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ON ASYMPTOTIC VALUES OF SLOWLY GROWING

ALGEBROID FUNCTIONS

JUNJI SUZUKI

1. L e t f(z) b e a fc-valued a l g e b r o i d funct ion i n \z\ <. co a n d

(1) F(zJ) = A0(z)f + A1(z)fk~1 + Ak(z) = 0

be its defining equation such that the coefficients A^z) {i = 0, 1, •••,&) are

entire functions without any common zero and the left hand side is irredu-

cible. We denote by 1 the fc-sheeted covering surface over \z\ < °° generated

by f(z) and by 7H(r) and Γ{r) the part of £ over \z\^r and the curves on

3E over \z\=r, respectively. We use the standard notations of the Nevanlinna-

Selberg theory [4]:

N{r,a) = I- j o

r n(t,a)-n(0,a) + _n(fi^log ^ N{^m) ^ N { r J )

T(r, f) = m(r, f) + N(r, f), δ(a, f) = 1 - US ^,a) ^
1 \rJ)

where n(r,a) is the number of zeros of f{z) — a on ϊ(r) and n{r, oo) = n(r9f).

From now on, we consider the functions with the slow growth:

(2) T(r,/) = O[(logr)2].

For such functions both of the number of deficient values and that of

asymptotic values are at most k (Valiron [7], [9] and Tumura [5]). Especially,

when k = 1 i.e. the function is single-valued and meromorphic, it can prossess

no deficient value without that value being an asymptotic value (Valiron

[9] and Anderson-Clunie [1]).

For an algebroid function f{z), a value a is an asymptotic value, if

there exists a path L% on 3£ stretching to the point at infinity such that f{z)
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136 JuNji SUZUKI

tends to a along L^, in other words, if there exists a path L on the 2-plane

stretching to the point at infinity such that at least one branch of f{z) can

be continued analytically along L and the value taken by the branch tends

to a along L.

Our main aim in this note is to give an extension of the above result

of Anderson-Clunie to the case of an algebroid function:

THEOREM 1. Let J(z) be a k-valued algebroid function in \z\ < oo satisfying

(2). If f(z) has k deficient values α* (f = 1,2, ,fc), then each of cίi ( = 1,2, ,fc)

is an asymptotic value of f(z).

This theorem will be obtained as an immediate corollary of Theorem

2 stated in §5. In the last section, we shall give a condition for a deficient

value to be an asymptotic value without the restriction that f(z) has k

deficient values.

2. First we shall give some lemmas. To prove them, we use the following

results.

I. (Valiron [6]) If f(z) is a k-valued algebroid function in \z\ < oo, then

(3) T(rJ) + ηί-logic,] - μ(r,A)\ < log 2,

1 ί*2w

where μ(r,A) = n7 \ \ogA(reiθ)dθ with A{z) = max \Ai(z)\ and Cλz
λ is the first

Δlcπ J o<.i<,k

non-zero term of the Taylor development of A0(z) at the origin.

I I . (Valiron [9]) If f{z) is a k-valued algebroid function in \z\ < oo satisfying

(2), and if at (i = 1,2, ,k + 1) are k-\Ί distinct complex numbers (may be

infinity), then we have

r-^oo kT(r, f)

where N{r,aua2, ,ak+1) = max N(T, „,1—r-) for

I I I . (Valiron [8]) If g(z) is an entire function of order zero with g(0) = I1),

then

log M(r, 9) = JV (r f - |-) + θ(r) W (r, - |-) (0 < θ(r) < 1),

This condition is not essential to obtain (4).
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ALGEBROID FUNCTIONS 137

where M(r,g) = max \g{z)\ and W (r,—) = r Γ n(t,-^~)-^L.
\z\=r \ g / Jo \ g / t2

In particular, if log M(r, 0) = O[(log r)2], then

log M(r, flf) < K(log r)2 (X: constant)

,(r,-L)log,= 5r; n(r,^-)^\r; n(t,±-)J^< K(loSrψ

= JΓ(log rY

W(r,±) < K'r Γ J 3 | L df = ̂ r l°g r + ! = O(log r),
\ y / Jo Γ Γ

so that we have

(4) logM (r, flr)~JV (r, - | - ) (r -+ oo).

IV. [Hayman [3]) ijf αw ^ίir^ function g(z) satisfies

log M(rffl0 = O[(log r)2],

(5) logM(r,flr)Mog|flr(z)|,

uniformly in θ as z — reiθ -> oo outside an %?-set.

Here we call an g^-set any countable set of circles not containing the

origin and subtending angles at the origin whose sum s is finite. We note

the following two facts about gf-sets.

a) The union of two if-sets in again an if-set.

b) Given any if-set then for almost all fixed θ and any r > ro(θ), where

ro(θ) depends only on 0, z = reiθ lies outside the if-set.

We consider a system <&(z) = (50U),Si(2), ,Sk(z)) of k + 1 entire func-

tions Si(z) (i = 0,1, ,ik) having no common zero and satisfying

(6) log M^S,) = O[(log r)2] (f = 0,1, • • ,fc).

We define μ{r,S) by

where S{z) = max\Si{z)\ for each z and set
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Particularly, when lim—, , ^ — exists, we set
7 r->oo kμ(r,S)

Then we have 0<<5ί(@):<l [i = 0,1, ,k), since by Jensen's formula

N(r, -1-) = - i - Γ log I Sάre") \ dθ - log | S,(0) 12>
\ o ϊ / ΔTZ J O

^ - ^ r ~ Γ l o g S{reίθ)dθ + 0(1) = Mr,S) 4- 0(1).
Zfcπ Jo

LEMMA 1. For a system ®(z) = {S0{z)9Si{z)9 , Sk{z)), if fy(@) > 0

- l o g

uniformly in θ as z = reίθ -* oo outside an ^-s

Proof From our hypothesis, we have

Since <&(z) satisfies (6), we can apply (4) and (5) to Sj(z) and have

(7) log [ St(z) 1 < (1 - δj(<&) + o(l))kμ(r, S),

uniformly in θ as z — reiθ ~> oo outside an g^-set.

By Cauchy's inequality, we have for all y (y = 0,1, ,Ic)

log ( Σ ISi(z) 12):> log l-Γ^ΓT ( Σ ISΛzM)2 = 2 1°s ( Σ |S,(«)|) + logΊ

1

\(z) I + log
fc + 1 *

2) We assume that S^OJ+O, oo.
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Applying (5) to Sv(z), we have for all viy = 0,1, ,fc)

log (.Σ I St(z) 12) ̂  2(1 + 0(l))logM(r, S,) + log -

and hence

log (Jj IS4W12) >̂ 2(1 + *(!)) m £ £ logM(r, Sv) + log y ^ y ,

uniformly in θ as 2 = re*' -> 00 outside an gf-set.

On the other hand, by definition of S(z),

S(s)-£ max M(r,S,) {\z\ = r)

so that μ{r,S) = -J1—Γ* log S{reίθ)dθ^ ~ max log M(r,Sv). Thus we have
ZΛ TΓ JO A; o^v^A;

(8) log ( Σ I Si(z) 12) ̂  2fc(l + o(l))μ(r, S),
ί = 0

uniformly in 0 as 2 = reiθ -> 00 outside the gf-set.

We combine (7) and (8) and have from the property a) of gf-sets,

? = 21oglS,U)I - log(Σ iS.WI2)

uniformly in θ as z — reiθ -> oo outside an gf-set. Thus we obtain the desired

result.

By using the property b) of gf-sets and the fact that the function μ(r,S)

of r is unbounded, we have that

^ — - > 0

i = 0

as z = rβ^-^oo for almost all fixed θ (0<θ<2π).

3. Before giving the next lemma, we shall state some about the distance

between two systems, which was introduced by Dufresnoy [2],

We consider only the systems consisting of k + 1 complex numbers, all

of which are not zero simultaneously. Here if two systems

,,.,(1) _ /41I(1) */,(l) . . . 7/,<l)
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140 JUNJI SUZUKI

are proportional i.e. wψ = cwψ (i = 0,1, ,fc) for some constant c{c =¥0),

we identify w{1) with w{2).

We set

k
,C2)|2

*, i—0 ι=0

Then this satisfies three axioms for distances. According to Dufresnoy [2]

we call [|>(1), w(2)]] the distance between two systems w(1) and w(2). We can

easily see that an inequality

(10)

Σ
ί=0

holds. This shows how our distance relates to the distance in ordinary

sense between w(1) and w(2).

Now we consider a non-degenerate, linear and homogeneous substitution

of the elements of the system w = (wθ9 wu , wk)

k

(11) Wi = ΣίatjWj (f = 0,1, ,fc).

i=o

T h e n we have a new system W = (Wo, Wu

• W(1)) and w ( 2 ) — ^ ^ C 2 ) ^ ^ C 2 ) W<.2>Ϊ

Λ

be the systems obtained by the substitution (11) of the elements of systems

ww and w™, respectively. Then, using the inequality (10) we have an im-

portant property about the distance (9) which is stated as follows;

L E M M A 2. (Dufresnoy [2]) Under such a substitution, two systems being close

to each other correspond to two systems also being close to each other i.e. there exists

a constant c, 0 < c< 1, depending only on ai5 (i,j = 0,1, ,k) such that

Let p{z) = fl0z* + aίZ

k+1 + + ak = 0

p*(z) = a}** + fl*z*-i + . . . + at = 0

be two algebraic equations whose coefficients make systems a — (aθ9al9 ' %ak)

and #* = (#J,tf?, ,flj?), respectively. By means of distance (9), the well
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known theorem on continuity of roots of algebraic equations is described as

follows

LEMMA 3. (Dufresnqy [2]) Let zl9z2, ,zk and z*,z*, ,2* be the roots

of the equations p(z) = 0 and p*{z) = 0, respectively. If [[#,#*]] is sufficiently small,

then we can associate each Zi{i = 0 , 1 , ,fc) with some z* {l^Lj^Lk), say Zi with

£*, such that

[*„ z%\ < 8e[[a,a*]] * (f = 1,2, f &),

where [ , ] denotes the chordal distance.

The next lemma is an immediate consequence of Lemma 3.

LEMMA 4. [Dufresnoy [2]) If

Σ k l2

j=o

is sufficiently small, then an algebraic equation

φ{z) = aoz
k + a1z

k~1 + + ak = 0

Λ^ αί /e^ί p + 1 rooίj re Λô ^ chordal distances from the point at infinity are less

than

Σ k i2

For the sake of the later discussion, we shall give a proof following

Dufresnoy [2],

Proof We consider one more equation

j>*U) = a*zk + α*2fc + . . . + fl* = o

with a% — 0 (ί = 0,1, , φ) and â  = a^j = p + 1, ,fc). Then we have

[[«,«*]]=
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We may consider that the equation p*(z) = 0 has k roots, p + 1 of them

lying at the point at infinity. Thus our Lemma is obtained from Lemma

3. Here we note that each of the other k — p — 1 roots Zi(i = 1, 2, ,

]Q — p _ i) of p(z) = 0 is associated with one of the k — p — 1 roots z*{i — 1,

2, , k — p — 1) of p*(z) = 0, say zL with ^ , in such a way that

1
2k

4. LEMMA 5. Ztf @(«) = (So(«), Si(z), ,Sjb(z)) Â  a system such that Slz)

(j = 0,1, ,fc) Afl^ no common zero and satisfy (6). ijf ^(@) = 0 /or o φ one

λ(O<λ^k) and δv{<S) > 0 for other all vψλ (O^y^fc), then

uniformly in Θm as zm = rmeiθm—>oo outside an $f-set {m = 1,2).

. For any pair (/,./) (/ ^ ; /, j = 0,1, ,fc),

Έl

By Lemma 1 and our hypotheses, we have for all v(ψ λ)

uniformly in θ as z = reu -> co outside an g'-set, and hence

MzύSfa) - S,(zύSt(zt)\

uniformly in θm as Zm = rmei9 -+oo outside an gf-set (m=l,2). Thus our

lemma is obtained.
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C O R O L L A R Y . Let f(z) be a k-valued algebroid function in \z\ < oo satisfying

(2). Suppose that f(z) has k deficient values a^^i = 1,2, ,fc). Then for the

system %{z) = (A0(z)9 Aι(z)9 9Ak(z))9 we have the same assertion as that in the

above lemma.

Proof We take a value a0 which is different from at (i = 1,2, ,k)

and set

(12) F(z,at) = A,{z)a\ + Aί(z)a7Γ1 + + Ak{z) = Bt{z)

(i =0,1,2, ,fc).

Now we shall prove that for the system 33(z) = (BQ(z), Bχ{z)9 ' 9Bk{z))9 all

the conditions of Lemma 5 are satisfied. At first, entire functions Bt{z)

(i = 0,1, ,fc) have no common zero. In fact, suppose that B^z) (i = 0,1,

• , k) have a common zero a. We solve the equation (12) with respect

to Ai{z) [i = 0,1, ,fc) and have

(13) Ai(z) = βi0B0(z) + βMz) + + βikBk(z)

(i — 0,1, ' ,k βiji constants)

so that a is also a common zero of A^z) (i = 0,1, ,fc), which is absurd.

Further, we have from (12) and (13),

(14) μ(r,A) = μ(r,B) + O(l)

so that Bi(z) {i = 0,1, ,fc) satisfy (6) by (2) and (3).

Next, since N(r9——^ ) = -~- N(r,-^-) (i = 0,1, ,fc) and at(i = 1,

2, ,fc) are deficient values of f{z), we have by (3)

(15) fy(S9) = 1 - lim —y^—Jr— = δ(aj9f) > 0
r->oo fCl [f, J)

U = 1,2, -,fc).

O n the other hand, the value a0 is normal by I I in §2, i.e.

(16) go(B) = 1 - lim , „ , X = d{ao,f) = 0.

Now Lemma 5 applied to the system %ί{z) = (-80(2), ^ ( z ) , , Bk(z))

shows that
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uniformly in θm as zm — rmeiθ™ >oo outside an gf-set (m = 1,2).

Since we can take (12) as a non-degenerate, linear and homogeneous

substitution of the elements A^z) of the system %{z) = (A0{z), Ai(z), ,Ak{z)),

we obtain the desired result by Lemma 2.

5. T H E O R E M 2. Let f{z) be a k-valued algebroed function \z\ < °o of arbitrary

order. Suppose that there exists a path L on the plane stretching to the point at

infinity such that

(17)

(18)

as z,Zι and z2 tend to infinity along L. Then the infinity is an asymptotic value

of f(z).

Proof We denote by K{d) the spherical disk with center at the point

at infinity and with chordal radius δ >0, and denote by f^z) (z = l,2, ,fc)

k roots of F{z,f) = 0 for any z counting with their proper multiplicities.

We express the curve L by

L : z = z(t) (0< t < oo); z(t)-+oo as f->oo.

Given a sufficiently small ε > 0, we can find from (17) and (18) tc

o

w)

(n = 1,2, ) depending on ε such that for any t ;> t^\

\AQ(Z)\*

(19) Se

a n d f o r a n y p a i r tx a n d t2; tί9

1

(20) Sem(zi)9 WΏ k < 2{k I 1)n (Zi = z(t<); i = 1,2).

First we take whole branches fι {i = 1,2, ,fc) as our candidates and

let z go to infinity along L. Then we drop from the list of candidates

branches /«, if any, with / 4 UU(oΌ)) Φ X(ε). The disk # ( 2(fe 4-1) ) c o n t a i n s
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at lesat one root of the equation F{z(tc^)9f) = 0 because of Lemma 4 and

(19) and so there remains at least one fs in our list. Next we drop fi9 if

any, with ft(z{t^))^K( h

 ε ) from our 2nd list and still have a list con-

taining at least one fs by the same reason as above. Then we see that,

for any fs in the list, the curve fj{z{t)), t^ ^t^tψ, is contained in K{ε).

In fact, if not, the curve fj(z(t)), t^^Lt ^tψ, can not be covered by any

k disks with radii . ε > and so there exists at least one point z* = z{t*),
Δ\tC + 1}

ί(

o

n < t* < t^\ such that

Uj(z% fMWm > -2(3ΠΓϊ)- (' = 1,2, • ,fc),

which coutradicts Lemma 3 and (20). We repeat the above procedures and,

at the w-th step, we drop fi9 if any, with fi{z(tf>))$κ[- ,, ε -1 Ί from

our n-th list, and have the (w + l)-th list containing at least one fj9 For

any fs in this list, the curve fj(z(t))9 tf"^^t^tf\ is contained in

κ\~7h—g-iw-2 Since we have only a finite number of branches fi9 there
L [fc "T" I ) 7 1 -1

is at least one fj9 say / 1 ? which belongs to the w-th list for n — 1,2, .

Thus /1 satisfies

(fc + I)7*"2

so that fx{z) tends to infinity as z goes to infinity along L. The proof is

now complete.

Proof of Theorem 1. When at ψ oo, we consider —̂  instead of /.

Then ~j^_ is an algebroid function satisfying (2) and has k deficient

values, one of which is the infinity, so that we may assume that ^ = 00.

From Lemma 1 and Corollary of Lemma 5, the coefficients A0(z)9 Ai(z)9

• , Ak{z) of the defining equation of f(z) satisfying the Conditions (17) and

(18) outside an g"-set, consequently on any half-line L = reiθ(r > 0) for almost

every θ. Applying Theorem 2, we conclude that at is an asymptotic value

of / along L.

Remark. As we saw in the above proof, we can take any half-line L

for almost every θ as an asymptotic path of at and hence an L commonly

to all ail i = 1,2, 9k.
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6. LEMMA 6. {Dufresnoy [2]) Let p{z) = aoz
v + axz

v~ι + + av = 0 be an

algebraic equation with

TΓiTΓ (M>0).

Σ kl2

p(z) = 0 /z&s- wo rooί 0/" modulus larger than M.

From this, we can see that if

i = 0

every root of p{z) = 0 lies outside a spherical disk K(d) with center at the

point at infinity and with chordal radius d. Using this lemma, we can

prove

THEOREM 33\ Let f{z) be a k-valued algebroid function in \z\ < °o which is

defined by (1) and satisfies (2). Suppose that, for some n{0< n^k), the system

SSί(z) = (Ao{z), Ax{z)9 -9Ak{z)) satisfies

dj(%) > 0 (j = 0,1, . . . ,n - 1), Jn(«) = 0.

Then the infinity is an asymptotic value of f(z).

Prooof. From our hypothesis βn($t) = O and (3), we have Πm 1\Ί/ ?v = 1.
-̂>co kT(r,f)

Hencd we have by (4) and (5)

uniformly in θ as z = re** -> oo outside an g'-set. Further, we have

log ( Σ I A,(z) 12) ̂  log ( Σ I At(z) 12) ̂  21og A(z) + log (k + 1)

< 2 m a x logM(r,Λ) + log(fc + 1) = 2(1 + o(l)) max

Thus

As for notations used in this theorem, see § 2.
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log lΛn{zn— = o[T(r,f)]

i=n

and hence for any small ε > 0,

uniformly in θ as z = reiθ -> oo outside the if-set. Since δj{%) > 0 (j — 0,1,

• ,n — 1), we see from Lemma 1,

log - [Λj{z)]2 < ( - δjW) + o(l))2kT(r, f) (j = 0,1, , n - 1)

and hence

, y I < p(-δ+e)T(r.f)ί22) ^^TS^
uniformly in θ as 2 = ?•£*' ->• 00 outside an g^-set. where δ = min <S, ($l) > 0.

o<y<«-i
We take ε < 5/3 and a path L: z = z{r) = reίθ (ro<r< 00) such that (21)

and (22) hold on L4), and set

rf2(r) = <r«r(r./)#

We onsider on L the following equation

An{z)f*k-n + AnUz)/**-71-1 + + Λk(z) = 0.

Recall (21). Then we see from Lemma 6 that the roots /?(*) (t = l,2, ,

k—n) lie outside K{d2(r)). The equation F{z,f) = 0 has fc—n roots, say

^(2) (f = 1,2, ,fc - n), such that

t/?U), Uz)]<dί(r),

because of the comment given just after Lemma 4 and (22). Thus the

values f^z) (i = 1,2, ,k — n) lie outside K(d2(r) — d^r)). On the other

4) We can find such a path L because (21) and (22) hold as z->co outside an if-set.
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hand, we see from Lemma 4 that the remainder fj(z) ϋ = k — n + 1, ,k)

satisfies

Since rfi(r)/tf2(r) = e^δ+2e)τ^r'f) -K) as r->oo, we see that K{dx{r)) is disjoint

with the complement of K(d2{r) — d^r)) for every sufficiently large

whence we can conclude that the brancehs fj(z) (j = k — n + 1, ,k) with

fjizi^^Kid^)) draw a curve fj{z(t)), t^r^rl9 in K{dλ{r)). In fact, if

the curve fj{z{t))9 t^r (;>n), invades the zone; {w; d2{r)—d1(r) < [w,

we have at least one point z* = z(t*)9 t*>r, on the curve such that

/^z*)*complement of K(d2(t*) - dx(t*))9

which contradicts the fact that any root of the equation F(z*,f) = 0 must

be contained in K{dλ(t*)) or the complement of K{d2{t*) — dλ(t*)). Since

dχ{r) -» 0 (r-> oo), we see that the branches fj(z) tend to infinity as z->oo

along L. Thus our theorem has been established.
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