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Abstract

Let k be a positive integer and b a nonzero constant. Suppose that & is a family of meromorphic functions
in a domain D. If each function / e & has only zeros of multiplicity at least k + 2 and for any two
functions / , g e &, f and g share 0 in D and / ( t ) and g(<) share bin D, then & is normal in D. The
case / ^ 0, / w ^= b is a celebrated result of Gu.
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1. Introduction

Let D be a domain in C and & a family of meromorphic functions defined in D.
& is said to be normal in D, in the sense of Montel, if each sequence {/„} c &
has a subsequence \fn.} which converges spherically locally uniformly in D, to a
meromorphic function or oo (see Hayman [4], Schiff [7], Yang [12]).

Suppose that/ , g are meromorphic functions on D and a e C U {oo}. If/ (z) = a
if and only if g(z) = a, we say that/ and g share a in D.

In 1912, Montel [6] proved the following well-known normality criterion.

THEOREM A. Let & be a family of meromorphic functions defined in D, and let a,
b and c be three distinct values in the extended complex plane. If for each function
f 6 &, f ^ a,b,c, then & is normal in D.

In 1994, Sun [8] extended Theorem A as follows (see for example [1]).
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THEOREM B. Let & be a family of meromorphic functions defined in D, and let
a, b and c be three distinct values in the extended complex plane. If each pair of
functions f and g in & share a, b and c in D, then & is normal in D.

In 1979, Gu [2] proved the following result.

THEOREM C. Let & be a family of meromorphic functions defined in D, and let k
be a positive integer and b a nonzero constant. If for each function f 6 3', / ^ 0
and f(k) ^ b in D, then & is normal in D.

It is natural to ask whether Theorem C can be extended in the same way that
Theorem B extends Theorem A. In this note, we offer such an extension. In each of
the results below, it is a positive integer and b is a nonzero complex constant.

THEOREM 1. Let & be a family of meromorphic functions defined in D, all of
whose zeros have multiplicity at least k + 2. If each pair of functions f and g in 3
share 0 in D and f(k) and g{k) share b in D, then & is normal in D.

EXAMPLE 1. Let n, k be positive integers. Let D — {z : \z\ < 1} and 3 = {/„},

where

nzk+l

f ( ) n = 1 , 2 , 3 , . . . .fn(z) r r ( : r ,
k\{nz - 1)

Each function in & has a single zero of multiplicity k + 1. Clearly, for each pair m, n
of positive integers, fm,fn share 0 in D. Moreover, since

* i-

Thus f^k) a n d / n
w also share the value 1 in D. But & clearly fails to be normal on

any neighbourhood of 0. This shows that the condition in Theorem 1 that the zeros of
functions in & have multiplicity at least it + 2 cannot be weakened.

THEOREM 2. Let & be a family of meromorphic functions defined in D, all of
whose zeros have multiplicity at least k + 1 and whose poles have multiplicity at least
2. If each pair of functions f and g in & share 0 in D andf(k) and g(k) share b in D,
then & is normal in D.

COROLLARY 3. Let & be a family of holomorphic functions defined in D, all of
whose zeros have multiplicity at least k + 1. If each pair of functions f and g in &
share 0 in D andf(k) and g(k) share b in D, then & is normal in D.
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COROLLARY 4. Let & be a family of meromorphic functions defined in D. If each
pair of functions f and g in & share 0 in D and fmf' and gmg' share b in D, then
& is normal in D.

To prove Corollary 4, set J? — [fm+1/(m + 1) : / e &} and apply Theorem 2 to
this family with k = 1.

EXAMPLE 2. Let D = {z : \z\ < 1} and & = [fn), where fn(z) = nzk, n =
1, 2, 3, Then the zeros of functions in & all have multiplicity k. Moreover, any
pair of functions / and g in & clearly share 0 in D and / ( t ) and g(t) share 1/2 in D;
but & is not normal in D. This shows that the condition that the zeros of functions in
& have multiplicity at least k + 1 in Theorem 2 and Corollary 3 is best possible.

2. Some lemmas

For the proofs of Theorem 1 and Theorem 2, we require the following results.

LEMMA 1 ([9, Theorem 7]). Let & be a family of meromorphic functions defined
in D, all of whose zeros have multiplicity at least k + 2. Iff(t) ^ bfor each f e &,
then & is normal in D.

LEMMA 2 ([9, Theorem 5]). Let & be a family of meromorphic functions defined in
D, all of whose zeros have multiplicity at least k+l and whose poles have multiplicity
at least 2. Iff w ^ bfor each f e &, then & is normal in D.

Below, we assume the basic results and notation of Nevanlinna Theory [4, 12].
In particular, S(r,f) denotes any function satisfying S(r,f) = O(logrT(r,f)) as
r -*• oo, possibly outside a set of finite measure, where T(r, / ) is Nevanlinna's
characteristic function. In fact, the functions for which we use this notation are all
of finite order, so the exceptional set does not occur. For such functions, we have
S(r, /) = o(r(r, /))[4,page41].

LEMMA 3 ([4, Theorem 3.2]). Letf be a nonconstant meromorphic function in the
complex plane. Then

(2.1) T(r,f) <N(r,f) + N (r, 1//) + N (r, 1/tf «*> - b)) + S(r,f).

By [4, page 61], we also have

LEMMA 4. Let f be a nonconstant meromorphic function in the complex plane.
Then

(2.2)
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LEMMA 5. Let f be a meromorphic function in the complex plane and I a positive
integer satisfying I > k + 4 + 2/k. Iff ^ 0 and the zeros off(i) - b have multiplicity
at least I, then f is a constant.

PROOF. Since / # 0 and the zeros of/(k) — b have multiplicity at least /, we have
by (2.2)

(2.3) JV(r./) <{I + 1)N (r, J ^ - J ) + S(r,f)

f) + kN(r,f)] + S(r,f).
i

Thus by (2.3) we get

(2.4) N(r, f) < —-—-—— T(r, f) + S(r,f).

By (2.1) and the facts that/ ^ 0 and the zeros of/(i) — b have multiplicity at least /,
we have

(2.5) T(r, f)<N(r,f) + N (r, fJ_A + S(r, f)

< N{rJ) + j[T(r,f)+kN(rJ)} + S(r,f)

Thus

/ 4- k —
(2.6) T(r,f)<-^—N(

By (2.4) and (2.6), we have
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that is, [k(l-l)(l-k-2)-(k + 2)(l + k)]T(r,f) < S(r,f). Since/ > k + 4 + 2/k,
we have k(l - 1)(/ - k - 2) - (k + 2)(l + k) > 0. Thus T{rJ) = S(r,f), so/ is
constant. •

LEMMA 6 ([3, Theorem 3], [4, Corollary to Theorem 3.5]). Letf be a nonconstant
meromorphic function on C, and let b be a nonzero value. Then for each positive
integer k, either f orf(k) —b vanishes. Iff is transcendental, then for each positive
integer k, either f or f ( t ) — b has infinitely many zeros.

LEMMA 7 ([10, 13]). Let & be a family of functions meromorphic on the unit disc.
Suppose that each f e &, f ^ 0. Then if & is not normal, there exist, for each
a >0,
(a) a number 0 < r < 1;
(b) pointszn, \zn\ < r;
(c) functions fn e &\ and
(d) positive numbers pn —> 0

such that p~afn(zn + PnK) = £«(£) —• #(£) locally uniformly with respect to the
spherical metric, where g is a nonconstant meromorphic function on C.

3. Proof of Theorem 1

PROOF OF THEOREM 1. Let zo e D. We show that & is normal at zo- Let / 6 &.
We consider two cases.

Case 1: /(i)(Zo) £ b. Then there exists a disk Ds = [z : \z — Zo\ < 8} such that
/ ( i ) ^ b in Ds. Thus, for every g e &, the zeros of g have multiplicity at least k + 2
and g(t) ?t b in Ds. By Lemma 1, & is normal in Ds. Hence & is normal at zo-

Case 2: /(t)(zo) = *• Then, by the condition of the theorem, / (zo) ̂  0. Hence
there exists a disk Ds = {z : \z - Zo\ < <$} such that/ ^ 0 in Ds a n d / w ^ * in
£>j = {z : 0 < \z — Zol < <5}- Hence, by Lemma 1, & is normal in D£. We complete
the proof of the theorem by using the method of Yang [11].

Let {/„} be a sequence in &\ then there exists a subsequence of {/„} (which, without
loss of generality, we may again denote by {/„}) which converges locally spherically
uniformly on D\ to a function h. We consider two subcases.

Case 2.1: h # 0. Then, by Hurwitz's Theorem, /i ^ 0 in D4°. Therefore,

min \h (zo + Se'e/2)\ > A > 0

for some constant A.
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Hence for sufficiently large n,

[6]

nun / .

Since/„ is meromorphic and/, , ^ 0 in Ds, l / / n is holomorphic in Ds. Thus l / / n is

holomorphic in Ds/2 = [z : \z — Zol 5- <V2}, and

1 ^

By the maximum principle, we conclude that

1 2
max ——— < —, so

\z-zo\<t/2 \fn(z)\ A
rmn \fn(z)\>->0.

\z-n\<S/2 2

Hence there exists a subsequence of {/„} which converges locally spherically uni-

formly in Ds/2-
Case 2.2: h = 0. Then {/„} converges locally uniformly to 0 in D°s. Thus {f^k)}

and {/n
(*+1)} also converge locally uniformly to 0. Hence, for sufficiently large n, we

have by the argument principle

(3.1)

-Lf
2ni J\z_,

< 1.

Thus we have

Since any pole of /n
( t ) — t must have multiplicity at least jfc + 1, it follows that the zero

°f fnk) — batzo has multiplicity at least k+l.
We consider two subcases.
Case 2.2.1. The set 5 of positive integers n such that the zeros of /n

( i ) — b at zo
have multiplicity greater than k + 4 + 2/k is infinite. We claim that G = {/„ : n e 5}
is normal in Ds/2-

Indeed, suppose that G is not normal in DS/2- Then by Lemma 7, we have
(renumbering, as we may) / „ 6 G, zn 6 Ds/2, and pn —>• 0+ such that
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locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C.

By Hurwitz's Theorem, g ^ 0 and any zeros of gik) — b have multiplicity greater
than k + 4 + 2/k. Thus, by Lemma 5, g is constant, a contradiction. Hence there
exists a subsequence of {/„} which converges locally spherically uniformly in Ds/2.

Case 2.2.2. The set 5/ of positive integers n such that the zeros of f<k) - b at zo
have multiplicity / for some positive integer / such that k + 1 <l<k + 4 + 2/kis
infinite. We claim that G = {/„ : n e Si] is normal in Ds/2.

In fact, suppose that G is not normal in DS/2- Then by Lemma 7, we have (again
renumbering) / „ e G, zn € DS/2, and pn —> 0+ such that

gniS) = 7 > g($)
Pn

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C.

By Hurwitz's Theorem, g ^ 0 and each zero of g(k) — b has multiplicity at least /.
We claim, in addition, that g(k) — b has only a single zero. That g(k) — b must vanish
somewhere follows from Lemma 6. Suppose that f i and f 2 are distinct zeros of g(k)—b\
then the zeros of gik) — b at £i and £2 have multiplicity at least /. Let y be a simple
closed curve containing £i and £2 in its interior and such that g has no zeros on y and
no poles on or inside y. Then £„(£) converges to g(ij) uniformly on and inside y,
and so g(k) — b converges to g(k) — b uniformly on and inside y. By the argument
principle, g(

n
k) — b and gik) — b have the same number of zeros (counting multiplicity)

inside y for sufficiently large n. But g(
n
k) — b has only / zeros (counting multiplicity)

while gw has at least 21 zeros (counting multiplicity) for sufficiently large n, which
is a contradiction.

From the above discussion, g(k) — b has only a single zero, whose multiplicity is /.
Since f^k)(zn + pn%) — gj,k)(%), which converges to g( i )(£) uniformly on compact
subsets of C disjoint from the poles of g, it follows from the formula after (3.1) that
/n

( i ) has / poles (counting multiplicity) in DS/2 and hence g * has / poles (counting
multiplicity) on the disc {£ : zn + pn% £ DSj2}- We conclude easily from the argument
principle that g(k) has at most / poles (counting multiplicity) in C.

Thus

(0 g*0;
(ii) g(i) — b has a single zero, whose multiplicity is /;

(iii) g(k) has at most I poles, counting multiplicities.

We claim that no such function exists. By Lemma 6, there is no transcendental
function, satisfying (i) and (ii). Clearly, g cannot be a polynomial. We now turn to
the somewhat tedious verification that no rational function satisfies conditions (i), (ii),
and (iii). We consider three subcases.
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Case 2.2.2.1: k > 3. Since k + 1 < / < k + 4 + 2/k, g has only a single pole.
Thus g(£) = A/(£ ~ a\)m, where A is a nonzero constant, a, is a constant, and m is
a positive integer.

Obviously, g{k) — b has m + k distinct zeros, which contradicts the fact that g(k} — b
has a single zero.

Case 2.2.2.2: k = 2. Since 3 < / < 7, g has one of the following forms:

(1) s(£) = A / ( £ - a , ) ( ? - « 2 ) 2 , / = 7;
(2) *($) = A/(f-<i,)($-<i2), / = 6;
(3) g(£) = A/(£ - a,)", / = m + 2, 1 < m < 5,

where A is a nonzero constant, a\ and a2 are distinct constants, and m is a positive
integer.

- a2)2], then

- a,)(£ - a2) - (3^ - 2ax - q2)(5£ - 3a, - 2a2)]
^-a^-a2Y

HI- - a , ) 3 ^ - a2)4

Since ^" — b has only a single zero, we have

(3.2) A[3(£ - a,)( | - a2) - (3? - 2a, - a2)(5£ - 3a, - 2a2)]

+ fc(£ - a,)3(£ - a2)4 = fc(l - c)7.

Differentiating the two sides of (3.2) three times, we have

(3.3) (£ 4

where p is a polynomial and c is a constant.
Thus a2 = c. It then follows from (3.2) that a, = a2, a contradiction.
If g is of the form (2) or (3), we can similarly get a contradiction.
Case 2.2.2.3: k = 1. Since 2 < / < 7, g has one of the following forms:

(1) g(£) = A/(£ - a,)(£ - a2)(£ - <z3)
2, / = 7;

(2) £(£) = A / ( | - a,)(£ - a2)(£ - a3), I = 6;
(3) g(£) = A / ( | - a,)2(^ - a,)"1, l = m + 4, 2 < m < 3 ;
(4) g(£) = A/(f - a,)(§ - a2)m, / = m + 3, 1 < /n < 4;
(5) g(£) = A/(£ - a,)", / = m + 1, 1 < m < 6,

where A is a nonzero constant, a,, a2 and a3 are distinct constants, and m is a positive
integer.
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We deal with case (1). If g(t-) = A/[(£ — ax)(£ — a2)(£ — a3)2], then

' / j - x L A [ ( 2 % - a x -e (t) — b =

Since g' — b has only a single zero, we have

(3.4)

+ Z>(£ - aO2(^ - *2)2(S - a3)3 = b(H - c)7.

Differentiating the two sides of (3.4), we have

(3.5) b(l- - <*,)(£ - a2)(l- - a3)
2[2(2f - a, - a2)($ - a3) + 3(^ - a,)(£ - a2)]

- 3a, - 3a2 - 2a3) = 7b(i- - c)6.

Setting ^ = a3 in (3.5) gives

(3.6)

Differentiating the two sides of (3.5), we obtain

(3.7) 8A + (f - a3)p (|) = 42fc(| - c)5,

where p is a polynomial.
Setting £ = a3 in (3.7), we get

(3.8) 8A = 42fc(a3 - c)5.

Thus by (3.6) and (3.8) we have

7 9 9
(3.9) c = --a3 + -ai + -a2.

On the other hand, differentiating both sides of (3.4) six times and putting £ = c, we
obtain

(3.10) c = (2fl! + 2a2 + 3a3)/7.

Comparing (3.9) and (3.10) gives a3 = c, which contradicts (3.8) since A ^ 0.
If g has one of the other forms, we obtain a contradiction in a similar fashion.
Thus we have proved that {/„} is normal in DJ/2. Hence, there exists a subsequence

°f {/«} which converges locally spherically uniformly in Di/2- It follows that & is
normal at zo, and so & is normal in D. The proof of the theorem is complete. •
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The proof of Theorem 2, which uses Lemma 2, is similar. We omit the details.
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