for any b ≥ [a] + 2. �

REMARK 4.2. Let R+ denote {x ∈ R : x ≥ 0}. If we replace R with R+ and replace E
with

⋃
n≥1,n∈Z(n − 1/4, n) in the above lemma, then the result still holds after replacing

f1(x) = x + α − 1 with f1(x) = max{x + α − 1, 0}.

Note that if H is a topological space homeomorphic to R+, then ∂H is the home-
omorphic image of 0 ∈ R+. In the following proposition, we focus on the reflexivity
index of topological spaces that are glued together by a set of homeomorphic images of
R
+ and D1. These spaces appear often. For example, a space glued together by finitely

many spaces homeomorphic to D1 is called a finite graph.

PROPOSITION 4.3. (i) A finite graph has reflexivity index no more than 2.
(ii) Let {Ai}i∈Λ be a nonempty countable set of topological spaces homeomorphic to

R
+ and {Bj}j∈Γ a countable set of spaces homeomorphic to D1. Then a topological

space X, which is glued together by all Ai and Bj, where i ∈ Λ and j ∈ Γ, has
reflexivity index no more than 2.

PROOF. (i) This follows immediately from Lemma 3.1.
(ii) Suppose first that Λ = Γ = {1, 2, . . .} are both countably infinite sets. For

each positive integer i, let φi denote a homeomorphism from R+ to Ai and write
φ = φ1 for convenience. Again, we let α ∈ (1/2, 1/4) denote an irrational num-
ber and E denote φ(

⋃
n>0,n∈Z(n − 1/4, n)) ⊂ A1. Define continuous maps f0, f1 on

X as follows. For x ∈ A1 \ E, let f0(x) = φ(φ−1(x) + α). For each positive integer
N, let rN : [N − 1/4, N]→ X be a path with initial point φ(N − 1/4 + α), terminal
point φ(N + α), and with the property that BN and all φi([0, N])(1 ≤ i ≤ N) are
contained in rN([N − 1/4, N]). If x ∈ E and moreover N0 − 1/4 < φ−1(x) < N0, let
f0(x) = rN0 (φ−1(x)). Finally, for x ∈ X \ A1, let f0(x) = f0(φ(0)). Then f0 is continuous.
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For x ∈ A1, let f1(x) = φ(max{0, φ−1(x) + α − 3/4}) and for x ∈ X \ A1, let
f1(x) = φ(0), then f1 is also continuous. Now we show that Lat{ f0, f1} = {X,∅}. Note
that f0(A1) = X from our construction of f0. It follows that for any b ∈ X, there exists
c ∈ A1 such that f0(c) = b. For any a ∈ X, since f1(a) ∈ A1, from Remark 4.2, we have
f{ f0, f1;X;E}( f1(a)) � c. Thus, f0 f f1(a) ∼ b and the desired result follows.

If either Λ or Γ is finite, remove the extra φi([0, N])’s and Bj’s that are assumed to
be contained in those rN([N − 1/4, N])’s, and the same result holds. �

In the following proposition, we show that Rn has reflexivity index 2 for all n < ∞.
Equivalently, Cn and open balls in finite dimensional spaces also have index 2.

PROPOSITION 4.4. Rn has the A-property for any 1 ≤ n ≤ ∞. Moreover, Rn has
reflexivity index 2 for 1 ≤ n < ∞.

PROOF. We show first that H = R∞ has the A-property. Suppose that {ξm}∞m=1 is
an orthonormal basis of H . Define continuous maps f0, f1 on H as follows. Let
1/4 < α < 1/2 be an irrational number and let E =

⋃
N≥1,N∈Z(N − 1/4, N) ⊂ R. For

x = (x1, x2, . . .) ∈ H with x1 � E, let f0(x) = x + αξ1.
For a positive integer N, let rN : [N − 1/4, N]→ H be a path with initial point 0,

terminal point 0 and such that {sNξi : −1 ≤ s ≤ 1} ⊂ rN([N − 1/4, N]) for 1 ≤ i ≤ N.
For x1 ∈ E and moreover N0 − 1/4 < x1 < N0, for some positive integer N0, let
f0(x) = x + αξ1 + rN0 (x1), so f0 is continuous. Define f1 by f1(x) = x + (α − 3/4)ξ1 for
all x ∈ H . Let S = {x ∈ H : ‖x + ξ1/8‖ < 1/8} and S is an A1-part ofH .

Suppose that a = (a1, a2, . . .) ∈ H . We show first that given any real number t
and positive integer L, we have f{ f0, f1;H ;S}(a) � a + tξL. If L = 1, then the result
follows from Proposition 4.1. If L> 1, there exists c> 0 such that r[c]+1(c)= tξL.
It follows that h1{ f0, f1}(a)� a+ (c−a1)ξ1, f0(a + (c−a1)ξ1)= a + (c−a1+α)ξ1+ tξL
and h2{ f0, f1}(a + (c − a1 + α)ξ1 + tξL) � a + tξL. We have h2 f0h1{ f0, f1}(a) � a + tξL.
For any positive integer m, let Pm denote the projection onto the linear sub-
space spanned by {ξ1, . . . , ξm}. Given any b = (b1, b2, . . .) ∈ H and ε > 0, there
exists M > 0 such that ‖(1 − PM)a‖ < ε and ‖(1 − PM)b‖ < ε. It follows that
F1{ f0, f1}(PMa) � PMa + (b1 − a1)ξ1, F2{ f0, f1}(PMa + (b1 − a1)ξ1) � PMa + (b1 − a1)ξ1 +

(b2 − a2)ξ2, . . ., FM{ f0, f1}(PMa + ΣM−1
i=1 (bi − ai)ξi) � PMa + ΣM

i=1(bi − ai)ξi) = PMb. That
is, (ΠM

i=1Fi){ f0, f1}(PMa) � PMb. Since ε can be chosen arbitrarily small, this completes
the proof thatH has the A-property.

If n is finite, replacing H with Rn and removing the ‘ε −M’ argument gives the
same result.

Finally, from [3], we see that all noncompact manifolds do not admit minimal maps,
and thus κ(Rn) > 1 for all 1 ≤ n < ∞. It follows that κ(Rn) = 2 for all 1 ≤ n < ∞. �

It was shown in [11] that unit spheres have reflexivity index no more than 2. In the
next proposition, we show that they all have the A-property.

PROPOSITION 4.5. For 1 ≤ n ≤ ∞, the unit sphere Sn has the A-property.
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PROOF. Since Sn is glued together by two spaces homeomorphic to Dn when n is
finite, the desired result follows from Lemma 3.1. Consider the case when n = ∞.
Let {ξi}∞i=1 be an orthonormal basis of R∞. By a rotation operator rotating the
subspace span{ξn, ξn+1}, we mean a linear operator R from R∞ to itself such that
Rξi = cos 2πθξn + sin 2πθξn+1 if i = n, Rξi = − sin 2πθξn + cos 2πθξn+1 if i = n + 1 and
Rξi = ξi if i � {n, n + 1} for some n ≥ 1 and θ ∈ R.

Let {θi}∞i=1 be a sequence of irrational numbers that are rationally independent.
Define multi-rotation operators f0, f1 as follows: let

f0ξ1 = ξ1,
f0ξ2n = cos 2πθnξ2n + sin 2πθnξ2n+1,

f0ξ2n+1 = − sin 2πθnξ2n + cos 2πθnξ2n+1,
f1ξ2n−1 = cos 2πθnξ2n−1 + sin 2πθnξ2n,

f1ξ2n = − sin 2πθnξ2n−1 + cos 2πθnξ2n,

for n ≥ 1. From [11], Lat({ f0, f1}) = {∅, S∞}.
Let E = {x ∈ S∞ : ‖x − ξ1‖ < 1}, then x = (x1, x2, x3, . . .) ∈ E if and only if x1 > 1/2.

Since (x1, x2, x3, . . .) �→ (x2, x3, x4, . . .)/(2x1 − 1) is a homeomorphism from E to R∞,
we see that E is an A1-part of S∞.

Let Pn denote the projection onto the subspace span{ξi : 1 ≤ i ≤ n} for a positive
integer n. Given any a = (a1, a2, . . .), b = (b1, b2, . . .) ∈ S∞ and 0 < ε < 1, there exists
an even number N ≥ 4 such that ‖PNa‖ ≥ 1 − ε, ‖PNb‖ ≥ 1 − ε. Inductively, for
1 ≤ n ≤ N − 1, there exists a rotation operator Sn rotating the subspace span{ξn, ξn+1}
such that Pn(

∏n
i=1 Si)(a) = 0. Now, SN−1 can be chosen so that the Nth coordi-

nate of (
∏N−1

i=1 Si)(PNa) is positive, and we have (PN
∏N−1

i=1 Si)a = ‖PNa‖ξN . From
[9], we see that the SOT-closure { f i

0}
∞
i=1 of { f i

0}
∞
i=1 contains all rotation operators

rotating the subspace span{ξ2n, ξ2n+1} and { f i
1}
∞
i=1 contains all rotation operators

rotating span{ξ2n−1, ξ2n} for n ≥ 1. It follows that h1{ f0, f1;S∞;E}(a) � S1a and inductively,
hn{ f0, f1}((

∏n−1
i=1 hi)a) ∼ (

∏n
i=1 Si)a for 1 < n ≤ N − 1. Note that f0 acts on the points

whose first coordinates are close to 0; in these constructions, the symbol ‘∼’ can be
replaced with ‘�’. It follows that (

∏N−1
i=1 hi){ f0, f1}(a) � d, where d denotes ‖PNa‖ξN +

(1 − PN)a.
Denote ‖PN(b)‖ξN + (1 − PN)b by c. Inductively, for 1 ≤ n ≤ N − 1, there is a

rotation operator Tn rotating span{ξN−n, ξN−n+1} so (PN − PN−n)(b − (
∏n

i=1 Ti)(c)) = 0;
TN−1 can be chosen so that P1(b − (

∏n
i=1 Ti)(c)) = 0. Similarly, k1{ f0, f1}(c) � T1c

and inductively for 1 < n ≤ N − 1, kn{ f0, f1}((
∏n−1

i=1 ki)c) � (
∏n

i=1 Ti)c. It follows that
(
∏N−1

i=1 ki){ f0, f1}(c) � b.
Denote

∏N−1
i=1 hi by F1 and

∏N−1
i=1 ki by F2. Since

‖F2F1a − b‖ ≤ ‖F2c − b‖ + ‖F2‖ ‖F1a − c‖ ≤ ‖F2c − b‖ + ‖F1a − d‖ + ‖d − c‖

and ‖d − c‖ < ε‖ξN‖ + 2ε = 3ε, letting ε → 0, we have (F2F1){ f0, f1}(a) � b. This
implies that S∞ has the A-property. �
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Combining Lemma 2.6 and Propositions 4.4 and 4.5 together gives the following
proposition.

PROPOSITION 4.6. Let N be a well-behaved bounded nest of closed intervals. For
1 ≤ n ≤ ∞, the nests N × Rn and N × Sn both have reflexivity index no more than 2.

REMARK 4.7. It would be interesting to determine the reflexivity index of D∞, R∞, or
a space glued together by an infinite number of spaces homeomorphic to D1.
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