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HIGHER ORDER SCHEMES AND RICHARDSON EXTRAPOLATION
FOR SINGULAR PERTURBATION PROBLEMS

DRAGOSLAV HERCEG, RELJA VULANOVIC AND NENAD PETROVIC

Seniilinear singular perturbation problems are solved numerically by using finite—difference
schemes on non-equidistant meshes which are dense in the layers. The fourth order uniform
accuracy of the Hermitian approximation is improved by the Richardson extrapolation.

1. INTRODUCTION

We consider the following singularly perturbed boundary value problem:

(1) - e V + c{x,u) = 0, x e I = [0,1], w(0) = u(l) = 0,

with a small parameter e, e G (O,£o)- Our assumptions are

(2.1) c G C 8 ( / x R ) ,

(2.2) g{x) < cu(x,u) < G{x), ( x , « ) e l x R ,

(2.3) S := nnn{5g{x) - 2G(x): x <E/} > 0,

(2.4) 0 < 7
2 < g{x), \g'(x)\ < L, |G'(x)| < L, x £ I.

It is well-known that under the given conditions there exists a unique solution, it €
C'10(7 x R) , to the problem (1), and that the following representation holds:

(3.1) u{x) = vo{x) + v1(x) + y{x),

where

(3.2) »o(a0 = exp(-7z/e),

(3.3) v1{x) = exp{i(x-l)/c),

and

(3.4) M, s = 0, 1, . . . , 8, x € J,
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130 D. Herceg, R. Vulanovic and N. Petrovic [2]

(see [6, 7]). Here and throughout the paper M denotes any positive constant indepen-

dent of e.

As well as in [6] and [7], problem (1) was solved numerically in [1, 5, 3, 4] - just

to mention some of the papers. For other references see [3, 4].

Our aim is to solve (1) numerically by using classical finite difference schemes on
special non-equidistant meshes which are dense in the layers of u, located at x — 0
and x = 1. The same approach can be found in the papers we have mentioned. In
this paper we combine the methods from [7] and [4] to obtain high order convergence
uniform in e. In [7] Richardson extrapolation was applied to the central difference
scheme and high accuracy uniform in e was proved. In [4] (see [3] as well) the Hermite
scheme was used and fourth order uniform convergence was proved. Here we shall apply
Richardson extrapolation to the Hermite scheme. We shall give a proof of sixth order
convergence uniform in e . We believe that a general theory can be developed in the
same way as in [7] and that even higher order uniform convergence can be obtained.
Numerical experiments confirm this.

Conditions (2.2) and (2.3) are the same as in [3, 4] and they guarantee stability
uniform in e. In a forthcoming paper we shall avoid these constraints on the function
c.

In Section 2 the discretisation is given and stability uniform in e is proved. In
Section 3 we give a representation of the consistency error, which justifies the use of
Richardson extrapolation. We end the paper by giving some numerical results in Section
4.

The constants M will be independent of the discretisation mesh as well.

2. DISCRETISATION

Let If, be the discretisation mesh with the points:

(4.1) Xi = \(ti), ti=ih,i = 0,l,...,n,h=-,n- 2m, m e N,
n

( « ( < ) = £ ! * , * € [ < > , « ] ,
(4.2) \{t) = I n(t), t 6 [a, 0.5],

{i _ m _ t), te [0.5, l],

where

(4.3) w(t) = A(t - a)4 + w"'(o)(< - a)3/6 + w"(a)(< - af/2 + u'(a){t - a) + u(a).

The parameter a is

(4.4) a = tk,
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[3] Semilinear singular perturbation problems 131

for some k 6 {1, 2, . . . , m — 1} ,

(4.5) q = a + $1.

and the coefficient A is determined from

(4.6) TT(0.5) = 0.5.

Moreover, the coefficient a should satisfy

(4.7) ( B + 2 £ - 1 / 4
9 ( 0 . 5 - a ) ^ ^ a ^ B ' 1 ,

where

(4.8) B = 2(e 3 / 4 a + c^ '^O.S - a) + e
1/«9(0.5 - a ) 2 + g(0.5 - a ) 3 ) .

We have A: I -> J, A £ C ^ I ) , A € C3[0, 0.5], A G C°°[0, a], A € C^a, 0.5]. The
second inequality in (4.7) implies A ^ 0, so ir'" is nondecreasing, and

ir<*>(<) ^ ir(»>(a) = w(f)_(a) > 0, a = 3 ,2 ,1, «£ [a, 0.5].

At the same time

w ( ' ) ( t ) > O J a = l , 2 ) . . . > te[O,q),

and taking (4.5) into account we get

(5.1) 0 < A(J)(<) ^ M, s = 1, 2, 3, t € [0, 0.5].

Moreover,

(5.2) 0 < A(4)(<) ^ Me~1/4, t e [0, 0.5] \ {a}.

The first inequality in (4.7) means that

M 0 - TT(0)(4) £ o, < e [a, q),

and it follows that

(6) w'{t)>n'(t), t€[a,q).

The inequalities (5.1) and (6) will be used later on, as well as

(7) exp(- 7 A(0/0<Mexp(-M/(g-0) , t € (0, q).
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Let
Q_ (S-l) $=zJ^~^

If

_ a + (?v/£- — >0,

we denote by j an index such that

<,-_, <P< tj.

Let
I'h = ixi € Ih • j + 1 < i < fc + 6 or n• - k - 6 < i < n - j - 1}

(if j > fc + 5 then I'h = 0).

Now we discretise problem (1) on the mesh //, by using the same scheme as in [3,

4]:

(8.1) TftWo = w0 = 0,

(8.2)

t = 1,2, . . . , n - l ,

(8.3) Tftw,, = «>„ = 0,

where T/,Wi = (T/lWh)i, Wh = [wo, w i , . . . , ivn]
T G R" + J (w i = w/,,i) is a mesh function

on / / , ,

cs = c(x3 , ID,), s =i — 1, i, i + 1

—2 —2 2

() () (O

/T; = ,-c; — ajj_i, i = 1, 2, . . . , n, and

MO = Z ^ ( t f - ^+1 + >

bo(i) = ^ ( A ? + fc?+1 + 3/^^+!), if Xi e / k \ 4 ;

6o(O = 1, 6,(0 = 0 , b2(i) - 0, if Xi G / ; .

From now on we shall consider the mesh points in (0, 0.5) only (that is X{, i =
1, 2, . . . , m — 1 ) since the interval [0.5, 1) can be treated analogously (note that
hi = hn_i+i, i = 1, 2, . . . , m).
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As in [3, 4] we have, for z; G (I/, \ I'h) f~) (0, 0.5),

1 2 ^ 2 ^ ^ 6 ' ^ 6'

(9) 6,(0 > - J

We shall prove (9) here, since this proof differs from the one in [3, 4]. It is easy to see
that (9) is equivalent to

hi "

and tliis inequality will follow from

Tm—\ ^ ^ >

(see (5.1)). Now if k + 6 < i(< m) we have

Let
= SV(i ) - ff'(< + 2/0, (< = ti_i).

It follows that
p(5)(<) > 0, s = 3, 2, 1, <G [a + 6/i, 0.5],

so (10) holds in this case. Let us now consider the case i < j + 1, that is,

(11) U-i < P,

and <i+i < q. If tf;_i ^ a from (11) we have

and (10) follows because of (6). If ti^i > a, the inequality

holds because of (11) and (10) is proved again.
Thus, in the same way as in [4] we can prove
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THEOREM 1. Let (2.1)-(2.4) hold and let the discrete problem (S.1)-(S.3) be given

on the mesh (4.1)-(4.8) with

(12) n

Then the problem (S.l)-(8.3) has a unique solution ivh, which is a point of at-

traction of SOR-Newton and Newton-SOR methods with the relaxation parameter in

(0, 1]. Moreover, for any v\, v% € R"+ 1, the following stability inequality holds:

(13) K-^L^^II^i-r^L,
wiiere <r is a positive constant, independent of £ .

R e m a r k . Note that the right-hand-side of (12) is bounded uniformly in e .

3. RICHARDSON EXTRAPOLATION

Let us consider the consistency error

- Thwh = Thuh

where ti/, = [u(xo), w(xj), . . . , u(xn)]
T £ R n + 1 is the restriction of the solution it to

the problem (1) on the mesh // , . The components of the vector r/, are

ro = rn = 0,

and for i = 1, 2, . . . , n, if Xi 6 Ih \ I/,

(14.1)

(3/iJ + 3*f+1 - Thjhl, + 2h]hi+1

. u

and for Xi 6 I'h

(14-2) ri = e*{

where •#' G (a<_i, «t+i), a = 1, 2, 3, 4.
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THEOREM 2. Let (2.1)-(2.4) hold. On the mesh (4.1)-(4.S) we have, for i =
1 , 2 , . . . , 7 1 ,

n = lUh4 + Ri, \Ri\ < Mh\ for x{ € Ih \ I'h,(15.1)

(15.2)

where Ki is independent of h.

PROOF: We shall use (14.1)-(14.2) and the representation (3.1)-(3.4). Again, we
shall give the proof for i — 1, 2, . . . , m — 1 only. Note that for x £ [0, 0.5]

(16) 3)(x) < M, s = 0 , 1 , . . . , 8 , z-vi+y.

Let us prove (15.1). Let q, denote the coefficient at u^'\xi) in (14.1), s = 5, 6, 7,
and let q% be the coefficient at w^8 (̂i? )̂, p = 1, 2, 3. By expanding A (note that
Ae C°°{xi, xi+1)) we get

q5 = e2\'(tif\"(ti)h
4/20 + r1

i,

(see [7] for the technique). Thus we have (15.1) with

By using (3.1)-(3.4), (5.1), (7) and the technique from [6] (see [7, 3, 4] as well) we can
prove

Note that «<£//, \ I'h corresponds to the cases 1° and 2° of the proof of Theorem 2
from [6] (Theorem 1 from [7]). On the other hand, Xi £ I'h corresponds to the case 3° .
Let us illustrate the proof of (17) by showing

(18.1)

(18.2)

We have

D2 =
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where

Now, if i > k + 6, that is, ^ _ i > a + 6ft, from (5.1), (5.2), (7), (3.1)-(3.4) and (16) we
have

) + £~5 exp(-TA(a + 6h)/e)],

D1 < Mh6[l + e~13/4 exp{

and

l + £-s exp (-7u;(a)/e)] ^ Mh6.

If i <j + 1 that is, <i_i < P we get

(19.1) Z?,

(19.2)

Since, from <i_j ^ P < q — 3h it follows that

, g ~ U-i
1 l &

from (19.1), (19.2) and (7) we get (18.1), (18.2) again.
Let us now prove (15.2). From (14.2) we have

\rt\ < Me2 max{|w"(a;)| : Xi_i ^ x < xi+1}.

From x 6 I'h it follows that e < Mft4, thus by using (3.1)-(3.4), (16) and (7) we get

\n\ < M[h* + exp {-iX{P)/e)\ < M[/i8 + exp {-Mn)\ ^ M/i8.

H

By using Richardson extrapolation we can eliminate the 0(/i4)-term from (15.1),
and , having in mind stability (13), we can prove
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THEOREM 3. Let the conditions of Theorem 1 hold and let Wh and tw/,/2 be the
solutions to the problem (8.1)-(8.3) with n and 2n mesh steps, respectively. Then we
have

\\uh - w/illoo < Mh6,

where Wh is the vector with components

f2i -Wh,i .
, i = 0, 1, . . . , n.Wi

4. NUMERICAL RESULTS

We shall use the following test example:

—e2u" + u + cos2irx + 2(e7r) cos 2irx = 0, x € / ,

«(0) = u(l) = 0,

whose solution is known:

= exp(-x/e) + « p ( ( « - l ) / e ) _ cog2

l + exp(-l /e)

This problem was considered in [2, 3, 4, 5, 6, 7] as well.
In Table 1 we present the error

Eh = \\uh - WhWn ,

(where Wh is the same as in Theorem 3), and the experimental order of convergence,
(see [2])

= log Eh - log Eh/2

Iog2

Different values of c and n are considered. The corresponding values of a are given
in Table 2. They are determined in such a way that the percentage of the mesh steps
lying within the layers is the highest possible. We take the interval [0, e] to represent
the left-hand layer. The percentage, p = (i^/ri) * 100, where IQ is an index such that
xig 5% e < XiQ+i, is shown in Table 2 as well. For a given e , we take the smallest value
of the parameter a (see (4.7))

a = (B + 2e-1 / 4
g(0.5 - a ) 4 ) ~*.

Then we consider the condition
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which is equivalent to
(*)

and determine a as the point satisfying (4.4), for which K is maximal (note that K

is a function of a for e fixed).

All computations have been carried out on the ATARI 1040 ST with 48 bits accu-

racy in floating point.

Table 1

n e

10

20

40

80

160

320

2-i5

1.565(-3)

1.236(-3)

3.402

3.745(-5)

5.045

5.849(-7)

6.001

9.115(-9)

6.004

3.942(-10)

4.531

2-20

-

1.914(-3)

4.446

3.165(-5)

5.918

4.707(-7)

6.071

7.338(-9)

6.004

4.295(-10)

4.095

2_25

4.448(-2)

9.826(-4)

5.501

2.581(-5)

5.251

3.243(-7)

6.314

5.012(-9)

6.016

3.121(-10)

4.005

2-30

2.779(-2)

1.032(-2)

1.429

3.632(-4)

4.829

7.852(-6)

5.532

1.074(-7)

6.192

1.615(-9)

6.056

2-35

3.108(-2)

1.591(-2)

0.966

6.578(-3)

1.275

3.894(-4)

4.079

6.717(-6)

5.857

1.123(-7)

5.902

2-40

1.370(-l)

1.651(-2)

3.053

2.170(-3)

2.928

6.181(-4)

1.812

2.090(-7)

5.702

3.133(-9)

6.060

E,

Or

Table 2

£

a

P

2"

0.

2.

-15

10

18

2-20

0.15

2.81

2-25

0.20

4.38

2

0

7

- 3 0

.20

.81

2_35

0.20

11.88

2-

0.

16

-40

25

.56
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