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1. Introduction *

A strongly regular ring R is one in which for all x G R, there is an a G R with
x = x2a. Equivalently, for all x there is an a with x = ax2. Such a ring is regular, duo,
biregular, and a left and right V-ring. Moreover since R is reduced, all nilpotent
elements are central (vacuously) and so all idempotent elements are central.

In this paper we examine these definitions for right near-rings. In the first place it
is necessary to distinguish between left and right strong regularity. Then, by specialis-
ing to zero-symmetric unital near-rings, analogues of the ring-theoretic results are
obtained. We also briefly discuss weak regularity. The basic reference for near-ring
concepts is (7) and following him, all near-rings N will be right near-rings.

2. The general case

Definitions. N is left regular if for all x G N, there exists a G N with x = ax2 =
xax, and N is left strongly regular if for all x there is a G N with x = ax2. Right
regularity and right strong regularity are defined in a symmetric way and the definition
of regularity shall be the same as for rings. Thus a left regular near-ring is both regular
and left strongly regular. These definitions are not consistent with terminology in (8),
but have been chosen to coincide with ring-theoretic usage. N is reduced if it has no
nilpotent elements and N has I.F.P. (insertion of factors property) if ab - 0 implies
axb = 0 for all x G N.

Lemma 1. (a) // N is left or right strongly regular, it is reduced.
(b) In a zero-symmetric reduced near-ring, ab = 0^> ba = 0, and I.F.P. holds.

Proof, (a) The right strongly regular case is trivial. If x2 = 0 and x = ax2 = a • 0,
then 0 = x2 = (a • 0)x = a(0x) = a • 0 = x.

(b) This is well known. See, e.g. (2, Lemma 1).

Lemma 2. A left regular near-ring with I.F.P. is right regular.

Proof. If x = ax2 = xax, then (ax-xa)x = 0 so by I.F.P. {ax — xa)ax = 0 or
axax = xa2x. Thus ax = axax = xa2x so x = xax = x2a2x i.e. x = x2b as required
(where b = a2x). Moreover xbx = xa2x2 = xax = x.
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28 G. MASON

Remarks. 1. If N is left and right strongly regular, when VAT ^ 0 3 a, b with
x = ax2 = x2b and, unlike the ring-theoretic case, it is apparently not necessarily true
that b can be chosen equal to a. As the proof of the lemma shows, adding regularity
does not appear to help. However there are two cases when N is left and right regular
that b can be chosen equal to a; namely when N is zero-symmetric and unital (see
next Proposition) or when N has no zero divisors. In fact, if N has no zero-divisors
and is left strongly regular, then x = ax2 implies (x -x2a)x2 = x3 - x2ax2 = x 3 - x3 = 0.
Thus since x2 ^ 0, x = x2a as required.

2. The converse to the lemma is open. However we have

Proposition 1. / / N is zero symmetric, left regularity is equivalent to left strong
regularity, and these imply right regularity. Moreover ifNis unital, all three conditions are
equivalent.

Proof. If N is left strongly regular, then for all x there is an a with x = ax2. It
follows that (x - xax)x = x2 - xax2 = x2 - x2 = 0 so by Lemma 1, x(x-xax) = 0 also.
Then (x — xax)2 = x(x - xax) — xax(x — xax) = 0. Since N is reduced, x = xax. Thus N
is left regular. Then N is right regular by the two lemmas. Conversely if N is unital
and x = x2a = xax, then xa and ax are idempotents. Therefore from (2) (or Corollary
to Proposition 3) these are central and so x = ax2.

Corollary 1. / / N is unital with I.F.P., the following are equivalent (1) regular (2)
right regular (3) left regular (4) left strongly regular.

Proof. (l)-»(2) Since x = xax implies (l-xa)jc = 0, by I.F.P. ax = xa2x. Then
x = xax = x\a2x). The rest follows from the proposition since if N is unital with
I.F.P., 1-0 = 0 implies 1 • x • 0 = 0 for all x i.e. x • 0 = 0 so N is zero symmetric.

Pilz (7, p. 277) defines N to have property Po if for all x, there is an integer
n = n(x) with x" = x. These near-rings are clearly both left and right (strongly) regular.
If N is a finite zero-symmetric left (or right) strongly regular near-ring, then it has Po

by (7, 9.42) so is right (or left) (strongly) regular.
In fact the zero symmetry is not required and we can extend the result to periodic

near-rings i.e. those in which Vx3n# m with x" = xm.

Proposition 2. A periodic left (right) strongly regular near-ring has Po.

Proof. Since for all x there is an a with x = ax2, then for all n > k, xk = a"'kx".
Now N is periodic so there is some integer 5 minimal with respect to the property
x' = x' for some r # s . (In fact t>s + l or else xs = x'+t and xs = ax'+l imply
x' = ax' = x'~l contradicting the minimality of s).

Now if t-s>s-l then r - 2 s + l > 0 so x' = a'-'x' = a'~'x' implies x =
a ' - ' x ' ~ ' + 1 = a ' ' ' x ' x ' ~ 2 s + l = x ' x ' - 2 s + i = x ' ~ ' + l . S i m i l a r l y t - s < s - \ g i v e s 0 < 2 s - 1 - t
and so x = a'~lx' = a^-'a'-'x' = a^-'x' = JC'+I~J as required.

Example 1. If N is a planar near-ring, it is zero-symmetric, and nx = 0 for some
n if nx = 0 for all n (7, 8.87 and 8.88a). Thus if N has any right zero divisors, N is
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STRONGLY REGULAR NEAR-RINGS 29

not regular or left strongly regular. On the other hand, if N is integral, then (7, 8.88b)
Vn^ 0 and Vx3a with an = x. In particular, for n = x2, this shows N is left strongly
regular, and Proposition 1 applies.

Example 2. In (1, Thm 2.2) Adams constructs examples of zero-symmetric
non-unital periodic near-rings N with no zero divisors, by defining a multiplication on
a certain group of upper-triangular matrices over a field of characteristic zero. These
examples are therefore both left and right regular. Note that (N, +) is non-abelian (cf
Theorem 1 below).

3. The zero-symmetric unital case

N has the property C.N. if all nilpotent elements are central and property C.I. if all
idempotent elements are central, ("central" refers to the multiplicative centre.) It is
easy to see that if N is regular with C.I., then it is left and right regular.

From now on N will be assumed to be zero-symmetric unless otherwise specified.

Lemma 3. Let N have C.N.
(i) If ab =0 then ba, axb and bxa are central for all x.

(ii) / / e is an idempotent and ae = 0 then exa = 0 for all x.

Proof, (i) If ab = 0, then baba = 0 so ba is central and similarly bxa is central for
all x. Then axbaxb = a(ba)x2b = 0 so axb is central.

(ii) If ae = 0 then (i) implies that exa is central, so commuting with e gives
exa = exae = 0.

Generalising a result of (2) we have

Proposition 3. / / N has C.N., then for all idempotents e and for all x in N,
(i) ex-exe is central;
(ii) Every distributive idempotent is central;

(iii) x2e = (xe)2;
(iv) / / N is unital, xe = exe.

Proof, (i) {ex — exe)e = 0 so by Lemma 3 (ii), for all r&N er(ex — exe) = 0. Then
(ex — exe)2 = ex(ex - exe) - exe(ex — exe) = 0 so ex — exe is central.

(ii) If e is distributive, e(ex - exe) = ex — exe (since when d is distributive d(—n) =
- dn in general) and so using (i) e(ex - exe) is central. Commuting with e shows it is
zero so ex = exe. On the other hand, since e(xe - exe) = 0, Lemma 3 (i) shows that
(xe — exe)e is central. Thus it commutes with e showing it is zero and giving xe = exe.

(iii) (JC - xe)e = 0 implies e(x -xe) = 0 by Lemma 3(ii). Then [(x - xe)xe]2 = 0 so
(x - xe)xe is central. Commuting it with e shows it to be zero. Thus x2e = (xe)2.

(iv) Since e2 = e, ( l - e ) e = 0 when N is unital. By Lemma 3, e ( l - e ) = 0 and
(1 - e)xe is central for all x. Commuting (1 - e)xe with e implies it is zero.

Corollary 2. (2) / / N is reduced and unital, it has C.I.

https://doi.org/10.1017/S0013091500003564 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003564


30 G. MASON

Proof. As seen in the proof of (i) of the Proposition, ex - exe is nilpotent so N
reduced implies ex = exe. Also xe = exe from (iv).

From now on N will be assumed to be unital unless otherwise specified, and all
N-modules will be unitary.

Theorem 1. A left strongly regular near-ring is left and right regular. Every
principal left N-subgroup Na is generated by an idempotent, and every left N-
subgroup is a two-sided ideal. Moreover (N,+) is abelian and N is isomorphic to a
subdirect sum of near-fields.

Proof. The first statement comes from Proposition 1. Now in any regular near-
ring a principal left N-subgroup is clearly generated by an idempotent e (see e.g. (4,
Thm 4.2)) and in our case eN = Ne by Corollary 2. Therefore Ne = {x\x(l - e) = 0} =
Ann(l — e) because re{\ — e) = 0 from the centrality of e and, conversely, x(l - e) = 0
implies (1 — e)x = 0 so x = ex = xe. Now Ann(l — e) = Ne is a left ideal and since e is
central it is also closed under right N-multiplication. Thus every principal N-
subgroup, and hence every JV-subgroup, is a two-sided ideal. From (4, Thm 4.4) we
have finally that N is isomorphic to a subdirect sum of near-fields and (N,+) is
abelian.

This theorem has many consequences. In the first place, it follows from (3, 5.3)
that in a strongly regular near-ring, primitive and maximal ideals coincide and the
primitive radical is zero. Moreover from (2) every prime ideal is completely prime (P
is completely prime if ab G P=> a G P or b G P) and the prime radical is zero. In fact

Lemma 4. / / N is left strongly regular, every prime ideal is maximal.

Proof. Let P be prime and suppose Pg! M for a maximal ideal M. Let x G M\P.
Since 0 = x — ax2 = (l — ax)x for some a, and P is completely prime, therefore
I - ax E. P C M. But x G M s o 1 G M, a contradiction.

Another consequence of the theorem is that no d.g. near-ring can be left strongly
regular unless it is a ring because of the abelian addition. In fact if E(G), the
endomorphism near-ring of the group G, were right strongly regular for finite G then it
too would be a finite (commutative) ring by (7, 9.44c).

As to whether the left-right definitions are actually equivalent, we note that right
strong regularity does not imply the existence of zero divisors, so perhaps there exist
integral near-rings as examples. These would have the necessary condition of being
reduced and are guaranteed not to be left strongly regular if not near-fields.

There are two definitions of biregularity in the literature. Write B(N) for the set of
central idempotents in N, and NaN = {I n,ar,}.

Bi(10): N is biregular if for all a G N3e in B(N) such that NaN = Ne.
S2(Betsch, (7, p. 94)): N is biregular if 3ECB(N) such that
(a) for all eE.E, Ne is an ideal of N,
(b) for all n G N there exists eG.E with Ne = (n), the principal ideal generated by n,
(c) for all e, f G E, e + / = / + e,
(d) for all e, f G E, ef G E and e + / - ef G E.
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Now in (10) it is shown that when B\ holds we have
(i) each NaN is an ideal,

(ii) for all e, f G B(N), f-ef = -ef + f
(iii) for all e, f G B(N), e + f-ef = e-ef + fG B(N).

Proposition 4. // N is left strongly regular, it is B\ and if N is a Bt near-ring, it is
B2.

Proof. By the theorem, if n G N then Nn is an ideal generated by a central
idempotent e so NnN = Nn = Ne.

Now suppose N is a B{ - near-ring. Let E = B(N). Then Ve G E, NeN = Ne is an
ideal (from (i)) so (a) is true. Moreover, given x, NxN is an ideal from (i), so
(JC) = NxN and NxN = Ne for some e G B(N). Thus (b) is true. Next let e, fGE.
Again Nf = NfN is an ideal so e+f—eG Nf, that is e + f — e = nf for some n.
Multiplying on the right by / gives ef + f-ef = nf = e + f-e. Using (ii) we get
/ = e + f - e so (c) is true. Finally, (d) follows directly from (iii).

Definition, u G N is a generator of N if the ideal generated by u is all of JV. For
our left strongly regular near-rings, u is a generator if and only if u is a unit, since the
ideal generated by u is Nu and Nu = N implies vu = 1 for some v. Therefore V is in
no proper maximal ideal so Nv = N and xv = 1 for some x. Then x = xvu = u. Thus
for left strongly regular near-rings our definition of generator is consistent with (7, p.
75).

Proposition 5. / / N is left strongly regular, then for all xGN there is a unit uEN
such that x = ux2.

Proof. We have x = ax2 for some a and a = za2 for some z. Put u = 1 + a — za.
Then ux2 = (1 + a — za)x2 = x2 + ax2 — zax2 = x2 + x — zaxx = x2 + x — za(ax2)x = x2 + x
— ax2x = x. Moreover ua = (1 + a — za)a = a + a2— a = a2. Thus if u is in a maximal
ideal so is a, and then so is 1 from the way « was defined. Therefore u is a unit.

Theorem 2. The following are equivalent:
(a) N is left strongly regular;
(b) N is regular and a subdirect sum of near-fields;
(c) every N-subgroup is a two sided ideal, and all ideals I satisfy I = I2 (where in

general / / = {ij\i G /, j G /}).

Proof, (a) <=> (b) follows from (4, 4.4) and the observation that a regular near-ring
with C.I. is left strongly regular.

(a)4>(c) If L and K are left ideals, they are two sided by Theorem 1 so
LKCLdK. Moreover if x GLC\K then x = ax2 = ax • xGLK so LK = LD K. In
particular L2 = L.

(c) ̂  (a) For any xG N, Nx is a two-sided ideal and (Nx)2 = Nx so x = rxsx for
some r, 5. But xs G Nx sox = rtx2 for some f, as required.

Recall that a te/f V-ring is a ring which satisfies either of the equivalent (6)
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conditions (i) every left ideal is an intersection of maximal left ideals (ii) every simple
left module is injective. A strongly regular ring is both a left and right V-ring. For
near-rings we distinguish between simple modules (those having no N-submodules)
and irreducible modules (those having no TV-subgroups). As well, it is not clear if
there exist any injective modules (see (5)).

However there are near-ring modules that appear to play the role of injective
modules in some situations. M is defined to be a Baer module if it satisfies "Baer's
criterion": For every left ideal L, every homomorphism f:L->M can be extended to
N. In (5), for instance, it was shown that N is semi-simple iff every module is Baer.
The next two theorems show that the Baer modules are a suitable generalisation of
injective modules in the present context also. First we prove a lemma.

Lemma 5. / / N is left strongly regular and S is a multiplicatively closed subset of
N not containing 0 then any ideal P maximal with respect to P D S = 0 is (completely)
prime.

Proof. Let ab G.P and suppose a$. P, b$. P. By Theorem 1, Na and Nb are ideals
and by the maximality of P3s E. S C\(Na + P) and 3tESD(Nb + P). Now (Na +
P)(Nb + P) = NaNb + P (see e.g. (7, page 61)) and since Na = Ne for some central
idempotent e, NaNb + P = Nab + P C P. Therefore st ESHP which is a contradiction.

Theorem 3. N is left strongly regular if and only if every left N-subgroup is an ideal
which is an intersection of maximal (left) ideals.

Proof. (=£>) From Theorem 1, it suffices to show that every ideal / is an inter-
section of maximal ideals. If b£ I then since Nb = Ne for some central idempotent e,
let M be an ideal containing / and maximal with respect to the property b&M (i.e.
e(£ M). But since {e} is multiplicatively closed, does not contain 0, and is disjoint from
M, M is a prime ideal by Lemma 5. Hence by Lemma 4, M is maximal. Thus we have
shown that if b$. I, there is a maximal ideal M containing / with b $ M, as required.

«=) Since Nx2 is an intersection of maximal ideals, if x¥- ax2 for all a, there
should exist a maximal ideal M such that x2 E M, JC£ M. However this contradicts the
fact that, when left N-subgroups are ideals, a maximal ideal is completely prime.

Recall (5) that the JV-module / is loosely injective if whenever 0-»/-»A-»B-*0is
a short exact sequence, there is a map g:B-*A such that g(B) is a submodule of A
and fg= 1B. The sequence is then said to split.

Theorem 4. Consider the following conditions on N:
(a) Every simple module is loosely injective;
(b) Every left ideal is an intersection of maximal left ideals;
(c) Every simple module is Baer.
Then (a) => (b) 4> (c).

Proof, (a) => (b) If M is an TV-module with 0 ̂  x e M, choose Y to be maximal
among submodules of M with x $ Y. Let £>= n {proper submodules B£Y} if any

https://doi.org/10.1017/S0013091500003564 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003564


STRONGLY REGULAR NEAR-RINGS 33

exist. The D\Y is a simple module and there is an exact sequence 0-»D/Y-»M/Y->
M/D-»0 which splits since D\Y is loosely injective. Therefore (5, Lemma 2.1)
M\Y = £>/Y© K/Y for some submodule K, Y C K C M. Now x G D so x<£ K which
contradicts the maximality of K. Therefore D = 0 and Y is maximal. Thus we have
shown that for all x EM there is a maximal submodule Y with x£ Y, so the
intersection of all maximal submodules is (0). In particular if M = JV// for some left
ideal /, / = n {maximal left ideals D /} .

(b) => (c) Consider the diagram

S
af

where 5 is simple and / is a left ideal of TV. Let / = Ker a and let M be a maximal left
ideal such that MDJ, M } / (which exists by (b)). Then 72 M n / D J but since
5 = IIJ is simple M n / = / so S = / / / - 7/M/ - M + 7/M - TV/M. Therefore we define
a : JV -* S = NIM to be the canonical quotient map and this completes the diagram.

Corollary. If TV is left strongly regular, every simple module is Baer.

Theorem 5. If TV is regular, has C.N. and every maximal N-subgroup is closed
under right TV-multiplication, then every irreducible N-module is Baer.

Remark. If a regular near-ring with C.N. is strongly regular, then of course
Theorem 5 is unnecessary since the corollary is stronger. For rings, C.N. 4> C.I. and
so a regular ring with C.N. is strongly regular. However it is not known if either
statement is true for near-rings.

The theorem requires a lemma, and both proofs are adapted from (9).

Lemma 6. If every maximal left N-subgroup of TV is closed under right N-
multiplication, and M is an irreducible N-module, then for all x, y G M, Ann x =
Ann y.

Proof. As noted earlier, Ann x is a left ideal. Since M is irreducible, M = Nx and
N/Ann x — Nx = M — NlAnn y so both Ann x and Ann y are maximal left ideals. By
hypothesis, they are ideals. If a G Ann x then since y = nx, ay = anx. Since Ann x is a
two-sided ideal, an G Ann x so ay = 0 i.e. a G Ann y. By symmetry Ann x = Ann y.

Proof of Theorem 5. If 7 is a left ideal, M is an irreducible TV-module and
f-.I^M an 7V-homomorphism, then f(a) # 0 for some a G7 and by the regularity of
TV, Na = Ne for some e = e1. Then (7, 1.13) N = Ne 0 Ann e and 7 D Ne so 7 =
7 D (N<?0 Ann e) = Ne® (7 n Ann e). Let f(e) = a. Then since Na = Ne, a = ne so
f(a) = nu and M^ 0 since /(a) # 0. Because € = e2, 0 * u = f(e) = ew so e£ Ann u. We
now show / is zero on 7 D Ann e. This will allow us to define g:N->M by
g(n) = g(ne + n- ne) = fine) = nf(e) so g is an JV-homomorphism extending / . Now if
x = n-neE in Anne then ef(x) = f(ex) = f(e(n-ne)). But by Lemma 3 (ii), ( n -
ne)e = 0 implies e(n - ne) = 0. Thus ef(x) = 0. If f(x) were non-zero this would say
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e G Ann/(x). But we saw e $ Ann u and this contradicts Lemma 6. Therefore f(x) = 0
as required.

4. Weakly regular near-rings

Ring theorists use the term "weakly regular" in the following way: for all x, 3a ^ 0
with a = axa. This is equivalent to: every left ideal contains a non-zero idempotent.
Then every regular ring is weakly regular. In an analogous manner we have

Lemma 7. For a near-ring N (it needn't be unital or zero symmetric) the
following are equivalent:

(a) For all x G N3a ^ 0 in N with a = axa ;
(b) Every left N-subgroup contains a non-zero idempotent.
Moreover a zero-symmetric regular near-ring has these properties.

Proof, (a) => (b) If / is a left JV-subgroup and x G /, then a = axa ̂  0 => 0 ^ ax is
an idempotent in /.

(b)=>(a) Given x G N, the left N-subgroup Nx contains an idempotent bx^O.
Since (bx)3 = bx we have bxb = (bxb)x(bxb) and so choose a = bxb.

Now if N is regular then for all x3b with x = xbx. Put a = bxb so axa =
bxbxbxb = a. If a = 0 then bxb = 0 so bx = bxbx = 0. If N is zero-symmetric, then
x = xbx = 0, a contradiction.

Rather than use the equivalent conditions of the lemma to define weak regularity,
we shall follow Plasser (8, 3.46) and define a near-ring N to be weakly regular if
Vx G N 3 idempotent x°GN such that

(i) xx° = x°x = x
(ii) If e2 = e and ex = xe = x then x°e = x°

(hi) (xy)° = x°y0

It follows from (iii) that such a near-ring is reduced so it is not true that a regular
near-ring is weakly regular. However we shall justify the terminology by proving that
a left strongly regular near-ring is weakly regular. We continue to work in the
zero-symmetric unital case, so if N is left strongly regular then for all x G N3 a G N
with x = xax = ax1 = x2a. Taking x° = ax we have (i) directly and moreover if e2 = e
and ex = xe = x then x°e = axe = ax = x° so (ii) holds. It remains to show that (iii) is
true, and to do this we borrow a ring theoretic definition from (8).

Definition. A near-ring N is called an associate near-ring if N is a subdirect sum
of integral near-rings, and, for all x G N 3 an idempotent x° such that xx° = x°x = x and
x + 1 - x° is not a zero divisor. Recall that we are using "integral near-ring" to mean there
are no zero divisors. In a subdirect sum of integral near-rings, ab = 0 => ba = 0 so there is
no need to distinguish between left and right zero divisors.

Proposition 6. N is an associate near-ring iff N is a subdirect sum of integral
near-rings in which for all a = (a,) GN, a0 = (af)E.N where a? = 1 // a,# 0 and a? = 0

Proof. (=» An idempotent in N must be e = (e,) where e,=0 or 1. Therefore
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given a G N we know there exists an idempotent a0 such that a°a = aa° = a. There-
fore a ? = l when a , # 0 . Now suppose a ° = l for some i with a , = 0 . Then x =
a + 1 - a0 has a component x, = 0. Since x° G N, 0 5* 1 - x° G N and (1 - JC°)JC = x - x =
0 so A: is a zero divisor. This is a contradiction.

(<^) By the definition of a0 we have aa° = a°a = a. Also if x = a + 1 - a0 then x^ 0
for all i so x is not a zero divisor.

Theorem 6. A strongly regular near-ring is an associate near-ring and an asso-
ciate near-ring is weakly regular.

Proof. By Theorem 1, if N is strongly regular it is a subdirect sum of near-fields
which are integral near-rings. Since for all x3a with x = xax = ax2, we take x° = ax.
Then x + l-x° = x + l-ax is not a zero divisor for if (x + 1 - ax)y = 0 then (x + 1 -
ax)xy = 0 by I.F.P. so x2y + xy - ax2y = 0 or x2y = 0. Then 0 = ax2y = xy and so
0 = (JC + 1 — ax)y = xy + y — axy = y.

Now suppose N is an associate near-ring so we have Vx an x° with xx° = x°x = x.
If e2 = e and ex = xe = x, then e = (ef) where each e, = 0 or 1. Therefore e, must be 0
precisely when xt = 0 and so e = x" and x°e = x". Finally (xyf = x°y° follows from the
description of x° in Proposition 6.
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