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THE EXTENT OF THE SEQUENCE SPACE
ASSOCIATED WITH A BASIS

WILLIAM H. RUCKLE

1. Introduction. The associated sequence space S of a sequence of vectors
{x,} in a Banach space consists of all scalar sequences (s,) for which

® | SuX%, converges. My primary motivation in writing this paper was to
present a new proof to a recent theorem of N. I. and V. I. Gurarii concerning
limits of extent on S when {x,} is a basis of a uniformly convex or a uniformly
smooth Banach space [5]. This theorem is stated as Theorem 2.4. Several
interesting consequences of this theorem were noted by N. I. Gurarii in [3] and
[4]. For instance he showed that for each pair of numbers p, ¢ with
1 < p < g < oo there is a basis {x,} of /2 with 0 < inf,||x,|| < sup,||x,|| < o
such that if " C S then r < p while if [* D S then s > ¢. Our Theorem 3.2
adds to this result in determining minimum sizes of /¥ and maximum sizes of
I" for X a subspace of /¢ or L®. Finally in Theorem 3.3 we derive a summability
property of a basis in terms of S (formula (3.1)). From this and the Gurarii
theorem it follows that no basis for a uniformly convex or uniformly smooth
space can be “purely conditional’”’ (Corollary 3.4).

2. Growth numbers and the theorem of N. I. and V. I. Gurarii.

2.1 Definition. Let {x,:1 = 1,2, ...} be a sequence of vectors in a Banach
space X having norm || ||. The associated sequence space of (x;), written S (x;)
or simply S, consists of all scalar sequences (¢;) for which > ;x; converges.
The nth growth number, written g(n, {x;}) or simply g(n), is given by the
formula

g(m, {x;}) = sup{||2 icrawxi|| : Fisany set of # indices, |a;] < 1,1 € F}.

The following proposition states a few obvious properties of the growth
numbers, and we omit its proof.

2.2 PrROPOSITION. (a) g(1) = supy||x.]|.

(b) gn) < gn + 1) for each n.

(c) If {xi 1is a mormalized sequence (i.e., ||xi|| =1 for each 1), then
1 < gn) < n for each n.

(d) If {x4} ©s any subsequence of {x}, then

g, {xu}) <gln, {xd) (n=1,2,...).
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(€) If {xrsy} 1s amy permutation of {x.}, then

g('ﬂ, {x‘l(i)}) = g(ﬂ, {xl}) (n = 1! 2.. )

The following theorem shows how the growth numbers of a vector sequence
provides a measure of the size of the associated sequence space.

2.3 THEOREM. Let {x;} be a sequence of vectors in a Banach space X, with S
denoting the associated sequence space and g(n) the nth growth number.

(@) If P C S for p > 1, then g(n) = O(n'?).

(b) If g(n) = O®'®) for p > 1, then I° T Sfor 1 < s < p.

(c) co € Sif and only if g(n) = O(1).

Proof. (a) It is well known (e.g., see [7]) that S is a BK-space (Banach
space of sequences with continuous coefficients) given the norm

HTET = supal| 225t [(@) € 9).

Moreover, the sequence {e;: 7 = 1,2,...} of coordinate vectors
e; = {6ij:j= 1,2,...}

forms a Schauder basis for S.
If I» € S the inclusion is continuous [14, § 11.3]. Hence there is M/ > 0
such that for (¢;) € I?

122 Ta sl | < @ < M E)llp
where || ||, is the usual norm on /2. If F is a finite set of indices and |a;| < 1
for 2 € F we thus have

(1D icraacd| < |20 weraeil|
< M”Zieﬂ‘i@i”p < Mn'/?,

(b) We define an extended real valued function NV on the set of all sequences
by the formula

N((t:)) = sup{[[2icra rci|:
F is a finite set of indices, |a,] < 1, 7 is any permutation of
indices}.

Then N is a balanced symmetric sequential norm in the sense of [8] and [9]
so that Sy, the set of all (¢;) for which N((¢;)) < 0, is a symmetric BK-space
with the norm N. The sequence {e;} is a symmetric basis for its closed linear
span Sx° in Sy. It is not hard to see (continuity of inclusion) that (¢;) € Sy° if
and only if D& i¢:%. (s converges unconditionally in X for each permutation =
on the indices. Consequently we have Sy° C Sy.

It is obvious that

gln) =Nt e+...+ ).
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Let g/ = g(n) — g(n — 1) and let (g,) consist of all sequences (s;)* for
which

(2.1) 1G]] = sup{ D 51 |seolgs : 7 is a permutation of indices}
< .

With the norm || |/, (g)/)° is a symmetric BK-space, and (g,’)* C Sy by
[9, Proposition 3.2].

Let &,/ = n'?» — (n — 1)'7 and let (k,)° be defined by (2.1) with &,
replacing g,/ in (2.1). If g(n) = O(n'?) then (h,')” C (g.")° by [8, Proposition
3.6]. By [9, Proposition 3.6], (,')° properly contains I* for 1 < s < p. Thus
we have

UPFCh’ =g"C Sy

s<p

For s < p the inclusion of /* in Sy is continuous so that
ls S ‘SNo C Sy
since {e;} is a basis for /*. The inclusion is obviously proper since

rFcuilrcs.
## n<lp
(c) If ¢ €S then {g(n)} is bounded by an argument like that used to
prove (a).
If {g(n)} is bounded then 3} .g,/ = 2 ,{g(n) — g(r — 1)} converges so
that (g,’)” 2 m by [8, Proposition 3.2]. Thus we have m C Sy which implies

CogSNo cS.

We now present a new proof of the theorem of N. I. and V. I. Gurarii

[4; 5].

2.4 THEOREM. Let {x,} be a Schauder basis in a Banach space X for which
there is m and M > O such that inf,||x,|| > m and sup,||x,|| < M; let S be the
associated sequence space of {x,}.

(@) If X is uniformly convex, then there is v > 1 such that I" C S and the
inclusion is continuous.

(b) If X is uniformly smooth, then there is s < 0 such that S C I° and the
inclusion is continuous.

Proof. (a) Since {x,} is a Schauder basis for X there is § > 0 such that

for each n
(2.2) HZleixi ~Z7=n+1 agxil| =8
whenever ||Dimiax4|| = 1 or ||[DSenriawxy|| = 1. (Let

6 = inf,{||Pull.4 |1 — Pul[7}} where Pn(Z",f;laixi) = ZLlaixi;
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see [1, p. 67]). Since X is uniformly convex there is ¢ > 0 such that
(2.3) e+ <20 —¢)

whenever ||x|| and ||y|| are <1 and ||x — y|| = 6 [1, p. 112]. Using these two
facts we shall prove that

(2.4) g(2n) < 2(1 — €)g(n)

for each n. Let F be any set of 2n indices and let |a;] < 1for< € F. Let F; be
the set of the # smallest indices in F and F, the complement of F; in F. If

C = max{|[Qiemawi|, |2 iemawci} %0

we then have

12 er(@i/C)xs — D ier @i/ Cail| > 6
by (2.2). By (2.3)

(2.5) ”Ziei‘aixi” <2(1 = e)C < 2(1 — €)g(n).

If C =0 then (2.5) is obviously true. The inequality (2.4) now quickly
follows from (2.5).

We now use (2.4) to show that there is r > 0 for which g(n) = O(®n'/7).
From (2.4) it follows that g(2") < M2"*(1 — é)" forn = 0,1,2,... . Let d,
be defined by

d, = [2(1 — §)]'"=.
Since {g(k)} and {d;} are increasing sequences and
2Mde > g(27+1)

for each #, it follows that g(z) = O0(d,). If p is any number with 1 > 1/p >
1 + logy(1 — 8), we have d, = O(n'/?) since

logs(d./n*?) = logan{l + logs(1 — §) — 1/p}
<o0.
Thus if 1/ > 1 + log.(1 — §), 1" C S by Theorem 2.2 (b).

(b) If X is uniformly smooth then X* is uniformly convex [1, (8), p. 114]
and X is reflexive. The coefficient functionals { f;} of the basis {x,} form a
basis of X*. Since inf,||x,|| > 0, sup,|| f|| < c©. Thus by the argument of (a)
there is s’ > 1 such that [ C T where T is the associated sequence space of
{ fa}. The inclusion /¥ C T implies 77 C I* where

T" = {(s:) :supa{| D, =154 < oo foreach (t;) € T}

and 1/s + 1/s’ = 1. However, I = S the associated sequence space of {x,}
by [7, Corollary 3.3].
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3. Further results on the associated sequence space.

3.1 PrOPOSITION. Suppose {x,} is a sequence of vectors in a Banach space X
such that P C S({x,}).

(@) If X =14, I" or L" with 1 <7 < 2 and p > 2, then Y oy||x,]|* <
where s = 2p/(p — 2).

(b) If X =17 or L™ with 2 <r <0 and p > r, then Y o|lx.]|* <
wheres = pr/(p — 7).

Proof. (a) If 7 C S then for each (s;) in /, (six;) is unconditionally con-
vergent. This is because (s;(e;)) converges unconditionally, the inclusion
from /7 into S is continuous, and the operator 7'(s;) = Z‘}‘;lsixi is continuous,
from S into X. Consequently (||s:x4||) is in /2 for each (s;) € I? (see [1, p. 63]).
This means that (||x;||) determines a diagonal operator from /7 into /2, so that
(|[x4]|) must be in the space I* where s = 2p/(p — 2). (See [10]; note however
that the values in the 3rd column of the table on p. 48 should be [P¥ @9 and
l(w—p+0)/pq_)

(b) The proof of this assertion is like that of (a).

3.2 THEOREM. Let {x,} be a basis of a Banach space X such that inf,||x,|| =
m >0 and sup,||x.|| = M < 0. Denote the associated sequence space of
{x.} by S.

(@) If X is Hilbert space and S D P, then p < 2; if S C P, then p > 2.

(b) If X is a subspace of I" or L™ with 1 < r < 2 and I? D S, then p < 2; if
SDIP, then p > r.

(c) If X is a subspace of I" or L™ with 2 < r < 0 and I" C S, then p < r; if
S D P then p > 2.

Proof. We shall prove only (c); the proofs of (a) and (b) are similar.

(c) If» C Sthenp < rby (b) of 3.1 plus the hypothesis that inf,||x,|| > 0.

The space S is isomorphic to a subspace of I” or L™ so .S* is isomorphic to a
subspace of I or L where 1 < 7 < 2and 1/r 4+ 1/7/ = 1. Since S is reflective
{e;} forms a basis in .S and since sup,||x,|| < 0, inf,||e,|| > 0. The inclusion
S D I implies ST C I*" where 1/p + 1/p’ = 1. By (a) of 3.1 we conclude
that p’ < 2o0rp > 2.

3.3 THEOREM. Let {x,} be a basis of a Banach space X such that inf,||x,|| =
m > 0 and sup,||x,|| = M < 00. Denote the associaled sequence space of |x,)
by S and the biorthogonal sequence of coefficient functionals by { f,}. If for
1 <p < oo either (@) SC P, or (b) I’ C.S where 1/p + 1/p’ = 1, then for
each x € X and f € X* we have

(3.1) 2o | fal®) fa) |7 < 0.

Proof. The conclusion that (a) implies (3.1) follows trivially from the fact
that (f,(x)) € ” and sup,|| fu|]| < .
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If (b) is valid then # C M(S) the multiplier algebra of S [6]. For, if

(u;) € I” and (s;) € S, then (s;) is a bounded sequence because m > 0 so
that (u;s;) € » CS. Since P’ C M(S), M(S)* C 2. But M(S)” contains all
sequences of the form (f,(x)f(x,)) where x € X and f € X* [11].

3.4 COROLLARY. Let {x,} be a basis for a Banach space X with coefficient

Sunctionals { f,}. If X is either uniformly convex or umiformly smooth there is

p

1

2.

3

< o0 such that for each x in X and f in X*
Z ;z.o=1 lf(xn)fn(x)lﬁ < 00.

REFERENCES

. M. M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math. 45 (1944),
375-385.

Normed linear spaces (Academic Press, New York, 1962).

. N. I. Gurarii, On sequences of coefficients of expansion by a basis in Hilbert and Banach
spaces, 1zv. Akad. Nauk SSR Ser. Math. 34 (1970), 216-223.

4. Some theorems on bases in Hilbert and Banach spaces, Dokl. Akad. Nauk SSSR 193
(1970), 974-977, Soviet Math. Dokl. 11 (1970), 1042-1045.
5. N. I. Gurarii and V. 1. Gurarii, On bases in uniformly convex and uniformly smooth Banach

6.
7.
8.
9.
10.
11.
12.

13.

14

spaces, Izv. Akad. Nauk SSSR Ser. Math. 84 (1970), 210-215.

R. J. McGivney and W. Ruckle, Multiplier algebras of biorthogonal systems, Pacific J. Math.
29 (1969), 375-387.

W. H. Ruckle, On the construction of sequence spaces that have Schauder bases, Can. J. Math.
18 (1966), 1281-1293.

Symmetric coordinate spaces and symmetric bases, Can. J. Math. 19 (1967), 828-838.

On perfect symmetric BK-spaces, Math. Ann. 175 (1968), 121-126.

W. H. Ruckle, Diagonals of operators, Studia Math. 38 (1970), 43—49.

Representation and series summability of complete biorthogonal sequences, Pacific J.
Math. 34 (1970), 511-528.

W. L. C. Sargent, Some sequence spaces related to the I? spaces, J. London Math. Soc. 35
(1960), 161-171.

Ivan Singer, Bases in Banach spaces (Springer, Berlin-Heidelberg-New York, 1970).

. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).

Clemson University,
Clemson, South Carolina

https://doi.org/10.4153/CJM-1972-059-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-059-8

