Bull. Austrai. Math. Soc.
Vol. 39 (1989) [129-139]

HIGHER ORDER SCHEMES AND RICHARDSON EXTRAPOLATION FOR SINGULAR PERTURBATION PROBLEMS

Dragoslav Herceg, Relja Vulanović and Nenad Petrović

Abstract

Semilinear singular perturbation problems are solved numerically by using finite-difference schemes on non-equidistant meshes which are dense in the layers. The fourth order uniform accuracy of the Hermitian approximation is improved by the Richardson extrapolation.

1. Introduction

We consider the following singularly perturbed boundary value problem:

$$
\begin{equation*}
-\varepsilon^{2} u^{\prime \prime}+c(x, u)=0, x \in I=[0,1], u(0)=u(1)=0 \tag{1}
\end{equation*}
$$

with a small parameter $\varepsilon, \varepsilon \in\left(0, \varepsilon_{0}\right)$. Our assumptions are

$$
\begin{gather*}
c \in C^{8}(I \times \mathbf{R}), \tag{2.1}\\
g(x) \leqslant c_{u}(x, u) \leqslant G(x),(x, u) \in I \times \mathbf{R}, \tag{2.2}\\
\delta:=\min \{5 g(x)-2 G(x): x \in I\}>0, \tag{2.3}\\
0<\gamma^{2}<g(x),\left|g^{\prime}(x)\right| \leqslant L,\left|G^{\prime}(x)\right| \leqslant L, x \in I . \tag{2.4}
\end{gather*}
$$

It is well-known that under the given conditions there exists a unique solution, $u \in$ $C^{10}(I \times \mathbf{R})$, to the problem (1), and that the following representation holds:

$$
\begin{equation*}
u(x)=v_{0}(x)+v_{1}(x)+y(x) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& v_{0}(x)=\exp (-\gamma x / \varepsilon) \tag{3.2}\\
& v_{1}(x)=\exp (\gamma(x-1) / \varepsilon) \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\left|y^{(o)}(x)\right| \leqslant M, s=0,1, \ldots, 8, x \in I \tag{3.4}
\end{equation*}
$$

Received 14 April 1988

This research was partly supported by NSF and SIZ for Science of SAP Vojvodina through funds made available to the U.S.- Yugoslav Joint Board on Scientific and Technological Cooperation (grant JF 799).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.
(see $[6,7]$). Here and throughout the paper M denotes any positive constant independent of ε.

As well as in [6] and [7], problem (1) was solved numerically in [1, 5, 3, 4] - just to mention some of the papers. For other references see [3, 4].

Our aim is to solve (1) numerically by using classical finite difference schemes on special non-equidistant meshes which are dense in the layers of u, located at $x=0$ and $x=1$. The same approach can be found in the papers we have mentioned. In this paper we combine the methods from [7] and [4] to obtain high order convergence uniform in ε. In [7] Richardson extrapolation was applied to the central difference scheme and high accuracy uniform in ε was proved. In [4] (see [3] as well) the Hermite scheme was used and fourth order uniform convergence was proved. Here we shall apply Richardson extrapolation to the Hermite scheme. We shall give a proof of sixth order convergence uniform in ε. We believe that a general theory can be developed in the same way as in [7] and that even higher order uniform convergence can be obtained. Numerical experiments confirm this.

Conditions (2.2) and (2.3) are the same as in [3, 4] and they guarantee stability uniform in ε. In a forthcoming paper we shall avoid these constraints on the function c.

In Section 2 the discretisation is given and stability uniform in ε is proved. In Section 3 we give a representation of the consistency error, which justifies the use of Richardson extrapolation. We end the paper by giving some numerical results in Section 4.

The constants M will be independent of the discretisation mesh as well.

2. Discretisation

Let I_{h} be the discretisation mesh with the points:

$$
\begin{gather*}
x_{i}=\lambda\left(t_{i}\right), t_{i}=i h, i=0,1, \ldots, n, h=\frac{1}{n}, n=2 m, m \in \mathbf{N}, \tag{4.1}\\
\lambda(t)=\left\{\begin{array}{cc}
\omega(t)=\frac{a e t}{q-t}, & t \in[0, \alpha], \\
\pi(t), & t \in[\alpha, 0.5] \\
1-\lambda(1-t), & t \in[0.5,1]
\end{array}\right. \tag{4.2}
\end{gather*}
$$

where

$$
\begin{equation*}
\pi(t)=A(t-\alpha)^{4}+\omega^{\prime \prime \prime}(\alpha)(t-\alpha)^{3} / 6+\omega^{\prime \prime}(\alpha)(t-\alpha)^{2} / 2+\omega^{\prime}(\alpha)(t-\alpha)+\omega(\alpha) \tag{4.3}
\end{equation*}
$$

The parameter α is

$$
\begin{equation*}
\alpha=t_{k} \tag{4.4}
\end{equation*}
$$

for some $k \in\{1,2, \ldots, m-1\}$,

$$
\begin{equation*}
q=\alpha+\sqrt[4]{\varepsilon} \tag{4.5}
\end{equation*}
$$

and the coefficient A is determined from

$$
\begin{equation*}
\pi(0.5)=0.5 \tag{4.6}
\end{equation*}
$$

Moreover, the coefficient a should satisfy

$$
\begin{equation*}
\left(B+2 \varepsilon^{-1 / 4} q(0.5-\alpha)^{4}\right)^{-1} \leqslant a \leqslant B^{-1} \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
B=2\left(\varepsilon^{3 / 4} \alpha+\varepsilon^{1 / 2} q(0.5-\alpha)+\varepsilon^{1 / 4} q(0.5-\alpha)^{2}+q(0.5-\alpha)^{3}\right) \tag{4.8}
\end{equation*}
$$

We have $\lambda: I \rightarrow I, \lambda \in C^{1}(I), \lambda \in C^{3}[0,0.5], \lambda \in C^{\infty}[0, \alpha], \lambda \in C^{\infty}[\alpha, 0.5]$. The second inequality in (4.7) implies $A \geqslant 0$, so $\pi^{\prime \prime \prime}$ is nondecreasing, and

$$
\pi^{(\theta)}(t) \geqslant \pi^{(\theta)}(\alpha)=\omega^{(\theta)}(\alpha)>0, s=3,2,1, t \in[\alpha, 0.5] .
$$

At the same time

$$
\omega^{(s)}(t)>0, s=1,2, \ldots, \quad t \in[0, q)
$$

and taking (4.5) into account we get

$$
\begin{equation*}
0<\lambda^{(s)}(t) \leqslant M, s=1,2,3, t \in[0,0.5] \tag{5.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
0<\lambda^{(4)}(t) \leqslant M \varepsilon^{-1 / 4}, \quad t \in[0,0.5] \backslash\{\alpha\} . \tag{5.2}
\end{equation*}
$$

The first inequality in (4.7) means that

$$
(\omega(t)-\pi(t))^{(4)} \geqslant 0, \quad t \in[\alpha, q)
$$

and it follows that

$$
\begin{equation*}
\omega^{\prime}(t) \geqslant \pi^{\prime}(t), \quad t \in[\alpha, q) . \tag{6}
\end{equation*}
$$

The inequalities (5.1) and (6) will be used later on, as well as

$$
\begin{equation*}
\exp (-\gamma \lambda(t) / \varepsilon) \leqslant M \exp (-M /(q-t)), \quad t \in(0, q) \tag{7}
\end{equation*}
$$

Let

$$
Q=\frac{(S-1)}{S}, S=\sqrt{1+\sqrt{3}}
$$

If

$$
P=\alpha+Q \sqrt[4]{\varepsilon}-\frac{2 h}{Q}>0
$$

we denote by j an index such that

$$
t_{j-1} \leqslant P<t_{j} .
$$

Let

$$
I_{h}^{\prime}=\left\{x_{i} \in I_{h}: j+1 \leqslant i \leqslant k+6 \text { or } n-k-6 \leqslant i \leqslant n-j-1\right\}
$$

(if $j>k+5$ then $I_{h}^{\prime}=\emptyset$).
Now we discretise problem (1) on the mesh I_{h} by using the same scheme as in [3, 4]:

$$
\begin{equation*}
T_{h} w_{0}=w_{0}=0 \tag{8.1}
\end{equation*}
$$

$$
\begin{gather*}
T_{h} w_{i}=\varepsilon^{2}\left(a_{1}(i) w_{i-1}+a_{0}(i) w_{i}+a_{2}(i) w_{i+1}\right)+b_{1}(i) c_{i-1}+b_{0}(i) c_{i}+b_{2}(i) c_{i+1}=0 \tag{8.2}\\
i=1,2, \ldots, n-1, \\
T_{h} w_{n}=w_{n}=0, \tag{8.3}
\end{gather*}
$$

where $T_{h} w_{i}=\left(T_{h} w_{h}\right)_{i}, w_{h}=\left[w_{0}, w_{1}, \ldots, w_{n}\right]^{T} \in \mathbb{R}^{n+1}\left(w_{i}=w_{h, i}\right)$ is a mesh function on I_{h},

$$
\begin{gathered}
c_{s}=c\left(x_{s}, w_{s}\right), s=i-1, i, i+1 \\
a_{1}(i)=\frac{-2}{h_{i}\left(h_{i}+h_{i+1}\right)}, a_{2}(i)=\frac{-2}{h_{i+1}\left(h_{i}+h_{i+1}\right)}, a_{0}(i)=\frac{2}{h_{i} h_{i+1}}
\end{gathered}
$$

$h_{i}=x_{i}-x_{i-1}, i=1,2, \ldots, n$, and

$$
\begin{gathered}
b_{1}(i)=\frac{-a_{1}(i)}{12}\left(h_{i}^{2}-h_{i+1}^{2}+h_{i} h_{i+1}\right), b_{2}(i)=\frac{-a_{2}(i)}{12}\left(h_{i+1}^{2}-h_{i}^{2}+h_{i} h_{i+1}\right), \\
b_{0}(i)=\frac{a_{0}(i)}{12}\left(h_{i}^{2}+h_{i+1}^{2}+3 h_{i} h_{i+1}\right), \text { if } x_{i} \in I_{h} \backslash I_{h}^{\prime} \\
b_{0}(i)=1, b_{1}(i)=0, b_{2}(i)=0, \text { if } x_{i} \in I_{h}^{\prime}
\end{gathered}
$$

From now on we shall consider the mesh points in ($0,0.5$) only (that is $x_{i}, i=$ $1,2, \ldots, m-1$) since the interval $[0.5,1$) can be treated analogously (note that $\left.h_{i}=h_{n-i+1}, i=1,2, \ldots, m\right)$.

As in $[3,4]$ we have, for $x_{i} \in\left(I_{h 2} \backslash I_{h}^{\prime}\right) \cap(0,0.5)$,

$$
\begin{gather*}
\frac{1}{12} \leqslant b_{2}(i) \leqslant \frac{1}{6}, \quad b_{2}(i) \geqslant b_{1}(i), \quad b_{0}(i) \geqslant \frac{5}{6} \\
b_{1}(i) \geqslant-\frac{1}{6} \tag{9}
\end{gather*}
$$

We shall prove (9) here, since this proof differs from the one in [3, 4]. It is easy to see that (9) is equivalent to

$$
\frac{h_{i+1}}{h_{i}} \leqslant S^{2}
$$

and this inequality will follow from

$$
\begin{equation*}
\frac{\lambda^{\prime}\left(t_{i+1}\right)}{\lambda^{\prime}\left(t_{i-1}\right)} \leqslant S^{2} \tag{10}
\end{equation*}
$$

(see (5.1)). Now if $k+6<i(<m)$ we have

$$
t_{i-1} \geqslant \alpha+6 h
$$

Let

$$
p(t)=S^{2} \pi^{\prime}(t)-\pi^{\prime}(t+2 h),\left(t=t_{i-1}\right)
$$

It follows that

$$
p^{(s)}(t) \geqslant 0, s=3,2,1, \quad t \in[\alpha+6 h, 0.5]
$$

so (10) holds in this case. Let us now consider the case $i<j+1$, that is,

$$
\begin{equation*}
t_{i-1} \leqslant P \tag{11}
\end{equation*}
$$

and $t_{i+1}<q$. If $t_{i-1} \leqslant \alpha$ from (11) we have

$$
\frac{\omega^{\prime}\left(t_{i+1}\right)}{\omega^{\prime}\left(t_{i-1}\right)}=\left(\frac{q-t_{i-1}}{q-t_{i+1}}\right)^{2} \leqslant S^{2}
$$

and (10) follows because of (6). If $t_{i-1}>\alpha$, the inequality

$$
\frac{\omega^{\prime}\left(t_{i+1}\right)}{\omega^{\prime}(\alpha)} \leqslant S^{2}
$$

holds because of (11) and (10) is proved again.
Thus, in the same way as in [4] we can prove

Theorem 1. Let (2.1)-(2.4) hold and let the discrete problem (8.1)-(8.3) be given on the mesh (4.1)-(4.8) with

$$
\begin{equation*}
n>\frac{2 L \pi^{\prime}(1)}{\delta} \tag{12}
\end{equation*}
$$

Then the problem (8.1)-(8.3) has a unique solution w_{h}, which is a point of attraction of SOR-Newton and Newton-SOR methods with the relaxation parameter in $(0,1]$. Moreover, for any $v_{h}^{1}, v_{h}^{2} \in \mathbf{R}^{n+1}$, the following stability inequality holds:

$$
\begin{equation*}
\left\|v_{h}^{1}-v_{h}^{2}\right\|_{\infty} \leqslant \sigma^{-1}\left\|T_{h} v_{h}^{1}-T_{h} v_{h}^{2}\right\|_{\infty} \tag{13}
\end{equation*}
$$

where σ is a positive constant, independent of ε.
Remark. Note that the right-hand-side of (12) is bounded uniformly in ε.

3. Richardson extrapolation

Let us consider the consistency error

$$
r_{h}=T_{h} u_{h}-T_{h} w_{h}=T_{h} u_{h}
$$

where $u_{h}=\left[u\left(x_{0}\right), u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right]^{T} \in \mathbf{R}^{n+1}$ is the restriction of the solution u to the problem (1) on the mesh I_{h}. The components of the vector r_{h} are

$$
r_{0}=r_{n}=0,
$$

and for $i=1,2, \ldots, n$, if $x_{i} \in I_{h} \backslash I_{h}^{\prime}$

$$
\begin{align*}
r_{i} & =\varepsilon^{2}\left[\frac{u^{(5)}\left(x_{i}\right)}{180}\left(h_{i+1}-h_{i}\right)\left(2 h_{i}^{2}+2 h_{i+1}^{2}+5 h_{i} h_{i+1}\right)\right. \tag{14.1}\\
& +\frac{u^{(6)}\left(x_{i}\right)}{720}\left(3 h_{i}^{4}+3 h_{i+1}^{4}-7 h_{i}^{2} h_{i+1}^{2}+2 h_{i}^{3} h_{i+1}+2 h_{i} h_{i+1}^{3}\right) \\
& +\frac{u^{(7)}\left(x_{i}\right)}{7!}\left(h_{i+1}-h_{i}\right)\left(7 h_{i} h_{i+1}\left(h_{i}^{2}+h_{i+1}^{2}\right)+5\left(h_{i}^{4}+h_{i+1}^{4}\right)-2 h_{i}^{2} h_{i+1}^{2}\right) \\
& -2 \frac{u^{(8)}\left(\vartheta_{i}^{1}\right)\left(h_{i}^{7}+h_{i+1}^{7}\right)}{8!\left(h_{i}+h_{i+1}\right)}+\frac{u^{(8)}\left(\vartheta_{i}^{2}\right) h_{i}^{5}\left(h_{i}^{2}-h_{i+1}^{2}+h_{i} h_{i+1}\right)}{6 \cdot 6!\left(h_{i}+h_{i+1}\right)} \\
& \left.+\frac{u^{(8)}\left(\vartheta_{i}^{3}\right) h_{i+1}^{5}\left(h_{i+1}^{2}-h_{i}^{2}+h_{i} h_{i+1}\right)}{6 \cdot 6!\left(h_{i}+h_{i+1}\right)}\right]
\end{align*}
$$

and for $x_{i} \in I_{h}^{\prime}$

$$
\begin{equation*}
r_{i}=\varepsilon^{2}\left(u^{\prime \prime}\left(x_{i}\right)-u^{\prime \prime}\left(\vartheta_{i}^{4}\right)\right) \tag{14.2}
\end{equation*}
$$

where $\vartheta_{i}^{e} \in\left(x_{i-1}, x_{i+1}\right), s=1,2,3,4$.

Theorem 2. Let (2.1)-(2.4) hold. On the mesh (4.1)-(4.8) we have, for $i=$ $1,2, \ldots, n$,

$$
\begin{gather*}
r_{i}=K_{i} h^{4}+R_{i},\left|R_{i}\right| \leqslant M h^{6}, \text { for } x_{i} \in I_{h} \backslash I_{h}^{\prime} \tag{15.1}\\
\left|r_{i}\right| \leqslant M h^{8}, \text { for } x_{i} \in I_{h}^{\prime} \tag{15.2}
\end{gather*}
$$

where K_{i} is independent of h.
Proof; We shall use (14.1)-(14.2) and the representation (3.1)-(3.4). Again, we shall give the proof for $i=1,2, \ldots, m-1$ only. Note that for $x \in[0,0.5]$

$$
\begin{equation*}
\left|z^{(s)}(x)\right| \leqslant M, s=0,1, \ldots, 8, \quad z=v_{1}+y \tag{16}
\end{equation*}
$$

Let us prove (15.1). Let $q_{\text {o }}$ denote the coefficient at $u^{(o)}\left(x_{i}\right)$ in (14.1), $s=5,6,7$, and let q_{8}^{p} be the coefficient at $u^{(8)}\left(\vartheta_{i}^{p}\right), p=1,2,3$. By expanding λ (note that $\left.\lambda \in C^{\infty}\left(x_{i}, x_{i+1}\right)\right)$ we get

$$
\begin{aligned}
& q_{5}=\varepsilon^{2} \lambda^{\prime}\left(t_{i}\right)^{2} \lambda^{\prime \prime}\left(t_{i}\right) h^{4} / 20+r_{i}^{1} \\
& q_{6}=\varepsilon^{2} \lambda^{\prime}\left(t_{i}\right)^{4} h^{4} / 240+r_{i}^{2}
\end{aligned}
$$

(see [7] for the technique). Thus we have (15.1) with

$$
R_{i}=r_{i}^{1} u^{(5)}\left(x_{i}\right)+r_{i}^{2} u^{(6)}\left(x_{i}\right)+q_{7} u^{(7)}\left(x_{i}\right)+\sum_{p=1}^{3} q_{8}^{p} u^{(8)}\left(\vartheta_{i}^{p}\right)
$$

By using (3.1)-(3.4), (5.1), (7) and the technique from [6] (see [7, 3, 4] as well) we can prove

$$
\begin{equation*}
\left|R_{i}\right| \leqslant M h^{6}, \quad x_{i} \in I_{h} \backslash I_{h}^{\prime} \tag{17}
\end{equation*}
$$

Note that $x_{i} \in I_{h} \backslash I_{h}^{\prime}$ corresponds to the cases 1^{0} and 2^{0} of the proof of Theorem 2 from [6] (Theorem 1 from [7]). On the other hand, $x_{i} \in I_{h}^{\prime}$ corresponds to the case 3^{0}. Let us illustrate the proof of (17) by showing

$$
\begin{align*}
& D_{1}=\left|r_{i}^{1} u^{(5)}\left(x_{i}\right)\right| \leqslant M h^{6}, \tag{18.1}\\
& D_{2}=\left|q_{7} u^{(7)}\left(x_{i}\right)\right| \leqslant M h^{6} . \tag{18.2}
\end{align*}
$$

We have

$$
r_{i}^{1}=\frac{\varepsilon^{2}}{180}\left[\frac{h^{4}}{24}\left(\lambda^{(4)}\left(\tau_{i}^{-}\right)+\lambda^{(4)}\left(\tau_{i}^{+}\right)\right)\left(9 h^{2} \lambda^{\prime}\left(t_{i}\right)^{2}+Z_{i}\right)+h^{2} \lambda_{i}^{\prime \prime} Z_{i}\right]
$$

where

$$
\begin{aligned}
Z_{i}= & 3 h^{4} \lambda^{\prime}\left(t_{i}\right) \lambda^{\prime \prime \prime}\left(\eta_{i}\right)+\frac{2}{9} h^{6} \lambda^{\prime \prime \prime}\left(\eta_{i}\right)^{2}+\frac{h^{6}}{36} \lambda^{\prime \prime \prime}\left(\eta_{i}^{-}\right) \lambda^{\prime \prime \prime}\left(\eta_{i}^{+}\right) \\
+ & \frac{h^{5}}{12} \lambda^{\prime \prime}\left(t_{i}\right)\left(\lambda^{\prime \prime \prime}\left(\eta_{i}^{-}\right)-\lambda^{\prime \prime \prime}\left(\eta_{i}^{+}\right)\right) \\
& \tau_{i}^{-}, \eta_{i}^{-} \in\left(x_{i-1}, x_{i+1}\right), \tau_{i}^{+}, \eta_{i}^{+} \in\left(x_{i}, x_{i+1}\right), \eta_{i} \in\left(x_{i-1}, x_{i+1}\right)
\end{aligned}
$$

Now, if $i>k+6$, that is, $t_{i-1} \geqslant \alpha+6 h$, from (5.1), (5.2), (7), (3.1)-(3.4) and (16) we have

$$
\begin{aligned}
& D_{1} \leqslant M h^{6} \varepsilon^{2}\left(\varepsilon^{-1 / 4}+1\right)\left[1+\varepsilon^{-5} \exp (-\gamma \lambda(\alpha+6 h) / \varepsilon)\right] \\
& D_{1} \leqslant M h^{6}\left[1+\varepsilon^{-13 / 4} \exp (-\gamma \omega(\alpha) / \varepsilon)\right] \leqslant M h^{6},
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{2} \leqslant M h^{6} \varepsilon^{2}\left[1+\varepsilon^{-7} \exp (-\gamma \lambda(\alpha+6 h) / \varepsilon)\right] \\
& D_{2} \leqslant M h^{6}\left[1+\varepsilon^{-5} \exp (-\gamma \omega(\alpha) / \varepsilon)\right] \leqslant M h^{6}
\end{aligned}
$$

If $i<j+1$ that is, $t_{i-1} \leqslant P$ we get

$$
\begin{gather*}
D_{1} \leqslant M h^{6}\left[\varepsilon^{2}\left(\varepsilon^{-1 / 4}+1\right)+\varepsilon^{5}\left(q-t_{i+1}\right)^{-13} \varepsilon^{-5} \exp \left(-\gamma \lambda\left(t_{i-1}\right) / \varepsilon\right)\right], \tag{19.1}\\
D_{2} \leqslant M h^{6}\left[1+\varepsilon^{7}\left(q-t_{i+1}\right)^{-11} \varepsilon^{-7} \exp \left(-\gamma \lambda\left(t_{i-1}\right) / \varepsilon\right)\right] . \tag{19.2}
\end{gather*}
$$

Since, from $t_{i-1} \leqslant P<q-3 h$ it follows that

$$
q-t_{i+1} \geqslant \frac{q-t_{i-1}}{3}
$$

from (19.1), (19.2) and (7) we get (18.1), (18.2) again.
Let us now prove (15.2). From (14.2) we have

$$
\left|r_{i}\right| \leqslant M \varepsilon^{2} \max \left\{\left|u^{\prime \prime}(x)\right|: x_{i-1} \leqslant x \leqslant x_{i+1}\right\} .
$$

From $x \in I_{h}^{\prime}$ it follows that $\varepsilon \leqslant M h^{4}$, thus by using (3.1)-(3.4), (16) and (7) we get

$$
\left|r_{i}\right| \leqslant M\left[h^{8}+\exp (-\gamma \lambda(P) / \varepsilon)\right] \leqslant M\left[h^{8}+\exp (-M n)\right] \leqslant M h^{8}
$$

By using Richardson extrapolation we can eliminate the $0\left(h^{4}\right)$-term from (15.1), and, having in mind stability (13), we can prove

Theorem 3. Let the conditions of Theorem 1 hold and let w_{h} and $w_{h / 2}$ be the solutions to the problem (8.1)-(8.3) with n and $2 n$ mesh steps, respectively. Then we have

$$
\left\|u_{h}-\bar{w}_{h}\right\|_{\infty} \leqslant M h^{6}
$$

where \bar{w}_{h} is the vector with components

$$
\bar{w}_{i}=\frac{16 w_{h / 2,2 i}-w_{h, i}}{15}, i=0,1, \ldots, n
$$

4. Numerical results

We shall use the following test example:

$$
\begin{gathered}
-\varepsilon^{2} u^{\prime \prime}+u+\cos ^{2} \pi x+2(\varepsilon \pi)^{2} \cos 2 \pi x=0, x \in I \\
u(0)=u(1)=0
\end{gathered}
$$

whose solution is known:

$$
u(x)=\frac{\exp (-x / \varepsilon)+\exp ((x-1) / \varepsilon)}{1+\exp (-1 / \varepsilon)}-\cos ^{2} \pi x
$$

This problem was considered in $[\mathbf{2}, \mathbf{3}, \mathbf{4}, 5,6,7]$ as well.
In Table 1 we present the error

$$
E_{h}=\left\|u_{h}-\bar{w}_{h}\right\|_{\infty}
$$

(where \bar{w}_{h} is the same as in Theorem 3), and the experimental order of convergence, (see [2])

$$
\text { Ord }=\frac{\log E_{h}-\log E_{h / 2}}{\log 2}
$$

Different values of ε and n are considered. The corresponding values of α are given in Table 2. They are determined in such a way that the percentage of the mesh steps lying within the layers is the highest possible. We take the interval $[0, \varepsilon]$ to represent the left-hand layer. The percentage, $p=\left(i_{0} / n\right) * 100$, where i_{0} is an index such that $x_{i_{0}} \leqslant \varepsilon<x_{i_{0}+1}$, is shown in Table 2 as well. For a given ε, we take the smallest value of the parameter a (see (4.7))

$$
a=\left(B+2 \varepsilon^{-1 / 4} q(0.5-\alpha)^{4}\right)^{-1}
$$

Then we consider the condition

$$
t \leqslant \frac{q}{a+1}=K
$$

which is equivalent to

$$
\omega(t) \leqslant \varepsilon
$$

and determine α as the point satisfying (4.4), for which K is maximal (note that K is a function of α for ε fixed).

All computations have been carried out on the ATARI 1040 ST with 48 bits accuracy in floating point.
Table 1

$n \varepsilon$	2^{-15}	2^{-20}	2^{-25}	2^{-30}	2^{-35}	2^{-40}	
10	$1.565(-3)$	-	$4.448(-2)$	$2.779(-2)$	$3.108(-2)$	$1.370(-1)$	E_{l}
	-	-	-	-	-	-	$O r$
20	$1.236(-3)$	$1.914(-3)$	$9.826(-4)$	$1.032(-2)$	$1.591(-2)$	$1.651(-2)$	
	3.402	4.446	5.501	1.429	0.966	3.053	
40	$3.745(-5)$	$3.165(-5)$	$2.581(-5)$	$3.632(-4)$	$6.578(-3)$	$2.170(-3)$	
	5.045	5.918	5.251	4.829	1.275	2.928	
80	$5.849(-7)$	$4.707(-7)$	$3.243(-7)$	$7.852(-6)$	$3.894(-4)$	$6.181(-4)$	
	6.001	6.071	6.314	5.532	4.079	1.812	
160	$9.115(-9)$	$7.338(-9)$	$5.012(-9)$	$1.074(-7)$	$6.717(-6)$	$2.090(-7)$	
	6.004	6.004	6.016	6.192	5.857	5.702	
320	$3.942(-10)$	$4.295(-10)$	$3.121(-10)$	$1.615(-9)$	$1.123(-7)$	$3.133(-9)$	
	4.531	4.095	4.005	6.056	5.902	6.060	

Table 2

ε	2^{-15}	2^{-20}	2^{-25}	2^{-30}	2^{-35}	2^{-40}
α	0.10	0.15	0.20	0.20	0.20	0.25
p	2.18	2.81	4.38	7.81	11.88	16.56

References

[1] I.P. Bogalev, 'An approximate solution of a nonlinear boundary value problem with a small parameter multiplying the highest derivative', U.S.S.R. Comput. Math. and Math. Phys. 24 (1984), 30-35.
[2] E.P. Doolan, J.J.H. Miller and W.H.A. Schilders, Uniform numerical methods for problems with initial and boundary layers (Dublin Boole Press, 1980).
[3] D. Herceg and N. Petrović, 'On numerical solution of a singularly perturbed boundary value problem II', Univ. u Novom Sadu, Zb. Rad. Pirod.-Mat. Fak. Ser. Mat. 17 (1987), 163-186.
[4] D. Herceg, 'Uniform fourth order difference scheme for a singular perturbation problem' (to appear).
[5] D. Herceg, 'On numerical solution of singularly perturbed boundary value problem', in V Conference on Applied Mathematics, ed. Z. Bohte, pp. 59-66 (Uniyersity of Ljubljana, Institute of Mathematics, Physics and Mechanies, Ljubljana, 1986).
[6] R. Vulanoví, 'On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh', Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 187-201.
[T] R. Vulanović, D. Herceg and N. Petrović, 'On the extrapolation for a singularly perturbed boundary value problem', Computing 36 (1986), 69-79.

Dr D. Herceg
Institute of Mathematics
dr llije Djuričića 4
21000 Novi Sad
Yugoslavia
Mr N. Petrović
Advanced Technical School
Skolska 1
21000 Novi Sad
Yugoslavia

Dr R. Vulanović
Institute of Mathematics
dr Ilije Djuritića 4
21000 Novi Sad
Yugoslavia

