BRUNN-MINKOWSKI TYPE INEQUALITIES FOR L_{p} MOMENT BODIES*

BAOCHENG ZHU, NI LI AND JIAZU ZHOU
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
e-mail: zhubaocheng814@163.com,lini628@163.com,zhoujz@swu.edu.cn

(Received 4 August 2011; revised 23 February 2012; accepted 30 August 2012; first published online 25 February 2013)

Abstract

About 15 years ago, Lutwak and Zhang (E. Lutwak and G. Zhang, Blaschke-Santalo inequalities, J. Differ. Geom. 47 (1997), 1-16) introduced the notion of L_{p} moment bodies and established important volume inequalities for them, which were recently generalized by Haberl and Schuster (C. Haberl and E. Schuster, General L_{p} affine isoperimetric inequalities, J. Differ. Geom. 83 (2009), 1-26). In this paper, we establish new Brunn-Minkowski-type inequalities with respect to Blaschke L_{p} harmonic addition for the quermassintegrals and dual quermassintegrals of L_{p} moment bodies.

2000 Mathematics Subject Classification. 52A40.

1. Introduction and main results. Centroid bodies were defined and investigated by Petty [27]. They have proven to be a remarkably powerful tool in establishing a number of fundamental affine isoperimetric inequalities due to Petty [27-29] (see also [18, 19]). Projection bodies were introduced by Minkowski at the turn of the previous century and have since become a central notion in convex geometry (see e.g. [8] and the references therein). All centroid and projection bodies are zonoids. However, the centroid operator and the projection operator are quite different. For example, the centroid operator commutes with linear transformations, while the projection operator does not; the projection operator is translation invariant, but the centroid operator is not.

While projection bodies and the projection operator have been the objects of intensive investigations during more than 50 years, centroid bodies (volumenormalized moment bodies) and their L_{p} extensions by Lutwak and Zhang [24] have attracted increased attention only in the last two decades (see e.g. [4-6, 8-15, 19-25, 33, $\mathbf{3 5}, \mathbf{3 6}, \mathbf{3 8}]$). The aim of this paper is to obtain the Brunn-Minkowski-type inequalities with respect to Blaschke L_{p} harmonic combinations for quermassintegrals and dual quermassintegrals of L_{p} moment bodies (see e.g. $[\mathbf{1 , 2 , 2 6}, \mathbf{3 1}, \mathbf{3 2}]$ for related results).

Let \mathcal{K}^{n} denote the set of convex bodies (compact, convex subsets with non-empty interiors) in \mathbb{R}^{n}. For the set of convex bodies containing the origin in their interior and the set of convex bodies centred at the origin, we write \mathcal{K}_{o}^{n} and \mathcal{K}_{s}^{n} respectively. The unit ball in \mathbb{R}^{n} and its surface will be denoted by B and S^{n-1} respectively. The volume and surface area of the convex body K will be denoted by $V(K)$ and $S(K)$ respectively.

If $K \in \mathcal{K}^{n}$, then its support function $h_{K}=h(K, \cdot)$ is defined by $h(K, x)=\max \{x \cdot y$: $y \in K\}, x \in \mathbb{R}^{n} \backslash\{0\}$. Let K be a star body in Euclidean space \mathbb{R}^{n}, that is a compact set

[^0]which is star-shaped with respect to the origin and has a continuous radial function $\rho_{K}(u)=\rho(K, u)=\max \{\lambda \geq 0: \lambda u \in K\}, u \in S^{n-1}$. Let \mathcal{S}_{o}^{n} be the set of star bodies in \mathbb{R}^{n} containing the origin in their interiors. Two star bodies K and L are said to be dilates (of one another) if $\rho_{K}(u) / \rho_{L}(u)$ is independent of $u \in S^{n-1}$.

If K is an arbitrary non-empty subset of \mathbb{R}^{n}, then the set $K^{*}=\{x: x \cdot y \leq 1, y \in K\}$ is called the polar set of K. According to the definitions of polar body, support function and radial function, it follows that for $K \in \mathcal{K}_{o}^{n}$,

$$
\begin{equation*}
h\left(K^{*}, u\right)=\frac{1}{\rho(K, u)}, \quad \rho\left(K^{*}, u\right)=\frac{1}{h(K, u)} \tag{1.1}
\end{equation*}
$$

Lutwak and Zhang [24] introduced the notion of L_{p} moment bodies: For each compact star-shaped (about the origin) L in \mathbb{R}^{n} and any real $p \geq 1$, the L_{p} moment body $M_{p} L$ of L is defined by

$$
\begin{equation*}
h\left(M_{p} L, u\right)^{p}=c_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} \rho(L, v)^{n+p} d S(v) . \quad u \in S^{n-1} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n, p}=\frac{\Gamma\left(\frac{n+p}{2}\right)}{\pi^{(n-1) / 2} \Gamma\left(\frac{1+p}{2}\right)} . \tag{1.3}
\end{equation*}
$$

We note that the constant $c_{n, p}$ in the definition of L_{p} moment body is chosen so that for the unit ball B we have $M_{p} B=B$. We use $M_{p}^{*} L$ to denote the polar of $M_{p} L$. From definition (1.2), it is easy to see that for any $L \in \mathcal{S}_{o}^{n}$, the L_{p} moment body $M_{p} L \in \mathcal{K}_{o}^{n}$ is well defined.

Lutwak et al. [21] (see also Campi and Gronchi [3]) established an L_{p} version of the classical Busemann-Petty centroid inequality: For $p \geq 1$ and convex bodies K containing the origin in their interiors,

$$
V(K)^{n / p-1} V\left(M_{p} K\right) \leq V(B)^{n / p}
$$

with equality if and only if K is an ellipsoid centred at the origin.
Suppose $K, L \in \mathcal{S}_{o}^{n}$ and $p \geq 1$. Yuan et al. (see [37]) introduced the Blaschke L_{p} harmonic combination of K and $L, K \widehat{+}_{p} L$. Let $\xi>0$ be defined by

$$
\xi^{1 /(n+p)}=\frac{1}{n} \int_{S^{n-1}}\left[V(K)^{-1} \rho(K, u)^{n+p}+V(L)^{-1} \rho(L, u)^{n+p}\right]^{n /(n+p)} d S(u)
$$

The body $K \widehat{+}_{p} L \in \mathcal{S}_{o}^{n}$ is defined as the body whose radial function is given by

$$
\xi^{-1} \rho\left(K \widehat{+}_{p} L, \cdot\right)^{n+p}=V(K)^{-1} \rho(K, \cdot)^{n+p}+V(L)^{-1} \rho(L, \cdot)^{n+p} .
$$

Note that, since $\xi=V\left(K \widehat{+}_{p} L\right)$, we have

$$
\begin{equation*}
\frac{\rho\left(K \widehat{+}_{p} L, \cdot\right)^{n+p}}{V\left(K \widehat{+}_{p} L\right)}=\frac{\rho(K, \cdot)^{n+p}}{V(K)}+\frac{\rho(L, \cdot)^{n+p}}{V(L)} \tag{1.4}
\end{equation*}
$$

The main results of this paper are the following Brunn-Minkowski-type inequalities for the quermassintegrals W_{i} and the dual quermassintegrals \widetilde{W}_{i} of L_{p} moment bodies.

Theorem 1. If $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$ and $i=0,1, \ldots, n-1$, then

$$
\begin{equation*}
\frac{W_{i}\left(M_{p}\left(K \widehat{+}_{p} L\right)\right)^{\frac{p}{n-i}}}{V\left(K \widehat{+}_{p} L\right)} \geq \frac{W_{i}\left(M_{p} K\right)^{\frac{p}{n-i}}}{V(K)}+\frac{W_{i}\left(M_{p} L\right)^{\frac{p}{n-i}}}{V(L)} \tag{1.5}
\end{equation*}
$$

with equality if and only if K and L are dilates when $p>1$ or when $p=1$ and $0 \leq i<$ $n-1$; there is always equality in (1.5) when $p=1$ and $i=n-1$.

Theorem 2. If $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, and $i \neq n$, then
for $i<n$ and $n<i<n+p$, we have

$$
\begin{equation*}
\frac{\widetilde{W}_{i}\left(M_{p}^{*}\left(K \widehat{+}_{p} L\right)\right)^{-\frac{p}{n-i}}}{V\left(K \widehat{+}_{p} L\right)} \geq \frac{\widetilde{W}_{i}\left(M_{p}^{*} K\right)^{-\frac{p}{n-i}}}{V(K)}+\frac{\widetilde{W}_{i}\left(M_{p}^{*} L\right)^{-\frac{p}{n-i}}}{V(L)} \tag{1.6}
\end{equation*}
$$

for $i>n+p$, we have

$$
\begin{equation*}
\frac{\widetilde{W}_{i}\left(M_{p}^{*}\left(K \widehat{+}_{p} L\right)\right)^{-\frac{p}{n-i}}}{V\left(K \widehat{+}_{p} L\right)} \leq \frac{\widetilde{W}_{i}\left(M_{p}^{*} K\right)^{-\frac{p}{n-i}}}{V(K)}+\frac{\widetilde{W}_{i}\left(M_{p}^{*} L\right)^{-\frac{p}{n-i}}}{V(L)}, \tag{1.7}
\end{equation*}
$$

with equality in either of the inequalities (1.6) and (1.7) if and only if K and L are dilates.
2. Preliminaries. In this section we collect some basic well-known facts that will be useful in the proofs of our results. For references about the Brunn-Minkowski theory, see $[\mathbf{8}, 30]$.
2.1. L_{p} Mixed quermassintegrals. Let $K \in \mathcal{K}^{n}$, the quermassintegrals $W_{i}(K)$, for $i=0,1, \ldots, n-1$, of K, are defined by (see $[8,17]$)

$$
\begin{equation*}
W_{i}(K)=\frac{1}{n} \int_{S^{n-1}} h(K, u) d S_{i}(K, u), \tag{2.1}
\end{equation*}
$$

where $S_{i}(K, \cdot)(i=0,1, \ldots, n-1)$ is called the area measure of order i of $K \in \mathcal{K}^{n}$. In particular,

$$
\begin{equation*}
W_{0}(K)=V(K) \tag{2.2}
\end{equation*}
$$

For $p \geq 1, K, L \in \mathcal{K}_{o}^{n}$ and $\varepsilon>0$, the Firey L_{p} combination $K+_{p} \varepsilon \cdot L \in \mathcal{K}_{o}^{n}$ is defined by (see [7, 17])

$$
h\left(K+{ }_{p} \varepsilon \cdot L, \cdot\right)^{p}=h(K, \cdot)^{p}+\varepsilon h(L, \cdot)^{p},
$$

where ' \cdot ' in ' $\varepsilon \cdot L$ ' denotes the Firey scalar multiplication.
Associated with the Firey L_{p} combination, Lutwak [16] defined the L_{p} mixed quermassintegrals as follows: For $K, L \in \mathcal{K}_{o}^{n}, i=0,1, \ldots, n-1$ and real $p \geq 1$, the L_{p} mixed quermassintegrals $W_{p, i}(K, L), i=0,1, \ldots, n-1$, are defined by

$$
\begin{equation*}
\frac{n-i}{p} W_{p, i}(K, L)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}\left(K+_{p} \varepsilon \cdot L\right)-W_{i}(K)}{\varepsilon} \tag{2.3}
\end{equation*}
$$

For $p=1, W_{1, i}(K, L)$ are just the classical mixed quermassintegrals $W_{i}(K, L)$ (see [16]).

In [16], Lutwak showed that for $K, L \in \mathcal{K}_{o}^{n}, p \geq 1, i=0,1, \ldots, n-1$, there exists a positive Borel measure $S_{p, i}(K, \cdot)$ on S^{n-1} such that the L_{p} mixed quermassintegral $W_{p, i}(K, L)$ has the following integral representation:

$$
\begin{equation*}
W_{p, i}(K, L)=\frac{1}{n} \int_{S^{n-1}} h_{L}^{p}(u) d S_{p, i}(K, u) . \tag{2.4}
\end{equation*}
$$

It turns out that the measures $S_{p, i}(K, \cdot), i=0,1, \ldots, n-1$, on S^{n-1} are absolutely continuous with respect to $S_{i}(K, \cdot)$. From (2.4), it follows immediately that for each $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$,

$$
\begin{equation*}
W_{p, i}(K, K)=W_{i}(K) . \tag{2.5}
\end{equation*}
$$

We shall require a basic inequality for the L_{p} mixed quermassintegral $W_{p, i}(K, L)$, which may be stated as follows: for $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $0 \leq i<n$, (see [16])

$$
\begin{equation*}
W_{p, i}(K, L)^{n-i} \geq W_{i}(K)^{n-i-p} W_{i}(L)^{p}, \tag{2.6}
\end{equation*}
$$

with equality for $p=1$ if and only if K and L are homothetic, and for $p>1$ if and only if K and L are dilates.
2.2. L_{p} Dual mixed quermassintegrals. For $K \in \mathcal{S}^{n}$ and arbitrary real i, the dual mixed quermassintegrals $\widetilde{W}_{i}(K)$ are defined by (see $[\mathbf{8}, \mathbf{3 0}]$)

$$
\begin{equation*}
\widetilde{W}_{i}(K)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n-i}(u) d S(u), \tag{2.7}
\end{equation*}
$$

where $d S(u)$ denotes the area element at $u \in S^{n-1}$. From (2.7), it follows immediately that

$$
\begin{equation*}
\widetilde{W}_{0}(K)=V(K) . \tag{2.8}
\end{equation*}
$$

For $K, L \in \mathcal{S}_{o}^{n}, \varepsilon>0$ and $p \geq 1$, the L_{p} harmonic radial combination $K+{ }_{-p} \varepsilon \cdot L \in \mathcal{S}_{o}^{n}$ is defined as the star body whose radial function is given by (see [17])

$$
\rho\left(K+_{-p} \varepsilon \cdot L, \cdot\right)^{-p}=\rho(K, \cdot)^{-p}+\varepsilon \rho(L, \cdot)^{-p} .
$$

Associated with the L_{p} harmonic radial combination, Wang and Leng [34] defined the L_{p} dual mixed quermassintegrals as follows.
For $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$ and any real $i \neq n$, the L_{p} dual mixed quermassintegral, $\widetilde{W}_{-p, i}(K, L)$ of K and L was defined in [34] by

$$
\begin{equation*}
\frac{n-i}{-p} \widetilde{W}_{-p, i}(K, L)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\widetilde{W}_{i}\left(K+_{-p} \varepsilon \cdot L\right)-\widetilde{W}_{i}(K)}{\varepsilon} \tag{2.9}
\end{equation*}
$$

Taking $i=0$ in (2.9) and using (2.8), we see

$$
\begin{equation*}
\widetilde{W}_{-p, 0}(K, L)=\widetilde{V}_{-p}(K, L) \tag{2.10}
\end{equation*}
$$

The above definition and the polar coordinate formula for dual mixed quermassintegrals yield the following integral representation of L_{p} dual mixed
quermassintegrals $\widetilde{W}_{-p, i}(K, L)$: for $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$ and any real $i \neq n$,

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p-i}(u) \rho_{L}^{-p}(u) d S(u) . \tag{2.11}
\end{equation*}
$$

By (2.10) and (2.11), we have

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p}(u) \rho_{L}^{-p}(u) d S(u) . \tag{2.12}
\end{equation*}
$$

From definition (2.11), it follows immediately that for each $K \in \mathcal{S}_{o}^{n}$, real $i \neq n$ and $p \geq 1$,

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, K)=\widetilde{W}_{i}(K) . \tag{2.13}
\end{equation*}
$$

The L_{p} Minkowski inequality for L_{p} dual mixed quermassintegrals states that [34] if $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, then, for real $i<n$ or $i>n+p$,

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, L)^{n-i} \geq \widetilde{W}_{i}(K)^{n+p-i} \widetilde{W}_{i}(L)^{-p}, \tag{2.14}
\end{equation*}
$$

for $n<i<n+p$,

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, L)^{n-i} \leq \widetilde{W}_{i}(K)^{n+p-i} \widetilde{W}_{i}(L)^{-p}, \tag{2.15}
\end{equation*}
$$

with equality in either of the inequalities (2.14) and (2.15) if and only if K and L are dilates.
3. Brunn-Minkowski inequalities for L_{p} moment bodies. In order to prove Theorems 1 and 2, we need the following lemma.

Lemma 1. Let $K \in \mathcal{S}_{o}^{n}, p \geq 1$, then for $u \in S^{n-1}$,

$$
\begin{equation*}
\frac{h\left(M_{p}\left(K \widehat{+}_{p} L\right), u\right)^{p}}{V\left(K \widehat{+}_{p} L\right)}=\frac{h\left(M_{p} K, u\right)^{p}}{V(K)}+\frac{h\left(M_{p} L, u\right)^{p}}{V(L)} . \tag{3.1}
\end{equation*}
$$

Proof. From (1.4) and (1.2), we have

$$
\begin{aligned}
\frac{h\left(M_{p}\left(K \widehat{+}_{p} L\right), u\right)^{p}}{V\left(K \widehat{+}_{p} L\right)} & =c_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} \frac{\rho\left(K \widehat{+}_{p} L, v\right)^{n+p}}{V\left(K \widehat{+}_{p} L\right)} d S(v) \\
& =c_{n, p} \int_{S^{n-1}}|u \cdot v|^{p}\left[\frac{\rho(K, v)^{n+p}}{V(K)}+\frac{\rho(L, v)^{n+p}}{V(L)}\right] d S(v) \\
& =c_{n, p} \int_{S^{n-1}}|u \cdot v|^{p^{\prime}} \frac{\rho(K, v)^{n+p}}{V(K)} d S(v)+c_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} \frac{\rho(L, v)^{n+p}}{V(L)} d S(v) \\
& =\frac{h\left(M_{p} K, u\right)^{p}}{V(K)}+\frac{h\left(M_{p} L, u\right)^{p}}{V(L)} .
\end{aligned}
$$

Proof of Theorem 1. Let $K, L \in \mathcal{S}_{o}^{n}$ and $p \geq 1$. From (2.4), (3.1) and (2.6), we obtain for all $Q \in \mathcal{K}_{o}^{n}$,

$$
\begin{aligned}
\frac{W_{p, i}\left(Q, M_{p}\left(K \widehat{+}_{p} L\right)\right)}{V\left(\widehat{+}_{p} L\right)} & =\frac{1}{n V\left(K \widehat{+}_{p} L\right)} \int_{S^{n-1}} h_{M_{p}\left(K \widehat{+}_{p} L\right)}^{p}(u) d S_{p, i}(Q, u) \\
& =\frac{1}{n} \int_{S^{n-1}} \frac{h_{p_{p}}^{p}\left(\widehat{+}_{p} L\right)}{V\left(K \widehat{+}_{p} L\right)} d S_{p, i}(Q, u) \\
& =\frac{1}{n} \int_{S^{n-1}} \frac{h_{M_{p} K}^{p}(u)}{V(K)} d S_{p, i}(Q, u)+\frac{1}{n} \int_{S^{n-1}} \frac{h_{M_{p} L}^{p}(u)}{V(L)} d S_{p, i}(Q, u) \\
& =\frac{W_{p, i}\left(Q, M_{p} K\right)}{V(K)}+\frac{W_{p, i}\left(Q, M_{p} L\right)}{V(L)} \\
& \geq W_{i}(Q)^{\frac{n-p-i}{n-i}}\left[\frac{W_{i}\left(M_{p} K\right)^{\frac{p}{n-i}}}{V(K)}+\frac{W_{i}\left(M_{p} L\right)^{\frac{p}{n-i}}}{V(L)}\right] .
\end{aligned}
$$

Taking $Q=M_{p}\left(K \widehat{+}{ }_{p} L\right)$ in the above inequality, and using (2.5), we obtain the desired inequality (1.5).

According to the equality condition of inequality (2.6), we know that equality holds in inequality (1.5) if and only if $M_{p} K, M_{p} L$ and $M_{p}\left(K \widehat{+_{p}} L\right)$ are homothetic when $p=1$ and $0 \leq i<n-1$ or $M_{p} K, M_{p} L$ and $M_{p}\left(\widehat{+}_{p} L\right)$ are dilates when $p>1$. There is always equality in (1.5) when $p=1$ and $i=n-1$.

Since $M_{p} K, M_{p} L$ and $M_{p}\left(K \widehat{+}_{p} L\right)$ are origin-symmetric, equality holds in (1.5) if and only if they are dilates (except for $p=1$ and $i=n-1$). Thus, $M_{p} K=\lambda_{1} M_{p}\left(K \hat{+}_{p} L\right)$ and $M_{p} L=\lambda_{2} M_{p}\left(K \widehat{+}_{p} L\right)$ for some $\lambda_{1}, \lambda_{2}>0$. An argument similar to [31, p. 227] now yields that K and L are dilates.

For $i=0$ we note the following special case of Theorem 1:
Corollary 1. If $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, then

$$
\frac{V\left(M_{p}\left(K \widehat{+}_{p} L\right)\right)^{\frac{p}{n}}}{V\left(K \widehat{+}_{p} L\right)} \geq \frac{V\left(M_{p} K\right)^{\frac{p}{n}}}{V(K)}+\frac{V\left(M_{p} L\right)^{\frac{p}{n}}}{V(L)}
$$

with equality if and only if K and L are dilates.

Proof of Theorem 2. Let $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, then by (2.11), (1.1) and (3.1), we have for all $Q \in \mathcal{K}_{o}^{n}$,

$$
\begin{aligned}
\frac{\widetilde{W}_{-p, i}\left(Q, M_{p}^{*}\left(K \widehat{+}_{p} L\right)\right)}{V\left(K \widehat{+}_{p} L\right)} & =\frac{1}{n V\left(K \widehat{+}_{p} L\right)} \int_{S^{n-1}} \rho_{Q}^{n+p-i}(u) \rho_{M_{p}^{*}\left(K \widehat{+}_{p} L\right)}^{-p}(u) d S(u) \\
& =\frac{1}{n V\left(K \widehat{+}_{p} L\right)} \int_{S^{n-1}} \rho_{Q}^{n+p-i}(u) h_{M_{p}\left(K \widehat{+}_{p} L\right)}^{p}(u) d S(u) \\
& =\frac{1}{n} \int_{S^{n-1}} \rho_{Q}^{n+p-i}(u) \frac{h^{p}}{V\left({M_{p}\left(K \widehat{+}_{p} L\right)}^{p} L\right)} d S(u)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n} \int_{S^{n-1}} \rho_{Q}^{n+p-i}(u) \frac{h_{M_{p} K}^{p}(u)}{V(K)} d S(u)+\frac{1}{n} \int_{S^{n-1}} \rho_{Q}^{n+p-i}(u) \frac{h_{M_{p} L}^{p}(u)}{V(L)} d S(u) \\
& =\frac{\widetilde{W}_{-p, i}\left(Q, M_{p}^{*} K\right)}{V(K)}+\frac{\widetilde{W}_{-p, i}\left(Q, M_{p}^{*} L\right)}{V(L)} .
\end{aligned}
$$

If $i<n$ or $n<i<n+p$, then using (2.14) and (2.15) we obtain

$$
\begin{equation*}
\frac{\widetilde{W}_{-p, i}\left(Q, M_{p}^{*}\left(K \widehat{+}_{p} L\right)\right)}{V\left(K \widehat{+}_{p} L\right)} \geq \widetilde{W}_{i}(Q)^{\frac{n+p-i}{n-i}}\left[\frac{\widetilde{W}_{i}\left(M_{p}^{*} K\right)^{-\frac{p}{n-i}}}{V(K)}+\frac{\widetilde{W}_{i}\left(M_{p}^{*} L\right)^{-\frac{p}{n-i}}}{V(L)}\right] . \tag{3.2}
\end{equation*}
$$

Taking $Q=M_{p}^{*}\left(K_{p} L\right)$ in the above inequality and using (2.13) we get the desired inequality,

$$
\frac{\widetilde{W}_{i}\left(M_{p}^{*}\left(K \widehat{+}_{p} L\right)\right)^{-\frac{p}{n-i}}}{V\left(K \widehat{+}_{p} L\right)} \geq \frac{\widetilde{W}_{i}\left(M_{p}^{*} K\right)^{-\frac{p}{n-i}}}{V(K)}+\frac{\widetilde{W}_{i}\left(M_{p}^{*} L\right)^{-\frac{p}{n-i}}}{V(L)} .
$$

Using now (2.14) and (2.15) the equality conditions follow from arguments similar to the ones in the proof of Theorem 1. The case $i>n+p$ is treated analogously.

The following corollary is a direct consequence of Theorem 2 when $i=0$.
Corollary 2. If $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, then

$$
\frac{V\left(M_{p}^{*}\left(K \widehat{+}_{p} L\right)\right)^{-\frac{p}{n}}}{V\left(K \widehat{+}_{p} L\right)} \geq \frac{V\left(M_{p}^{*} K\right)^{-\frac{p}{n}}}{V(K)}+\frac{V\left(M_{p}^{*} L\right)^{-\frac{p}{n}}}{V(L)}
$$

with equality if and only if K and L are dilates.
Acknowledgement. We would like to thank the anonymous referee for some valuable comments and suggestions that improved and refined the original manuscript.

REFERENCES

1. J. Abardia and A. Bernig, Projection bodies in complex vector spaces, Adv. Math. 227 (2011), 830-846.
2. S. Alesker, A. Bernig and F. E. Schuster, Harmonic analysis of translation invariant valuations, Geom. Funct. Anal. 21 (2011), 751-773.
3. S. Campi and P. Gronchi, On the reverse L_{p} Busemann-Petty centroid inequality, Mathematika 49 (2002), 1-11.
4. S. Campi and P. Gronchi, The L_{p} Busemann-Petty centriod inequality, Adv. Math. 167 (2002), 128-141.
5. N. Dafnis and G. Paouris, Small ball probability estimates, ψ_{2}-behavior and the hyperplane conjecture, J. Funct. Anal. 258 (2010), 1933-1964.
6. W. J. Firey, p-means of convex bodies, Math. Scand. 10 (1962), 17-24.
7. B. Fleury, O. Guedon and G. Paouris, A stability result for mean width of L_{p} centriod bodies, Adv. Math. 214 (2007), 865-877.
8. R. J. Gardner, Geometric tomography, 2 ed (Cambridge University Press, Cambridge, UK, 2006).
9. E. Grinberg and G. Zhang, Convolutions, transforms and convex bodies, Proc. Lond. Math. Soc. 78 (1999), 77-115.
10. C. Haberl, L_{p} intersection bodies, Adv. Math. 217 (2008), 2599-2624.
11. C. Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), 2253-2276.
12. C. Haberl, Minkowski valuations intertwining the special linear group, J. Eur. Math. Soc. 14 (2012), 1565-1597.
13. C. Haberl and E. Schuster, General L_{p} affine isoperimetric inequalities, J. Differ. Geom. 83 (2009), 1-26.
14. M. Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003), 159188.
15. M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 4191-4213.
16. E. Lutwak, Mixed projection inequalities, Trans. Am. Math. Soc. 287 (1985), 91-106.
17. E. Lutwak, On some affine isoperimetric inequalities, J. Differ. Geom. 23 (1986), 1-13.
18. E. Lutwak, Centroid bodies and dual mixed volumes, Proc. Lond. Math. Soc. 60 (1990), 365-391.
19. E. Lutwak, The Brunn-Minkowski-Firey I: Mixed volumes and the Minkowski problem, J. Differ. Geom. 38 (1993), 131-150.
20. E. Lutwak, The Brunn-Minkowski-Firey II: Affine and geominimal surface areas, $A d v$. Math. 118 (1996), 244-294.
21. E. Lutwak, D. Yang and G. Zhang, L_{p} affine isoperimetric inequalities, J. Differ. Geom. 56 (2000), 111-132.
22. E. Lutwak, D. Yang and G. Zhang, Orlicz centroid bodies, J. Differ. Geom. 84 (2010), 365-387.
23. E. Lutwak, D. Yang and G. Zhang, A volume inequality for polar bodies, J. Differ. Geom. 84 (2010), 163-178.
24. E. Lutwak and G. Zhang, Blaschke - Santaló inequalities, J. Differ. Geom. 47 (1997), 1-16.
25. G. Paouris, Concentration of mass on isotropic convex bodies, Geom. Funct. Anal. 16 (2006), 1021-1049.
26. L. Parapatits and F. E. Schuster, The Steiner formula for Minkowski valuations, $A d v$. Math. 230 (2012), 978-994.
27. C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961), 1535-1547.
28. C. M. Petty, Projection bodies, Proceedings of a colloquium on convexity, Copenhagen (1965) (Kobenhavns Univ. Mat. Inst., Copenhagen, 1967), 234-241.
29. C. M. Petty, Geominimal surface area, Geom. Dedicata. 3 (1974), 77-97.
30. R. Schneider, Convex bodies: The Brunn-Minkowski theory (Cambridge University Press, Cambridge, UK, 1993).
31. F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika 53 (2006), 211-234.
32. F. E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010), $1-30$.
33. F. E. Schuster and M. Weberndorfer, Volume inequalities for asymmetric Wulff shapes, J. Differ. Geom. arXiv:1110.2069v2.
34. W. D. Wang and G. S. Leng, L_{p} dual mixed quermassintegrals, Indian J. Pure Appl. Math. 36 (2005), 177-188.
35. T. Wannnerer, GL(n) equivariant Minkowski valuations, Indiana Univ. Math. J. (to appear).
36. V. Yaskin and M. Yaskina, Centriod bodies and comparison of volumes, Indiana Univ. Math. J. 55 (2006), 1175-1194.
37. J. Yuan, L. Z. Zhao and G. S. Leng, Inequalities for L_{p} centroid body, Taiwan J. Math. 11 (2007), 1315-1325.
38. L. Z. Zhao, B. W. He and G. S. Leng, On polars of projection bodies and centroid bodies, Acta Math. Sinica (Chinese Ser.). 49 (2006), 679-686.

[^0]: *Research is supported in part by NSFC (10671159 and 11161024).

