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Abstract

Carrying the apoE e4 allele (E4þ ) is the most important genetic risk for Alzheimer’s disease. Unlike non-carriers (E42 ), E4þ seem not

to be protected against Alzheimer’s disease when consuming fish. We hypothesised that this may be linked to a disturbance in n-3

DHA metabolism in E4þ. The aim of the present study was to evaluate [13C]DHA metabolism over 28 d in E4þ v. E42. A total of forty

participants (twenty-six women and fourteen men) received a single oral dose of 40 mg [13C]DHA, and its metabolism was monitored

in blood and breath over 28 d. Of the participants, six were E4þ and thirty-four were E42. In E4þ, mean plasma [13C]DHA was

31 % lower than that in E42, and cumulative b-oxidation of [13C]DHA was higher than that in E42 1–28 d post-dose (P#0·05).

A genotype £ time interaction was detected for cumulative b-oxidation of [13C]DHA (P#0·01). The whole-body half-life of [13C]DHA

was 77 % lower in E4þ compared with E42 (P#0·01). In E4þ and E42, the percentage dose of [13C]DHA recovered/h as 13CO2 correlated

with [13C]DHA concentration in plasma, but the slope of linear regression was 117 % steeper in E4þ compared with E42 (P#0·05). These

results indicate that DHA metabolism is disturbed in E4þ, and may help explain why there is no association between DHA levels in plasma

and cognition in E4þ. However, whether E4þ disturbs the metabolism of 13C-labelled fatty acids other than DHA cannot be deduced from

the present study.
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Regular consumption of fatty fish rich in n-3 PUFA such as

DHA and EPA protects against CVD risk(1,2) and possibly against

cognitive decline(3–5). Several epidemiological studies have

suggested that higher n-3 PUFA concentrations in plasma or

erythrocytes are associated with a lower risk of ageing-associated

cognitive decline(6–9). However, carriers (E4þ ) of the apoE e4

allele, the most important genetic risk factor for Alzheimer’s

disease(10), seem not to be protected against cognitive decline by

the consumption of fish(11). Furthermore, higher erythrocyte n-3

PUFA are not associated with better cognitive function in E4þ (12).

DHA is a major structural component of brain mem-

branes and is essential in neuronal development and repair,

neurotransmission(13), cell signalling and anti-inflammatory

processes(14,15). Synthesis of EPA and DHA from a-linolenic

acid (ALA) is extremely limited in humans(16), so it is advan-

tageous that preformed EPA and DHA be present in the diet.

The concentration of DHA in plasma usually follows a logarith-

mic distribution with dietary DHA intake(17,18), but E4þ have

a lower plasma response to n-3 PUFA supplementation

compared with non-carriers of E4 (E42 )(19). Indeed, after

receiving 3 g/d of EPA þ DHA for 6 weeks, DHA concentration

in plasma TAG increased by 75 % in E4þ, whereas in E42, the

increase was 240 %(19). Thus, E4þ appear to have altered

DHA metabolism when given an n-3 PUFA supplement.

*Corresponding author: Dr M. Plourde, fax þ1 819 829 7141, email melanie.plourde2@usherbrooke.ca
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British Journal of Nutrition (2013), 110, 1751–1759 doi:10.1017/S0007114513001268
q The Authors 2013

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114513001268  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114513001268


There are two principal ways to assess DHA metabolism

in human subjects: by perturbing plasma DHA with a DHA

supplement or using isotopically labelled DHA. An oral dose

of uniformly labelled carbon 13 [13C]DHA(20) is a precise and

sensitive tool to evaluate the distribution of DHA in plasma

and b-oxidation over time. [13C]DHA metabolism in human

subjects was first reported more than a decade ago(21–23).

In one study, the authors gave a single oral dose between 250

and 280 mg [13C]DHA in the form of a TAG to three healthy

men(22). [13C]DHA levels reached a maximum 2 h post-dose

in plasma TAG and the apparent retroconversion of [13C]DHA

to [13C]EPA was estimated at 1·4 % of the total plasma con-

centration of [13C]DHA. Recently, we gave 50 mg [13C]DHA

in the form of a methyl ester to six young and six elderly

participants(24) and showed that 4 h after the [13C]DHA intake,

the elderly had a fourfold higher [13C]DHA concentration

in plasma total lipids compared with the young participants(24).

Using [13C]DHA, the objective of the present study was to

evaluate whether DHA metabolism is different in E4þ v.

E42. We report the distribution of [13C]DHA in plasma total

lipids, its apparent retroconversion to EPA detected in

plasma total lipids, the b-oxidation of [13C]DHA recovered

in breath in the form of 13CO2, and plasma and the whole-

body half-life of [13C]DHA.

Methods

A total of forty participants over 50 years of age were recruited

between January 2010 and April 2011 in the Eastern Town-

ships of Quebec, Canada. All participants completed the

thirty-item Montreal Cognitive Assessment test for baseline

cognitive status(25). Participants were all non-smokers, and

free of dementia or diabetes. They did not have a diagnosis

of cancer in the past 6 months, liver or renal disease, uncon-

trolled hyper- or hypothyroidism, autoimmune disorder,

elevated markers of inflammation or low serum albumin.

Anyone consuming n-3 PUFA capsules was excluded. The

present study was conducted according to the guidelines

laid down in the Declaration of Helsinki, and all procedures

involving human participants were approved by the Human

Ethics Research Committee of the Health and Social Sciences

Center – Sherbrooke University Geriatrics Institute, which is

the committee mandated to oversee human experimentation

at our institution. Written informed consent was obtained

from all participants. The study is registered at www.clinical-

trials.gov (NCT01577004).

Tracer study design

The [13C]DHA used in the present study was uniformly

labelled (.98 %) and of high chemical purity (99 % pure).

It was synthesised using micro-algae fed with [13C]glucose.

Each 40 mg dose of [13C]DHA methyl ester was stored in an

individual glass ampoule sealed under Ar(20).

Participants arrived fasted on the morning of the metabolic

study day. After collecting baseline blood and breath samples

(see details below), the participants received a breakfast

composed of two pieces of whole-wheat grain toast with

peanut butter, one scrambled egg, one apple, 35 g mozzarella

cheese and 250 ml orange juice. The macronutrient compo-

sition of this 2805 kJ breakfast was as follows: 25·5 g fat, 78 g

carbohydrate and 29 g protein. The 40 mg dose of [13C]DHA

was added to a piece of toast. The breakfast was consumed

by all participants within 15 min. At 4 h after tracer consump-

tion, the participants were given a lunch composed of

lasagne with 200 ml of V8 vegetable juice and a granola bar.

The macronutrient composition of this 2093 kJ lunch was as

follows: 15 g fat, 88 g carbohydrate and 23 g protein.

[13C]DHA metabolism was monitored in blood and breath

samples collected at baseline (0 h) and at 1, 2, 4, 6 and 8 h

post-dose. The participants returned to the metabolic unit 1,

7, 14, 21 and 28 d post-dose for blood and breath sample

collection. A 28 d follow-up was used since this is the typical

amount of time needed for [13C]DHA in plasma to return

to baseline(24). A catheter was installed in a forearm vein

for the collection of blood samples on the first day; later,

blood samples were collected using a 5 ml syringe (Becton

Dickinson) and transferred into 4 ml EDTA tubes (Becton

Dickinson). The tubes were centrifuged at 2300 g for 15 min

at 48C, and plasma was stored in three 0·5 ml Eppendorfs at

2808C until further analyses.

To assess the appearance of 13CO2 coming from the

b-oxidation of [13C]DHA, participants breathed into a device

consisting of a perforated plastic bag attached to a mouthpiece

(EasySampler; QuinTron Instrument Company) to which an

evacuated glass tube was inserted to collect a sample of the

exhaled breath(26,27).

Analytical methods

Total lipids were extracted from 0·25 ml of plasma using the

method described by Folch et al.(28). Heptadecanoate was

added as an internal standard for quantification of fatty

acids. To remove cholesterol, the total lipid extract was then

saponified using 3 ml of 1 M-KOH–methanol and the mixture

was heated at 908C for 1 h. Transmethylation of the resulting

NEFA into fatty acid methyl esters was performed using

14 % boron trifluoride–methanol (Sigma-Aldrich). Fatty acid

methyl esters were analysed using a gas chromatograph

(model 6890; Agilent) equipped with a 50 m BPX-70 fused

capillary column (SGE). Injection and flame ionisation detec-

tion were performed at 2508C with the following oven tem-

perature programme: 508C for 2 min, increased by 208C/min

to 1708C for 15 min and finally increased by 58C/min to

2108C for 7 min. He gas was used as a carrier and the inlet

pressure was 233 kPa at 508C. The identity of individual fatty

acids was determined using standard mixtures of fatty acids

(NuChek 68A, NuChek 411 and NuChek 455; NuChek Prep,

Inc.) and a custom mixture of SFA.

[13C]DHA enrichment analysis in plasma total lipids was per-

formed using GC–combustion–isotope ratio MS, as described

previously(29). 13C/12C post-dose was compared with baseline
13C/12C (pre-dose) to calculate the d (per mil) values that were

designated thereafter as atom per cent excess. Calculations of

[13C]DHA (nmol/ml) and [13C]EPA (pmol/ml) from the atom

R. Chouinard-Watkins et al.1752
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per cent excess values were performed according to Brossard

et al.(22).

Enrichment of 13C in breath CO2 after [13C]DHA consump-

tion was analysed by isotope ratio MS (ABCA, Sercon Limited),

as described previously(27). He gas (Praxair) was used as a

carrier and 5 % CO2/N2 as the reference gas. The percentage

dose of [13C]DHA recovered in breath as 13CO2 was calculated

as described previously(26), except that basal metabolism was

evaluated using indirect calorimetry (CCM/D; Medgraphics

Corporation) to measure the volume of CO2 and O2 exhaled

by the participants over 30 min(30). Cumulative b-oxidation

of [13C]DHA was calculated from the AUC of the percentage

dose recovered at each time point (GraphPad Prism 5 soft-

ware; GraphPad Software, Inc.).

[13C]DHA half-life in plasma was calculated using RxKinetics

online software (RxKinetics; www.rxkinetics.com). The values

of two E42 participants were excluded because [13C]DHA

concentrations in plasma were not available for time points

14, 21 and 28 d. [13C]DHA half-life in the whole body was esti-

mated for each participant using cumulative 13CO2 data. For

three E4þ and twenty-five E42 not reaching a cumulative

b-oxidation of 50 % 28 d post-dose, it was assumed from the

cumulative 13CO2 data of the other participants that beyond

28 d, the curve would be linear (see Fig. 1(d)). Therefore,

using the cumulative 13CO2 data at times 1, 7, 14, 21 and

28 d post-dose, a linear equation in the form of y ¼ mx þ b,

where m is the slope and b is the y value when x ¼ 0, was

calculated for each participant to estimate the time needed

(x) to reach 50 % (y) of cumulative b-oxidation of [13C]DHA

recovered as 13CO2. As a result, five E42 were excluded

because b-oxidation of [13C]DHA recovered as 13CO2 reached

a plateau of ,50 % 7 d post-dose, so it was not possible to

estimate the whole-body [13C]DHA half-life. Correlations

between [13C]DHA concentration in plasma and the percen-

tage dose of [13C]DHA recovered as breath 13CO2 were per-

formed using all time points for all participants (n 58 for

E4þ and n 314 for E42 ). Baseline values of 13C in plasma

DHA and the percentage of 13C in CO2 were removed

before the correlations between [13C]DHA concentration in

plasma and the percentage dose of [13C]DHA recovered as

breath 13CO2 since these values were standardised at zero in

our calculations. The slopes of the linear regression between

[13C]DHA concentration in plasma and the percentage dose

of [13C]DHA recovered as breath 13CO2 was calculated and

compared between E4þ and E42 .

ApoE genotyping

DNA of the participants was extracted from 200ml of whole

blood (QIAmp DNA Blood Mini Kit; Qiagen). The DNA frag-

ment containing the apoE gene (APOE) sequence was amplified

by PCR (Perkin Elmer GeneAmp PCR System 2400; Perkin Elmer)

using the oligonucleotide primers F6 (50-TAAGCTTGGCACGGC-

TGTCCAAGGA-30) and F4 (50-ACAGAATTCGCCCCGGCCTGGT-

ACAC-30), as described previously(31). After amplification, the

DNA fragment was digested using Hha I (New England Biolabs

Ltd) in order to reveal differential digestion patterns related to

the APOE genotype. DNA fragments were then loaded on

a 20 % polyacrylamide gel for migration at 220 V for 3 h and

the fragments were revealed using ethidium bromide(32).
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Fig. 1. [13C]DHA metabolism over 28 d after an oral dose of 40 mg [13C]DHA in apoE e4 carriers (E4þ , D, n 6) and non-carriers (E42 , B, n 34). (a) [13C]DHA

concentration (nmol/ml) in plasma total lipids, (b) [13C]DHA apparent retroconversion into [13C]EPA in plasma total lipids, (c) the percentage dose of [13C]DHA

recovered/h as 13CO2 in breath and (d) the cumulative percentage dose of [13C]DHA recovered as 13CO2 over 28 d of follow-up. In (d), the left curves

follow the left y-axis, whereas the right curves follow the right y-axis. The estimated slope of the right curve (m) was 0·09 (SEM 0·03) in E4þ v. 0·05 (SEM 0·01)

in E42 (P¼0·03). Values are means, with their standard errors represented by vertical bars. There were significant effects for (a) genotype (P¼0·04) and (d) the

genotype £ time interaction (P¼0·003).
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Data expression and statistics

Sample size was based on a calculation that the maximum

concentration of [13C]DHA in plasma total lipids that

would be reached in the postprandial period would be

0·9 nmol/ml(24). From our previous study(24), we estimated

that a twofold difference in plasma [13C]DHA concentration

would be observed between E4þ and E42 in the postpran-

dial period(19). Therefore, the sample size required to detect

this difference using a 5 % significance level and a power of

80 % was six subjects per group(33). We based our sample

size calculation only on plasma [13C]DHA concentration

because DHA in plasma is one of the best documented

biomarkers of the difference between E4þ and E42 (19).

Moreover, since pre-screening for E4þ is not permitted at

our institution, we therefore enrolled forty participants to

recruit at least six E4þ on the assumption that E4þ frequency

is approximately 15–25 %(34,35) in the general population,

heterozygous and homozygous E4þ combined. Data are

shown as means with their standard errors.

Statistics in Fig. 1 were performed using the PROC MIXED

procedure implemented in SAS since some participants had

missing data (SAS 9.2; SAS Institute)(36). This procedure was

used instead of a classical two-way ANOVA to optimise the

use of all data over time and maintain statistical power. The

PROC MIXED procedure allows testing for the effect of time

as a repeated measure, genotype as a fixed factor (E4þ v.

E42 ) and the interaction genotype £ time. Student’s t tests

were performed on Fig. 2, Table 1 and Table 2 to detect sig-

nificant differences between E4þ and E42 (SPSS 17.0;

SPSS, Inc.). The correlation coefficient (R) of the correlations

between plasma [13C]DHA and [13C]DHA recovered/h as

breath 13CO2 was performed using the bivariate correlation

program in SPSS (Fig. 3). To account for potential confound-

ing factors, correlation analyses were performed between

[13C]DHA recovered/h as breath 13CO2 and baseline character-

istics such as age, sex, cholesterol levels, glucose levels and

medications. Statistically significant correlations were included

in a multiple linear regression model. The slopes (b) of the

linear regression between plasma [13C]DHA and [13C]DHA

recovered/h as 13CO2 were compared between E4þ and

E42. For cumulative b-oxidation of [13C]DHA recovered as
13CO2 between E4þ and E42, a simple linear regression

model was used to compare the slope (m) between 1 d and

28 d post-dose. Statistical significance was set at P#0·05.

Results

In the present study, six participants were E4þ (five E3/E4

and one E2/E4, two men and four women) and thirty-

four were E42 (twenty-eight E3/E3 and six E2/E3, twelve

men and twenty-two women). In E4þ, the mean age was

68·0 (SEM 3·3) years, whereas it was 72·4 (SEM 1·5) years in

E42 (NS; Table 1). There was no difference in baseline

characteristics between E4þ and E42 (Table 1) and between

men and women (data not shown). The participants’ score on

the thirty-item Montreal Cognitive Assessment test was 26·1

(SEM 0·5) (maximum score of 30), indicating that they were

cognitively healthy at baseline(25). In E4þ at baseline, the

mean plasma DHA concentration was 73 (SEM 9) mg/l, which

was equivalent to 1·9 (SEM 0·4) % of plasma total fatty acids,

whereas in E42, DHA concentration was 60 (SEM 4) mg/l,

which was equivalent to 1·6 (SEM 0·1) % of plasma total fatty

acids (Table 2). There was no difference in fasting plasma

fatty acid compositions between E4þ and E42 (Table 2).

[13C]DHA metabolism in apoE e4 allele carriers v. apoE
e4 non-carriers

The PROC MIXED procedure detected no genotype £ time

interaction with plasma [13C]DHA (Fig. 1(a)). Nevertheless, a

genotype effect was detected for plasma [13C]DHA, such that

in E4þ, [13C]DHA in plasma total lipids from 1 h to 28 d

post-dose was 31 % lower compared with E42 (mean 0·66

(SEM 0·14) nmol/ml in E4þ v. 0·96 (SEM 0·11) nmol/ml in

E42, P¼0·04; Fig. 1(a)). In both groups, [13C]DHA peaked in

plasma total lipids 6 h after tracer intake; in E4þ, the maximum

value of [13C]DHA was 1·5 (SEM 0·3) nmol/ml, whereas it was

2·0 (SEM 0·2) nmol/ml in E42 (NS; Fig. 1(a)).

The apparent retroconversion of [13C]DHA into [13C]EPA

peaked 1 d post-dose, but was not different between E4þ

and E42 and no genotype £ time interaction was detected

for plasma [13C]EPA concentration (Fig. 1(b)). In E4þ,

[13C]EPA concentration in plasma total lipids reached a maxi-

mum of 17·4 (SEM 3·1) pmol/ml, representing 1·2 % of the

peak plasma [13C]DHA concentration, whereas in E42,

[13C]EPA concentration in plasma total lipids reached a maxi-

mum of 14·4 (SEM 2·4) pmol/ml, representing 0·7 % of the

peak [13C]DHA concentration (NS; Fig. 1(b)).

The percentage dose of [13C]DHA recovered/h as 13CO2 did

not differ at any time point between E4þ and E42 over
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Fig. 2. [13C]DHA half-life in (a) plasma and (b) in the whole body in apoE e4 carriers (E4þ , D, n 6) and non-carriers (E42 , B, n 32 for (a) and n 29 for (b)). Values

are means, with their standard errors represented by vertical bars. * Mean value was significantly different compared with E42 (P#0·05).
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the 28 d of the study (Fig. 1(c)). On the other hand, a

genotype £ time interaction was detected with regard to

cumulative b-oxidation of [13C]DHA recovered as 13CO2

(P¼0·003; Fig. 1(d)). Moreover, in E4þ, the slope of the cumu-

lative 13CO2 line (m) between 1 and 28 d post-dose was 80 %

steeper than in E42 (m ¼ 0·09 (SEM 0·03) in E4þ v. m ¼ 0·05

(SEM 0·01) in E42, P¼0·03; Fig. 1(d)). In E4þ, cumulative b-

oxidation of [13C]DHA recovered as 13CO2 reached a maxi-

mum of 68 (SEM 22) % 28 d post-dose, whereas it reached 35

(SEM 7) % in E42 (NS; Fig. 1(d)).

The [13C]DHA half-life in plasma was 4·6 (SEM 0·8) d in E4þ

and 4·5 (SEM 0·4) d in E42 (NS; Fig. 2(a)). The whole-body

[13C]DHA half-life was heterogeneous and was 77 % lower in

E4þ compared with E42 (32 (SEM 8) d in E4þ v. 140 (SEM

28) d in E42, P¼0·001; Fig. 2(b)). In two E4þ, the mean

whole-body [13C]DHA half-life was 53 d, whereas in four

other carriers, it was 21 d (Fig. 2(b)). In eleven E42, the

whole-body [13C]DHA half-life was .200 d, whereas in four-

teen other E42, it was ,50 d and in four E42, it was between

50 and 200 d (Fig. 2(b)).

Correlation between [13C]DHA concentration in plasma
and the percentage dose of [13C]DHA recovered/h as
13CO2

In E4þ and E42, the percentage dose of [13C]DHA recovered/h

as 13CO2 correlated positively with [13C]DHA concentration in

plasma (R 0·56 in E4þ and R 0·39 in E42, P,0·001 for both;

Fig. 3). The percentage dose of [13C]DHA recovered/h as
13CO2 also correlated with the levels of LDL-cholesterol and

was associated with the use of a statin, so these potential con-

founding factors were included in the multivariate linear

regression model. There was a positive interaction between

genotype and linear regression of the percentage dose of

[13C]DHA recovered/h as 13CO2 (y) with [13C]DHA concen-

tration in plasma (x), and this interaction remained significant

when accounting for confounding factors (P,0·001; Fig. 3).

The slope of the linear regression (b) was 117 % steeper in

E4þ compared with E42 (b ¼ 0·13 (SEM 0·03) in E4þ v.

b ¼ 0·06 (SEM 0·01) in E42, P,0·001).

Discussion

These results demonstrate that [13C]DHA metabolism is disturbed

in E4þ compared with E42 since E4þ had a 31% lower

mean concentration of [13C]DHA in plasma total lipids over

time, but increased b-oxidation between 1 and 28d post-dose.

This difference may be due, at least in part, to the key role of

Table 1. Baseline characteristics of apoE e4 allele carriers (E4þ) and
apoE e4 non-carriers (E42 )

(Mean values with their standard errors)

E4þ (n 6) E42 (n 34)

Mean SEM Mean SEM P

Age (years) 68·0 3·3 72·4 1·5 0·35
Sex (n)

Male 2 12
Female 4 22

BMI (kg/m2) 29·3 2·3 27·2 0·7 0·57
H1Ac Hb (%) 6·0 0·2 5·8 0·1 0·21
Glucose (mmol/l) 5·1 0·4 4·7 0·1 0·72
TSH (mIU/l) 1·9 0·2 1·9 0·2 0·25
Total cholesterol (mmol/l) 4·9 0·4 4·9 0·1 0·82
HDL-cholesterol (mmol/l) 1·3 0·2 1·4 0·1 0·57
LDL-cholesterol (mmol/l) 2·6 0·5 2·8 0·1 0·42
CRP (mg/l) 3·1 1·6 3·6 0·7 0·40
TAG (mmol/l) 2·2 0·8 1·4 0·1 0·90
MoCA test score* 25·3 1·1 26·2 0·5 0·22
Medications (n)†

Anti-hypertension agents‡ 3 15
Statins 3 14
Acetylsalicylic acid 1 4
Levothyroxine 0 6
Biphosphonate 1 7

TSH, thyroid-stimulating hormone; CRP, C-reactive protein; MoCA, Montreal Cognitive
Assessment.

* Score out of a maximum of 30.
† The number of subjects in each group receiving each medication.
‡ Anti-hypertensive agents include angiotensin-converting enzyme inhibitors, angio-

tensin receptor antagonists, b-blockers, Ca channel blockers and diuretics.

Table 2. Fatty acid concentration (mg/l) and percentage in plasma total lipids of apoE e4 allele carriers (E4þ) (n 6)
and apoE e4 non-carriers (E42 ) (n 34) at baseline

(Mean values with their standard errors)

Concentrations (mg/l) Relative percentage (%)

E4þ E42 E4þ E42

Fatty acids Mean SEM Mean SEM P Mean SEM Mean SEM P

14 : 0 45·0 9·0 41·0 4·0 0·71 1·0 0·2 1·1 0·1 0·72
16 : 0 1025·0 167·0 833·0 38·0 0·31 23·0 1·3 22·5 0·4 0·67
16 : 1n-7 123·0 37·0 95·0 8·0 0·48 2·6 0·5 2·5 0·2 0·89
18: 0 286·0 34·0 246·0 8·0 0·30 6·6 0·3 6·8 0·2 0·62
18 : 1n-9 1130·0 231·0 824·0 41·0 0·25 24·8 2·4 22·2 0·4 0·33
18 : 1n-7 84·0 19·0 61·0 3·0 0·30 1·8 0·2 1·6 0·1 0·44
18 : 2n-6 1113·0 43·0 1081·0 52·0 0·80 27·4 3·2 29·5 0·9 0·54
20 : 3n-6 64·0 11·0 54·0 3·0 0·46 1·4 0·1 1·5 0·1 0·53
20 : 4n-6 282·0 21·0 254·0 13·0 0·40 6·8 0·7 6·9 0·2 0·82
18 : 3n-3 36·0 4·0 34·0 3·0 0·74 0·9 0·1 0·9 0·1 0·75
20 : 5n-3 36·0 6·0 35·0 3·0 0·94 0·9 0·2 1·0 0·1 0·76
22 : 5n-3 20·0 2·0 21·0 1·0 0·77 0·5 0·1 0·6 0·1 0·27
22 : 6n-3 73·0 9·0 60·0 4·0 0·24 1·9 0·4 1·6 0·1 0·59
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apoE in postprandial plasma lipoprotein and lipid metab-

olism(37). ApoE has a high affinity for the LDL receptor that is

involved in lipoprotein clearance from the plasma, notably chy-

lomicron remnants and VLDL(38). E4þ have a lower concen-

tration of apoE protein in plasma(39), but with proportionally

more apoE inVLDL and less inHDL comparedwith homozygous

carriers of apoE e3(40). Therefore, clearance of VLDL in E4þ is

potentially more rapid since this process relies partly on the

binding of apoE protein with the LDL receptor(40). Fatty acids

travel in the blood mostly via lipoproteins, so a more rapid

VLDL turnover potentially enhances [13C]DHA clearance from

the plasma, thereby supporting the present observation of

lower plasma [13C]DHA concentrations in E4þ. Moreover,

[13C]DHA was ingested in the form of a methyl ester. Hence,

it is possible that the observed differences in [13C]DHA con-

centrations between E4þ and E42 might be partly due to a

difference in the cleavage capacity of this form of DHA in E4þ,

although, to our knowledge, no study has evaluated

this question.

Several studies have shown that E4þ have higher plasma

TAG than E42 in the postprandial state(41,42), and that there

is an age £ APOE genotype interaction with regard to TAG

metabolism after an oral fat load(41,43). Postprandially, E4þ

over 50 years old had a higher AUC for plasma TAG concen-

trations compared with E42, whereas this difference was

absent between younger E4þ and E42 (41). In the present

study, all participants were aged .50 years old, so we

would anticipate a higher DHA concentration in the post-

prandial state because of higher postprandial TAG levels in

E4þ. However, there was no difference between E4þ and

E42 in total postprandial DHA expressed either in mg/l

or in relative percentage to other fatty acids. Nevertheless,

TAG levels during the postprandial state were not evaluated

in the present study, so we cannot confirm the results

obtained by Carvalho-Wells et al.(41) with regard to TAG con-

centrations in the postprandial state between E4þ and E42 .

We report here for the first time the b-oxidation of [13C]DHA

in E4þ and E42. E4þ had higher cumulative b-oxidation of

[13C]DHA than E42 between 1 and 28 d post-dose (Fig. 1(d)).

The estimated slope (m) of the cumulative b-oxidation of

[13C]DHA between 1 and 28 d post-dose was 80 % steeper in

E4þ than in E42 (Fig. 1(d)), suggesting a higher rate of

the b-oxidation of [13C]DHA in E4þ compared with E42.

This result could help explain the lower plasma [13C]DHA in

E4þ compared with E42. The cumulative b-oxidation of

[13C]DHA 24 h post-dose was 6 % in E4þ and 5 % in E42

(NS; Fig. 1(d)), which was nearly 75 % lower compared with

other common dietary fatty acids such as oleic acid (29 %),

linoleic acid (21 %) or ALA (31 %)(27). This suggests that in

humans habitually consuming low levels of DHA, DHA is

efficiently conserved, probably because of its structural

importance in cell membranes(44) and as a precursor to

signalling molecules derived from DHA, notably resolvins

and protectins(45).

Plasma [13C]DHA correlated with the percentage dose of

[13C]DHA recovered/h as 13CO2 in both E4þ and E42, but the

slope (b) of this relationship was 117 % steeper in E4þ than

in E42 (P,0·001; Fig. 3). Thus, for a given plasma concen-

tration of [13C]DHA, 13CO2 was higher in E4þ than in E42,

showing more rapid b-oxidation of DHA. This difference in

retention v. oxidation of DHA in E4þ is consistent with our

previous report that the increase in plasma DHA after supple-

menting with EPA þ DHA was lower in E4þ than in E42 (19).

b-Oxidation of DHA is thought to be mainly conducted in per-

oxisomes(46), but the relative contribution of peroxisomal v.

mitochondrial b-oxidation to the whole-body production of
13CO2 from [13C]DHA in humans is unknown. To the best of

our knowledge, there are currently no available data supporting

a potential role of APOE4 polymorphism on the expression

and/or activity of these peroxisomal enzymes b-oxidising

DHA. A recent review by Lizard et al.(47) has suggested the

potential dysfunction of peroxisomal metabolism in patients

with Alzheimer’s disease. Since E4þ are more at risk to

develop Alzheimer’s disease, the present results showing

more b-oxidation of [13C]DHA needs further investigation

since the APOE genotype may potentially affect Alzheimer’s

disease risk by affecting the molecular mechanism involved in

fatty acid b-oxidation.

The present study is also the first to estimate plasma and

whole-body half-lives of [13C]DHA. In previous studies, calcu-

lation of [13C]DHA half-life was not possible since a follow-up

of ,72 h did not provide enough time for plasma [13C]DHA to

return to baseline(22). In our previous study(24), b-oxidation of

[13C]DHA was monitored over 7 d post-dose and gave a rough

estimate of the [13C]DHA whole-body half-life of about 10 d,

which is 66 % less than our current estimate for E4þ and

90 % less for E42 (Fig. 2). However, in the present study,

b-oxidation of [13C]DHA was followed over 28 d and the

number of participants was higher than previously(22–24),

thus permitting a more accurate estimate of the whole-body

half-life of [13C]DHA. We estimated that the whole-body

half-life of [13C]DHA was approximately 25 d more than

its plasma half-life in E4þ and .100 d more than its

plasma half-life in E42. Moreover, the whole-body half-life

0·8

0·6

0·4

0·2

0·0

13
C

O
2 

(%
 d

o
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/h
)

[13C]DHA (nmol/ml plasma)
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Fig. 3. Linear regression between [13C]DHA concentration (nmol/ml) in

plasma total lipids and the percentage dose of [13C]DHA recovered/h as
13CO2 in the breath of apoE e4 carriers (E4þ , D, , n 58, R 0·56) and

non-carriers (E42 , B, , n 314, R 0·39) over 28 d of follow-up. The

linear regression model had a slope (b) of 0·13 (SEM 0·03) in E4þ v. 0·06

(SEM 0·01) in E42 (P,0·001).
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of [13C]DHA was 77 % lower in E4þ compared with E42,

corroborating higher b-oxidation of [13C]DHA in E4þ. Since

the whole-body half-life values of [13C]DHA were highly

heterogeneous in the E42 group, we investigated potential

factors besides the APOE genotype that could be associated

with a higher or lower whole-body half-life. No association

was found between the whole-body half-life of [13C]DHA

and age, sex, baseline TAG levels, BMI, baseline DHA or

EPA status and medications (data not shown).

The apparent retroconversion of [13C]DHA into [13C]EPA was

1·2 %, which is similar to the level reported previously(22,24).

These results suggest that most of the [13C]DHA remain in its

native form in human subjects, whereas E4þ tend to have

an overall higher b-oxidation of [13C]DHA without producing

more [13C]EPA compared with E42 .

A potential confounding factor worth considering in the pre-

sent study was whether sex disturbed DHA metabolism, as

suggested by other studies(48–52), since the results presented

here involved men and women pooled together. Previous

studies have shown that women tend to have higher DHA and

EPA in plasma total lipids compared with men(48), and this is

potentially because of a higher conversion of ALA to EPA and

DHA in women(49,51,53) compared with men(54). Moreover,

using [13C]ALA, a study has reported higher b-oxidation in

men compared with women, which was associated with

higher 13C enrichment in saturated acids and monounsaturated

acids, suggesting a preferential pathway towards ALA degra-

dation in men(52). These sex-specific differences in n-3 PUFA

metabolism seem to be in part explained by higher estrogens

in pre-menopausal women(50). In the present study, there was

no difference in plasma [13C]DHA, plasma DHA or [13C]DHA

half-lives in the whole body or plasma between men and

women (data not shown). This is probably because our parti-

cipants were approximately 71 years old and all the women

were postmenopausal. The drop in estrogen levels following

menopause(55) probably contributed to the lack of sex-specific

differences in [13C]DHA metabolism in the present study.

The present study had limitations. The number of E4þ was

small when compared with E42, but baseline characteristics

were similar between the two groups (Table 1). Moreover,

sample size calculation indicated that six participants should

be enough to detect a significant difference in [13C]DHA

metabolism. Pre-screening for E4þ is not permitted at our

institution, so the only alternative for recruiting E4þ parti-

cipants is to run the trial and perform APOE genotyping

afterwards. There was no difference in cholesterol levels

between E4þ and E42, even though other studies have

suggested otherwise(56–58), but our participants were

elderly and three E4þ and fourteen E42 were on statins

during the study. No difference in [13C]DHA appearance in

plasma and b-oxidation was observed when comparing the

participants taking statins or not (data not shown). Another

limitation of the present study was that [13C]DHA was the

only fatty acid tracer used to follow precisely its metabolism.

Hence, whether E4þ disturbs the metabolism of fatty acids

other than DHA cannot be deduced from the present study

and will need further work with 13C-labelled fatty acids

other than DHA.

Conclusion

Compared with E42, E4þ had lower mean plasma [13C]DHA

between 1 h and 28 d post-dose, whereas b-oxidation of

[13C]DHA was higher between 1 and 28 d post-dose. For a

similar level of [13C]DHA in plasma, E4þ had higher 13CO2 in

breath and a lower whole-body half-life of [13C]DHA compared

with E42, suggesting higher [13C]DHA catabolism in E4þ.

Nevertheless, plasma [13C]DHA half-life was similar between

E4þ and E42. Therefore, there seems to be no clear relation-

ship between plasma half-life and the kinetics of [13C]DHA

metabolism. Given that DHA is important for cardiovascular

and brain health, disturbance in [13C]DHA metabolism in E4þ

may increase their vulnerability to cognitive decline or other

diseases. These results may help explain why no association

between plasma DHA and cognition has been observed

in E4þ. Further studies evaluating [13C]DHA metabolism after

a DHA supplement are needed to evaluate whether a high

dose of EPA þ DHA could return DHA homeostasis in E4þ

towards normal.
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