A NOTE ON NORMALITY AND SHARED VALUES

MINGLIANG FANG and LAWRENCE ZALCMAN

(Received 7 August 2002; revised 26 February 2003)

Communicated by P. C. Fenton

Abstract

Let k be a positive integer and b a nonzero constant. Suppose that \mathscr{F} is a family of meromorphic functions in a domain D. If each function $f \in \mathscr{F}$ has only zeros of multiplicity at least $k+2$ and for any two functions $f, g \in \mathscr{F}, f$ and g share 0 in D and $f^{(k)}$ and $g^{(k)}$ share b in D, then \mathscr{F} is normal in D. The case $f \neq 0, f^{(k)} \neq b$ is a celebrated result of Gu .

2000 Mathematics subject classification: primary 30D45.
Keywords and phrases: meromorphic function, normality, shared value.

1. Introduction

Let D be a domain in \mathbb{C} and \mathscr{F} a family of meromorphic functions defined in D. \mathscr{F} is said to be normal in D, in the sense of Montel, if each sequence $\left\{f_{n}\right\} \subset \mathscr{F}$ has a subsequence $\left\{f_{n_{j}}\right\}$ which converges spherically locally uniformly in D, to a meromorphic function or ∞ (see Hayman [4], Schiff [7], Yang [12]).

Suppose that f, g are meromorphic functions on D and $a \in \mathbb{C} \cup\{\infty\}$. If $f(z)=a$ if and only if $g(z)=a$, we say that f and g share a in D.

In 1912, Montel [6] proved the following well-known normality criterion.
THEOREM A. Let \mathscr{F} be a family of meromorphic functions defined in D, and let a, b and c be three distinct values in the extended complex plane. If for each function $f \in \mathscr{F}, f \neq a, b, c$, then \mathscr{F} is normal in D.

In 1994, Sun [8] extended Theorem A as follows (see for example [1]).

[^0]THEOREM B. Let \mathscr{F} be a family of meromorphic functions defined in D, and let a, b and c be three distinct values in the extended complex plane. If each pair of functions f and g in \mathscr{F} share a, b and c in D, then \mathscr{F} is normal in D.

In 1979, Gu [2] proved the following result.
THEOREM C. Let \mathscr{F} be a family of meromorphic functions defined in D, and let k be a positive integer and b a nonzero constant. If for each function $f \in \mathscr{F}, f \neq 0$ and $f^{(k)} \neq b$ in D, then \mathscr{F} is normal in D.

It is natural to ask whether Theorem C can be extended in the same way that Theorem B extends Theorem A. In this note, we offer such an extension. In each of the results below, k is a positive integer and b is a nonzero complex constant.

THEOREM 1. Let \mathscr{F} be a family of meromorphic functions defined in D, all of whose zeros have multiplicity at least $k+2$. If each pair of functions f and g in \mathscr{F} share 0 in D and $f^{(k)}$ and $g^{(k)}$ share b in D, then \mathscr{F} is normal in D.

Example 1. Let n, k be positive integers. Let $D=\{z:|z|<1\}$ and $\mathscr{F}=\left\{f_{n}\right\}$, where

$$
f_{n}(z)=\frac{n z^{k+1}}{k!(n z-1)}, \quad n=1,2,3, \ldots
$$

Each function in \mathscr{F} has a single zero of multiplicity $k+1$. Clearly, for each pair m, n of positive integers, f_{m}, f_{n} share 0 in D. Moreover, since

$$
\begin{aligned}
f_{n}(z) & =\frac{1}{k!}\left(z^{k}+\frac{1}{n} z^{k-1}+\cdots+\frac{1}{n^{k-1}} z+\frac{1}{n^{k}}+\frac{1}{n^{k}} \frac{1}{n z-1}\right) \\
f_{n}^{(k)}(z) & =1+\frac{(-1)^{k}}{(n z-1)^{k+1}} \neq 1
\end{aligned}
$$

Thus $f_{m}^{(k)}$ and $f_{n}^{(k)}$ also share the value 1 in D. But \mathscr{F} clearly fails to be normal on any neighbourhood of 0 . This shows that the condition in Theorem 1 that the zeros of functions in \mathscr{F} have multiplicity at least $k+2$ cannot be weakened.

THEOREM 2. Let \mathscr{F} be a family of meromorphic functions defined in D, all of whose zeros have multiplicity at least $k+1$ and whose poles have multiplicity at least 2. If each pair of functions f and g in \mathscr{F} share 0 in D and $f^{(k)}$ and $g^{(k)}$ share b in D, then \mathscr{F} is normal in D.

Corollary 3. Let \mathscr{F} be a family of holomorphic functions defined in D, all of whose zeros have multiplicity at least $k+1$. If each pair of functions f and g in \mathscr{F} share 0 in D and $f^{(k)}$ and $g^{(k)}$ share b in D, then \mathscr{F} is normal in D.

Corollary 4. Let \mathscr{F} be a family of meromorphic functions defined in D. If each pair of functions f and g in \mathscr{F} share 0 in D and $f^{m} f^{\prime}$ and $g^{m} g^{\prime}$ share b in D, then \mathscr{F} is normal in D.

To prove Corollary 4 , set $\widetilde{\mathscr{F}}=\left\{f^{m+1} /(m+1): f \in \mathscr{F}\right\}$ and apply Theorem 2 to this family with $k=1$.

EXAMPLE 2. Let $D=\{z:|z|<1\}$ and $\mathscr{F}=\left\{f_{n}\right\}$, where $f_{n}(z)=n z^{k}, n=$ $1,2,3, \ldots$ Then the zeros of functions in \mathscr{F} all have multiplicity k. Moreover, any pair of functions f and g in \mathscr{F} clearly share 0 in D and $f^{(k)}$ and $g^{(k)}$ share $1 / 2$ in D; but \mathscr{F} is not normal in D. This shows that the condition that the zeros of functions in \mathscr{F} have multiplicity at least $k+1$ in Theorem 2 and Corollary 3 is best possible.

2. Some lemmas

For the proofs of Theorem 1 and Theorem 2, we require the following results.
LEMMA 1 ([9, Theorem 7]). Let \mathscr{F} be a family of meromorphic functions defined in D, all of whose zeros have multiplicity at least $k+2$. If $f^{(k)} \neq b$ for each $f \in \mathscr{F}$, then \mathscr{F} is normal in D.

LEMMA 2 ([9, Theorem 5]). Let \mathscr{F} be a family of meromorphic functions defined in D, all of whose zeros have multiplicity at least $k+1$ and whose poles have multiplicity at least 2 . If $f^{(k)} \neq$ b for each $f \in \mathscr{F}$, then \mathscr{F} is normal in D.

Below, we assume the basic results and notation of Nevanlinna Theory [4, 12]. In particular, $S(r, f)$ denotes any function satisfying $S(r, f)=O(\log r T(r, f)$) as $r \rightarrow \infty$, possibly outside a set of finite measure, where $T(r, f)$ is Nevanlinna's characteristic function. In fact, the functions for which we use this notation are all of finite order, so the exceptional set does not occur. For such functions, we have $S(r, f)=o(T(r, f))[4$, page 41].

LEMMA 3 ([4, Theorem 3.2]). Let f be a nonconstant meromorphic function in the complex plane. Then

$$
\begin{equation*}
T(r, f) \leq \bar{N}(r, f)+N(r, 1 / f)+\bar{N}\left(r, 1 /\left(f^{(k)}-b\right)\right)+S(r, f) \tag{2.1}
\end{equation*}
$$

By [4, page 61], we also have
LEMMA 4. Let f be a nonconstant meromorphic function in the complex plane. Then

$$
\begin{equation*}
\bar{N}(r, f) \leq\left(1+\frac{1}{k}\right) N\left(r, \frac{1}{f}\right)+\left(1+\frac{2}{k}\right) \bar{N}\left(r, \frac{1}{f^{(k)}-b}\right)+S(r, f) \tag{2.2}
\end{equation*}
$$

LEMMA 5. Let f be a meromorphic function in the complex plane and l a positive integer satisfying $l>k+4+2 / k$. If $f=0$ and the zeros of $f^{(k)}-b$ have multiplicity at least l, then f is a constant.

PROOF. Since $f \neq 0$ and the zeros of $f^{(k)}-b$ have multiplicity at least l, we have by (2.2)

$$
\begin{align*}
\bar{N}(r, f) & \leq\left(1+\frac{2}{k}\right) \bar{N}\left(r, \frac{1}{f^{(k)}-b}\right)+S(r, f) \tag{2.3}\\
& \leq \frac{1+2 / k}{l} N\left(r, \frac{1}{f^{(k)}-b}\right)+S(r, f) \\
& \leq \frac{1+2 / k}{l} T\left(r, f^{(k)}\right)+S(r, f) \\
& \leq \frac{1+2 / k}{l}[T(r, f)+k \bar{N}(r, f)]+S(r, f) .
\end{align*}
$$

Thus by (2.3) we get

$$
\begin{equation*}
\bar{N}(r, f) \leq \frac{k+2}{k(l-k-2)} T(r, f)+S(r, f) \tag{2.4}
\end{equation*}
$$

By (2.1) and the facts that $f \neq 0$ and the zeros of $f^{(k)}-b$ have multiplicity at least l, we have

$$
\begin{align*}
T(r, f) & \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{(k)}-b}\right)+S(r, f) \tag{2.5}\\
& \leq \bar{N}(r, f)+\frac{1}{l} N\left(r, \frac{1}{f^{(k)}-b}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\frac{1}{l} T\left(r, f^{(k)}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\frac{1}{l}[T(r, f)+k \bar{N}(r, f)]+S(r, f) \\
& \leq\left(1+\frac{k}{l}\right) \bar{N}(r, f)+\frac{1}{l} T(r, f)+S(r, f)
\end{align*}
$$

Thus

$$
\begin{equation*}
T(r, f) \leq \frac{l+k}{l-1} \bar{N}(r, f)+S(r, f) \tag{2.6}
\end{equation*}
$$

By (2.4) and (2.6), we have

$$
T(r, f) \leq \frac{(k+2)(l+k)}{k(l-1)(l-k-2)} T(r, f)+S(r, f)
$$

that is, $[k(l-1)(l-k-2)-(k+2)(l+k)] T(r, f) \leq S(r, f)$. Since $l>k+4+2 / k$, we have $k(l-1)(l-k-2)-(k+2)(l+k)>0$. Thus $T(r, f)=S(r, f)$, so f is constant.

Lemma 6 ([3, Theorem 3], [4, Corollary to Theorem 3.5]). Let f be a nonconstant meromorphic function on \mathbb{C}, and let b be a nonzero value. Then for each positive integer k, either f or $f^{(k)}-b$ vanishes. If f is transcendental, then for each positive integer k, either f or $f^{(k)}-b$ has infinitely many zeros.

LEMMA 7 ($[10,13])$. Let \mathscr{F} be a family of functions meromorphic on the unit disc. Suppose that each $f \in \mathscr{F}, f \neq 0$. Then if \mathscr{F} is not normal, there exist, for each $\alpha \geq 0$,
(a) a number $0<r<1$;
(b) points $z_{n},\left|z_{n}\right|<r$;
(c) functions $f_{n} \in \mathscr{F}$; and
(d) positive numbers $\rho_{n} \rightarrow 0$
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)=g_{n}(\zeta) \rightarrow g(\zeta)$ locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on \mathbb{C}.

3. Proof of Theorem 1

Proof of Theorem 1. Let $z_{0} \in D$. We show that \mathscr{F} is normal at z_{0}. Let $f \in \mathscr{F}$. We consider two cases.

Case 1: $f^{(k)}\left(z_{0}\right) \neq b$. Then there exists a disk $D_{\delta}=\left\{z:\left|z-z_{0}\right|<\delta\right\}$ such that $f^{(k)} \neq b$ in D_{δ}. Thus, for every $g \in \mathscr{F}$, the zeros of g have multiplicity at least $k+2$ and $g^{(k)} \neq b$ in D_{δ}. By Lemma $1, \mathscr{F}$ is normal in D_{δ}. Hence \mathscr{F} is normal at z_{0}.

Case 2: $f^{(k)}\left(z_{0}\right)=b$. Then, by the condition of the theorem, $f\left(z_{0}\right) \neq 0$. Hence there exists a disk $D_{\delta}=\left\{z:\left|z-z_{0}\right|<\delta\right\}$ such that $f \neq 0$ in D_{δ} and $f^{(k)} \neq b$ in $D_{\delta}^{o}=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$. Hence, by Lemma $1, \mathscr{F}$ is normal in D_{δ}^{o}. We complete the proof of the theorem by using the method of Yang [11].

Let $\left\{f_{n}\right\}$ be a sequence in \mathscr{F}; then there exists a subsequence of $\left\{f_{n}\right\}$ (which, without loss of generality, we may again denote by $\left\{f_{n}\right\}$) which converges locally spherically uniformly on D_{δ}^{o} to a function h. We consider two subcases.

Case 2.1: $\boldsymbol{h} \neq 0$. Then, by Hurwitz's Theorem, $h \neq 0$ in D_{δ}^{o}. Therefore,

$$
\min _{0 \leq \theta \leq 2 \pi}\left|h\left(z_{0}+\delta e^{i \theta} / 2\right)\right|>A>0
$$

for some constant A.

Hence for sufficiently large n,

$$
\min _{0 \leq \theta \leq 2 \pi}\left|f_{n}\left(z_{0}+\frac{\delta}{2} e^{i \theta}\right)\right|>\frac{A}{2}>0 .
$$

Since f_{n} is meromorphic and $f_{n} \neq 0$ in $D_{\delta}, 1 / f_{n}$ is holomorphic in D_{δ}. Thus $1 / f_{n}$ is holomorphic in $\bar{D}_{\delta / 2}=\left\{z:\left|z-z_{0}\right| \leq \delta / 2\right\}$, and

$$
\max _{0 \leq \theta \leq 2 \pi} \frac{1}{\left|f_{n}\left(z_{0}+\delta e^{i \theta} / 2\right)\right|}<\frac{2}{A}
$$

By the maximum principle, we conclude that

$$
\max _{\left|z-z_{0}\right| \leq \delta / 2} \frac{1}{\left|f_{n}(z)\right|}<\frac{2}{A}, \quad \text { so } \quad \min _{\left|z-z_{0}\right| \leq \delta / 2}\left|f_{n}(z)\right|>\frac{A}{2}>0 .
$$

Hence there exists a subsequence of $\left\{f_{n}\right\}$ which converges locally spherically uniformly in $D_{\delta / 2}$.

Case 2.2: $\boldsymbol{h} \equiv \mathbf{0}$. Then $\left\{f_{n}\right\}$ converges locally uniformly to 0 in D_{δ}^{o}. Thus $\left\{f_{n}^{(k)}\right\}$ and $\left\{f_{n}^{(k+1)}\right\}$ also converge locally uniformly to 0 . Hence, for sufficiently large n, we have by the argument principle

$$
\begin{align*}
& \left|N\left(\frac{\delta}{2}, z_{0}, f_{n}^{(k)}-b\right)-N\left(\frac{\delta}{2}, z_{0}, \frac{1}{f_{n}^{(k)}-b}\right)\right| \tag{3.1}\\
& \quad=\left|\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\delta / 2} \frac{f_{n}^{(k+1)}(z)}{f_{n}^{(k)}(z)-b} d z\right|<1
\end{align*}
$$

Thus we have

$$
N\left(\frac{\delta}{2}, z_{0}, f_{n}^{(k)}-b\right)=N\left(\frac{\delta}{2}, z_{0}, \frac{1}{f_{n}^{(k)}-b}\right)
$$

Since any pole of $f_{n}^{(k)}-b$ must have multiplicity at least $k+1$, it follows that the zero of $f_{n}^{(k)}-b$ at z_{0} has multiplicity at least $k+1$.

We consider two subcases.
Case 2.2.1. The set S of positive integers n such that the zeros of $f_{n}^{(k)}-b$ at z_{0} have multiplicity greater than $k+4+2 / k$ is infinite. We claim that $G=\left\{f_{n}: n \in S\right\}$ is normal in $D_{\delta / 2}$.

Indeed, suppose that G is not normal in $D_{\delta / 2}$. Then by Lemma 7, we have (renumbering, as we may) $f_{n} \in G, z_{n} \in D_{\delta / 2}$, and $\rho_{n} \rightarrow 0^{+}$such that

$$
g_{n}(\xi)=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{k}} \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on \mathbb{C}.

By Hurwitz's Theorem, $g \neq 0$ and any zeros of $g^{(k)}-b$ have multiplicity greater than $k+4+2 / k$. Thus, by Lemma $5, g$ is constant, a contradiction. Hence there exists a subsequence of $\left\{f_{n}\right\}$ which converges locally spherically uniformly in $D_{\delta / 2}$.

Case 2.2.2. The set S_{l} of positive integers n such that the zeros of $f_{n}^{(k)}-b$ at z_{0} have multiplicity l for some positive integer l such that $k+1 \leq l \leq k+4+2 / k$ is infinite. We claim that $G=\left\{f_{n}: n \in S_{l}\right\}$ is normal in $D_{\delta / 2}$.

In fact, suppose that G is not normal in $D_{\delta / 2}$. Then by Lemma 7, we have (again renumbering) $f_{n} \in G, z_{n} \in D_{\delta / 2}$, and $\rho_{n} \rightarrow 0^{+}$such that

$$
g_{n}(\xi)=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{k}} \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on \mathbb{C}.

By Hurwitz's Theorem, $g \neq 0$ and each zero of $g^{(k)}-b$ has multiplicity at least l. We claim, in addition, that $g^{(k)}-b$ has only a single zero. That $g^{(k)}-b$ must vanish somewhere follows from Lemma 6. Suppose that ξ_{1} and ξ_{2} are distinct zeros of $g^{(k)}-b$; then the zeros of $g^{(k)}-b$ at ξ_{1} and ξ_{2} have multiplicity at least l. Let γ be a simple closed curve containing ξ_{1} and ξ_{2} in its interior and such that g has no zeros on γ and no poles on or inside γ. Then $g_{n}(\xi)$ converges to $g(\xi)$ uniformly on and inside γ, and so $g_{n}^{(k)}-b$ converges to $g^{(k)}-b$ uniformly on and inside γ. By the argument principle, $g_{n}^{(k)}-b$ and $g^{(k)}-b$ have the same number of zeros (counting multiplicity) inside γ for sufficiently large n. But $g_{n}^{(k)}-b$ has only l zeros (counting multiplicity) while $g^{(k)}$ has at least $2 l$ zeros (counting multiplicity) for sufficiently large n, which is a contradiction.

From the above discussion, $g^{(k)}-b$ has only a single zero, whose multiplicity is l. Since $f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)=g_{n}^{(k)}(\xi)$, which converges to $g^{(k)}(\xi)$ uniformly on compact subsets of \mathbb{C} disjoint from the poles of g, it follows from the formula after (3.1) that $f_{n}^{(k)}$ has l poles (counting multiplicity) in $D_{\delta / 2}$ and hence $g_{n}^{(k)}$ has l poles (counting multiplicity) on the disc $\left\{\xi: z_{n}+\rho_{n} \xi \in D_{\delta / 2}\right\}$. We conclude easily from the argument principle that $g^{(k)}$ has at most l poles (counting multiplicity) in \mathbb{C}.

Thus
(i) $g \neq 0$;
(ii) $g^{(k)}-b$ has a single zero, whose multiplicity is l;
(iii) $g^{(k)}$ has at most l poles, counting multiplicities.

We claim that no such function exists. By Lemma 6, there is no transcendental function, satisfying (i) and (ii). Clearly, g cannot be a polynomial. We now turn to the somewhat tedious verification that no rational function satisfies conditions (i), (ii), and (iii). We consider three subcases.

Case 2.2.2.1: $k \geq$ 3. Since $k+1 \leq l \leq k+4+2 / k, g$ has only a single pole. Thus $g(\xi)=A /\left(\xi-a_{1}\right)^{m}$, where A is a nonzero constant, a_{1} is a constant, and m is a positive integer.

Obviously, $g^{(k)}-b$ has $m+k$ distinct zeros, which contradicts the fact that $g^{(k)}-b$ has a single zero.

Case 2.2.2.2: $k=2$. Since $3 \leq l \leq 7, g$ has one of the following forms:
(1) $g(\xi)=A /\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)^{2}, l=7$;
(2) $g(\xi)=A /\left(\xi-a_{1}\right)\left(\xi-a_{2}\right), l=6$;
(3) $g(\xi)=A /\left(\xi-a_{1}\right)^{m}, l=m+2,1 \leq m \leq 5$,
where A is a nonzero constant, a_{1} and a_{2} are distinct constants, and m is a positive integer.

If $g(\xi)=A /\left[\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)^{2}\right]$, then

$$
\begin{aligned}
g^{\prime \prime}(\xi)-b= & -\frac{A\left[3\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)-\left(3 \xi-2 a_{1}-a_{2}\right)\left(5 \xi-3 a_{1}-2 a_{2}\right)\right]}{\left(\xi-a_{1}\right)^{3}\left(\xi-a_{2}\right)^{4}} \\
& -\frac{b\left(\xi-a_{1}\right)^{3}\left(\xi-a_{2}\right)^{4}}{\left(\xi-a_{1}\right)^{3}\left(\xi-a_{2}\right)^{4}}
\end{aligned}
$$

Since $g^{\prime \prime}-b$ has only a single zero, we have

$$
\begin{align*}
& A\left[3\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)-\left(3 \xi-2 a_{1}-a_{2}\right)\left(5 \xi-3 a_{1}-2 a_{2}\right)\right] \tag{3.2}\\
& \quad+b\left(\xi-a_{1}\right)^{3}\left(\xi-a_{2}\right)^{4}=b(\xi-c)^{7}
\end{align*}
$$

Differentiating the two sides of (3.2) three times, we have

$$
\begin{equation*}
\left(\xi-a_{2}\right) p(\xi)=210 b(\xi-c)^{4} \tag{3.3}
\end{equation*}
$$

where p is a polynomial and c is a constant.
Thus $a_{2}=c$. It then follows from (3.2) that $a_{1}=a_{2}$, a contradiction.
If g is of the form (2) or (3), we can similarly get a contradiction.
Case 2.2.2.3: $k=1$. Since $2 \leq l \leq 7, g$ has one of the following forms:
(1) $g(\xi)=A /\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)\left(\xi-a_{3}\right)^{2}, l=7 ;$
(2) $g(\xi)=A /\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)\left(\xi-a_{3}\right), l=6$;
(3) $g(\xi)=A /\left(\xi-a_{1}\right)^{2}\left(\xi-a_{2}\right)^{m}, l=m+4,2 \leq m \leq 3$;
(4) $g(\xi)=A /\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)^{m}, l=m+3,1 \leq m \leq 4 ;$
(5) $g(\xi)=A /\left(\xi-a_{1}\right)^{m}, l=m+1,1 \leq m \leq 6$,
where A is a nonzero constant, a_{1}, a_{2} and a_{3} are distinct constants, and m is a positive integer.

We deal with case (1). If $g(\xi)=A /\left[\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)\left(\xi-a_{3}\right)^{2}\right]$, then

$$
\begin{aligned}
g^{\prime}(\xi)-b= & -\frac{A\left[\left(2 \xi-a_{1}-a_{2}\right)\left(\xi-a_{3}\right)+2\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)\right]}{\left(\xi-a_{1}\right)^{2}\left(\xi-a_{2}\right)^{2}\left(\xi-a_{3}\right)^{3}} \\
& -\frac{b\left(\xi-a_{1}\right)^{2}\left(\xi-a_{2}\right)^{2}\left(\xi-a_{3}\right)^{3}}{\left(\xi-a_{1}\right)^{2}\left(\xi-a_{2}\right)^{2}\left(\xi-a_{3}\right)^{3}}
\end{aligned}
$$

Since $g^{\prime}-b$ has only a single zero, we have

$$
\begin{align*}
& A\left[\left(2 \xi-a_{1}-a_{2}\right)\left(\xi-a_{3}\right)+2\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)\right] \tag{3.4}\\
& \quad+b\left(\xi-a_{1}\right)^{2}\left(\xi-a_{2}\right)^{2}\left(\xi-a_{3}\right)^{3}=b(\xi-c)^{7}
\end{align*}
$$

Differentiating the two sides of (3.4), we have

$$
\begin{align*}
& b\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)\left(\xi-a_{3}\right)^{2}\left[2\left(2 \xi-a_{1}-a_{2}\right)\left(\xi-a_{3}\right)+3\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)\right] \tag{3.5}\\
& \quad+A\left(8 \xi-3 a_{1}-3 a_{2}-2 a_{3}\right)=7 b(\xi-c)^{6}
\end{align*}
$$

Setting $\xi=a_{3}$ in (3.5) gives

$$
\begin{equation*}
3 A\left(2 a_{3}-a_{1}-a_{2}\right)=7 b\left(a_{3}-c\right)^{6} \tag{3.6}
\end{equation*}
$$

Differentiating the two sides of (3.5), we obtain

$$
\begin{equation*}
8 A+\left(\xi-a_{3}\right) p(\xi)=42 b(\xi-c)^{5} \tag{3.7}
\end{equation*}
$$

where p is a polynomial.
Setting $\xi=a_{3}$ in (3.7), we get

$$
\begin{equation*}
8 A=42 b\left(a_{3}-c\right)^{5} \tag{3.8}
\end{equation*}
$$

Thus by (3.6) and (3.8) we have

$$
\begin{equation*}
c=-\frac{7}{2} a_{3}+\frac{9}{4} a_{1}+\frac{9}{4} a_{2} . \tag{3.9}
\end{equation*}
$$

On the other hand, differentiating both sides of (3.4) six times and putting $\xi=c$, we obtain

$$
\begin{equation*}
c=\left(2 a_{1}+2 a_{2}+3 a_{3}\right) / 7 \tag{3.10}
\end{equation*}
$$

Comparing (3.9) and (3.10) gives $a_{3}=c$, which contradicts (3.8) since $A \neq 0$.
If g has one of the other forms, we obtain a contradiction in a similar fashion.
Thus we have proved that $\left\{f_{n}\right\}$ is normal in $D_{\delta / 2}$. Hence, there exists a subsequence of $\left\{f_{n}\right\}$ which converges locally spherically uniformly in $D_{\delta / 2}$. It follows that \mathscr{F} is normal at z_{0}, and so \mathscr{F} is normal in D. The proof of the theorem is complete.

The proof of Theorem 2, which uses Lemma 2, is similar. We omit the details.

References

[1] M. L. Fang and W. Hong, 'Some results on normal family of meromorphic functions', Bull. Malays. Math. Sci. Soc. (2) 23 (2000), 143-151.
[2] Y. X. Gu, 'Un critère de normalité de fonctions méromorphes', Sci. Sinica, Special Issue 1 (1979), 267-274.
[3] W. K. Hayman, 'Picard values of meromorphic functions and their derivatives', Ann. of Math. (2) 70 (1959), 9-42.
[4] ——, Meromorphic functions (Clarendon Press, Oxford, 1964).
[5] H. Milloux, Les fonctions méromorphes et leurs dérivées (Hermann et Cie., Paris, 1940).
[6] P. Montel, 'Sur les familles de fonctions analytiques qui admettent des valeurs exceptionnelles dans un domaine', Ann. École Norm. Sup. (3) 29 (1912), 487-535.
[7] J. Schiff, Normal families (Springer, 1993).
[8] D. C. Sun, 'The shared value criterion for normality', J. Wuhan Univ. Natur. Sci. Ed. 3 (1994), 9-12.
[9] Y. F. Wang and M. L. Fang, 'Picard values and normal families of meromorphic functions with multiple zeros', Acta Math. Sinica (N.S.) 14 (1998), 17-26.
[10] G. F. Xue and X. C. Pang, 'A criterion for normality of a family of meromorphic functions', J. East China Norm. Univ. Natur. Sci. Ed. 2 (1988), 15-22.
[11] L. Yang, 'Normality for families of meromorphic functions', Sci. Sinica, Ser. A 29 (1986), 12631274.
[12] __, Value distribution theory (Springer, Berlin; Science Press, Beijing, 1993).
[13] L. Zalcman, 'Normal families: New perspectives', Bull. Amer. Math. Soc. 35 (1998), 215-230.

Department of Mathematics
Nanjing Normal University
Nanjing 210097
P. R. China
e-mail: mlfang@pine.njnu.edu.cn

Department of Mathematics and Statistics

Bar-Ilan University
52900 Ramat-Gan
Israel e-mail: zalcman@macs.biu.ac.il

[^0]: The first author was supported by the NNSF of China (Grant No. 10071038) and by the Fred and Barbara Kort Sino-Israel Post Doctoral Fellowship Program at Bar-Ilan University. The second author was supported by the German-Israeli Foundation for Scientific Research and Development, G.I.F. Grant No. G-643-117.6/1999.
 (C) 2004 Australian Mathematical Society 1446-7887/04 \$A2.00+0.00

