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Abstract. Some recent investigations on the existence and nature of nongravitational forces acting 
on comets have required the application of a good deal of high precision numerical procedures. 
In this paper these procedures are examined critically; special attention is given to cases where 
difficulties may appear when a comet makes a close approach to a planet or the Sun. 

1. Introduction 

In recent times important advances have been made in the study of irregularities in 
the motions of comets. The results, especially those obtained by Marsden (1968, 1969, 
1970), seem to correspond very closely to Whipple's (1950) theory on the physical 
nature of cometary nuclei and give evidence for the existence of nongravitational 
forces acting on comets. In Marsden's work the equations of motion for a comet in 
a system of heliocentric cartesian coordinates are adopted in the following form: 

x = -iixr~3 + dR/dx + F.xr1 + F2(rx - rx)h~l + F3(yz - zy)h~\ 

where .v-> v, z\ h2 = (yz — zy)2 + (zx - xz)2 + (xy — v.v)2; r2 = x2 + y2 + z2\ 
/x is the gravitational constant, R the planetary disturbing function, and Fu F2 and 
F3 are orthogonal components of a nongravitational force to be determined. Further, 
the F's are assumed to be of the form 

F{ = ^ J e x p ( - ^ T ) e x p ( - r 2 / C ) / - n r ; / = 1,2,3; 

where C, «, A{< Bt are constants and r is the time from the initial osculation epoch. 
The constants C and a are more or less arbitrarily set at 2 and 3, respectively. On the 
other hand, a selection of the constants A, and Bi% together with the six Keplerian ele­
ments of the orbit, are determined by a process of successive differential corrections. 

To establish the equations of condition it is necessary to integrate the equations 
of motion given above. In these calculations certain difficulties arise when a comet 
makes a close approach to Jupiter. Particularly in the cases of P/Schaumasse and 
P/Perrine-Mrkos it seems to be very difficult to establish a set of Keplerian and non-
gravitational parameters in order to link several returns without the appearance of 
systematic trends in the residuals. It has been considered that in these cases the 
nature of the trouble may be more mathematical than physical. We agree with such 
an assumption, and the purpose of the present communication is to point out possible 
sources of error in the numerical calculations and to indicate possible ways of solving 
this type of problem. 

We believe that one of the difficulties stems from truncation errors accumulated 
in the numerical integration of the equations of motion when the comet makes a 
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close approach to a planet or to the Sun. These errors are then reflected and can be 
magnified in the process of differential corrections of the parameters. In the follow­
ing sections we examine in order those numerical processes. 

2. The Numerical Integration of the Equations of Motion 

Let us first consider the following example, which may be a typical case of the motion 
of a comet that periodically makes close approaches to the Sun. To simplify matters, 
we have considered that the heliocentric motion of the comet is perturbed only by 
Jupiter, and that the motion occurs in the orbital plane of the planet - which is assumed 
in turn to describe a circular orbit around the Sun. The motion can then be referred 
to synodic coordinates and described by the equations of the restricted problem of 
three bodies; the unknowns are in this case the coordinates (x, y) of the comet and 
their derivatives (x, y). We have chosen the initial conditions corresponding to a 
periodic orbit of a type described by Rabe (1961); it has been demonstrated by 
Deprit and Palmore (1966) that this type of orbit is stable. The orbit is defined by 
the following elements: a = 5.20 AU (/>= 11.86 yr), e = 0.91 (# = 0.45 AU). 

For the numerical integration we used the Runge-Kutta-Gill method; during the 
whole computation the step-size was controlled in order to keep the local trunca­
tion error under a certain tolerance limit, given as an input parameter. To estimate 
the local truncation error we used the well-known method of advancing the computa­
tion for two steps (of size /*), then repeating it in one step of double size (2h) and 
comparing the results. We found also a good estimate of the total errors accumulated 
after n steps of integration by applying a method developed by ourselves that can be 
outlined as follows: 

Let us consider an 'original problem' of ordinary differential equations that, with­
out loss of generality, may be written in the form: 

dx/dt = / ( / , x), x(0) = x0. 

By any numerical process we obtain numerical results xn, and we want an estimate of 
the error ^n = x(tn) — xn after n steps of integration. For that purpose we may deter­
mine first an empirical function P(t), which can be a polynomial or any other simple 
function involving coefficients that are adjusted to represent, in the best possible 
manner, the numerical values xn for a certain interval of t. Now we can establish a 
'pseudo-problem' of the form 

dz/dt = f(t, z) + P\t) - f(t, />(/)), z(0) = x0. 

The exact solution is evidently z=P(t). If we apply the same numerical process to 
this pseudo-problem we shall obtain numbers z, and the error after n steps will be 
exactly t>n=P(tr)-zn. Under certain conditions this error £n is also a good estimate 
of the error fn in the original problem. These conditions are based on the asymptotic 
theory of error propagation; for a discussion see Zadunaisky (1964), and for practical 
applications see Zadunaisky (1969). 

We first performed the computation to a moderate degree of accuracy by carrying 
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nine significant digits and controlling the step size so as to keep the local truncation 
errors under 10 ~8. The computation was extended to three orbital periods, and the 
results are shown in Figure 1, where the accumulated error x and y, obtained by our 
method outlined above, are plotted on a semilogarithmic scale as a function of 
time. 
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Fig. 1. The accumulated errors in x and y during three orbital periods. The local roundoff error 
is 10 ~9 and the tolerated local truncation error 10 ~8. In the intervals (a, b), (c, d), and (e, f) the 

heliocentric distance of the comet is smaller than 3 AU. 

It is clearly seen how the errors follow an oscillating pattern as a consequence of 
the fact that both the orbit and the numerical process are stable. However, when the 
comet comes closer to the Sun and the heliocentric distance becomes smaller than 
three astronomical units there is a sudden increase in the size of the accumulated 
errors, which become much larger than the tolerated local error. The reason for this 
is that the estimation of the local errors is based on the implicit assumption that the 
higher derivatives of the unknowns do not become too large, which is true only while 
the comet is not close to one of the primaries. 

2 nd PERIOD 
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We have also performed the same calculation with higher standards of accuracy, 
namely carrying 16 significant digits and setting the tolerance limit for the local error 
at 10"13. The behaviour of the accumulated error followed more or less the same 
oscillatory pattern as before but, of course, its size was much smaller, reaching a 
maximum limit of the order of 10~8. 

In the ordinary process for the correction of just the six Keplerian elements of an 
osculating orbit, errors of that size should not bother us too much. However, if one 
adds as unknowns the parameters defining nongravitational forces, the order of magni­
tude may be that of the errors, and their determination can be substantially affected. 
The point of interest here is that nonnegHgible errors in the calculation may occur 
precisely in that region of the orbit where most of the observations are made. If one 
considers a linear system of equations of condition Ax = b, those errors appear as 
perturbations &A in the matrix A and Sb in the vector b of residuals. As we shall 
show in the following sections, the effect of those perturbations can be considerably 
magnified in the solution x due to the instability that characterizes the process of 
least squares solution. 

3. The Process of Successive Differential Corrections 

A. CONVERGENCE AND ESTIMATION OF ERRORS 

The standard method of differential correction, as used in practical applications, 
can be described as follows. Let 

ft(al9 a29 ...,ak) = yt; i = 1, 2 , . . . , n, (1) 

be a system of equations of condition, where / ( are given functions, in general not 
linear, of certain parameters au a2,. . . , ak, and yt are observed quantities. Assuming 
n>k9 it is proposed to solve the system for the unknowns au a29..., ak in the least 
squares sense. By using the vectorial notation A = (al9 a2,..., ak), B = (yl9 y2,.. .9yn), 
F(A) = (fi,f2,.. ,/n)> and assuming that an approximate solution Ar is known, one 
wants to obtain a further approximation Ar + 1 = Ar+AAr, where the correction AAr 

is so small that its square and higher powers are supposed negligible. 
Such a correction is obtained as the least squares solution of the linear system 

M x AAr = B(Ar), (2) 

where M is the Jacobian matrix (dfjdaj); i= 1, 2 , . . . , n; j= 1, 2 , . . . , k\ and B(Ar) = 
B—F(Ar) is the vector of residuals. The least squares solution is given by 

AAr = [(MTM)-1MT]B(Ar). (3) 

The procedure can be repeated, and we have the iteration formula 

Ar + 1 = <KAr), (4) 
where 

cp(A) = A + N\A)MT(A)B(A), (5) 

https://doi.org/10.1017/S0074180900006422 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900006422


148 P. E. ZADUNAISKY 

N=MTM being the normal matrix of the system. 
In the language of functional analysis the process of successive differential correc­

tions is represented by the equivalent problem of finding a 'fixed point' of the func­
tion <p(A). On the other hand, the operator 9 is said to be a contraction operator when 
there exists a factor a such that 

\\cp(Ar + 1) - 9>(A)|| < a\\Ar + 1 -Ar\\9 0 < a < 1, (6) 

for any pair of vectors A r + 1 and Ar. Under these conditions the set of approximations 
Ar converges to a unique solution A*. Furthermore, an upper bound of the error of 
the rth approximation is given by 

M* - 1̂1 ^ rh Mr - Ar~i1 (7) 

Applying some known results of the theory (Zadunaisky and Pereyra, 1965; Pereyra, 
1967), we have found an upper bound for the factor a to be 

a< \\N-\Ar)\\ x \\Q(Ar)\\ x \\S(Ar)l (8) 

where Q(Ar) is a matrix whose elements are defined by 

Qpq = max J^-- (9) 
pq i dapdaq 

This upper bound of a evidently has, by Equation (6), an important effect on the 
precision and speed of convergence of the iterated least squares process. According 
to Equation (8), it depends on three factors, each of them having a special meaning, 
as shown below. 

The factor ||£(>4r)|| evidently reduces to zero in a linear problem; in the general 
case it measures the influence of the nonlinear terms neglected in the process. 

The third factor is the sum of the squares of the residuals (if one adopts the Euclid­
ean norm for vectors), and it depends, of course, on both an adequate choice of the 
functions ft and the good quality of the observations. 

B. NUMERICAL STABILITY OF THE PROCESS 

Now let us turn our attention to the factor ||N~1(Ar)\\ in Equation (8). In our calcula­
tions we have assumed implicitly that in the linear system, Equation (2), the n x k 
matrix M has a rank r = k; i.e., all the columns are linearly independent. In that case 
the normal matrix TV is nonsingular and the least squares solution is given by Equa­
tion (3), where the expression in brackets is called a pseudo-inverse of the matrix M 
and is usually indicated by the notation 

M+ = {MTM)~1MT. (10) 

When r<k the normal matrix is singular, but it is still possible to obtain two dif­
ferent types of least squares solutions in a way that can be outlined as follows (Rosen, 
1964; Pereyra and Rosen, 1964). 
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To simplify the notation let us write the linear system, Equation (2), in the form 

Ax = b, (11) 

where A is an n x k matrix, and x and b are vectors of k and n dimensions, respec­
tively. In A there are r linearly independent columns, and without loss of generality 
the matrix A can be partitioned in the form 

A = (B, B), 

where B is an n x r matrix of independent columns, and 2? is an n x (k — r) matrix formed 
by the rest of the columns of A. The normal matrix (BTB) is then nonsingular, and 
the pseudo-inverse of B is 

B+ = {BTB)~1BT. 

Then a pseudo-inverse of A is given by the formula 

A+ = CT(CCT)B\ 
where 

C = B+A. 

It is possible to show that the vector 

xm = A + b 

satisfies the least squares condition and xm has minimum modulus. On the other 
hand, if we form the matrix 

r 
A# = ': 

\ 0 
where the first r rows consist of the matrix B+ and the remaining rows are zero, the 
vector 

xb = A#b 
also satisfies the least squares condition, and it has at most r nonzero components. 
xm is called a minimum approximate solution and xb is a basic approximate solution. 

The matrices B and (BTB) ~x may be determined by the following recursive algorithm. 
Let aq be the ^th column of A and Bq a submatrix of A formed by its first q columns. 
Assuming (BqBq)'1 to be known, one obtains 

where 

and 

t/q = Bq
+aq + 1 

\\PqQq ttQ + l — ||-« Q^Q + l | | » 

Pq = (l - B^BIB,) xBT
q). 
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The process is initiated with the first column of A, obtaining (BlB1)~1 = (ala1) and 
then adding one column at a time. The column aq + 1 is linearly independent of those 
in Bq if aq + 1>0, because Pq is a projection matrix that takes the vector aq + 1 into 
the space orthogonal to that spanned by Bq. In an actual computation one should 
never obtain a value of <xq + 1 exactly equal to zero, so that one gives a properly chosen 
parameter y, and a column aq + 1 is considered as linearly independent of those of 
Bq when aq +1 > y. 

The whole process can be performed by rows instead of by columns. If the system 
Ax = b represents a linear model of a physical process, the analysis by columns may 
give an indication of how well the parameters have been selected in the sense that 
strong correlations do not exist among them. On the other hand, the analysis by rows 
should show the effects of the successive observations on the model. 

So far we have assumed that the rank of A can be well determined and x computed 
without difficulties. But when the rank of A is not well determined and the normal 
matrix becomes nearly singular or ill-conditioned, serious difficulties may arise. 

In the case that A is a square nonsingular matrix it is known that a perturbation 
8b in the right-hand member of Ax = b, or a perturbation 8A in A, may produce 
changes 8x in the solution such that 

11**11 II ,11 IH IM 11**11 
i r - r r < \\A\\ x L4 I JiTTir 

and 

**H < M | | x |U-i||l"l 
II* + 8x 

respectively. 
The product ||^|| x \\A~1\\ is the 'condition number' of A, and when A is nearly 

singular it becomes large, and the effects of the perturbations 8b and 8A can be greatly 
magnified. 

When the matrix A is rectangular, similar, although more complicated, results 
may be obtained by introducing the 'pseudo-condition' number \\A\\ x \\A + \\. W e 
have described before a method of selection of the successive columns of A, in order 
to form the submatrix B, by checking the degree of correlations among the variables. 
The procedure may be completed so as to obtain a pseudo-inverse that produces the 
smallest possible magnification of the errors introduced by the perturbations 8b 
and 8A. The details of these procedures fall beyond the limits of this report; see 
Pereyra (1969). 

4. Final Remarks 

We have shown in Section 2 how the numerical integration of the equations of 
motion may introduce in the equations of condition perturbations, which may be 
small but not negligible. In Section 3 we have shown how these perturbations can be 
magnified in the least squares solution of the equations of condition. We think that 
this can be a possible explanation of the anomalies observed in those comets that 
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make close approaches to Jupiter or the Sun. 
These difficulties are not unavoidable; the standard procedures for the numerical 

integration of the equations of motion can be applied and completed with the method 
of error estimation described in Section 2. On the other hand, the resolution of the 
equations of condition can be performed by the methods outlined in Section 3, with 
all the precautions indicated there for avoiding the troublesome effects that result 
from their instability. 

We intend to perform a series of numerical experiments on typical cometary orbits 
by applying this type of technique. 
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Discussion 

B. G. Marsden: I appreciate the difficulties you have mentioned, but I think Sitarski and Yeomans 
will agree with me that these strange anomalies in the motions of comets are sometimes very large 
indeed. Furthermore, they consistently occur for the same comets, and around the same time. In 
particular, a large anomaly appears in the case of P/Perrine-Mrkos whether one fits the 1955 and 
1962 observations and extrapolates forward to 1968, or whether one fits the 1962 and 1968 obser­
vations and extrapolates back to 1955; and calculations have been made, by Sitarski and myself, 
using completely independent procedures. 

P. E. Zadunaisky: I should like to make experiments with this method and see what happens. 
I am in a position now to obtain quantitative results about the dependence and the upper bounds 
of the errors we may expect. 
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